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Abstract—Some machine learning algorithms are considered
as black boxes, because the models are sufficiently complex and
they are not straightforwardly interpretable to humans. Lack
of interpretability in predictive models can undermine trust in
those models in many application areas. The article introduces a
new interpretable machine learning algorithm, called the Multi-
Class Least-Error Square Sum (mCLESS). It is linear, simple
to implement, and interpretable. Its nonlinear expansion is
discussed. This simple algorithm turns out to be superior to
many popular machine learning algorithms. Various experimen-
tal results involving synthetic datasets and UCI datasets are given
to verify the claim.

Index Terms—machine learning, interpretable model, explain-
able AI, feature expansion, UCI datasets

I. INTRODUCTION

In the field of machine learning, classification is the most

common task and applicable for various real-world problems

such as text/speech recognition [1]–[3], face identification [4]–

[6], and document classification [7]–[9]. It can be categorized

as a supervised or unsupervised classification depending on

the presence or absence of labels. Algorithms for the super-

vised classification differ from the ones for the unsupervised

classification in the sense that they make use of the labeled

data to construct proper classifiers; more classification tasks

in practical applications are supervised.

The basic strategy behind supervised classification algo-

rithms is to establish classifiers that map the given data into

specific categories utilizing special forms of measure which

indicate the similarity of data. There have been various mea-

sures that serve as mathematical/statistical foundations for suc-

cessful classifiers. Linear classifiers are regarded as preferred

classification methods due to their simplicity and scalability.

Many common algorithms such as the logistic classification

method [10] and the support vector machine (SVM) [11] are

linear classifiers. As a non-parametric classifier, the k-nearest
neighbors (kNN) [12] is formulated to classify given data

based on a chosen distance measure. In addition, ensemble-

type methods such as the deep neural network [13], [14], the

random forest [15], [16], and kernel PCAs [17] make use of

measures from existing methods to enhance the performance

of classification.

In this article, we suggest a new interpretable machine

learning algorithm, called the Multi-Class Least-Error Square
Sum (mCLESS), which makes use of the least-squares for-

mulation, most popularly used in regression analysis. The

basic mCLESS is linear, simple to implement, interpretable,

and applicable for datasets of arbitrary numbers of classes. In

order to enhance the performance of the mCLESS for linearly

inseparable datasets, a feature expansion scheme is discussed

as its nonlinearization. This simple algorithm turns out to be

superior to many popular machine learning algorithms.

The outline of this paper is as follows. In the following sec-

tion, we briefly review binary classifiers. Section III describes

the proposed classifier; its nonlinear expansion is discussed in

Section IV. In Section V, we present numerical experiments

performed with various datasets, with comparisons between

the proposed classifier and popular classifiers built in SKlearn

[18]. Section VI summarizes our experiments.

II. PRELIMINARIES

This section presents a brief review on binary classifiers.

The Perceptron [19] (or Adaline) is the simplest artificial

neuron that makes decisions for datasets of two classes by

weighting up evidence.

• Inputs: feature values x = [x1, x2, · · · , xd]
• Weight vector and bias: w = [w1, w2, · · · , wd]

T , w0

• Net input:

z = w0 + w1 x1 + w2 x2 + · · ·+ wd xd (1)

• Activation and classification: for threshold θ,

φ(z) =

{
1, if z ≥ θ

0, otherwise,
(2)

where φ is an activation function.
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When the logistic sigmoid function is chosen for the acti-

vation function, i.e., φ(z) = 1/(1 + e−z), with θ = 1/2, the

resulting classifier is called the Logistic Regression. In general,

the activation function is incorporated in order (a) to keep the

net input restricted to a certain limit as per our requirement

and, more importantly, (b) to add nonlinearity to the network.

Note that the net input in (1) represents a hyperplane in

R
d. More complex neural networks can be built, stacking the

simple artificial neurons as building blocks.

Machine learning is to train weights from datasets of an

arbitrary number of classes. The weights must be trained in

such a way that

data points in a class are heavily weighted by the
corresponding part of weights.

This observation will be utilized when we formulate our

classification method in the following section.

III. THE MCLESS CLASSIFIER

In this section we introduce a new classifier, which is based

on a least-squares formulation and able to classify datasets

having arbitrary numbers of classes.

A. The mCLESS as a simple neural network

In order to describe the proposed algorithm effectively, we

exemplify a synthetic data of three classes, as shown in Fig. 1,

in which each class has 100 points.

Fig. 1. A synthetic data of three classes.

A point in the c-th class is expressed as

x(c) = [x
(c)
1 , x

(c)
2 ] = [x1, x2, c] c ∈ {0, 1, 2},

where the number in () in the superscript denotes the class that

the point belongs to. Let’s consider an artificial neural network

of the identity activation and no hidden layer, for simplicity.

Then, a set of weights can be trained in such a way that

points in a class are heavily weighted by the correspond-
ing part of weights, i.e.,

w
(j)
0 +w

(j)
1 x

(i)
1 +w

(j)
2 x

(i)
2 = δij =

{
1 if i = j

0 if i �= j
(3)

where δij is called the Kronecker delta and w
(j)
0 is a bias

for the class j.

Thus, for neural networks which classify a dataset of C
classes with points in R

d, the weights to be trained must have

dimensions (d+1)×C. The weights can be evaluated by the

least-squares method. We will call the algorithm the Multi-
Class Least Error Square Sum (mCLESS).

B. The Training Step in the mCLESS

This subsection formulates the mCLESS and its training

step algebraically.

• Dataset: We express the dataset in Fig. 1 by

X =

⎡
⎢⎢⎢⎣
x11 x12

x21 x22

...
...

xN1 xN2

⎤
⎥⎥⎥⎦ ∈ R

N×2, y =

⎡
⎢⎢⎢⎣
c1
c2
...

cn

⎤
⎥⎥⎥⎦ ∈ R

N , (4)

where ci ∈ {0, 1, 2}, the class number.

• The algebraic system: It follows from (3), considering the

bias {w(j)
0 }, an algebraic system can be formulated along

with the information matrix and the source matrix.

– The information matrix:

A =

⎡
⎢⎢⎢⎣
1 x11 x12

1 x21 x22

...

1 xN1 xN2

⎤
⎥⎥⎥⎦ ∈ R

N×3. (5)

– The source matrix:

B = [δci,j ] ∈ R
N×3. (6)

For example, if the i-th point is in Class 0, then the i-th
row of B is [1, 0, 0].

• Least-squares formulation: Then the multi-column least-
squares (MC-LS) problem is formulated as

Ŵ = argmin
W

||AW −B||2, (7)

which can be solved by the method of normal equations:

(ATA) Ŵ = ATB, ATA ∈ R
3×3. (8)

• The output of training: The weight matrix

Ŵ = [w(0),w(1),w(2)] =

⎡
⎢⎣w

(0)
0 w

(1)
0 w

(2)
0

w
(0)
1 w

(1)
1 w

(2)
1

w
(0)
2 w

(1)
2 w

(2)
2

⎤
⎥⎦, (9)

where the j-th column weights heavily points in the j-th

class.
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The normal matrix ATA is occasionally singular, particu-

larly for small datasets. In the case, the MC-LS problem can

be solved using the singular value decomposition (SVD).

Remark 3.1. Implementation of the Normal Equations.
Let X(i) be the collection of data points in the i-th class,
i ∈ {0, 1, 2}, and the information matrix A in (5) denoted by

A = [a0 a1 a2], (10)

where aj is the j-th column of A with a0 = 1. Then the
matrices ATA and ATB in (8) can be expressed as

ATA = [ai · aj ],
ATB =

[ |X(0)| |X(1)| |X(2)|
C(X(0))T C(X(1))T C(X(2))T

]
,

(11)

where C is the column sum and |·| denotes the of rows (points).
Note that the dot product ai · aj is not between point vectors
but between feature columns.

C. The Prediction Step in the mCLESS

The prediction step in the mCLESS is quite simple:

(a) Let [x1, x2] be a new point.

(b) Compute

[1, x1, x2] Ŵ = [p0, p1, p2], Ŵ ∈ R
3×3. (12)

Ideally, if [x1, x2] is in class i, then pi must be near

1, while other pj’s would be near 0. Thus pi is the

largest.

(c) Decide the class c:

c = argmax([p0, p1, p2]). (13)

D. Interpretation of the mCLESS

As a preprocessing, the dataset X in Fig. 1 is scaled

column-wisely so that the maximum value in each column

is 1 in modulus. The whole algorithm (training-prediction) is

written in Python and run 100 times, with randomly splitting

the dataset into 70:30 parts respectively for training and

prediction; which results in 97.26% and 0.00171 sec for the

average accuracy and the average elapsed-time, on a laptop of

an Intel Core i7-10750H CPU at 2.60GHz.

• For the dataset X in Fig. 1, the output of the training,

Ŵ , represents three sets of parallel lines.

• Let [w
(j)
0 , w

(j)
1 , w

(j)
2 ]T be the j-th column of Ŵ .

Define Lj(x1, x2) as

Lj(x1, x2) = w
(j)
0 + w

(j)
1 x1 + w

(j)
2 x2, j = 0, 1, 2.

(14)

Fig. 2 depicts Lj(x1, x2) = k, k = 0, 1, for j = 0, 1, 2,

superposed to the dataset. The mCLESS is easily interpretable.

It follows from (13) that the mCLESS can be viewed as an

one-versus-rest (OVR) classifier.

Fig. 2. Lines represented by the weight vectors.

IV. NONLINEARIZATION: FEATURE EXPANSION

A. Feature Expansion

The mCLESS so far is a linear classifier. As for other

classifiers, its nonlinear expansion begins with a data transfor-

mation, more precisely, feature expansion. For example, the

Support Vector Machine (SVM) replaces the dot product of

point vectors with the result of a kernel function applied to

the point vectors:

K(xi,xj) ≈ σ(xi) · σ(xj),

where σ is a function for feature expansion. Thus, without an

explicit expansion of point vectors, the SVM can incorporate

the effect of data transformation effectively. Such a technique

is called the kernel trick.

However, the mCLESS does not incorporate dot products

between point vectors; see Remark 3.1. Thus we must explic-

itly perform feature expansion without using a kernel trick,

which results in an augmented normal matrix. Let’s see some

details.

A feature expansion is expressed as

{
x = [x1, x2, · · · , xd]

w = [w0, w1, · · · , wd]
T

⇒
{

x̃ = [x1, x2, · · · , xd, σ(x)]

w̃ = [w0, w1, · · · , wd, wd+1]
T

(15)

where σ(x) is a nonlinear feature function of x, which will

be specified later. Then, the expanded weights must be trained

to satisfy

[1, x̃(i)] · w̃(j) = w
(j)
0 + w

(j)
1 x

(i)
1 + · · ·

= +w
(j)
d x

(i)
d + w

(j)
d+1σ(x

(i)) = δij ,
(16)

for all points in the dataset. Equation (16) is an expansion of

(3).
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The corresponding expanded information and weight matri-

ces read

Ã =

⎡
⎢⎢⎢⎣

1 x11 x12 · · · x1d σ(x1)

1 x21 x22 · · · x2d σ(x2)
...

. . .
...

1 xN1 xN2 · · · xNd σ(xN )

⎤
⎥⎥⎥⎦ ,

W̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

w
(0)
0 w

(1)
0 · · · w

(C−1)
0

w
(0)
1 w

(1)
1 · · · w

(C−1)
1

...
. . .

...

w
(0)
d w

(1)
d · · · w

(C−1)
d

w
(0)
d+1 w

(1)
d+1 · · · w

(C−1)
d+1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(17)

where Ã ∈ R
N×(d+2), W̃ ∈ R

(d+2)×C , and C is the number

of classes.

Feature expansion can be performed multiple times. When

α features are added, the optimal weight matrix W̃ ∈
R

(d+1+α)×C is the least-squares solution of

W̃ = argmin
W

||ÃW −B||2, (18)

which again can be solved by the method of normal equations:

(ÃT Ã) W̃ = ÃTB, (19)

where B is the same as in (6) and

ÃT Ã ∈ R
(d+1+α)×(d+1+α).

Various feature functions σ(·) can be considered. Here,

as a simple example of feature expansion, we will focus

on the feature function of the form

σ(x) = ‖x− p‖, (20)

the Euclidean distance between data points x and a

prescribed point p. Now, the question is: “How can we
determine the point p?”

B. Data Analysis for Determining p

The goal is to find p such that the points transformed into

the one-higher dimensions are more distinguishable class-by-

class. For a simple analysis, we exemplify the iris.data
from the UCI Machine Learning Repository. The dataset

includes total 150 points in four dimensions, 50 in each of

three classes. As a preprocessing, the dataset is scaled by

column maximums.

In order to nonlinearize the mCLESS, we need to under-

stand the algorithm and analyze the data as well.

Performance of the mCLESS: The mCLESS is run 100

times, with randomly splitting the iris.data into 70:30

parts respectively for training and prediction. Thus, in each

run, each class sub-dataset is splitted to 35 and 15 points

respectively for the training and the test. Fig. 3 depicts the

cumulative class-wise prediction tables, one in counts and the

other in accuracies. The average accuracy becomes 82.78%.

Fig. 3. mCLESS: The class-wise prediction for the iris.data.

Fig. 4. Iris.data: Mutual distances and mutual angles between the class centers
are presented.

As one can see from the figure, the major error occurs from

the classification between Class 1 and Class 2. This

observation will be utilized when we try to determine the point

p.

Data analysis: As the first step for data analysis, we

configure the centers of classes. The distances from the origin

to the centers of classes show

[1.02933416 1.27413273 1.56731375]. (21)

Fig. 4 shows mutual distances and mutual angles between the

class centers of the dataset. From the centers and Fig. 4, we

can see the following:

• The centers of three classes are not collinear but some-

what bent.

• Class 2 is the farthest one from the origin.

• Class 1 is nearer to Class 2 than to Class 0.

Determining p: From the data analysis and observation, we

select two candidates for p:

p0 = CC[1, :]− η0(CC[2, :]− CC[0, :]),

p1 = CC[1, :]− η1(CC[2, :]− CC[1, :]),
(22)

where CC[k,:] denotes the center of the training dataset in

Class k, k = 0, 1, 2, and the scaling factors (η0 and η1) are

to be set experimentally. The above points pi, i = 0, 1, are

selected intuitively but in such a way that the feature column

to be added will contain distinguishable values between Class
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1 and Class 2. On the other hand, we must choose ηi appro-

priately not to be harmful for the highly-accurate classification

of Class 0. By trial and error, we have found the following.

• The candidate p0 performs its best when η0 = 0.25.

• The candidate p1 performs its best and better than p0

when η1 = 1.0.

Thus we decide to add the following feature to all data points

(training and test).

σ(x) = ||x− p1||, (23)

where

p1 = CC[1, :]− (CC[2, :]− CC[1, :]) = 2 ∗ CC[1, :]− CC[2, :].

Note that the class centers CC are obtained using the randomly-

selected training data-subset only, in each run.

Fig. 5. mCLESS: The class-wise prediction for the iris.data, when a
feature is added using (23).

Fig. 5 includes the cumulative class-wise prediction tables,

when the mCLESS admits an extra feature column, as in (23),

and runs 100 times. Compared with the results in Fig. 3, one

can see a significant error reduction; the average accuracy be-

comes 98.02%. (For the basic mCLESS, the average accuracy

was 82.78%.) Such a dramatic improvement in accuracy is due

to the fact that the mCLESS is simple and interpretable and

therefore conveniently reformed.

Here we summarize how to determine the point p.

Summary 4.1. The point p must be determined such that
the extra column in the dataset has distinguishable values
at least in two different classes. In order to find such an
effective p, one may perform the following. Note that in
Python, CC[c] = CC[c,:], the c-th row of CC. Define
the center-to-center directional vectors.

DC[c] = CC[c]− CC[(c+ 1)%nclass]. (24)

Then search the point p of the form

p = CC[i] + η DC[j], (25)

where η is a parameter to determine. One can guess
an appropriate pair (i, j) reasonably well, using the
class-wise prediction scores (Fig. 3) and the mutual
distance and mutual angle tables (Fig. 4). After a few
times of trials on η, one can finalize p.

V. NUMERICAL EXPERIMENTS

The mCLESS classifier is compared with 10 well-known

classifiers, built in scikit-learn or SKlearn [18], for the

synthetic.data in Fig. 1 and various real datasets, avail-

able from the UCI Machine Learning Repository [20]; as

shown in Tables I and II.

TABLE I
CLASSIFIERS, USED FOR NUMERICAL EXPERIMENTS.

Classifier Description

mCLESS the linear mCLESS

mCLESS-E the nonlinear expansion of the mCLESS with (20)

QDA QuadraticDiscriminantAnalysis()
RF RandomForestClassifier()
KNN KNeighborsClassifier()
L-SVM SVC(kernel="linear")
R-SVM SVC(gamma=2), the RBF SVM

DNN MLPClassifier()
GNB GaussianNB(), the Naïve Bayes

LR LogisticRegression()
GP GaussianProcessClassifier()
AB AdaBoostClassifier(), Adaline Boost

TABLE II
DATASETS, USED FOR NUMERICAL EXPERIMENTS.

Dataset # points # classes Source

synthetic.data 300 3 Synthetic

wine.data 178 3 UCI

iris.data 150 3 UCI

seeds_dataset.txt 210 3 UCI

australian.data 690 2 UCI

cmc.data 1473 3 UCI

digits.data 1797 10 UCI

banknote.data 1372 2 UCI

Each classifier is run 100 times for each dataset, randomly

splitting the dataset into 70:30 parts respectively for training

and prediction.

Table III shows average accuracy comparisons between the

mCLESS and the best classifiers from SKlearn for datasets

in Table II. As one can see from the table, the suggested

classifier, mCLESS-E, has won the highest accuracy for

five datasets (out of eight). It should be noticed that for

seeds_dataset.txt, the simple linear classifier, mC-

LESS, performs better than any classifiers built in SKlearn.

TABLE III
AVERAGE ACCURACY COMPARISONS: MCLESS AND MCLESS-E VS.

SKLEARN BEST CLASSIFIERS.

Dataset mCLESS mCLESS-E SKlearn Best-Accuracy

synthetic.data 97.26 97.67 KNN – 97.28

wine.data 98.61 99.24 QDA – 98.78

iris.data 82.78 98.02 QDA – 97.82

seeds_dataset.txt 96.37 96.43 QDA – 93.95

australian.data 86.24 86.46 LR – 86.45

cmc.data 50.92 53.43 AB – 54.22
digits.data 93.36 94.17 KNN – 97.96
banknote.data 97.52 98.86 KNN – 99.80
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Discussion: We close the section with discussion.

• Nonlinearization. As an effective nonlinearization of the

(linear) mCLESS, one may consider various measures rather

than the Euclidean distance from a specific point p. Also,

one may try to expand more than one features, using

combinations of selected measures. A set of data analysis

must precede the introduction of measures.

• Outliers/Noise. The least-squares formulation is sensitive to

(and may be biased by) outliers or noise. It would better

incorporate an effective noise removal algorithm.

We will address these issues in a forthcoming article.

VI. CONCLUSIONS

We have introduced a machine learning classifier called

the Multi-Class Least-Error Square Sum (mCLESS) which

is simple to understand, easy to implement, and therefore

interpretable. The mCLESS is a linear classifier based on least-

squares formulation. Its nonlinearization is suggested through

a feature expansion, where an extra feature is chosen as the

Euclidean distance measured from a specific point p to each

data point. The point p is data-dependent; an effective strategy

is discussed for the selection of the point. Compared with

many classifiers built in SKlearn, the nonlinearization of the

mCLESS, mCLESS-E, has won the highest accuracy for many

datasets available from the UCI Machine Learning Repository.
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