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Abstract—Edges in a digital image provide important infor-
mation about the objects in the image since they constitute
boundaries between objects. Most edge detection algorithms are
sensitive to noise and attempts to remove noise often weaken not
only noise but also the edge strength. This article proposes an
innovative denoising method called the reverse-transition weight-
ing (RTW) filter, which can suppress noise without weakening
the edge strength. Such a property of preserving the edge
strength is unique to the RTW denoising filter. The new filter
is analyzed for its stability and convergence and adopted for the
denoising step of the Canny edge detection algorithm, replacing
the conventional Gaussian smoothing filter. We also compare
gradient-fusion methods which combine the RGB gradients into
one. Our goal is to formulate a robust edge detection algorithm
for color images, particularly for heavily noisy images. Various
examples are given to show the effectiveness of the new denoising
filter.

Index Terms—Reverse-transition weighting (RTW) filter,
Canny edge detection, denoising, structure tensor

I. INTRODUCTION

Edge detection includes various mathematical methods that
aim to identify edges, defined as curves in a digital image at
which the image color and brightness change sharply or have
discontinuities.

Edge detection methods can be grouped into two categories,
search-based and zero-crossing based. The search-based meth-
ods detect edges by first computing a measure of edge strength
(such as the gradient magnitude) and then searching for local
directional maxima of the gradient magnitude (the gradient
direction) [1], [2]. The zero-crossing based methods search
for zero crossings in a second-order derivative expression
computed from the image (such as the Laplacian) in order

to find edges [3]. As a pre-processing step to edge detection,
a smoothing stage is usually applied to suppress noise.

In general, differentiation-based edge detection algorithms
are sensitive to noise. In order to suppress noise in the image
and to improve the performance of edge detection for noisy
images, one can employ some spatial smoothing methods such
as the Gaussian filter [1], fuzzy filters [4], [5], and anisotropic
diffusion operators [6], [7]. For most denoising methods, the
main goal is to reduce noise without deteriorating the edge
strength.

The results of edge detection methods may vary widely
depending on the hysteresis thresholds. An effective edge
detection algorithm must incorporate a satisfactory approach
for the selection of the thresholds [8]. Additionally for edge
detection of color images, a good strategy must be found in
order to combine gradient magnitudes (or three separate edges
obtained from the image channels) to one magnitude.

In this article, we will introduce an innovative iterative
denoising algorithm called the reverse-transition weighting
(RTW) filter, which tries to flatten local extrema in the image,
minimizes diffusion in the edge normal direction to preserve
the edge strength, and diffuses image values actively in the
edge tangential direction to form clean edges. The RTW filter
is analyzed for its stability and convergence and adopted
for the denoising step of the Canny algorithm [1] for edge
detection for noisy color images, replacing the conventional
Gaussian smoothing filter.

The article is organized as follows. Section II reviews
briefly the Canny edge detection algorithm, strategies for
handling color images and noisy images in edge detection,



and the structure tensor method. In Section III, the RTW
filter is described in detail and analyzed for its stability and
convergence. Section IV presents numerical examples which
show the effectiveness of the new filter. The section also
shows a comparison study for gradient-fusion methods. The
last section, Section V, summarizes our findings.

II. PRELIMINARIES

This section presents a brief review of the Canny edge
detection algorithm, methods for color images and noisy
images in edge detection, and the structure tensor method for
combing RGB gradients to one. Note that the Canny algorithm
was originally developed for gray-scale signals [1] and it has
been applied for the detection of edges on images in either
gray or color [9]–[12].

A. The Canny edge detection algorithm
The process of the Canny edge detection algorithm for gray-

scale images [1] can be broken down to five different steps:
1) Noise removal: Apply a Gaussian filter to smooth the

image and remove the noise.
2) Gradient calculation: Find the magnitude and angle of

the image gradient.
3) Edge thinning: Apply thresholding or suppression to the

gradient magnitude in order to get thin edges.
4) Double threshold: Determine potential edges, weak and

strong.
5) Linking by hysteresis: Finalize the edge detection by

transforming some weak pixels into strong pixels.
We will see some details for the five steps.

1) Noise removal: Since the noise in the image easily
affects edge detection results, it is necessary to filter out the
noise to prevent false detection. In smoothing the image, a
common method is the Gaussian filter in which a kernel is
convolved with the image. The equation for a Gaussian filter
kernel of size (2k + 1)(2k + 1) is given by

Gij =
1

2πσ2
exp

(
− i2 + j2

2σ2

)
, −k ≤ i, j ≤ k. (1)

The size of the Gaussian kernel affects the performance of the
edge detector; the larger the size is, the lower the detector’s
sensitivity to noise. However, with the increase of the Gaussian
filter kernel size, the edge strength will be weakened and the
localization error to detect the edge will increase. A 5 × 5
kernel is a good size for many cases.

2) Gradient calculation: Edges correspond to a change of
pixels’ intensities. To detect edges, a common way is to apply
filters that can highlight the intensity change in both horizontal
(x) and vertical (y) directions. For example, the Sobel gradient
can be calculated convolving the Sobel kernels

Kx =

−1 0 1
−2 0 2
−1 0 1

, Ky = KT
x . (2)

Given an image u, let ∇u = [ux, uy] ≈ [Kx ∗u,Ky ∗u]. Then
the edge normal direction can be computed by

θ = atan2(uy, ux), −π ≤ θ ≤ π. (3)

3) Edge thinning: This stage of the Canny algorithm for
the detection of “true edges” can be formulated as the non-
maximum suppression. The idea is simple: the final image
should ideally have thin edges. Thus the algorithm goes
through the points on the gradient intensity matrix and finds
the pixels having the maximum value in the edge normal
direction.

The non-maximum suppression can be implemented effec-
tively. Note that the output of (3), θ, has values between −π to
π. However, at a point xij , the available values of the gradient
magnitude are at angles in multiples of π/4.

theta(theta<0) = theta(theta<0)+pi;
R = mod(floor((theta+pi/8)/(pi/4)),4);

In the above code in Matlab, the out matrix R assigns a value
from {0, 1, 2, 3} to each pixel. If R(i, j) = k, k = 0, 1, 2, 3,
the edge normal direction (or its opposite direction) at the
(i, j)-pixel is nearest to the angle k · π/4.

4) Double threshold: This step is to apply a threshold in
order to decide whether or not edges are present at an image
point. The lower the threshold is, the more edges will be
detected. The result will be increasingly susceptible to noise
and possibly detect edges of irrelevant features in the image.
Conversely a high threshold may miss subtle edges or result
in fragmented edges.

A good thresholding strategy is to identify three kinds of
pixels: strong, weak, and non-relevant. After setting high and
low thresholds:

• The high threshold is used to identify the strong pixels.
• The low threshold is used to identify the non-relevant

pixels.
• All pixels having intensity between both thresholds are

flagged as weak. The hysteresis mechanism (Step 5) will
finalize the edge detection by transforming some weak
pixels into strong ones.

We need to choose appropriate thresholding parameters; suit-
able thresholding values may vary over the image. See [8] for
an effective strategy for determining the hysteresis thresholds.

5) Linking by hysteresis: The strategy of thresholding and
linking in edge detection is based on the assumption that edges
are likely to be in continuous curves. This assumption allows
us to analyze weak pixels to find a possibility to transform
them to strong ones, hysteresis. Here is a common hysteresis
rule:

Transform a weak pixel into strong ones if and only
if at least one of 8 surrounding pixels of the weak
pixel is a strong one.

B. Color images and noisy images

This subsection briefly reviews applications of the Canny
algorithm for color images and noisy images.

1) Color images: There have been two ways to detect edges
of color images. The first way is to transform the color image
into a gray one and process it as a gray image, which is
a simple and easy procedure. However, the transformation



may weaken the strength of edges, and therefore the resulting
algorithm may not be effective. The other method is to apply
the gray image edge detection algorithm separately for each of
three channels of the color image and fuse the three separate
results at a certain stage. With fusion-based edge detection,
most literature can be placed into two categories: output fusion
methods and multi-dimensional gradient methods [13].

• Output fusion methods appear to be the most popular.
The goal is to perform edge detection three times, once
for each red, green, and blue. Then results are fused by
a logic rule to determine the edges. For example, if a
point has at least two channels identified as an edge, this
location is to be determined as an edge pixel.

• Multi-dimensional gradient methods short-circuit the
above by combining the three gradients into one and
detecting edges only once. For this, one can apply the
structure tensor [14], [15] or take the average, maximum,
or mean square root of the three gradients.

2) Noisy images: Noisy images with low signal to noise
ratio (SNRs) are common in various application domains.
Examples include electron microscopy (EM) images taken
under certain protocols (e.g., cryo-EM), fingerprint images
with low tissue contrast, photos acquired under poor lighting,
etc.. Edges carry important information since they mark the
boundaries of objects in the image. Extracting edges from such
images is important to allow proper interpretation of their
content. Moreover, the study of edge detection under such
extreme conditions may potentially lead to better algorithms
for handling photographs of natural scenes [16].

Many edge detection algorithms have been developed based
on the gradient magnitude, which in general is sensitive to
noise in the image. In order to suppress the noise and to
improve the performance of edge detection for noisy images,
one can employ some spatial smoothing methods, such as
the Gaussian filter, applied for either image values, gradient
vectors, or the structure tensor [15].

C. Structure tensor

For a function f : Rn → R, the structure tensor is a
matrix derived from the gradient of f(x): the structure tensor
is defined as

S(x) = (∇f)(∇f)T (x), (4)

which describes the distribution of the gradient in a neighbor-
hood of the point x. When x = (x, y) ∈ R2, the structure
tensor in (4) reads

S(x) = (∇f)(∇f)T (x) =

[
f2
x fxfy

fxfy f2
y

]
(x). (5)

It is not difficult to prove the following.
1) The matrix S is symmetric and positive semidefinite,

i.e., eigenvalues are real and nonnegative.
2) ||S||2 = ||∇f ||2, which is the maximum eigenvalue of

S.
3) detS = 0, which implies that the number 0 is the other

eigenvalue of S.

4) The two eigenvalue-eigenvector pairs (λi,vi), i = 1, 2,
are

λ1 = ||∇f ||2, v1 = ∇f
λ2 = 0, v2 = [−fy, fx]

T (6)

Now, let I(x) = (r, g, b)(x) be a color image, where x is
a pixel in the image. Then

∇I(x) =

[
(r, g, b)x
(r, g, b)y

]
(x), (7)

and therefore the structure tensor of I reads

SI = (∇I)(∇I)T =

[
(r, g, b)x
(r, g, b)y

] [
(r, g, b)Tx (r, g, b)Ty

]
=

[
r2x + g2x + b2x rxry + gxgy + bxby

rxry + gxgy + bxby r2y + g2y + b2y

]
.

(8)
For the structure tensor SI in (8), we have

||SI ||2 = ||∇I||22 = λmax(SI). (9)

Rewrite SI as

SI =

[
Jxx Jxy
Jxy Jyy

]
. (10)

Then the quadratic formula gives the larger eigenvalue

λmax(SI) = λ1 =
Jxx + Jyy +

√
(Jxx − Jyy)2 + 4J2

xy

2
,

(11)
of which the square root becomes the gradient magnitude and
the corresponding eigenvector reads

v1 =

[
Jyy − λ1

−Jxy

]
, (12)

which is the edge normal direction.

III. THE REVERSE-TRANSITION WEIGHTING FILTER

This section introduces an innovative denoising operator
called the reverse-transition weighting (RTW) filter.

A. Signal denoising

We first consider the RTW filter for one-dimensional (1D)
signal as in Fig. 1. Given a noisy signal vector u0, the RTW
filter is an iterative procedure of the form

uk+1 = uk + η C1uk, k = 0, 1, 2, · · · , (13)

where η is a learning rate, and C1uk is the correction term
obtained from the last iterate uk.

Fig. 1. A noisy synthetic signal, where noise appears at n = 2 and 11.



Here our goal is to design an iterative denoising filter which
removes noise without altering monotonic regions where sig-
nal/image values vary monotonically. The goal can be achieved
when the correction term of the filter becomes zero in mono-
tonic regions. Note that noise appears as local extrema; in
order to suppress local extrema, the correction term must be
related to the curvature of the curve. Here we summarize the
requirements and desirable outcomes:

• The correction term must be related to the curvature
of the signal curve.

• The correction term has nonzero values only at local
extrema.

• The resulting iterative filter can suppress noise with-
out weakening monotonic regions, including and
around edges.

Now, for each point n, we first define the left and right
(one-sided) transitions

dn,ℓ = |un − un−1|, dn,r = |un+1 − un|. (14)

Then formulate the correction term, letting the two transitions
weight the one-sided slopes reversely:

Cun = dn,ℓ(un+1 − un)− dn,r(un − un−1)

= dn,run−1 − (dn,ℓ + dn,r)un + dn,ℓun+1.
(15)

Claim 1: The correction term Cun approximates the
curvature at local extrema, while it is zero in monotonic
regions. Thus the RTW denoising filter (13) preserves
pixel values if they vary monotonically.

Proof. For simplicity, let n = 2 in Fig. 1, a local maximum.
Then

d2,ℓ = |u2 − u1| = u2 − u1,
d2,r = |u3 − u2| = −(u3 − u2) = u2 − u3,

and therefore

Cu2 = d2,ℓ(u3 − u2)− d2,r(u2 − u1)

= (u2 − u1)(u3 − u2)− (u2 − u3)(u2 − u1)

= −2(u2 − u1)(u2 − u3) < 0,

with which the iteration (13) will reduce the image value at
n = 2 for the next iterate.

Now, let n = 6, a point in a monotonic region. Then

d6,ℓ = |u6 − u5| = u6 − u5,
d6,r = |u7 − u6| = u7 − u6.

Thus

Cu6 = d6,ℓ(u7 − u6)− d6,r(u6 − u5)

= (u6 − u5)(u7 − u6)− (u7 − u6)(u6 − u5) = 0,

with which uk+1
6 = uk

6 in the iteration (13). Using the same
arguments, we can show that the correction term is zero at all
points in monotonic regions and nonzero at local extrema.

Fig. 2. Three iterations of the RTW filter for the signal in Fig. 1.

Fig. 2 depicts the first three iterates of the RTW filter applied
for the synthetic signal in Fig. 1, with η = 0.5. As Claim 1
shows, the monotonic regions of the signal are preserved,
while reducing the noise.

However, the iteration converges slowly; the main reason
is that the learning rate η is not easy to set appropriately. To
overcome the difficulty, we may scale the correction term by
the transition magnitudes. Dividing Cun in (15) by the average
transition, (dn,ℓ + dn,r)/2, gives

C1un =
2dn,ℓ

dn,ℓ + dn,r
(un+1 − un)

− 2dn,r
dn,ℓ + dn,r

(un − un−1)

=
2dn,r

dn,ℓ + dn,r
un−1 − 2un +

2dn,ℓ
dn,ℓ + dn,r

un+1.

(16)
The operator C1 inherits good characteristics of C; only the
difference is that the magnitude of the correction is normal-
ized. As a result, the resulting algorithm converges faster and
can be analyzed with an appropriate choice of the parameter
η. See Remark 2 below.

Fig. 3. Three iterations of the scaled RTW filter for the signal in Fig. 1. The
iteration converged in two iterations.

In Fig. 3, we present iterates of the scaled RTW filter
applied for the same signal in Fig. 1. The scaled RTW filter
has eliminated all local extrema in two iterations converging
completely so that the third iteration results in the exact same
signal as u2, i.e., u3 = u2. Furthermore, the signal values at
n = 6, 7, 8 (the sharp edge) have remained unaltered during
the iteration. The RTW denoising filter is a unique algorithm
showing such a property of preserving the edge strength.



B. Image denoising

The RTW denoising filter designed for noisy signals can be
easily expanded for the removal of noise in images.

Let I = (r, g, b) be a color image. Then the denoising step
(Step 1 of Canny algorithm) can be carried out channel-by-
channel. Let u ∈ {r, g, b} be a channel and ui,j = u(xi,j),
where xi,j = (xi, yj) is a pixel in the image. At each
pixel xi,j , the RTW correction term for the image u can be
formulated as the sum of two scaled correction terms in x-
and y-directions:

C2ui,j =
2di,j,E

di,j,W + di,j,E
ui−1,j +

2di,j,W
di,j,W + di,j,E

ui+1,j

+
2di,j,N

di,j,S + di,j,N
ui,j−1 +

2di,j,S
di,j,S + di,j,N

ui,j+1

−4ui,j ,
(17)

where the four one-sided transitions are defined as

di,j,W = |ui,j − ui−1,j |
di,j,E = |ui,j − ui+1,j |
di,j,S = |ui,j − ui,j−1|
di,j,N = |ui,j − ui,j+1|.

(18)

Given an image channel u0, the RTW filter is an iterative
procedure of the form

uk+1 = uk + η C2uk, k = 0, 1, 2, · · · . (19)

where η is a learning rate.

Remark 2: Stability of the RTW Denoising Filter
When one of denominators in (17) is zero, the algorithm
will be broken. To avoid this, we should modify the four
one-sided transitions in (18); take the maxim compared
with a small number, e.g., ε = 10−6. This modification
may deteriorate the good characteristics of C1 and C2, but
not much. One can mathematically prove the following.

• For signal denoising, the RTW denoising filter is
stable and convergent when η ≤ 1/2.

• For image denoising, the RTW denoising filter is
stable and convergent when η ≤ 1/4.

Remark 3: Edge Preservation vs. Edge Cleaning
In image denoising, the RTW filter may alter non-extreme
values. At an edge point, the image value is monotonic
in the edge normal direction, while it may be extremal in
the edge tangential direction. In this case, the RTW filter
alters the image value. However, this is not necessarily
a drawback of the new filter. Since the filter tries to
suppress oscillations in the edge tangential direction, the
edge would become clean.
In order to preserve the edge strength more effectively,
the correction operator C2 must be modified to incorporate
certain extra edge-preservation operations. This issue will
be discussed in a forthcoming research.

IV. NUMERICAL EXPERIMENTS

The Canny edge detection algorithm is modified and imple-
mented in Matlab for color images. In this section, we will
demonstrate the effectiveness of the RTW filter and compare
gradient-fusion methods, which are respectively related to Step
1 and Step 2 of the Canny algorithm.

We downloaded three images from the public domain:
Fruits, Happy-Fish, and Lena, as shown in Fig. 4. We selected
a noisy version for the Happy-Fish image.

Fig. 4. Three public-domain images: Fruits, Happy-Fish, and Lena.

A. Noise removal

Here we will compare the Gaussian filter and the new RTW
filter for edge detection. For a fair comparison, we keep the
remained steps (Steps 2–5) the same for both filters. Each of
the color images in Fig. 4 is denoised channel-by-channel.
Then in Step 2, their Sobel gradients are combined using
the structure tensor method. For the Gaussian filter, we use
the built-in function imgaussfilt(I,sigma); we set the
parameter sigma separately for each image to result in its best
edges. For the RTW filter, we set η = 0.25 and the iteration
stops in five iterations.

Fig. 5 depicts edge detection results for the three images.
As one can see from the figure, the Gaussian filter (left) and
the RTW filter (right) perform similarly for clean images.
However, the Gaussian filter is not effective for the Happy-
Fish image which is a noisy image. The RTW filter has shown
its effectiveness for various images.

B. Gradient-fusion methods

In this subsection, we compare three gradient-fusion meth-
ods in Step 2: the structure tensor (§II-C), the maxi-
mum of RGB gradient magnitudes

(
max(|∇r|, |∇g|, |∇b|)

)
,

and the L2-norm of the RGB gradient magnitudes(√
|∇r|2 + |∇g|2 + |∇b|2

)
. The images are denoised by us-

ing the RTW filter in Step 1.
In Fig. 6, we present edge detection results for the Happy-

Fish image, with the gradient magnitudes being combined by
the structure tensor, (c) the maximum, and (d) the L2-norm.
As one can see from the figure, the structure tensor method
gives the best result; there is an observable difference on the
grinning mouth.

Fig. 7 shows edge detection results for the Lena image,
with the gradient magnitudes being combined by the structure
tensor, (c) the maximum, and (d) the L2-norm, as in the last
figure. For this example, the Lena image is perturbed by a
Gaussian noise of σ = 0.1 and a pepper-and-salt noise of



Fig. 5. Edge detection results for the three images: Using the Gaussian filter
(left) and the RTW filter (right).

(a) (b)

(c) (d)

Fig. 6. Gradient-fusion methods for Happy-Fish: (a) The input image and edge
detection results, with the gradients combined by (b) the structure tensor, (c)
the maximum, and (d) the L2-norm.

(a) (b)

(c) (d)

Fig. 7. Gradient-fusion methods for Lena: (a) The input image and edge
detection results, with the gradients combined by (b) the structure tensor, (c)
the maximum, and (d) the L2-norm.

Fig. 8. Restored images of Happy-Fish and Lena, obtained by five iterations
of the RTW filter.

density 0.1. All of the three gradient-fusion methods result
in acceptable edges; the artificial noise must be effectively
suppressed by the new RTW filter without weakening the edge
strength.

The three gradient-fusion methods work well for all test
cases, with the structure tensor method being the best occa-
sionally.

In Fig. 8, we display the restored images of Happy-Fish
and Lena obtained respectively from Fig. 6 (a) and Fig. 7 (a).
For both results, the RTW filter has run five iterations for
each channel. The images are denoised satisfactorily without
weakening the edge strength.



V. CONCLUSIONS

Edges carry important information because they mark the
boundaries of objects in the image. Thus, edge detection
allows us to interpret image content effectively and becomes
a necessary or desirable step for various tasks in image
processing and computer vision. However, most edge detection
algorithms are sensitive to noise and denoising operations
may weaken the edge strength. This article has introduced a
new iterative procedure, called the reverse-transition weighting
(RTW) filter, which can suppress noise without an observable
weakening of the edge strength. Such a unique feature of the
new filter has been verified numerically and mathematically.
The new filter has been adopted for the denoising step of the
Canny edge detection algorithm and shown its effectiveness
for various examples.
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