Programming Basics and AI with Matlab and Python

Lectures on YouTube:
https://www.youtube.com/@mathtalent

Seongjai Kim

Department of Mathematics and Statistics
Mississippi State University
Mississippi State, MS 39762 USA
Email: skim@math.msstate.edu

Updated: December 2, 2023

Coding techniques may improve the computer program by tens of percents, while an effective algorithmic design can improve it by tens or hundreds of times

In computational literacy, the coding ability is to the tip of the iceberg as the ability of algorithmic design is to its remainder

Seongjai Kim, Professor of Mathematics, Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762 USA. Email: skim@math.msstate.edu.

Prologue

This lecture note provides an overview of scientific computing, i.e., of modern information engineering tasks to be tackled by powerful computer simulations. The emphasis throughout is on the understanding of modern algorithmic designs and their efficient implementation.
As well known as in the society of computational methods, computer programming is the process of constructing an executable computer program in order to accomplish a specific computational task. Programming in practice cannot be realized without incorporating computational languages. However, it is not a simple process of experiencing computational languages; it involves concerns such as

- mathematical analysis,
- generating computational algorithms,
- profiling algorithms' accuracy and cost, and
- the implementation of algorithms in selected programming languages (commonly referred to as coding).

The source code of a program can be written in one or more programming languages.
The manuscript is conceived as an introduction to the thriving field of information engineering, particularly for early-year college students who are interested in mathematics, engineering, and other sciences, without an already strong background in computational methods. It will also be suitable for talented high school students. All examples to be treated in this manuscript are implemented in Matlab and Python, and occasionally in Maple.

Currently, the lecture note is growing.

Level of Lectures

- The target audience is undergraduate students.
- However, talented high school students would be able to follow the lectures.
- Persons with no programming experience will understand most of lectures.

Goals of Lectures

Let the students understand

- Mathematical Basics: Calculus \& Linear Algebra
- Programming, with Matlab and Python
- Artificial Intelligence (AI)
- Basics of Machine Learning (ML)
- An ML Software: Scikit-Learn

Programming: the Programmers' Work

- Understand and analyze the problem
- Convert mathematical terms to computer programs
- Verify the code
- Get insights

Contents

Title ii
Prologue iv
Table of Contents ix
1 Programming Basics 1
1.1. What is Programming or Coding? 2
1.1.1. Programming: Some Examples 2
1.1.2. Functions: Generalization and Reusability 5
1.1.3. Becoming a Good Programmer 8
1.2. Matlab: A Powerful Computer Language 12
1.2.1. Introduction to Matlab/Octave 12
1.2.2. Repetition: Iteration Loops 19
1.2.3. Anonymous Function 25
1.2.4. Open Source Alternatives to Matlab 25
Exercises for Chapter 1 26
2 Programming Examples 29
2.1. Area Estimation of the Region Defined by a Closed Curve 30
2.2. Visualization of Complex-Valued Solutions 35
2.3. Discrete Fourier Transform 38
2.3.1. Discrete Fourier Transform 39
2.3.2. Short-Time Fourier Transform 44
2.4. Computational Algorithms and Their Convergence 47
2.4.1. Computational Algorithms 47
2.4.2. $\operatorname{Big} \mathcal{O}$ and little o notation 50
2.5. Inverse Functions: Exponentials and Logarithms 53
2.5.1. Inverse functions 54
2.5.2. Logarithmic Functions 59
Exercises for Chapter 2 62
3 Programming with Calculus 65
3.1. Differentiation 66
3.1.1. The Slope of the Tangent Line 66
3.1.2. Derivative and Differentiation Rules 71
3.2. Basis Functions and Taylor Series 76
3.2.1. Change of Variables \& Basis Functions 76
3.2.2. Power Series and the Ratio Test 78
3.2.3. Taylor Series Expansion 81
3.3. Polynomial Interpolation 86
3.3.1. Lagrange Form of Interpolating Polynomials 87
3.3.2. Polynomial Interpolation Error Theorem 90
3.4. Numerical Differentiation: Finite Difference Formulas 93
3.5. Newton's Method for the Solution of Nonlinear Equations 99
3.6. Zeros of Polynomials 104
3.6.1. Horner's Method 105
Exercises for Chapter 3 109
4 Linear Algebra Basics 113
4.1. Solutions of Linear Systems 114
4.1.1. Solving a linear system 115
4.1.2. Matrix equation $A \mathrm{x}=\mathrm{b}$ 117
4.2. Row Reduction and the General Solution of Linear Systems 119
4.2.1. Echelon Forms and the Row Reduction Algorithm 120
4.2.2. The General Solution of Linear Systems 123
4.3. Linear Independence and Span of Vectors 126
4.4. Invertible Matrices 129
Exercises for Chapter 4 133
5 Programming with Linear Algebra 135
5.1. Determinants 136
5.2. Eigenvalues and Eigenvectors 141
5.2.1. Characteristic Equation 142
5.2.2. Matrix Similarity and The Diagonalization Theorem 144
5.3. Dot Product, Length, and Orthogonality 148
5.4. Vector Norms, Matrix Norms, and Condition Numbers 151
5.5. Power Method and Inverse Power Method for Eigenvalues 155
5.5.1. The Power Method 155
5.5.2. The Inverse Power Method 159
Exercises for Chapter 5 162
6 Multivariable Calculus 163
6.1. Multi-Variable Functions and Their Partial Derivatives 164
6.1.1. Functions of Several Variables 164
6.1.2. First-order Partial Derivatives 165
6.2. Directional Derivatives and the Gradient Vector 168
6.3. Optimization: Method of Lagrange Multipliers 173
6.3.1. Optimization Problems with Equality Constraints 174
6.3.2. Optimization Problems with Inequality Constraints 177
6.4. The Gradient Descent Method 181
6.4.1. Introduction to the Gradient Descent Method 181
6.4.2. The Gradient Descent Method in Multi-Dimensions 185
6.4.3. The Gradient Descent Method for Positive Definite Linear Systems 188
Exercises for Chapter 6 192
7 Least-Squares and Regression Analysis 193
7.1. The Least-Squares Problem 194
7.2. Regression Analysis 198
7.2.1. Regression line 198
7.2.2. Least-squares fitting of other curves 201
7.2.3. Nonlinear regression: Linearization 202
7.3. Scene Analysis with Noisy Data: Weighted Least-Squares and RANSAC 204
7.3.1. Weighted Least-Squares 204
7.3.2. RANdom SAmple Consensus (RANSAC) 206
Exercises for Chapter 7 209
8 Python Basics 211
8.1. Why Python? 212
8.2. Python Essentials in 30 Minutes 215
8.3. Zeros of a Polynomial in Python 221
8.4. Python Classes 225
Exercises for Chapter 8 232
9 Vector Spaces and Orthogonality 233
9.1. Subspaces of \mathbb{R}^{n} 234
9.2. Orthogonal Sets and Orthogonal Matrix 238
9.3. Orthogonal Projections 243
9.4. The Gram-Schmidt Process and QR Factorization 248
9.5. QR Iteration for Finding Eigenvalues 253
Exercises for Chapter 9 257
10 Introduction to Machine Learning 259
10.1.What is Machine Learning? 260
10.2.Binary Classifiers 265
10.2.1. The Perceptron Algorithm 267
10.2.2. Adaline: ADAptive LInear NEuron 271
10.3.Popular Machine Learning Classifiers 275
10.3.1. Logistic Regression 276
10.3.2. Support Vector Machine 279
10.3.3. k-Nearest Neighbors 281
10.4.Neural Networks 283
10.4.1. A Simple Network to Classify Hand-written Digits: MNIST Dataset 284
10.4.2. Implementation for MNIST Digits Dataset [9] 288
10.5.Scikit-Learn: A Python Machine Learning Library 292
A Machine Learning Modelcode 296
Exercises for Chapter 10 301
11 Principal Component Analysis 303
11.1.Principal Component Analysis 304
11.1.1. The covariance matrix 305
11.1.2. Computation of principal components 309
11.1.3. Dimensionality reduction: Data compression 311
11.2.Singular Value Decomposition 315
11.2.1. Algebraic interpretation of the SVD 317
11.2.2. Computation of the SVD 319
11.3.Applications of the SVD to LS Problems 321
Exercises for Chapter 11 329
A Appendices 333
A.1. Optimization: Primal and Dual Problems 334
A.1.1. The Lagrangian 334
A.1.2. Lagrange Dual Problem 336
A.2. Weak Duality, Strong Duality, and Complementary Slackness 338
A.2.1. Weak Duality 339
A.2.2. Strong Duality 340
A.2.3. Complementary Slackness 341
A.3. Geometric Interpretation of Duality 342
A.4. Rank-One Matrices and Structure Tensors 349
A.5. Boundary-Effects in Convolution Functions in Matlab and Python SciPy 353
A.6. From Python, Call C, C++, and Fortran 357
P Projects 365
P.1. Project: Canny Edge Detection Algorithm for Color Images 366
P.1.1. Noise Reduction: Image Blur 370
P.1.2. Gradient Calculation: Sobel Gradient 372
P.1.3. Edge Thinning: Non-maximum Suppression 375
P.1.4. Double Threshold 377
P.1.5. Edge Tracking by Hysteresis 378
P.2. Project: Text Extraction from Images, PDF Files, and Speech Data 380
Bibliography 383
Index 385

Chapter 1

Programming Basics

In this chapter, you will learn

- what programming is
- what coding is
- what programming languages are
- how to convert mathematical terms to computer programs
- how to control repetitions

Contents of Chapter 1

1.1. What is Programming or Coding? . 2
1.2. Matlab: A Powerful Computer Language . 12

Exercises for Chapter 1. 26

1.1. What is Programming or Coding?

Definition 1.1. Computer programming is the process of building an executable computer program in order to accomplish a specific computational task.

- Programming involves various concerns such as
- mathematical/physical analysis,
- generating computational algorithms,
- profiling algorithms' accuracy and cost, and
- the implementation of algorithms in a chosen programming language (commonly referred to as coding).
- The purpose of programming is to find a sequence of instructions that will automate the performance of a task for solving a given problem.
- Thus, the process of programming often requires expertise in several different subjects, including
- knowledge of the application domain,
- specialized algorithms, and
- formal logic.

1.1.1. Programming: Some Examples

Example 1.2. Assume that we need to find the sum of integers from 2 to 5 :

$$
2+3+4+5
$$

Solution. You may start with 2 ; add 3 , add 4 , and finally add 5 ; the answer is 14 . This simple procedure is the result of programming in your brain. Programming is thinking. \square

Example 1.3. Let's try to get $\sqrt{5}$. Your calculator must have a function key $\sqrt{ }$. When you input $\sqrt{5}$ and push Enter, your calculator displays the answer on the spot. How can the calculator get the answer?

Solution. Calculators or computers cannot keep a table to look the answer up. They compute the answer on the spot as follows.

Let $Q=5$.

1. initialization: p
2. for $i=1,2, \cdots$, itmax

$$
p \leftarrow(p+Q / p) / 2
$$

3. end for
```
Q=5;
p = 1;
for i=1:8
    p = (p+Q/p)/2;
    fprintf("%3d %.20f\n",i,p)
end
```

 Output
 3.00000000000000000000
2.33333333333333348136
2.23809523809523813753
2.23606889564336341891
2. 23606797749997809888
2.23606797749978980505
2.23606797749978980505
2.23606797749978980505

The algorithm has converged to 20 decimal digit accuracy, just in 6 iterations.

Note: The above example shows what really happens in your calculators and computers (sqrt). In general, \sqrt{Q} can be found in a few iterations of simple mathematical operations.

Remark 1.4. Note that

$$
\begin{equation*}
p \leftarrow(p+Q / p) / 2=p-\frac{p^{2}-Q}{2 p} \tag{1.1}
\end{equation*}
$$

which can be interpreted as follows.

1. Square the current iterate p;
2. Measure the difference from Q;
3. Scale the difference by twice the current iterate ($2 p$)
4. Update p by subtracting the scaled difference (correction term)

Quesiton. How could we know: a good scaling factor in the correction term is $2 p$?

- The answer comes from a mathematical analysis.
- In general, programming consists of
(a) mathematical analysis,
(b) algorithmic design,
(c) implementation to the computer (coding), and
(d) verification for accuracy and efficiency.
- Once you have done a mathematical analysis and performed algorithmic design, the next step is to implement the algorithm for a code (coding).
- In implementation, you can use one (or more) of computer languages such as Matlab, Python, C, C++, and Java.
- Through the course, you will learn programming techniques, using simple languages such as Matlab and Python.
- Why simple languages?

To focus on mathematical logic and algorithmic design

Remark 1.5. (Coding vs. Programming)

At this moment, you may ask questions like:

- What is coding?
- How is it related to programming?

Though the terms are often used interchangeably, coding and programming are two different things.
Particularly, in Software Development Industries,

- Coding refers to writing codes for applications, but programming is a much broader term.
- Coding is basically the process of creating codes from one language to another,
- while programming is to find solutions of problems and determine how they should be solved.
- Programmers generally deal with the big picture in applications. So you will learn programming!

1.1.2. Functions: Generalization and Reusability

A good programmer must implement codes that are effective, easy to modify, and reusable. In order to understand reusability, let us consider the following simple programming.

Example 1.6. Find the sum of the square of consecutive integers from 1 to 10 .

Solution.

- This example asks to evaluate the quantity:

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+10^{2}=\sum_{i=1}^{10} i^{2} \tag{1.2}
\end{equation*}
$$

- A Matlab code can be written as
- When the code is executed, the variable sqsum saves 385 .
- The code is a simple form of repetition, one of most common building blocks in programming.

'Remark] 1.7. Reusability.

- The above Matlab program produces the square sum of integers from 1 to 10 , which may not be useful for other occasions.
- In order to make programs reusable for various situations, operations or a group of operations must be
- implemented with variable inputs, and - saved as a form of function.

Example 1.8. (Generalization of Example 1.6). Find the sum of the square of consecutive integers from m to n.

Solution. As a generalization of the above Matlab code, it can be implemented and saved in squaresum.m as follows.

```
                                    squaresum.m
function sqsum = squaresum(m,n)
%function sqsum = squaresum(m,n)
% Evaluates the square sum of consecutive integers: m to n.
% input: m,n
% output: sqsum
sqsum = 0;
for i=m:n
    sqsum = sqsum + i^2;
end
```

- In Matlab, each of saved function files is called an M-file, of which the first line specifies
- the function name (squaresum),
- input variables (m, n),
- outputs (sqsum).
- Lines 2-5 of squaresum.m, beginning with the percent sign (\%), are for a convenient user interface. A built-in function help can be utilized whenever we want to see what the programmer has commented for the function. For example,

```
>> help squaresum
function sqsum = squaresum(m,n)
    Evaluates the square sum of consecutive integers: m to n.
    input: m,n
    output: sqsum
```

- The last four lines of squaresum.m include the required operations for the given task.
- On the command window, the function is called for various m and n. For example,

```
>> squaresum(1,10)
ans = 385
```


1.1.3. Becoming a Good Programmer

In-Reality 1.9. Aspects of Programming

As aforementioned, computer programming (or programming) is the process of building an executable computer program for accomplishing a specific computational task. A task may consist of numerous sub-tasks each of which can be implemented as a function; some functions may be used more than once or repeatedly in a program. The reader should consider following aspects of programming, before coding.

- Task modularization: The given computational task can partitioned into several small sub-tasks (modules), each of which is manageable conveniently and effectively in both mathematical analysis and computer implementation. The major goal of task modularization is to build a backbone of programming.
- Development of algorithms: For each module, computational algorithms must be developed and saved in functions.
- Choice of computer languages: One can choose one of computer languages in which all the sub-tasks are implemented. However, it is occasionally the case that sub-tasks are implemented in more than one computer languages, in order to maximize the performance of the resulting program and/or to minimize human efforts.
- Debugging: Once all the modules are implemented and linked for the given computational task, the code must be verified for correctness and effectiveness. Such a process of finding and resolving defects or issues within a computer program is called debugging.

Note: It is occasionally the case that verification and debugging take much longer time than implementation itself.

Remark 1.10. Tips for Programming:

- Add functions one-by-one: Building a program is not a simple problem but a difficult project, particularly when the program should be constructed from scratch. A good strategy for an effective programming is:
(a) Add functions one-by-one.
(b) Check if the program is correct, each time adding a function.

That is, the programmer should keep the program in a working condition for the whole period of time of implementation.

- Use/modification of functions: One can build a new program pretty effectively by trying to modify and use old functions used for the same or similar projects. When it is the case,

> you may have to start the work by copying old functions to newly-named functions to modify, rather than adding/replacing lines of the original functions.

Such a strategy will make the programmer debug much more easily and keep the program in a working condition all the time.

Note: For a successful programming, the programmer may consider the following, before he/she starts implementation (coding).

- Understanding the problem: inputs, operations, \& outputs
- Required algorithms: reusable or new
- Required mathematical methods/derivation
- Program structure: how to place operations/functions
- Verification: How to verify the code to make sure correctness

Example 1.11. Let us write a program for sorting an array of numbers from smallest to largest.
Solution. We should consider the following before coding.

- The goal: A sorting algorithm.
- Method: Comparison of component pairs tor the smaller to move up.
- Verification: How can I verify the program work correctly?

Let's use e.g., a randomly-generated array of numbers.

- Parameters: Overall, what could be input/output parameters?

All being considered, a program is coded as follows.

```
                                    mysort.m
function S = mysort(R)
%function S = mysort(R)
% which sorts an array from smallest to largest
%% initial setting
S = R;
%% get the length
n = length(R);
%% begin sorting
for j=n:-1:2 %index for the largest among remained
    for i=1:j-1
        if S(i) > S(i+1)
            tmp = S(i);
            S(i) = S(i+1);
            S(i+1) = tmp;
        end
        end
end
```

```
SortArray.m
\% User parameter
\(\mathrm{n}=10\);
\% An array of random numbers
\(\%(1, \mathrm{n})\) vector of integer random values <= 100
\(R=\operatorname{randi}(100,1, n)\)
\% Call "mysort"
S = mysort(R)
```

Output

```
>> SortArray
R =
\begin{tabular}{llllllllll}
33 & 88 & 75 & 17 & 91 & 94 & 79 & 36 & 2 & 72
\end{tabular}
S =
\begin{tabular}{llllllllll}
2 & 17 & 33 & 36 & 72 & 75 & 79 & 88 & 91 & 94
\end{tabular}
```

Note: You may have to run "SortArray.m" a few times, to make sure that "mysort" works correctly.

Summary 1.12. Programming vs. Coding

- Programming consists of analysis, design, coding, \& verification. It requires creative thinking and reasoning, on top of coding.
- It would better begin with a simple computer language.

1.2. Matlab: A Powerful Computer Language

Matlab (matrix laboratory) is a multi-paradigm numerical computing environment and a proprietary programming language developed by MathWorks.

- Flexibility: Matlab allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C\#, Java, Fortran, and Python; it is particularly good at matrix manipulations.
- Computer Algebra: Although Matlab is intended primarily for numerical computing, an optional toolbox uses the MuPAD symbolic engine, allowing access to symbolic computing abilities.
- Most Convenient Computer Language: Overall, Matlab is about the easiest computer language to learn and to use as well.

Remark 1.13. For each of programming languages, there are four essential components to learn.

1. Looping - repetition
2. Conditional statements - dealing with cases
3. Input/Output - using data and saving/visualizing results
4. Functions - reusability and programming efficiency (§1.1.2)

1.2.1. Introduction to Matlab/Octave

Vectors and Matrices:

The most basic thing you will need to do is to enter vectors and matrices. You would enter commands to Matlab at a prompt that looks like >>.

- Rows are separated by semicolons (;) or Enter.
- Entries in a row are separated by commas (,) or

Vectors and Matrices

```
>> v = [1; 2; 3] % column vector
v =
    1
    2
    3
>> W = [5, 6, 7, 8] % row vector
W =
    5
>> A = [2 1; 1 2] % % matrix
A =
    2 1
    1 2
>> = [2, 1; 1, 2]
B =
    2 1
    1 2
```

- The symbols (,) and (;) can be used to combine more than one command in the same line.
- If we use semicolon (;), Matlab sets the variable but does not print the output.

```
>> p = [2; -3; 1], q = [2; 0; -3];
p =
    2
    -3
        1
>> p+q
ans =
    4
    -3
    -2
>> d = dot(p,q);
```

where dot computes the dot product of two vectors.

- Instead of entering a matrix at once, we can build it up from either its rows or its columns.

```
>> c1=[1; 2]; c2=[3; 4];
>> M=[c1,c2]
M =
    3
    2 4
>> c3=[5; 6];
>> M=[M, c3]
M =
    1 3 5
    2 4 6
>> c4=c1; r3=[2 -1 5 0];
>> N=[M, c4; r3]
N =
    1 3 5 1
    2 4 6 2
    2 -1 5 0
```


Operations with Vectors and Matrices

- Matlab uses the symbol (*) for both scalar multiplication and matrixvector multiplication.
- In Matlab, to retrieve the (i, j)-th entry of a matrix M, type $M(i, j)$.
- To retrieve more than one element at a time, give a list of columns and rows that you want.
- For example, $2: 4$ is the same as $\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$.
- A colon (:) by itself means all. Thus, M(i,:) extracts the i-th row of M. Similarly, $M(:, j)$ extracts the j-th column of M.

```
>> M=[1 2 3 4; 5 6 7 8; 9 10 11 12], v=[1;-2;2;1];
M =
    1 2 3 4
    5
    9 10 11 12
>> M (2,3)
ans =
    7
>> M(3,[2 4])
ans =
    10 12
>> M(:, 2)
ans =
    2
        6
        10
>> 3*v
ans =
            3
            -6
            6
            3
>> M*v
ans =
    7
    15
    23
```

- To multiply two matrices in Matlab, use the symbol (*).
- The $n \times n$ identity matrix is formed with the command eye (n).
- You can ask Matlab for its reasoning using the command why. Unfortunately, Matlab usually takes attitude and gives a random response.

```
>> A=[1 2; 3 4], B=[4 5; 6 7],
A =
    1 2
    3 4
B =
    4
    6
>> A*B
ans =
        16 19
        36 43
>> I=eye(3)
I =
            1 0 0
            0}1
            0 0 1
>> C=[2 4 6; 1 3 5; 0 1 1];
>> C_inv = inv(C)
C_inv =
            1.0000 -1.0000 -1.0000
            0.5000 -1.0000 2.0000
            -0.5000 1.0000 -1.0000
>> C_inv2=C\I
C_inv2 =
            1.0000 -1.0000 -1.0000
            0.5000 -1.0000 2.0000
            -0.5000 1.0000 -1.0000
>> C_inv*C
ans =
            1 0
            0}
            0 0
```


Graphics with Matlab

In Matlab, the most popular graphic command is plot, which creates a 2D line plot of the data in Y versus the corresponding values in X. A general syntax for the command is
plot(X1, Y1,LineSpec1, ..., Xn,Yn,LineSpecn)
fig_plot.m
close all
\%\% a curve
X1=linspace(0,2*pi,11); \% n=11
$\mathrm{Y} 1=\cos (\mathrm{X} 1)$;
$\%$ another curve
X2=linspace ($0,2 * \mathrm{pi}, 51$);
$Y 2=\sin (X 2)$;
\%\% plot together
plot(X1,Y1,'-or','linewidth',2, X2,Y2,'-b','linewidth',2)
legend(\{'y=cos(x)', $y=\sin (x)$ ' $\}$)
axis tight
print -dpng 'fig_cos_sin.png'

Figure 1.1: plot of $y=\cos x$ and $y=\sin x$.

Above fig_plot.m is a typical M-file for figuring with plot.

- Line 1: It closes all figures currently open.
- Lines 3, 7, and 11 (comments): When the percent sign (\%) appears, the rest of the line will be ignored by Matlab.
- Lines 4 and 8: The command linspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$) returns a row vector of n evenly spaced points between $x 1$ and $x 2$.
- Line 12: Its result is a figure shown in Figure 1.1.
- Line 15: it saves the figure into a png format, named fig_cos_sin.png. The first function ($y=\cos x$) is plotted with 11 points so that its curve shows the local linearity, while the graph of $y=\sin x$ looks smooth with 51 points.
- For contour plots, you may use contour.
- For figuring 3D objects, you may try surf and mesh.
- For function plots, you can use fplot, fsurf, and fmesh.

Remark 1.14. (help and doc).

Matlab is powerful and well-documented as well. To see what a built-in function do or how you can use it, type
help <name> or doc <name>

The command doc opens the Help browser. If the Help browser is already open, but not visible, then doc brings it to the foreground and opens a new tab. Try doc surf, followed by doc contour.

1.2.2. Repetition: Iteration Loops

Recall: (Remark 1.13 on p.12) For each of programming languages, there are four essential components to learn.

1. Looping - repetition
2. Conditional statements - dealing with cases
3. Input/Output - using data and saving/visualizing results
4. Functions - reusability and programming efficiency (§1.1.2)

Note: Repetition

- In scientific computing, one of most frequently occurring events is repetition.
- Each repetition of the process is also called an iteration.
- It is the act of repeating a process, to generate a (possibly unbounded) sequence of outcomes, with the aim of approaching a desired goal, target or result. Thus,
(a) Iteration must start with an initialization (starting point), and
(b) Perform a step-by-step marching in which the results of one iteration are used as the starting point for the next iteration.

In the context of mathematics or computer science, iteration (along with the related technique of recursion) is a very basic building block in programming.
As in other computer languages, Matlab provides a few types of loops to handle looping requirements including: while loops, for loops, and nested loops.

While loop

The while loop repeatedly executes statements while a specified condition is true. The syntax of a while loop in Matlab is as follows.

```
while <expression>
    <statements>
    end
```

An expression is true when the result is nonempty and contains all nonzero elements, logical or real numeric; otherwise the expression is false.

Example 1.15. Here is an example for the while loop.

```
%% while loop
a=10; b=15;
fprintf('while loop execution: a=%d, b=%d\n',a,b);
while a<=b
    fprintf(' The value of a=%d\n',a);
    a = a+1;
end
```

When the code above is executed, the result will be:
while loop execution: $a=10, b=15$
The value of $a=10$
The value of $a=11$
The value of $a=12$
The value of $a=13$
The value of $a=14$
The value of $a=15$

For loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times. The syntax of a for loop in Matlab is as following:

```
for index = values
    <program statements>
end
```

Here values can be any list of numbers. For example:

- initval:endval - increments the index variable from initval to endval by 1 , and repeats execution of program statements while index is not greater than endval.
- initval:step:endval - increments index by the value step on each iteration, or decrements when step is negative.

Example 1.16. The code in Example 1.15 can be rewritten as a for loop.

```
%% for loop
a=10; b=15;
fprintf('for loop execution: a=% d, b=%d\n',a,b);
for i=a:b
    fprintf(' The value of i=%d\n',i);
end
```

When the code above is executed, the result will be:

```
for loop execution: a=10, b=15
    The value of i=10
    The value of i=11
    The value of i=12
    The value of i=13
    The value of i=14
    The value of i=15
```


Nested loops

Matlab also allows to use one loop inside another loop. The syntax for a nested loop in Matlab is as follows:

```
for n = n0:n1
    for m = m0:m1
        <statements>;
    end
end
```

The syntax for a nested while loop statement in Matlab is as follows:

```
while <expression1>
    while <expression2>
        <statements>;
    end
end
```

For a nested loop, you can combine

- for loop and while loop
- more than two

Loop Control Statements

Break Statement

The break statement terminates execution of for or while loops.

- Statements in the loop that appear after the break statement are not executed.
- In nested loops, break exits only from the loop in which it occurs.
- Control passes to the statement following the end of that loop.

Example 1.17. Let's modify the code in Example 1.15 to involve a break statement.

```
%% "break" statement with while loop
a=10; b=15; c=12.5;
fprintf('while loop execution: a=%d, b=%d, c=%g\n',a,b,c);
while a<=b
    fprintf(' The value of a=%d\n',a);
    if a>c, break; end
    a = a+1;
end
```

When the code above is executed, the result is:
while loop execution: $\mathrm{a}=10, \mathrm{~b}=15, \mathrm{c}=12.5$
The value of $a=10$
The value of $a=11$
The value of $a=12$
The value of $a=13$

When the condition a>c is satisfied, break is invoked; which breaks the while loop to stop.

Continue Statement

continue passes control to the next iteration of a for or while loop.

- It skips any remaining statements in the body of the loop for the current iteration; the program continues execution from the next iteration.
- continue applies only to the body of the loop where it is called.
- In nested loops, continue skips remaining statements only in the body of the loop in which it occurs.

Example 1.18. Consider a modification of the code in Example 1.16.

```
%% for loop with "continue"
a=10; b=15;
fprintf('for loop execution: a=%d, b=%d\n',a,b);
for i=a:b
    if mod(i,2), continue; end % even integers, only
    disp([' The value of i=' num2str(i)]);
end
```

When the code above got executed, the result is:

```
for loop execution: a=10, b=15
    The value of i=10
    The value of i=12
    The value of i=14
```

Note: In the above, $\bmod (i, 2)$ returns the remainder when i is divided by 2 (so that the result is either 0 or 1). In general,

- $\bmod (a, m)$ returns the remainder after division of a by m, where a is the dividend and m is the divisor.
- This mod function is often called the modulo operation.

1.2.3. Anonymous Function

Matlab-code 1.19. In Matlab, one can define an anonymous function, which is a function that is not stored in a program file.

```
%% Define an anonymous function
f = @(x) x.`3-x-2;
%% Evaluate the function
f1 = f(1)
X = 1:6;
fX = feval(f,X)
%% Calculus
q = integral(f,1,3)
```

Output

```
>> anonymous_function
f1 =
    -2
fX =
    -2 }404\mp@code{22
q =
    1 2
```


1.2.4. Open Source Alternatives to Matlab

- Octave is the best-known alternative to Matlab. Octave strives for exact compatibility, so many of your projects developed for Matlab may run in Octave with no modification necessary.
- NumPy is the main package for scientific computing with Python. It can process n-dimensional arrays, complex matrix transforms, linear algebra, Fourier transforms, and can act as a gateway for C and $\mathrm{C}++$ integration. It is the fundamental data-array structure for the SciPy Stack, and an ecosystem of Python-based math, science, and engineering software. Python basics will be considered in Chapter 8, p. 211.

Exercises for Chapter 1

1.1. On Matlab command window, perform the following

- 1:20 \quad
- 1:1:20
- 1:2:20
- 1:3:20; \quad
- isprime(12) \quad
- isprime(13) \quad
- for $i=3: 3: 30$, fprintf('[i,i~2]=[\%d, \%d] $\left.n^{\prime}, i, i \wedge 2\right)$, end \square
The above is the same as $\left[\begin{array}{lll}\text { for } & i=3: 3: 30 \\ & f p r i n t f('[i, i \wedge 2]=[\% d, \% \\ \text { end }\end{array}\right.$
- for i=1:10,if isprime(i),fprintf('prime=\% $\backslash \backslash n ', i)$;end,end \sim

Rewrite it with linebreaks, rather than using comma (,).
1.2. Compose a code and write as a function for the sum of prime numbers not larger than a positive integer n.
1.3. Modify the function you made in Exercise 2 to count the number of prime numbers and return the result along with the sum. For multiple output, the function may start with
function [sum, numver] = <function_name>(inputs)
1.4. Let, for k, n positive integers,

$$
S_{k}=1+2+\cdots+k=\sum_{i=1}^{k} i
$$

and

$$
T_{n}=\sum_{k=1}^{n} S_{k} .
$$

Write a code to find and print out S_{n} and T_{n} for $n=1: 10$.
1.5. The golden ratio is the number $\phi=\frac{1+\sqrt{5}}{2}$.
(a) Verify that the golden ratio is the positive solution of $x^{2}-x-1=0$.
(b) Evaluate the golden ratio in 12-digit decimal accuracy.
1.6. The Fibonacci sequence is a series of numbers, defined by

$$
\begin{equation*}
f_{0}=0, \quad f_{1}=1 ; \quad f_{n}=f_{n-1}+f_{n-2}, \quad n=2,3, \cdots \tag{1.3}
\end{equation*}
$$

The Fibonacci sequence has interesting properties; two of them are
(i) The ratio $r_{n}=f_{n} / f_{n-1}$ approaches the golden ratio, as n increases.
(ii) Let x_{1} and x_{2} be two solutions of $x^{2}-x-1=0$:

$$
x_{1}=\frac{1-\sqrt{5}}{2} \quad \text { and } \quad x_{2}=\frac{1+\sqrt{5}}{2} .
$$

Then

$$
\begin{equation*}
t_{n}:=\frac{\left(x_{2}\right)^{n}-\left(x_{1}\right)^{n}}{\sqrt{5}}=f_{n}, \quad \text { for all } n \geq 0 \tag{1.4}
\end{equation*}
$$

(a) Compose a code to print out the following in a table format.

$$
\begin{array}{llll}
n & f_{n} & r_{n} & t_{n}
\end{array}
$$

for $n \leq K=20$.
You may start with

```
K = 20;
F = zeros(K);
F(1)=1; F(2)=F(1);
for n=3:K
    F(n) = F(n-1)+F(n-2);
    rn = F(n)/F(n-1);
    fprintf("n =%3d; F = %7d; rn = %.12f\n",n,F(n),rn);
end
```

(b) Find n such that r_{n} has 12-digit decimal accuracy to the golden ratio ϕ.

Сhapter 2
 Programming Examples

Contents of Chapter 2
2.1. Area Estimation of the Region Defined by a Closed Curve 30
2.2. Visualization of Complex-Valued Solutions 35
2.3. Discrete Fourier Transform 38
2.4. Computational Algorithms and Their Convergence 47
2.5. Inverse Functions: Exponentials and Logarithms 53
Exercises for Chapter 2 62

2.1. Area Estimation of the Region Defined by a Closed Curve

Problem 2.1. It is common in reality that a region is saved by a sequence of points: For some $n>0$,

$$
\begin{equation*}
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right), \quad\left(x_{n}, y_{n}\right)=\left(x_{0}, y_{0}\right) \tag{2.1}
\end{equation*}
$$

Figure 2.1: A region and its approximation.
Here the question is:
If a sequence of points (2.1) represents a region, how can we compute its area accurately?

Derivation of Computational Formulas

Example 2.2. Let's begin with a very simple example.
(a) Find the area of a rectangle $[a, b] \times[c, d]$.

Solution. We know the area $=(b-a) \cdot(d-c)$. It can be rewritten as

$$
b \cdot(d-c)-a \cdot(d-c)=b \cdot(d-c)+a \cdot(c-d)
$$

from which we may guess that

$$
\begin{equation*}
\text { Area }=\sum_{i} x_{i}^{*} \cdot \Delta y_{i} \tag{2.2}
\end{equation*}
$$

where the sum is carried out over line segments L_{i} and x_{i}^{*} denotes the mid value of x on L_{i}.
(b) Find the area of a triangle.

Solution. We know the area $=\frac{1}{2}(b-a) \cdot(d-c)$. Now, let's try to find the area using the formula (2.2):

$$
\text { Area }=\sum_{i} x_{i}^{*} \cdot \Delta y_{i}
$$

Let L_{1}, L_{2}, L_{3} be the bottom side, vertical side, and the hypotenuse, respectively.

Then

$$
\begin{aligned}
\text { Area } & =\frac{a+b}{2} \cdot(c-c)+\frac{b+b}{2} \cdot(d-c)+\frac{b+a}{2} \cdot(c-d) \\
& =0+b \cdot(d-c)+\frac{b+a}{2} \cdot(c-d) \\
& =\left(b-\frac{b+a}{2}\right) \cdot(d-c)=\frac{1}{2}(b-a) \cdot(d-c) .
\end{aligned}
$$

Okay. The formula is correct!
Note: Horizontal line segments makes no contribution to the area.
(c) Let's verify the formula once more.

The area of the M -shaped is 30 . Let's collect only nonzero values:

$$
\begin{aligned}
& 2 \cdot 3-2.5 \cdot 2+3.5 \cdot 2-4 \cdot 3 \\
& \quad+6 \cdot 6 \\
& \quad-3.5 \cdot 2+2.5 \cdot 2 \\
& =6-5+7-12 \\
& \quad+36 \\
& \quad-7+5 \\
& =30
\end{aligned}
$$

Again, the formula is correct!!

Summary 2.3. The above work can be summarized as follows.

- Let a region R be represented as a sequence of points

$$
\begin{equation*}
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right), \quad\left(x_{n}, y_{n}\right)=\left(x_{0}, y_{0}\right) . \tag{2.3}
\end{equation*}
$$

- Let L_{i} be the i-th line segment connecting $\left(x_{i-1}, y_{i-1}\right)$ and $\left(x_{i}, y_{i}\right), n=$ $1,2, \cdots, n$. Then the area of R can be computed using the formula

$$
\begin{equation*}
\operatorname{Area}(R)=\sum_{i=1}^{n} x_{i}^{*} \cdot \Delta y_{i} \tag{2.4}
\end{equation*}
$$

where

$$
x_{i}^{*}=\frac{x_{i-1}+x_{i}}{2}, \quad \Delta y_{i}=y_{i}-y_{i-1} .
$$

Note: The formula (2.4) is a result of Green's Theorem for the line integral and numerical approximation.

Example 2.4. We will generate a dataset, save it to a file, and read it to plot and measure the area.
(a) Generate a dataset that represents the circle of radius centered the origin. For example, for $i=0,1,2, \cdots, n$,

$$
\begin{equation*}
\left(x_{i}, y_{i}\right)=\left(\cos \theta_{i}, \sin \theta_{i}\right), \quad \theta_{i}=i \cdot \frac{2 \pi}{n} . \tag{2.5}
\end{equation*}
$$

Note that $\left(x_{n}, y_{n}\right)=\left(x_{0}, y_{0}\right)$.
(b) Analyze accuracy improvement of the area as n grows. The larger n you choose, the more accurately the data would represent the region.

Solution.

```
n = 10;
%%---- Data generation
theta = linspace(0,2*pi,n+1)'; % a column vector
data = [cos(theta),sin(theta)];
```

```
%%---- Plot it & Save the image
figure,
plot(data(:,1),data(:,2),'r-','linewidth',2);
daspect([1 1 1]); axis tight;
xlim([-1 1]), ylim([-1 1]);
title(['Circle: n=' int2str(n)])
image_name = 'circle.png';
saveas(gcf,image_name);
%%---- Save the data
filename = 'circle-data.txt';
csvwrite(filename,data)
%writematrix(data,filename,'Delimiter',' ');
%%======================================
%%---- Read the data
%%=======================================
DATA = load(filename);
X = DATA(:,1);
Y = DATA(:,2);
figure,
plot(X,Y,'b--','linewidth',2);
daspect([\begin{array}{lll}{1}&{1}&{1}\end{array}); axis tight
xlim([-1 1]), ylim([-1 1]);
title(['Circle: n=' int2str(n)])
yticks(-1:0.5:1)
saveas(gcf,'circle-dashed.png');
%%---- Area computation
area = area_closed_curve(DATA); %See an Exercise problem
fprintf('n = %3d; area = %.12f, misfit = %.12f\n', ...
    size(DATA,1)-1,area, abs(pi-area));
```


Figure 2.2: An approximation of the unit circle, with $n=10$.

Accuracy Improvement
$\mathrm{n}=10$; area $=2.938926261462$, misfit $=0.202666392127$
$\mathrm{n}=20$; area $=3.090169943749$, misfit $=0.051422709840$
$\mathrm{n}=40$; area $=3.128689300805$, misfit $=0.012903352785$
$\mathrm{n}=80$; area $=3.138363829114$, misfit $=0.003228824476$
$\mathrm{n}=160$; area $=3.140785260725$, misfit $=0.000807392864$

Note: The misfit becomes a quarter as the number of points is doubled.

Remark 2.5. From Example 2.4, you learn how to

- Generate datasets
- Save data into a file
- Read a data file
- Set figure environments
- Call functions

2.2. Visualization of Complex-Valued Solutions

Problem 2.6. Seeking the solutions of

$$
\begin{equation*}
f(x)=x^{2}-x+1=0, \tag{2.6}
\end{equation*}
$$

we can easily find that the equation has no real solutions. However, by using the quadratic formula, the complex-valued solutions are

$$
x=\frac{1 \pm \sqrt{3} i}{2}
$$

Here we have questions:
What do the complex-valued solutions mean?
Can we visualize them?

Remark 2.7. Complex Number System:

The most complete number system is the system of complex numbers:

$$
\mathbb{C}=\{x+y i \mid x, y \in \mathbb{R}\}
$$

where $i=\sqrt{-1}$, called the imaginary unit.

- Seeking a real-valued solution of $f(x)=0$ is the same as finding a solution of $f(z)=0, z=x+y i$, restricting on the x-axis $(y=0)$.
- If

$$
\begin{equation*}
f(z)=A(x, y)+B(x, y) i \tag{2.7}
\end{equation*}
$$

then the complex-valued solutions are the points $x+y i$ such that $A(x, y)=B(x, y)=0$.

Example 2.8. For $f(x)=x^{2}-x+1$, express $f(x+y i)$ in the form of (2.7).

Solution.

Example 2.9. Implement a code to visualize complex-valued solutions of

 $f(x)=x^{2}-x+1=0$. Solution. From Example 2.8,```
f(z)=A(x,y)+B(x,y)i,\quadA(x,y)=\mp@subsup{x}{}{2}-x-\mp@subsup{y}{}{2}+1,\quadB(x,y)=(2x-1)y.
 visualize_complex_solution.m
close all
if exist('OCTAVE_VERSION','builtin'), pkg load symbolic; end
syms x y real
%% z^2 -z +1 = 0
A = @(x,y) x.^2-x-y.^2+1;
B = @(x,y) (2*x-1).*y;
T = 'z^2-z+1=0';
figure, % Matlab 'fmesh' is not yet in Octave
np=41; X=linspace(-5,5,np); Y=linspace(-5,5,np);
mesh(X,Y,A(X,Y'),'EdgeColor','r'), hold on
mesh(X,Y,B(X,Y'),'EdgeColor','b'),
mesh(X,Y,zeros(np,np),'EdgeColor','k'),
legend("A","B","0"),
xlabel('x'), ylabel('y'), title(['A and B for ' T])
hold off
print -dpng 'complex-solutions-A-B-fmesh.png'
%%--- Solve A=0 and B=O --------------
[xs,ys] = solve(A(x,y)==0,B(x,y)==0,x,y);
figure,
np=101; X=linspace(-5,5,np); Y=linspace(-5,5,np);
contour(X,Y,A(X,Y'), [0 0],'r','linewidth',2), hold on
contour(X,Y,B(X,Y'), [0 0],'b--','linewidth',2)
plot(double(xs),double(ys),'r.','MarkerSize',30) % the solutions
grid on
%ax=gca; ax.GridAlpha=0.5; ax.FontSize=13;
legend("A=0", "B=0")
xlabel('x'), ylabel('yi'), title(['Compex solutions of ' T])
hold off
print -dpng 'complex-solutions-A-B=0.png'
```



Figure 2.3: Two solutions are $1 / 2+-3^{\wedge}(1 / 2) / 2$ i and $1 / 2+3^{\wedge}(1 / 2) / 2$ i.

Remark 2.10. You can easily find the real part and the imaginary part of polynomials of $z=x+i y$ as follows.

Real and Imaginary Parts

```
syms x y real
z = x + 1i*y;
g = z^2 -z +1;
simplify(real(g))
simplify(imag(g))
```

Here " 1 i " (number 1 and letter i ), appeared in Line 2, means the imaginary unit $i=\sqrt{-1}$. Output

```
ans = x^2 - x - y^2 + 1
ans = y* (2*x - 1)
```


## Summary 2.11. Visualization of Complex-Valued Solutions

 Seeking a real-valued solution of $f(x)=0$ is the same as finding a solution of $f(z)=0, z=x+y i$, restricting on the $x$-axis $(y=0)$.
### 2.3. Discrete Fourier Transform

Note: In spectral analysis of audio data, our goal is to determine the frequency content of a signal.

- For analog signals: Use Fourier transform
- For digital signals: Use discrete Fourier transform


## Definition 2.12. Fourier Transform

- For a function $x(t)$, a continuous signal, the Fourier transform is defined as

$$
\begin{equation*}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-i \omega t} d t \tag{2.8}
\end{equation*}
$$

where $\omega=2 \pi f$ is the angular frequency and $f$ is the frequency.

- The inverse Fourier transform is defined as

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{i \omega t} d \omega \tag{2.9}
\end{equation*}
$$

The identity

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta, \quad \theta \in \mathbb{R}, \tag{2.10}
\end{equation*}
$$

is called the Euler's identity; see Exercise 3.3 on p.109.

### 2.3.1. Discrete Fourier Transform

## Definition 2.13. Discrete Fourier Transform (DFT)

For a discrete signal $\{x(n \Delta t)\}$, the discrete Fourier transform is defined as

$$
\begin{equation*}
X(k \Delta f)=\sum_{n=0}^{N-1} x(n \Delta t) e^{-i(2 \pi k \Delta f)(n \Delta t)}, \quad k=0,1,2, \cdots, N-1, \tag{2.11}
\end{equation*}
$$

where

- $N=$ the total number of discrete data points taken
- $T=$ the total sampling time (second)
- $\Delta t=$ time between data points, $\Delta t=T / N$
- $\Delta f=$ the frequency increment (frequency resolution) $\Delta f=1 / T(\mathrm{~Hz})$
- $f_{s}=$ the sampling frequency (per second), $f_{s}=1 / \Delta t=N / T$.

Note: $(k \Delta f)(n \Delta t)=k n / N$

## Definition 2.14. Inverse Discrete Fourier Transform (IDFT)

The inverse discrete Fourier transform of $X$ is defined as

$$
\begin{equation*}
x(n \Delta t)=\frac{1}{N} \sum_{k=0}^{N-1} X(k \Delta f) e^{i(2 \pi k \Delta f)(n \Delta t)}, \quad n=0,1,2, \cdots, N-1, \tag{2.12}
\end{equation*}
$$

## Remark 2.15. Fast Fourier Transform (FFT)

The fast Fourier transform is simply a DFT that is fast.

- All the rules and details about DFTs apply to FFTs as well.
- Power-of-2 Restriction
- Many FFTs (e.g., in Microsoft Excel) restrict $N$ to a power of 2, such as $64,128,256$, and so on.
- The FFT in Matlab has no such restriction.

Example 2.16. Generate a synthetic signal for $T=4$ seconds, at a sampling rate of $f_{s}=100 \mathrm{~Hz}$. Then, compute its DFT and restore the original signal by applying the IDFT.

## Solution. Let's begin with the DFT and the IDFT.

```
function X = discrete_Fourier(x)
% function X = discrete_Fourier(x)
% Calculate the full DFT
N = length(x); % Length of input sequence
X = zeros(1,N); % Initialize output sequence
% (k*Df)*n*Dt = (k/T)*n*(T/N) = k*n/N
for k = 0:N-1 % Loop over all frequency components
 for n = 0:N-1 % Loop over all time-domain samples
 X(k+1) = X(k+1) + x(n+1)*exp(-1i*2*pi*k*n/N);
 end
end
```

```
 discrete_Fourier_inverse.m
function X = discrete_Fourier_inverse(x)
% function X = discrete_Fourier_inverse(x)
% Calculate the inverse DFT
N = length(x); % Length of input sequence
X = zeros(1,N); % Initialize output sequence
% (k*Df)*n*Dt = (k/T)*n*(T/N) = k*n/N
for n = 0:N-1 % Loop over all time-domain samples
 for k = 0:N-1 % Loop over all frequency components
 X(n+1) = X(n+1) + x(k+1)*exp(1i*2*pi*k*n/N);
 end
end
X = X/N;
```

For a synthetic signal, we combine two sinusoidals, of which frequencies $f=10,20$ and magnitudes are 1,2 . signal_DFT.m
close all
$\mathrm{T}=4 ; \mathrm{fs}=100$;
$\mathrm{t}=0: 1 / \mathrm{fs}: \mathrm{T}-1 / \mathrm{fs} ; \quad \%$ Time vector
$\mathrm{x}=\sin (2 * \mathrm{pi} * 10 * \mathrm{t})+2 * \sin (2 * \mathrm{pi} * 20 * \mathrm{t}) ; \%$ Signal
figure, plot(t,x,'-k')
print -dpng 'dft-data-signal.png'

X = discrete_Fourier (x) ;
\% Compute magnitude and phase
$\mathrm{N}=$ length (X);
mag_X $=$ zeros (1,N); \% Initialize magnitude
phi_X $=\operatorname{zeros}(1, N)$; \% Initialize phase
for $k=1: N$
$\operatorname{mag} \_X(k)=\operatorname{sqrt}(\operatorname{real}(X(k)) \sim 2+\operatorname{imag}(X(k)) \sim 2) ;$
phi_X(k) $=\operatorname{atan} 2(\operatorname{imag}(X(k)), \quad r e a l(X(k))) ;$
end

x_restored = discrete_Fourier_inverse(X) ;
misfit $=$ max (abs (x-x_restored))
\% Plots for Spectra

$\mathrm{f}=(0: \mathrm{N}-1) * \mathrm{f} / \mathrm{N}$; \% Frequency vector
figure, subplot(2,1,1);
plot(f, mag_X,'-r','linewidth',1.5);
xlabel('Frequency (Hz)'); ylabel('Magnitude'); title('Magnitude Spectrum');
subplot (2,1,2);
plot(f, phi_X,'-b');
xlabel('Frequency (Hz)'); ylabel('Phase (rad)'); title('Phase Spectrum');
print -dpng 'dft-magnitude-phase.png'

```
misfit = 2.6083e-13
```



Figure 2.4: A synthetic signal and its spectra.

## Remark 2.17. Nyquist Criterion

- The Nyquist criterion is important in DFT analysis.
- When sampling at frequency $f_{s}$, we can obtain reliable frequency information only for frequencies less than $f_{s} / 2$. (Here, reliable means without aliasing problems.)
- We can calculate at what value of $k$ the frequency $k \Delta f=f_{s} / 2$.

$$
\begin{equation*}
k=\frac{f_{s} / 2}{\Delta f}=\frac{(N / T) / 2}{1 / T}=\frac{N}{2} . \tag{2.13}
\end{equation*}
$$

- Therefore, we conclude that the maximum useful frequency $f_{\max }$ from a DFT output (also called the folding frequency $f_{\text {folding }}$ ) is

$$
\begin{equation*}
f_{\max }=f_{\text {folding }}=\frac{f_{s}}{2}=\frac{N}{2} \Delta f . \tag{2.14}
\end{equation*}
$$

In other words, only half of the $N$ available DFT output values are useful - for $k=0: N / 2-1$.

Example 2.18. Suppose we sample a signal for $T=4$ seconds, at a sampling rate of $f_{s}=100 \mathrm{~Hz}$.
(a) How many data points are taken?

$$
N=T f_{s}=4 \cdot 100=400
$$

(b) How many useful DFT output values are obtained?

$$
N / 2=200
$$

(c) What is $\Delta f$ ?

$$
\Delta f=1 / T=1 / 4=0.25 \mathrm{~Hz}
$$

(d) What is the maximum frequency for which the DFT output is useful and reliable?

$$
f_{\max }=(N / 2) \Delta f=(400 / 2) \cdot 0.25=50 \mathrm{~Hz}
$$

Note: The other half of the output values ( $f>f_{\text {folding }}$ ) are thrown out or ignored.

### 2.3.2. Short-Time Fourier Transform

The short-time Fourier transform (STFT) is used to analyze how the frequency content of a signal changes over time.

- The procedure for computing the STFT:
(a) Divide the signal into short segments of equal length.
(b) Compute the DFT separately on each short segment.
- The magnitude squared of the STFT is known as the spectrogram, a time-frequency representation of the signal.


## Remark 2.19. Short-Time Fourier Transform.

- It requires to set
- An analysis window $g(n)$ of length $M$
- $R$ : The window hops over the original signal by $R$ samples.
$\Rightarrow$ The overlap $L=M-R$
- Most window functions taper off at the edges to avoid spectral ringing.
- The DFT of each windowed segment is stored into a complex-valued matrix of $\operatorname{int}\left(\left(N_{s}-L\right) /(M-L)\right)$ columns, where $N_{s}$ is the length of the original signal.


Figure 2.5: iscola_stft.png from Matlab.

## Example 2.20. Implement a code for the STFT. <br> Solution.

We first select an analysis window.
function $\mathrm{g}=$ win_cos.m
$\%$ function $g=$ win_cos $(M)$
$t=$ linspace $(0,2 *$ pi,$M) ;$
$g=0.55-0.45 * \cos (t) ;$

short_time_DFT.m

```
close all; clear all
fs=10000; %sampling frequency in Hz
T0=1;
t0=0:1/fs:T0-1/fs; % Time vector
x0=sin((100+3900*t0/2).*(2*pi*t0)); % a chirp signal
%---
x = [x0, x0, x0]; %t = [t0, t0+T0, t0+2*T0];
%
M = 150; % window length
R = 60; % sliding length
g = win_cos(M);
F = stft2(x,g,R);
S = abs(F).^2; % spectrogram
%-- Plots --
figure,plot(t0(1:1000), x0(1:1000),'-k','linewidth',1.5)
title('First 1000 Samples of the Chirp Signal')
print -dpng 'stft-chirp-signal.png'
figure,plot(1:M,g,'-b','linewidth',1.5);
ylim([0,1]); title('win_cos, a window function')
print -dpng 'stft-window-g.png'
```

```
Df = fs/M; Dt = R/fs;
figure, imagesc((0:size(S,2)-1)*Dt,(0:M-1)*Df,S)
xlabel('Time (second)'); ylabel('Frequency (Hz)'); title('Spectrogram');
colormap('pink'); colorbar; set(gca,'YDir','normal')
print -dpng 'stft-spectrogram.png'
```

                                    stft2.m
    ```
function F = stft2(x,g,R)
% function F = stft2(x,g,R)
% x: the signal
% g: the window function of length M
% R: sliding length
% Output: F = the short-time DFT
Ns = length(x); M = length(g);
L = M-R; % overlap
Col = floor((Ns-L)/(M-L));
F = zeros(M,Col); c = 1;
while 1
 if c==1, n0=1; else, n0=n0+R; end
 n1=n0+M-1;
 if n1>Ns, break; end
 signal = x(n0:n1).*g;
 F(:,c) = discrete_Fourier(signal)'; c=c+1;
end
```




Figure 2.6: The first 1000 samples of the chirp signal and the spectrogram from the STFT.

### 2.4. Computational Algorithms and Their Convergence

Definition 2.21. Suppose that $p^{*}$ is an approximation to $p$. Then

- The absolute error is $\left|p-p^{*}\right|$, and
- the relative error is $\frac{\left|p-p^{*}\right|}{|p|}$, provided that $p \neq 0$.


### 2.4.1. Computational Algorithms

Definition 2.22. An algorithm is a procedure that describes, in an unambiguous manner, a finite sequence of steps to be carried out in a specific order.

Algorithms consist of various steps for inputs, outputs, and functional operations, which can be described effectively by a so-called pseudocode.

Definition 2.23. An algorithm is called stable, if small changes in the initial data produce correspondingly small changes in the final results. Otherwise, it is called unstable. Some algorithms are stable only for certain choices of data/parameters, and are called conditionally stable.

Notation 2.24. (Growth rates of the error): Suppose that $E_{0}>0$ denotes an error introduced at some stage in the computation and $E_{n}$ represents the magnitude of the error after $n$ subsequent operations.

- If $E_{n}=C \times n E_{0}$, where $C$ is a constant independent of $n$, then the growth of error is said to be linear, for which the algorithm is stable.
- If $E_{n}=C^{n} E_{0}$, for some $C>1$, then the growth of error is exponential, which turns out unstable.


## Rates (Orders) of Convergence

Definition 2.25. Let $\left\{x_{n}\right\}$ be a sequence of real numbers tending to a limit $x^{*}$.

- The rate of convergence is at least linear if there are a constant $c_{1}<1$ and an integer $N$ such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq c_{1}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N . \tag{2.15}
\end{equation*}
$$

- We say that the rate of convergence is at least superlinear if there exist a sequence $\varepsilon_{n}$ tending to 0 and an integer $N$ such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq \varepsilon_{n}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N . \tag{2.16}
\end{equation*}
$$

- The rate of convergence is at least quadratic if there exist a constant $C$ (not necessarily less than 1 ) and an integer $N$ such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq C\left|x_{n}-x^{*}\right|^{2}, \quad \forall \quad n \geq N \tag{2.17}
\end{equation*}
$$

- In general, we say that the rate of convergence is of $\alpha$ at least if there exist a constant $C$ (not necessarily less than 1 for $\alpha>1$ ) and an integer $N$ such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq C\left|x_{n}-x^{*}\right|^{\alpha}, \quad \forall n \geq N \tag{2.18}
\end{equation*}
$$

Example 2.26. Consider a sequence defined recursively as

$$
\begin{equation*}
x_{1}=2, \quad x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} \tag{2.19}
\end{equation*}
$$

(a) Find the limit of the sequence; (b) show that the convergence is quadratic.

Hint: You may first check the behavior of the sequence. Then prove its convergence, by verifying $x_{n}>\sqrt{2}$ for all $n \geq 1\left(\odot x_{n+1}^{2}-2>0\right)$ and $x_{n+1}<x_{n}\left(\odot x_{n}-x_{n+1}=x_{n}\left(\frac{1}{2}-\frac{1}{x_{n}^{2}}\right)>0\right)$.

## Solution.

```
x = 2;
for n=1:5
 x = x/2 + 1/x;
 fprintf('n=%d: xn = %.10f\n',n,x)
end
```

                                    Output
    $\mathrm{n}=1: \mathrm{xn}=1.5000000000$
$\mathrm{n}=2: \mathrm{xn}=1.416666667$
$\mathrm{n}=3: \mathrm{xn}=1.4142156863$
$\mathrm{n}=4: \mathrm{xn}=1.4142135624$
$\mathrm{n}=5: \mathrm{xn}=1.4142135624$

## It looks monotonically decreasing and bounded below $\Rightarrow$ Converge!

 (It converges to $\sqrt{2} \approx 1.41421356237310$.)
### 2.4.2. Big $\mathcal{O}$ and little $o$ notation

## Definition 2.27.

- A sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is said to be in $\mathcal{O}$ (big Oh) of $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ if a positive number $K$ exists for which

$$
\begin{equation*}
\left.\left|\alpha_{n}\right| \leq K\left|\beta_{n}\right|, \text { for large } n \text { (or equivalently, } \frac{\left|\alpha_{n}\right|}{\left|\beta_{n}\right|} \leq K\right) \tag{2.20}
\end{equation*}
$$

In this case, we say " $\alpha_{n}$ is in $\mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$ " and denote $\alpha_{n} \in \mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$ or $\alpha_{n}=$ $\mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$.

- A sequence $\left\{\alpha_{n}\right\}$ is said to be in $\boldsymbol{o}$ (little oh) of $\left\{\beta_{n}\right\}$ if there exists a sequence $\varepsilon_{n}$ tending to 0 such that

$$
\begin{equation*}
\left|\alpha_{n}\right| \leq \varepsilon_{n}\left|\beta_{n}\right|, \text { for large } n\left(\text { or equivalently, } \lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}\right|}{\left|\beta_{n}\right|}=0\right) \tag{2.21}
\end{equation*}
$$

In this case, we say " $\alpha_{n}$ is in $\boldsymbol{o}\left(\boldsymbol{\beta}_{n}\right)$ " and denote $\alpha_{n} \in \boldsymbol{o}\left(\boldsymbol{\beta}_{n}\right)$ or $\alpha_{n}=$ $o\left(\beta_{n}\right)$.
Example 2.28. Show that $\alpha_{n}=\frac{n+1}{n^{2}}=\mathcal{O}\left(\frac{1}{n}\right)$ and

$$
f(n)=\frac{n+3}{n^{3}+20 n^{2}} \in \mathcal{O}\left(n^{-2}\right) \cap o\left(n^{-1}\right)
$$

## Solution.

Definition 2.29. Suppose $\lim _{h \rightarrow 0} G(h)=0$. A quantity $F(h)$ is said to be in $\mathcal{O}$ (big Oh) of $G(h)$ if a positive number $K$ exists for which

$$
\begin{equation*}
\frac{|F(h)|}{|G(h)|} \leq K, \text { for } h \text { sufficiently small. } \tag{2.22}
\end{equation*}
$$

In this case, we say $F(h)$ is in $\mathcal{O}(G(h))$, and denote $F(h) \in \mathcal{O}(G(h))$. Little oh of $\boldsymbol{G}(\boldsymbol{h})$ can be defined the same way as for sequences.

Example 2.30. Taylor's series expansion for $\cos (x)$ is given as

$$
\begin{aligned}
\cos (x) & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots \\
& =1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots .
\end{aligned}
$$

If you use a computer algebra software (e.g. Maple), you will obtain

$$
\operatorname{taylor}(\cos (\mathrm{x}), \mathrm{x}=0,4)=1-\frac{1}{2!} x^{2}+\mathcal{O}\left(x^{4}\right)
$$

which implies that

Indeed,

$$
\begin{equation*}
\underbrace{\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots}_{=: F(x)}=\mathcal{O}\left(\mathbf{x}^{4}\right) . \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
\frac{|F(x)|}{\left|x^{4}\right|}=\left|\frac{1}{24}-\frac{1}{720} x^{2}+\cdots\right| \leq \frac{1}{24}, \text { for sufficiently small } x . \tag{2.24}
\end{equation*}
$$

Thus $F(x) \in \mathcal{O}\left(x^{4}\right)$.
Example 2.31. Choose the correct assertions (in each, $n \rightarrow \infty$ )
a. $\left(n^{2}+1\right) / n^{3} \in o(1 / n)$
b. $(n+1) / \sqrt{n} \in o(1)$
c. $1 / \ln n \in \mathcal{O}(1 / n)$
d. $1 /(n \ln n) \in o(1 / n)$
e. $e^{n} / n^{5} \in \mathcal{O}(1 / n)$

Example 2.32. Let $f(h)=\frac{1}{h}\left(1+h-e^{h}\right)$. What are the limit and the rate of convergence of $f(h)$ as $h \rightarrow 0$ ?

## Solution.

Self-study 2.33. Show that these assertions are not true.
a. $e^{x}-1=\mathcal{O}\left(x^{2}\right)$, as $x \rightarrow 0$
b. $x=\mathcal{O}\left(\tan ^{-1} x\right)$, as $x \rightarrow 0$
c. $\sin x \cos x=o(x)$, as $x \rightarrow 0$

## Solution.

### 2.5. Inverse Functions: Exponentials and Logarithms


#### Abstract

In-Reality 2.34. A function $f$ is a rule that assigns an output $y$ to each input $x: f(x)=y$. Thus a function is a set of actions that determines the system. However, in reality, it is often the case that the equation must be solved for either the input or the function.


1. Given $(f, x)$, getting $y$ is the simplest and most common task.
2. Given $(f, y)$, solving for $x$ is to find the inverse function of $f$.
3. Given $(x, y)$, solving for $f$ is not a simple task in practice.

- Using many data points $\left\{\left(x_{i}, y_{i}\right)\right\}$, finding an approximation of $f$ is the core subject of polynomial interpolation (§ 3.3), regression analysis (Ch. 7), and machine learning (Ch. 10).


## Key Idea 2.35. What is the Inverse of a Function?

Let $f: \bar{X} \rightarrow Y$ be a function. For simplicity, consider

$$
\begin{equation*}
y=f(x)=2 x+1 \tag{2.25}
\end{equation*}
$$

- Then, $f$ is a rule that performs two actions: $\times 2$ and followed by +1 .
- The reverse of $f$ must be: -1 followed by $\div 2$.
- Let $y \in Y$. Then the reverse of $f$ can be written as

$$
\begin{equation*}
x=(y-1) / 2=: g(y) \tag{2.26}
\end{equation*}
$$

The function $g$ is the inverse function of $f$.

- However, it is conventional to choose $x$ for the independent variable. Thus it can be formulated as

$$
\begin{equation*}
y=g(x)=(x-1) / 2 \tag{2.27}
\end{equation*}
$$

- Let's summarize the above:
(a) Solve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ for $\boldsymbol{x}$ : $\quad x=(y-1) / 2=: g(y)$.
(b) Exchange $\boldsymbol{x}$ and $\boldsymbol{y}: \quad y=g(x)=(x-1) / 2$.


### 2.5.1. Inverse functions

Note: The first step for finding the inverse function of $f$ is to solve $y=$ $f(x)$ for $x$, to get $x=g(y)$. Here the required is for $g$ to be a function.

Definition 2.36. A function $f$ is called a one-to-one function if it never takes on the same value twice; that is,

$$
\begin{equation*}
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } x_{1} \neq x_{2} . \tag{2.28}
\end{equation*}
$$

## Claim 2.37. Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 2.38. Check if the function is one-to-one.
a. $f(x)=x^{2}$
b. $g(x)=x^{2}, x \geq 0$
c. $h(x)=x^{3}$

## Solution.

Definition 2.39. Let $f$ be a one-to-one function with domain $X$ and range $Y$. Then its inverse function $f^{-1}$ has domain $Y$ and range $X$ and is defined by

$$
\begin{equation*}
f^{-1}(y)=x \Leftrightarrow f(x)=y, \tag{2.29}
\end{equation*}
$$

for any $y \in Y$.

Solution. Write $y=x^{3}+2$.
Step 1: Solve it for $x$ :

$$
x^{3}=y-2 \Rightarrow \boldsymbol{x}=\sqrt[3]{\boldsymbol{y}-\mathbf{2}} .
$$

Step 2: Exchange $x$ and $y$ :

$$
y=\sqrt[3]{x-2}
$$

Therefore the inverse function is

$$
f^{-1}(x)=\sqrt[3]{x-2}
$$



## Exponential Functions

Definition 2.40. A function of the form

$$
\begin{equation*}
f(x)=a^{x}, \quad \text { where } a>0 \text { and } a \neq 1, \tag{2.30}
\end{equation*}
$$

is called an exponential function (with base $a$ ).

- All exponential functions have domain $(-\infty, \infty)$ and range $(0, \infty)$, so an exponential function never assumes the value 0 .
- All exponential functions are either increasing ( $a>1$ ) or decreasing ( $0<a<1$ ) over the whole domain.


Figure 2.7: Exponential functions.

Example 2.41. Table 2.1 shows data for the population of the world in the 20 th century. Figure 2.8 shows the corresponding scatter plot.

- The pattern of the data points suggests an exponential growth.
- Use an exponential regression algorithm to find a model of the form

$$
\begin{equation*}
P(t)=a \cdot b^{t}, \tag{2.31}
\end{equation*}
$$

where $t=0$ corresponds to 1900 .
Table 2.1

$t$   (years since 1900)	Population $P$   (millions)
0	1650
10	1750
20	1860
30	2070
40	2300
50	2560
60	3040
70	3710
80	4450
90	5280
100	6080
110	6870



Figure 2.8: Scatter plot for world population growth.

Remark 2.42. The exponential regression (2.31) can be rewritten as

$$
\begin{equation*}
\ln P=\ln \left(a \cdot b^{t}\right)=\ln a+t \ln b=\alpha+t \beta \tag{2.32}
\end{equation*}
$$

One can find the parameters $(\alpha, \beta)$ which fit best the following:

$$
\left.\begin{array}{rl}
\alpha+0 \beta & =\ln 1650  \tag{2.33}\\
\alpha+10 \beta & =\ln 1750 \\
\alpha+20 \beta & =\ln 1860 \\
& \vdots \\
\alpha+110 \beta & =\ln 6870
\end{array}\right\} \Rightarrow A\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\boldsymbol{r}
$$

Then recover $(a, b): a=e^{\alpha}, b=e^{\beta}$.

Solution. We will see details of the exponential regression later.

```
Data =[0 1650; 10 1750; 20 1860; 30 2070;
 40 2300; 50 2560; 60 3040; 70 3710;
 80 4450; 90 5280; 100 6080; 110 6870];
m = size(Data,1);
% exponential model, through linearization
A = ones(m,2);
A(:,2) = Data(:,1);
r = log(Data(:,2));
p = (A'*A)\(A'*r);
a = exp(p(1)), b = exp(p(2)),
plot(Data(:,1),Data(:,2),'k.','MarkerSize',20)
 xlabel('Years since 1900');
 ylabel('Millions'); hold on
 print -dpng 'population-data.png'
t = Data(:,1);
plot(t,a*b.^t,'r-','LineWidth', 2)
 print -dpng 'population-regression.png'
 hold off
```

The program results in

$$
a=1.4365 \times 10^{3}, \quad b=1.0140 .
$$

Thus the exponential model reads

$$
\begin{equation*}
P(t)=\left(1.4365 \times 10^{9}\right) \cdot(1.0140)^{t} . \tag{2.34}
\end{equation*}
$$

Figure 2.9 shows the graph of this exponential function together with the original data points. We see that the exponential curve fits the data reasonably well.


Figure 2.9: Exponential model for world population growth.

## The Number $e$,

Of all possible bases for an exponential function, there is one that is most convenient for the purposes of calculus. The choice of a base $a$ is influenced by the way the graph of $y=a^{x}$ crosses the $y$-axis.

- Some of the formulas of calculus will be greatly simplified, if we choose the base $a$ so that the slope of the tangent line to $y=a^{x}$ at $x=0$ is exactly 1 .
- In fact, there is such a number and it is denoted by the letter $e$. (This notation was chosen by the Swiss mathematician Leonhard Euler in 1727, probably standing for exponential.)
- It turns out that the number $e$ lies between 2 and 3:

$$
\begin{equation*}
e \approx 2.718282 \tag{2.35}
\end{equation*}
$$





Figure 2.10: The number $e$.

## Remark 2.43. The Euler's number e as a Limit

It can be calculated as the limit

$$
\begin{equation*}
e=\lim _{x \rightarrow 0}(1+x)^{1 / x} . \tag{2.36}
\end{equation*}
$$

```
 e_limit.m
% An increasing sequence
for n=1:8
 x=1/10^n;
 en = (1+x)^(1/x);
 fprintf('e_%d = %.10f\n',n,en)
end
```

$$
\begin{aligned}
& \mathrm{e}_{-} 1=2.5937424601 \\
& \mathrm{e}_{-} 2=2.7048138294 \\
& \mathrm{e}_{-} 3=2.7169239322 \\
& \mathrm{e}_{-} 4=2.7181459268 \\
& \mathrm{e}_{-} 5=2.7182682372 \\
& \mathrm{e}_{-} 6=2.7182804691 \\
& \mathrm{e}_{-} 7=2.7182816941 \\
& \mathrm{e}_{-} 8=2.7182817983
\end{aligned}
$$

### 2.5.2. Logarithmic Functions

Recall: The exponential function $f(x)=a^{x}$ is either increasing ( $a>1$ ) or decreasing ( $0<a<1$ ).

- It is one-to-one by the Horizontal Line Test.
- Therefore it has its inverse.

Definition 2.44. The logarithmic function with base $a$, written $y=\log _{a} x$, is the inverse of $y=a^{x}(a>0, a \neq 1)$. That is,

$$
\begin{equation*}
y=\log _{a} x \Leftrightarrow a^{y}=x . \tag{2.37}
\end{equation*}
$$

Example 2.45. Find the inverse of $y=2^{x}$.

## Solution.

1. Solve $y=2^{x}$ for $x$ :

$$
x=\log _{2} y
$$

2. Exchange $\boldsymbol{x}$ and $\boldsymbol{y}$ :

$$
y=\log _{2} x
$$

Thus the graph of $y=\log _{2} x$ must be the reflection of the graph of $y=2^{x}$ about $y=x$.

Figure 2.11: Graphs of $y=2^{x}$ and $y=\log _{2} x$.


## Note:

- Equation (2.37) represents the action of "solving for $x$ "
- The domain of $y=\log _{a} x$ must be the range of $y=a^{x}$, which is $(0, \infty)$.


## The Natural Logarithm and the Common Logarithm

Of all possible bases $a$ for logarithms, we will see later that the most convenient choice of a base is the number $e$.

## Definition 2.46 .

- The logarithm with base $e$ is called the natural logarithm and has a special notation:

$$
\begin{equation*}
\log _{e} x=\ln x \tag{2.38}
\end{equation*}
$$

- The logarithm with base 10 is called the common logarithm and has a special notation:

$$
\begin{equation*}
\log _{10} x=\log x \tag{2.39}
\end{equation*}
$$

## Remark 2.47.

- From your calculator, you can see buttons of LN and LOG, which represent $\ln =\log _{e}$ and $\log =\log _{10}$, respectively.
- When you implement a code on computers, the functions ln and log can be called by "log" and " $\log 10$ ", respectively.


## Properties of Logarithms

- Algebraic Properties: for $(a>0, a \neq 1)$

Product Rule: $\quad \log _{a} x y=\log _{a} x+\log _{a} y$
Quotient Rule: $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
Power Rule: $\quad \log _{a} x^{\alpha}=\alpha \log _{a} x$
Reciprocal Rule: $\log _{a} \frac{1}{x}=-\log _{a} x$

## - Inverse Properties

$$
\begin{array}{ll}
a^{\log _{a}}=x, x>0 ; & \log _{a} a x=x, x \in \mathbb{R}  \tag{2.41}\\
e^{\ln x}=x, x \geq 0 ; & \ln e^{x}=x, x \in \mathbb{R}
\end{array}
$$

Example 2.48. Solve for $x$.
(a) $e^{5-3 x}=3$.
(b) $\log _{3} x+\log _{3}(x-2)=1$
(c) $\ln (\ln x)=0$

## Solution.

Ans: (a) $x=\frac{1}{3}(5-\ln 3)$. (b) $x=3$. (Caution: $\boldsymbol{x}=-\mathbf{1}$ cannot be a solution.)

## Claim 2.49.

(a) Every exponential function is a power of the natural exponential function.

$$
\begin{equation*}
a^{x}=e^{x \ln a} . \tag{2.42}
\end{equation*}
$$

(b) Every logarithmic function is a constant multiple of the natural logarithm.

$$
\begin{equation*}
\log _{a} x=\frac{\ln x}{\ln a}, \quad(a>0, a \neq 1) \tag{2.43}
\end{equation*}
$$

which is called the Change-of-Base Formula.
Proof. (a). $a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln a}$.
(b). $\ln x=\ln \left(a^{\log _{a} x}\right)=\left(\log _{a} x\right)(\ln a)$, from which one can get (2.43).

Remark 2.50. Based on Claim 2.49, all exponential and logarithmic functions can be evaluated by the natural exponential function and the natural logarithmic function; which are named "exp()" and " $\log ()$ ", in Matlab.

Note: You will work on a project, Canny Edge Detection Algorithm For Color Images, while you are studying the next chapter.

## Exercises for Chapter 2

2.1. Download a dataset saved in heart-data.txt: https://skim.math.msstate.edu/LectureNotes/data/heart-data.txt
(a) Draw a figure for it.
(b) Use the formula (2.4) to find the area.

Hint: You may use the following. You should finish the function area_closed_curve. Note that the index in Matlab arrays begins with 1, not 0 .

```
DATA = load('heart-data.txt');
X = DATA(:,1); Y = DATA(:,2);
figure, plot(X,Y,'r-','linewidth',2);
[m,n] = size(DATA);
area = area_closed_curve(DATA);
fprintf('# of points = %d; area = %g\n',m,area);
 area_closed_curve.m
function area = area_closed_curve(data)
% compute the area of a region of closed curve
[m,n] = size(data);
area = 0;
for i=2:m
 %FILL HERE APPROPRIATELY
end
```

Ans: (b) 9.41652.
2.2. Function $f(x)=x^{3}-2 x^{2}+x-2$ has two complex-values zeros and a real zero. Implement a code to visualize all the solutions in the complex coordinates.
Hint: Find the real and imaginary parts of $f(z)$ as in Remark 2.10.
2.3. Either produce or download a sound file and then compute its spectrogram. For a wav file, you may try https://www2.cs.uic.edu/~i101/SoundFiles/ or https://voiceage.com/Audio-Samples-AMR-WB.html.

Hint: Assume you have got StarWars3.wav. Then you may start with the following.
real_STFT.m

```
filename = 'StarWars3.wav';
```

[x,fs] = audioread(filename);

```
gong = audioplayer(x,fs);
play(gong)
```

The above works on both Matlab and Ocatve.
2.4. For the fair $\left(x_{n}, \alpha_{n}\right)$, is it true that $x_{n}=\mathcal{O}\left(\alpha_{n}\right)$ as $n \rightarrow \infty$ ?
(a) $x_{n}=\sqrt{n^{2}-10} ; \quad \alpha_{n}=\sqrt{n}$
(b) $x_{n}=3 n-n^{4}+1 ; \quad \alpha_{n}=n^{3}$
(c) $x_{n}=n-\frac{1}{\sqrt{n}}+1 ; \quad \alpha_{n}=\sqrt{n}$
(d) $x_{n}=n^{2}+n ; \quad \alpha_{n}=n^{3}$
2.5. The population of Starkville, Mississippi, was 2,689 in the year 1900 and 25,495 in 2020. Assume that the population in Starkville grows exponentially with the model

$$
\begin{equation*}
P_{n}=P_{0} \cdot(1+r)^{n}, \tag{2.44}
\end{equation*}
$$

where $n$ is the elapsed year and $r$ denotes the growth rate per year.
(a) Find the growth rate $r$.
(b) Estimate the population in 1950 and 2000.
(c) Approximately when is the population going to reach 50,000 ?

Hint: Applying the natural $\log$ to (2.44) reads $\log \left(P_{n} / P_{0}\right)=n \log (1+r)$. Dividing it by $n$ and applying the natural exponential function gives $1+r=\exp \left(\log \left(P_{n} / P_{0}\right) / n\right)$, where $P_{n}=25495, P_{0}=2689$, and $n=120$.

$$
\text { Ans: (a) } r=0.018921(=1.8921 \%) . \text { (c) } 2056 .
$$

## Chapter 3

## Programming with Calculus

In modern scientific computing (particularly, for AI), calculus and linear algebra play crucial roles.

- In this chapter, you will learn certain selected topics in calculus which are essential for advanced computing tasks.
- We will consider basic concepts and their applications as well.


## Contents of Chapter 3

3.1. Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2. Basis Functions and Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3. Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4. Numerical Differentiation: Finite Difference Formulas . . . . . . . . . . . . . . . . . . 93
3.5. Newton's Method for the Solution of Nonlinear Equations . . . . . . . . . . . . . . . . 99
3.6. Zeros of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

### 3.1. Differentiation

### 3.1.1. The Slope of the Tangent Line

Problem 3.1. A function $y=f(x)$ can be graphed as a curve.

- In many applications, the tangent line plays a crucial role for the computation of approximate solutions.
- Here are questions:
- What is the tangent line?
- How can we find it?


## Average Speed and Instantaneous Speed

When $f(t)$ measures the distance traveled at time $t$,

- Average Speed.

Average speed over $\left[t_{0}, t_{0}+h\right]=\frac{\text { distance traveled }}{\text { elapsed time }}=\frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{\left(t_{0}+h\right)-t_{0}}$

- Instantaneous Speed. For $h$ very small,

$$
\begin{equation*}
\text { Instantaneous speed at } t_{0} \approx \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h} \tag{3.2}
\end{equation*}
$$

Example 3.2. If $y$ denotes the distance fallen in feet after $t$ seconds, then the Galileo's law of free-fall is

$$
\begin{equation*}
y=16 t^{2} \mathrm{ft} . \tag{3.3}
\end{equation*}
$$

Let $t_{0}=1$.
(a) Find average speed, the difference quotient,

$$
\frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

for various $h$, positive and negative.
(b) Estimate the instantaneous speed at $t=t_{0}$.

## Solution.

free_fall.m
syms $f(t) Q(h) \% a l s o$, views $t$ and $h$ as symbols
$f(\mathrm{t})=16 * \mathrm{t} .{ }^{\wedge} 2 ; \mathrm{t} 0=1$;
Int $=[\mathrm{t} 0-1.5, \mathrm{t} 0+1.1]$;
fplot (f(t), Int, 'k-','LineWidth', 3)
hold on
\%\%---- Difference Quotient (DQ)
$Q(h)=(f(t 0+h)-f(t 0)) / h$;
$S(t, h)=Q(h) *(t-t 0)+f(t 0) ; \%$ Secant line
\%\%---- Secant Lines, with Various h ------
for $\mathrm{h} 0=\left[\begin{array}{llll}-1 & -0.5 & 0.5 & 1\end{array}\right]$
fplot (S (t,h0), Int, 'b--','LineWidth', 2)
plot ([t0+h0], [f(t0+h0)],'b.', 'markersize', 30)
end
$\% \%---$ Limit of the DQ $\qquad$
tan_slope $=\operatorname{limit}(Q(h), h, 0)$;
$T(t)=t a n \_s l o p e *(t-t 0)+f(t 0)$;
fplot(T(t),Int, 'r-','LineWidth', 3)
plot([t0], [f(t0)], 'r.', 'markersize', 30)
axis tight, grid on; hold off ax=gca; ax.FontSize=15; ax.GridAlpha=0.5;
print -dpng 'free-fall-tangent.png'
$\% \%$---- Measure $Q(h)$ wih $h=+-10^{\wedge}-i$----------
for $i=1: 5$
$h=-10^{\wedge}(-i) ;$ fprintf(" $\left.h=\% .5 f ; Q(h)=\% .8 f \backslash n ", h, Q(h)\right)$
end
for $i=1: 5$
$h=10^{\sim}(-i) ; f p r i n t f(" h=\% .5 f ; Q(h)=\% .8 f \backslash n ", h, Q(h))$ end



## Let's confirm this algebraically.

- When $f(t)=16 t^{2}$ and $t_{0}=1$, the difference quotient reads

$$
\begin{align*}
\frac{\Delta y}{\Delta t}\left(t_{0}=1\right) & =\frac{f(1+h)-f(1)}{h}=\frac{16(1+h)^{2}-16(1)^{2}}{h} \\
& =\frac{16\left(1+2 h+h^{2}\right)-16(1)^{2}}{h}=\frac{32 h+16 h^{2}}{h}  \tag{3.4}\\
& =32+16 h
\end{align*}
$$

- As $h$ gets closer and closer to 0 , the average speed has the limiting value $32 \mathrm{ft} / \mathrm{sec}$ when $t_{0}=1 \mathrm{sec}$. $\square$
- Thus, the slope of the tangent line is 32 .

Example 3.3. Find an equation of the tangent line to the graph of $y=x^{2}$ at $x_{0}=2$.


Figure 3.1: Graph of $y=x^{2}$ and the tangent line at $x_{0}=2$.

Solution. Let's first try to find the slope, as the limit of the difference quotient.

## Definition 3.4 .

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad\left(=: \mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right), \text { provided the limit exists }\right) . \tag{3.5}
\end{equation*}
$$

The tangent line to the curve at $P$ is the line through $P$ with this slope:

$$
\begin{equation*}
y-f\left(x_{0}\right)=\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)\left(x-x_{0}\right) . \tag{3.6}
\end{equation*}
$$

Example 3.5. Can you find the tangent line to $y=\left|x^{2}-1\right|$ at $x_{0}=1$ ?
Solution. As one can see from Figure 3.2, the left-hand limit and the right-hand slope of the difference quotient are not the same. Or, you may say the left-hand and the right-hand secant lines converge differently. Thus no tangent line can be defined.


Figure 3.2: Graph of $y=\left|x^{2}-1\right|$ and secant lines at $x_{0}=1$.
secant_lines_abs_x2_minus_1.m
syms $f(x) Q(h) \% a l s o$, views $t$ and $h$ as symbols
$f(x)=a b s(x . \sim 2-1) ; x 0=1$;
figure, fplot (f(x), [x0-3,x0+1.5], 'k-','LineWidth',3)
hold on
$Q(h)=(f(x 0+h)-f(x 0)) / h ;$
$S(x, h)=Q(h) *(x-x 0)+f(x 0) ; \%$ Secant line
$\% \%---$ Secant Lines, with Various h ------
for h0 $=\left[\begin{array}{llllll}-0.5 & -0.25 & -0.1 & 0.1 & 0.25 & 0.5\end{array}\right]$
fplot (S (x,h0), [x0-1, x0+1], 'b--', 'LineWidth', 2)
plot ([x0+h0], [f(x0+h0)],'b.','markersize', 25)
end
plot ([x0], [f(x0)],'r.','markersize', 35)
daspect([1] $\left.\begin{array}{lll}1 & 2 & 1\end{array}\right)$
axis tight, grid on
ax=gca; ax.FontSize=15; ax.GridAlpha=0.5;
hold off
print -dpng 'secant-y=abs-x2-1.png'

### 3.1.2. Derivative and Differentiation Rules

You have calculated average slopes, for various interval lengths $h$, and estimated the instantaneous slope by letting $h$ approach zero.

Definition 3.6. The derivative of a function $f(x)$, denoted $f^{\prime}(x)$ or $\frac{d f(x)}{d x}$, is

$$
\begin{equation*}
f^{\prime}(x)=\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \tag{3.7}
\end{equation*}
$$

provided that the limit exists.
Example 3.7. Use the definition to find derivatives of the functions:
Find the difference quotient $\frac{f(x+h)-f(x)}{h}$, simplify it, and then apply $\lim _{h \rightarrow 0}$.
(a) $f(x)=x$
(b) $f(x)=x^{2}$
(c) $f(x)=x^{3}$

Solution.

Formula 3.8. From the last example,

$$
\begin{gathered}
f(x)=x \Rightarrow f^{\prime}(x)=1 \\
f(x)=x^{2} \Rightarrow f^{\prime}(x)=2 x \\
f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \\
\vdots \\
\vdots \\
f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}
\end{gathered}
$$

Example 3.9. Differentiate the following powers of $x$.
(a) $x^{6}$
(b) $x^{3 / 2}$
(c) $x^{1 / 2}$

## Solution.

## Formula 3.10. Differentiation Rules:

- Let $f(x)=a u(x)+b v(x)$, for some constants $a$ and $b$. Then

$$
\begin{align*}
\frac{f(x+h)-f(x)}{h} & =\frac{[a u(x+h)+b v(x+h)]-[a u(x)+b v(x)]}{h} \\
& =a \frac{u(x+h)-u(x)}{h}+b \frac{v(x+h)-v(x)}{h}  \tag{3.8}\\
& \rightarrow a u^{\prime}(x)+b v^{\prime}(x)
\end{align*}
$$

- Let $f(x)=u(x) v(x)$. Then

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{u(x+h) v(x+h)-u(x) v(x)}{h} \\
& =\frac{u(x+h) v(x+h)-u(x) v(x+h)+u(x) v(x+h)-u(x) v(x)}{h} \\
& =v(x+h) \frac{u(x+h)-u(x)}{h}+u(x) \frac{v(x+h)-v(x)}{h} \\
& \rightarrow u^{\prime}(x) v(x)+u(x) v^{\prime}(x)
\end{aligned}
$$

Example 3.11. Use the product rule (3.9) to find the derivative of the function

$$
f(x)=x^{6}=x^{2} \cdot x^{4}
$$

## Solution.

Example 3.12. Does the curve $y=x^{4}-2 x^{2}+2$ have any horizontal tangent line? Use the information you just found, to sketch the graph. Solution.

Example 3.13. Consider a computer program.


Use the program to verify various rules of differentiation.

## Solution.

Table 3.1: Rules of Derivative

$\mathrm{f}(\mathrm{x})$	Results	Mathematical formula	
$\mathrm{x}^{\wedge} \mathrm{n}$	$\mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)$	$\left(x^{n}\right)^{\prime}=n x^{n-1}$	(power rule)
$\mathrm{a}^{*} \mathrm{u}(\mathrm{x})+\mathrm{b}^{*} \mathrm{v}(\mathrm{x})$	$\mathrm{a} * \mathrm{D}(\mathrm{u})(\mathrm{x})+\mathrm{b} * \mathrm{D}(\mathrm{v})(\mathrm{x})$	$(a u+b v)^{\prime}=a u^{\prime}+b v^{\prime}$	(linearity rule)
$\mathrm{u}(\mathrm{x})^{*} \mathrm{v}(\mathrm{x})$	$\mathrm{D}(\mathrm{u})(\mathrm{x}) * \mathrm{v}(\mathrm{x})+$	$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$	(product rule)
	$\mathrm{u}(\mathrm{x}) * \mathrm{D}(\mathrm{v})(\mathrm{x})$		
$\mathrm{u}(\mathrm{x}) / \mathrm{v}(\mathrm{x})$	$(\mathrm{D}(\mathrm{u})(\mathrm{x}) * \mathrm{v}(\mathrm{x})-$	$(u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2}$	(quotient rule)
	$\mathrm{D}(\mathrm{v})(\mathrm{x}) * \mathrm{u}(\mathrm{x})) / \mathrm{v}(\mathrm{x})^{\wedge} 2$		
$\mathrm{u}(\mathrm{v}(\mathrm{x}))$	$\mathrm{D}(\mathrm{v})(\mathrm{x}) * \mathrm{D}(\mathrm{u})(\mathrm{v}(\mathrm{x}))$	$(u(v(x)))^{\prime}=u^{\prime}(v(x)) \cdot v^{\prime}(x)$	(chain rule)

Example 3.14. Find the derivative of $g(x)=(2 x+1)^{10}$.
Solution. Let $u(x)=x^{10}$ and $v(x)=2 x+1$. Then $g(x)=u(v(x))$.

- $u^{\prime}(x)=10 x^{9}$ and $v^{\prime}(x)=2$.
- Thus

$$
g^{\prime}(x)=u^{\prime}(v(x)) \cdot v^{\prime}(x)=10(v(x))^{9} \cdot 2=20(2 x+1)^{9}
$$

## Remark 3.15. Differentiation Rules:

- The power rule holds for real number $n$.
- The quotient rule can be explained using the product rule.

$$
\begin{align*}
\left(\frac{u}{v}\right)^{\prime} & =\left(u \cdot v^{-1}\right)^{\prime}=u^{\prime} \cdot v^{-1}+u \cdot\left(v^{-1}\right)^{\prime} \\
& =u^{\prime} \cdot v^{-1}+u \cdot\left(-v^{-2} v^{\prime}\right)=\frac{u^{\prime}}{v}-\frac{u \cdot v^{\prime}}{v^{2}}  \tag{3.10}\\
& =\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
\end{align*}
$$

- The chain rule can be verified algebraically.

$$
\begin{align*}
\frac{d u(v(x))}{d x} & =\lim _{h \rightarrow 0} \frac{u(v(x+h))-u(v(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{u(v(x+h))-u(v(x))}{v(x+h)-v(x)} \cdot \frac{v(x+h)-v(x)}{h}  \tag{3.11}\\
& =u^{\prime}(v(x)) \cdot v^{\prime}(x) .
\end{align*}
$$

Here $u^{\prime}(v(x))$ means the rate of change of $u$ with respect to $\boldsymbol{v}(\boldsymbol{x})$.

- We may rewrite (3.11):

$$
\begin{equation*}
\frac{d u(v(x))}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta v} \cdot \frac{\Delta v}{\Delta x}=u^{\prime}(v(x)) \cdot v^{\prime}(x) . \tag{3.12}
\end{equation*}
$$

Self-study 3.16. Find the derivative of the functions.
(a) $f(x)=(3 x-1)^{7} x^{5}$
(b) $g(x)=\frac{(3 x-1)^{7}}{x^{5}}$

## Solution.

### 3.2. Basis Functions and Taylor Series

### 3.2.1. Change of Variables \& Basis Functions

In-Reality 3.17. Two Major Mathematical Techniques.
In the history of the engineering research and development (R\&D), there have been two major mathematical techniques: the change of variables and representation by basis functions.

- In a nut shell, the change of variables is a basic technique used to simplify problems.
- A function can be either represented or approximated by a linear combination of basis functions.

Example 3.18. Find solutions of the system of equations

$$
\begin{cases}x y+2 x+2 y & =20  \tag{3.13}\\ x^{2} y+x y^{2} & =48\end{cases}
$$

where $x$ and $y$ are positive real numbers with $x<y$.
Solution. Let $s=x y$ and $t=x+y$ (a change of variables).

Ans: $(x, y)=(2,4)$
Note: Most subjects in Calculus, particularly Vector Calculus, are deeply related to the change of variables, to handle differentiation and integration over general 2D and 3D domains more effectively.

Definition 3.19. A basis for a vector space $V$ is a set of vectors (functions) that

1. is linearly independent, and
2. spans $V$.

Note: Linear Independence and Span are defined in § 4.3.

## Example 3.20. Basis Functions

- The monomial basis for the polynomial space $\mathbb{P}_{n}$ is given by

$$
\begin{equation*}
\left\{1, x, x^{2}, \cdots, x^{n}\right\} . \tag{3.14}
\end{equation*}
$$

Each polynomial $p \in \mathbb{P}_{n}$ is expressed as a linear combination of the monomial basis functions:

$$
\begin{equation*}
p=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} . \tag{3.15}
\end{equation*}
$$

- The standard unit vectors in $\mathbb{R}^{n}$ are

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1  \tag{3.16}\\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \cdots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
1
\end{array}\right],
$$

which form the standard basis for $\mathbb{R}^{n}$; any $\mathrm{x} \in \mathbb{R}^{n}$ can be written as

$$
\mathbf{x}=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
1
\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}
$$

- Various other bases can be formulated.


### 3.2.2. Power Series and the Ratio Test

The monomial basis for analytic functions is given by

$$
\begin{equation*}
\left\{1, x, x^{2}, \cdots\right\} \tag{3.17}
\end{equation*}
$$

This basis is used in power series and Taylor series.
Definition 3.21. A power series about $x=0$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots \tag{3.18}
\end{equation*}
$$

A power series about $x=\boldsymbol{a}$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots \tag{3.19}
\end{equation*}
$$

in which the center $a$ and the coefficients $c_{0}, c_{1}, c_{2}, \cdots, c_{n}, \cdots$ are constants.

Example 3.22. Taking all the coefficients to be 1 in (3.18) gives the geometric series

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots
$$

which converges to $1 /(1-x)$ only if $|x|<1$. That is,

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots, \quad|x|<1 \tag{3.20}
\end{equation*}
$$



Remark 3.23. It follows from Example 3.20 that

1. A function can be approximated by a power series.
2. A power series may converge only on a certain interval, of radius $R$.

## Theorem 3.24. The Ratio Test:

Let $\sum a_{n}$ be any series and suppose that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho . \tag{3.21}
\end{equation*}
$$

(a) If $\rho<1$, then the series converges absolutely. ( $\sum\left|a_{n}\right|$ converges)
(b) If $\rho>1$, then the series diverges.
(c) If $\rho=1$, then the test is inconclusive.

Example 3.25. For what values of $x$ do the following power series converge?
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$
(b) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

Solution.

## Theorem 3.26. Term-by-Term Differentiation.

If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, it defines a function

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad \text { on } \quad|x-a|<R \tag{3.22}
\end{equation*}
$$

This function $f$ has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating the original series term by term:

$$
\begin{align*}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}  \tag{3.23}\\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) c_{n}(x-a)^{n-2}
\end{align*}
$$

and so on. Each of these derived series converges at every point of the interval $a-R<x<a+R$.

This theorem similarly holds for Term-by-Term Integration.
Example 3.27. A power series is given as in Example 3.25 (b):

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Find its derivative.

## Solution.

### 3.2.3. Taylor Series Expansion

Remark 3.28. We have seen how a converging power series defines a function. In order to make infinite series more useful:

- Here we will try to express a given function as an infinite series called the Taylor series.
- In many cases, the Taylor series provides useful polynomial approximation of the original function.
- Because approximation by polynomials is extremely useful to both mathematicians and scientists, Taylor series are at the core of the theory of infinite series.


## Series Representations

## Key Idea 3.29. Taylor Series.

- Let's assume that a given function $f$ is expressed as a power series about $x=a$ :

$$
\begin{align*}
f(x) & =\sum_{n=0}^{\infty} \mathbf{c}_{\mathbf{n}}(x-a)^{n}  \tag{3.24}\\
& =c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots
\end{align*}
$$

with a positive radius of convergence $R>0 . \Rightarrow$ What are $c_{n}$ ?

- Term-by-term derivatives read

$$
\begin{align*}
f^{\prime}(x) & =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots+n c_{n}(x-a)^{n-1}+\cdots \\
f^{\prime \prime}(x) & =2 c_{2}+3 \cdot 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2}+\cdots  \tag{3.25}\\
f^{\prime \prime \prime}(x) & =3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+\cdots+n(n-1)(n-2) c_{n}(x-a)^{n-3}+\cdots
\end{align*}
$$

with the $n$th derivative being

$$
\begin{equation*}
f^{(n)}(x)=n!c_{n}+(n+1)!c_{n+1}(x-a)+\cdots \tag{3.26}
\end{equation*}
$$

- Thus, when $x=a$,

$$
\begin{equation*}
f^{(n)}(a)=n!c_{n} \quad \Rightarrow \quad c_{n}=\frac{f^{(n)}(a)}{n!} \tag{3.27}
\end{equation*}
$$

Definition 3.30. Let $f$ be a function with derivatives of all orders throughout some interval containing $a$ as an interior point. Then the
Taylor series generated by $f$ at $x=a$ is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \tag{3.28}
\end{equation*}
$$

The Maclaurin series of $f$ is the Taylor series generated by $f$ at $x=0$ :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots \tag{3.29}
\end{equation*}
$$

Example 3.31. Find the Taylor series and Taylor polynomials generated by $f(x)=\cos x$ at $x=0$.
Solution. The cosine and its derivatives are

$$
\begin{array}{rrrr}
f(x)= & \cos x & f^{\prime}(x)= & -\sin x \\
f^{\prime \prime}(x)= & -\cos x & f^{(3)}(x)= & \sin x \\
\vdots & & \vdots & \\
f^{(2 n)}(x)= & (-1)^{n} \cos x & f^{(2 n+1)}(x)= & (-1)^{n+1} \sin x
\end{array}
$$

At $x=0$, the cosines are 1 and the sines are 0 , so

$$
\begin{equation*}
f^{(2 n)}(0)=(-1)^{n}, \quad f^{(2 n+1)}(0)=0 . \tag{3.30}
\end{equation*}
$$

The Taylor series generated by $\cos x$ at $x=0$ is

$$
\begin{equation*}
1+0 \cdot x-\frac{1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \tag{3.31}
\end{equation*}
$$



Figure 3.3: $y=\cos x$ and its Taylor polynomials near $x=0$.

## Commonly Used Taylor Series

Function	Series	Convergence
$\frac{1}{1-x}$	$=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$	$x \in(-1,1)$
$e^{x}$	$=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$	$x \in \mathbb{R}$
$\cos x$	$=x-\frac{x^{2}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$	$x \in \mathbb{R}$
$\sin x$	$=x-\frac{x^{n}}{2}+\frac{x^{3}}{3}-\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$	$x \in(-1,1]$
$\ln (1+x)$	$x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$	$x \in[-1,1]$
$\tan ^{-1} x$	$=x \in$	

Note: The interval of convergence can be verified using e.g. the ratio test, presented in Theorem 3.24, p. 79.
Self-study 3.32. Plot the sinc function $f(x)=\frac{\sin x}{x}$ and its Taylor polynomials of order 4, 6 , and 8 , about $x=0$.
Solution. Hint: Use e.g., syms x ; $\mathrm{T} 4=\operatorname{taylor}\left(\sin (\mathrm{x}) / \mathrm{x}, \mathrm{x}, 0\right.$, ${ }^{\prime}$ Order', 5$)$. Here "Order" means the leading order of truncated terms.

## Taylor Polynomials

Definition 3.33. Let $f$ be a function with derivatives of order $k=$ $1,2, \cdots, N$ in some interval containing $a$ as an interior point. Then for any integer $n$ from 0 through $N$, the Taylor polynomial of order $n$ generated by $f$ at $x=a$ is the polynomial

$$
\begin{equation*}
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} . \tag{3.33}
\end{equation*}
$$

## Theorem 3.34. Taylor's Theorem with Lagrange Remainder

Suppose $f \in C^{n}[a, b]$, $f^{(n+1)}$ exists on ( $a, b$ ), and $x_{0} \in[a, b]$. Then, for every $x \in[a, b]$,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{R}_{n}(x) \tag{3.34}
\end{equation*}
$$

where, for some $\xi$ between $x$ and $x_{0}$,

$$
\mathcal{R}_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Note: The above theorem is useful in various engineering applications; the error of the polynomial approximation can be verified by measuring the Lagrange Remainder.

Example 3.35. Let $f(x)=\cos (x)$ and $x_{0}=0$. Determine the second and third Taylor polynomials for $f$ about $x_{0}$.

```
f := x -> cos(x):
fp := x -> -sin(x):
fpp := x -> -cos(x):
fp3 := x -> sin(x):
fp4 := x -> cos(x):
p2 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2!:
p2(x);
 = 1-1/2 x^2
R2 := fp3(xi)*x^3/3!;
 = 1/6 sin(xi) x^3
p3 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2! + fp3(0)*x^3/3!:
p3(x) ;
= 1-1/2 x^2
R3 := fp4(xi)*x^4/4!;
 = 1/24 cos(xi) x^4
```

\# On the other hand, you can find the Taylor polynomials easily
\# using built-in functions in Maple:
s3 := taylor(f(x), $x=0,4)$;
$=1-1 / 2 x^{\wedge} 2+0\left(x^{\wedge} 4\right)$
convert(s3, polynom);
= $1-1 / 2 x^{\wedge} 2$

```
plot([f(x), p3(x)], x = -2 .. 2, thickness = [2, 2],
 linestyle = [solid, dash], color = black,
 legend = ["f(x)", "p3(x)"],
 legendstyle = [font = ["HELVETICA", 10], location = right])
```



Figure 3.4: $f(x)=\cos x$ and its third Taylor polynomial $P_{3}(x)$.
Note: When $n=0, x=b$, and $x_{0}=a$, the Taylor's Theorem reads

$$
\begin{equation*}
f(b)=f(a)+\mathcal{R}_{0}(b)=f(a)+f^{\prime}(c) \cdot(b-a), \tag{3.35}
\end{equation*}
$$

equivalently,

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \quad \text { for some } c \in(a, b) \tag{3.36}
\end{equation*}
$$

which is the Mean Value Theorem.


Figure 3.5: The Mean Value Theorem

### 3.3. Polynomial Interpolation

## Polynomial Approximation and Interpolation

## Theorem 3.36. (Weierstrass Approximation Theorem)

Suppose $f \in C[a, b]$. Then, for each $\varepsilon>0$, there exists a polynomial $P(x)$ such that

$$
\begin{equation*}
|f(x)-P(x)|<\varepsilon, \text { for all } x \in[a, b] . \tag{3.37}
\end{equation*}
$$

Every continuous function can be approximated by a polynomial, arbitrarily close.

## Theorem 3.37. (Polynomial Interpolation Theorem)

If $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ are $(n+1)$ distinct real numbers, then for arbitrary values $y_{0}, y_{1}, y_{2}, \cdots, y_{n}$, there is a unique polynomial $\boldsymbol{p}_{n}$ of degree at most $n$ such that

$$
\begin{equation*}
p_{n}\left(x_{i}\right)=y_{i} \quad(0 \leq i \leq n) . \tag{3.38}
\end{equation*}
$$

The graph of $y=p_{n}(x)$ passes all points $\left\{\left(x_{i}, y_{i}\right)\right\}$.
For values at $(n+1)$ distinct points, the interpolating polynomial $p_{n} \in \mathbb{P}_{n}$ is unique.

Example 3.38. Find the interpolating polynomial $p_{2}$ passing $(-2,3),(0,-1)$, and ( 1,0 ).

## Solution.

### 3.3.1. Lagrange Form of Interpolating Polynomials

Let data points $\left(x_{k}, y_{k}\right), 0 \leq k \leq n$ be given, where $n+1$ abscissas $x_{i}$ are distinct. The interpolating polynomial will be sought in the form

$$
\begin{equation*}
p_{n}(x)=y_{0} L_{n, 0}(x)+y_{1} L_{n, 1}(x)+\cdots+y_{n} L_{n, n}(x)=\sum_{k=0}^{n} y_{k} L_{n, k}(x) \tag{3.39}
\end{equation*}
$$

where $L_{n, k}(x)$ are basis polynomials that depend on the nodes $x_{0}, x_{1}, \cdots, x_{n}$, but not on the ordinates $y_{0}, y_{1}, \cdots, y_{n}$.
See Definition 3.19, p.77, for basis.
For example, for $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$, the Lagrange form of interpolating polynomial reads

$$
\begin{equation*}
p_{2}(x)=y_{0} L_{2,0}(x)+y_{1} L_{2,1}(x)+y_{2} L_{2,2}(x) . \tag{3.40}
\end{equation*}
$$

## How to Determine the Basis $\left\{L_{n, k}(x)\right\}$

Observation 3.39. Let all the ordinates be 0 except for a 1 occupying $i$-th position, i.e., $\boldsymbol{y}_{i}=1$ and other ordinates are all zero.

- Then,

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} y_{k} L_{n, k}(x)=L_{n, i}(x) \Rightarrow \mathbf{p}_{\mathbf{n}}\left(\mathbf{x}_{\mathbf{j}}\right)=\mathbf{L}_{\mathbf{n}, \mathbf{i}}\left(\mathbf{x}_{\mathbf{j}}\right) \tag{3.41}
\end{equation*}
$$

- On the other hand, the polynomial $p_{n}$ interpolating the data must satisfy $\boldsymbol{p}_{n}\left(\boldsymbol{x}_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

- Thus all the basis polynomials must satisfy

$$
\begin{equation*}
L_{n, i}\left(x_{j}\right)=\delta_{i j}, \quad \text { for all } 0 \leq i, j \leq n . \tag{3.42}
\end{equation*}
$$

Polynomials satisfying such a property are known as the cardinal functions.

Example 3.40. Construction of $L_{n, 0}(x)$ : It is to be an $n$ th-degree polynomial that takes the value 0 at $x_{1}, x_{2}, \cdots, x_{n}$ and the value 1 at $x_{0}$. Clearly, it must be of the form

$$
\begin{equation*}
L_{n, 0}(x)=c\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=c \prod_{j=1}^{n}\left(x-x_{j}\right), \tag{3.43}
\end{equation*}
$$

where $c$ is determined for which $L_{n, 0}\left(x_{0}\right)=1$. That is,

$$
\begin{equation*}
1=L_{n, 0}\left(x_{0}\right)=c\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right) \tag{3.44}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
c=\frac{1}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)} . \tag{3.45}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
L_{n, 0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}=\prod_{j=1}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{0}-x_{j}\right)} . \tag{3.46}
\end{equation*}
$$

Summary 3.41. Each cardinal function is obtained by similar reasoning; the general formula is then

$$
\begin{equation*}
L_{n, i}(x)=\prod_{j=0, j \neq i}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}, \quad i=0,1, \cdots, n . \tag{3.47}
\end{equation*}
$$

Example 3.42. Determine the Lagrange interpolating polynomial that passes through $(2,4)$ and $(5,1)$.

## Solution.

Example 3.43. Let $x_{0}=2, x_{1}=4, x_{2}=5$. Use the points to find the second Lagrange interpolating polynomial $p_{2}$ for $f(x)=1 / x$. Solution.

Ans: $p_{2}=\frac{1}{12}(x-4)(x-5)-\frac{1}{8}(x-2)(x-5)+\frac{1}{15}(x-2)(x-4)$
Lagrange_interpol.py

```
import sympy
def Lagrange(Lx,Ly):
 X=sympy.symbols('X')
 if len(Lx)!= len(Ly):
 print("ERROR"); return 1
 p=0
 for k in range(len(Lx)):
 t=1
 for j in range(len(Lx)):
 if j != k:
 t *= ((X-Lx[j])/(Lx[k]-Lx[j]))
 p += t*Ly[k]
 return p
if __name__ == "__main__":
 Lx=[2,4,5]; Ly=[1/2,1/4,1/5]
 p2 = Lagrange(Lx,Ly)
 print(p2); print(sympy.simplify(p2))
```

Output
[Tue Aug.29] python Lagrange_interpol.py
$0.5 *(5 / 3-\mathrm{X} / 3) *(2-\mathrm{X} / 2)+0.25 *(5-\mathrm{X}) *(\mathrm{X} / 2-1)+0.2 *(\mathrm{X} / 3-2 / 3) *(\mathrm{X}-4)$ $0.025 * X * * 2-0.275 * X+0.95$

### 3.3.2. Polynomial Interpolation Error Theorem

Q: When an interpolating polynomial $P_{n} \approx f$, what is the error $\left|f-P_{n}\right|$ ?

Theorem 3.44. (Polynomial Interpolation Error Theorem). Let $f \in C^{n+1}[a, b]$, and let $P_{n}$ be the polynomial of degree $\leq n$ that interpolates $f$ at $n+1$ distinct points $x_{0}, x_{1}, \cdots, x_{n}$ in the interval $[a, b]$. Then, for each $x \in(a, b)$, there exists a number $\xi_{x}$ between $x_{0}, x_{1}, \cdots, x_{n}$, hence in the interval $[a, b]$, such that

$$
\begin{equation*}
f(x)-P_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)=: R_{n}(x) \tag{3.48}
\end{equation*}
$$

Example 3.45. If the function $f(x)=\sin (x)$ is approximated by a polynomial of degree 5 that interpolates $f$ at six equally distributed points in $[-1,1]$ including end points, how large is the error on this interval?
Solution. The nodes $x_{i}$ are $-1,-0.6,-0.2,0.2,0.6$, and 1 . It is easy to see that

$$
\left|f^{(6)}(\xi)\right|=|-\sin (\xi)| \leq \sin (1)
$$

$$
\mathrm{g}:=\mathrm{x}->(\mathrm{x}+1) *(\mathrm{x}+0.6) *(\mathrm{x}+0.2) *(\mathrm{x}-0.2) *(\mathrm{x}-0.6) *(\mathrm{x}-1):
$$

$$
\operatorname{gmax}:=\operatorname{maximize}(\operatorname{abs}(\mathrm{g}(\mathrm{x})), \mathrm{x}=-1.1)
$$

0.06922606316

Thus,

$$
\begin{array}{r}
\left|\sin (x)-P_{5}(x)\right|=\left|\frac{f^{(6)}(\xi)}{6!} \prod_{i=0}^{5}\left(x-x_{i}\right)\right| \leq \frac{\sin (1)}{6!} \operatorname{gmax}  \tag{3.49}\\
=0.00008090517158
\end{array}
$$

Theorem 3.46. (Polynomial Interpolation Error Theorem for Equally Spaced Nodes): Let $f \in C^{n+1}[a, b]$, and let $P_{n}$ be the polynomial of degree $\leq n$ that interpolates $f$ at

$$
x_{i}=a+i h, \quad h=\frac{b-a}{n}, \quad i=0,1, \cdots, n .
$$

Then, for each $x \in(a, b)$,

$$
\begin{equation*}
\left|f(x)-P_{n}(x)\right| \leq \frac{h^{n+1}}{4(n+1)} M \tag{3.50}
\end{equation*}
$$

where

$$
M=\max _{\xi \in[a, b]}\left|f^{(n+1)}(\xi)\right| .
$$

Proof. Recall the interpolation error $R_{n}(x)$ given in (3.48). We consider bounding

$$
\max _{x \in[a, b]} \prod_{j=1}^{n}\left|x-x_{i}\right| .
$$

Start by picking an $x$. We can assume that $x$ is not one of the nodes, because otherwise the product in question is zero. Let $x \in\left(x_{j}, x_{j+1}\right)$, for some $j$. Then we have

$$
\begin{equation*}
\left|x-x_{j}\right| \cdot\left|x-x_{j+1}\right| \leq \frac{h^{2}}{4} \tag{3.51}
\end{equation*}
$$

Now note that

$$
\left|x-x_{i}\right| \leq \begin{cases}(j+1-i) h & \text { for } i<j  \tag{3.52}\\ (i-j) h & \text { for } j+1<i\end{cases}
$$

Thus

$$
\begin{equation*}
\prod_{j=1}^{n}\left|x-x_{i}\right| \leq \frac{h^{2}}{4}\left[(j+1)!h^{j}\right]\left[(n-j)!h^{n-j-1}\right] . \tag{3.53}
\end{equation*}
$$

Since $(j+1)!(n-j)!\leq n$ !, we can reach the following bound

$$
\begin{equation*}
\prod_{j=1}^{n}\left|x-x_{i}\right| \leq \frac{1}{4} h^{n+1} n! \tag{3.54}
\end{equation*}
$$

The result of the theorem follows from the above bound.

Example 3.47. (Revisit to Example 3.45) The function $f(x)=\sin (x)$ is approximated by a polynomial of degree 5 that interpolates $f$ at six equally distributed points in $[-1,1]$ including end points. Use (3.50) to estimate the upper bound of the interpolation error.

## Solution.

```
 interpol_error.py
 from sympy import *
\(\mathrm{x}=\operatorname{symbols}\left(\mathrm{I}^{\prime}\right.\) ')
\(a, b=-1,1 ; n=5\)
\(\mathrm{f}=\sin (\mathrm{x})\)
print (\(\operatorname{diff}(f, x, n+1)\))
\(h=(b-a) / n\)
\(M=\operatorname{abs}(-\sin (1)\).\() ;\)
err_bound \(=h * *(n+1) /(4 *(n+1)) * M\)
print (err_bound)
```

Output

```
-sin(x)
0.000143611048073881
```

Compare the above error with the one in (3.49), p. 90 .

### 3.4. Numerical Differentiation: Finite Difference Formulas

Note: The derivative of $f$ at $x_{0}$ is defined as

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} . \tag{3.55}
\end{equation*}
$$

This formula gives an obvious way to generate an approximation of $f^{\prime}\left(x_{0}\right)$ :

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} . \tag{3.56}
\end{equation*}
$$

Formula 3.48. (Two-Point Difference Formulas): Let $x_{1}=x_{0}+h$ and $P_{0,1}$ be the first Lagrange polynomial interpolating $f$ on $\left[x_{0}, x_{1}\right]$. Then

$$
\begin{align*}
f(x) & =\mathbf{P}_{0,1}(\mathbf{x})+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} f^{\prime \prime}(\xi)  \tag{3.57}\\
& =\frac{\mathbf{x}-\mathbf{x}_{1}}{-\mathbf{h}} \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)+\frac{\mathbf{x}-\mathbf{x}_{\mathbf{0}}}{\mathbf{h}} \mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} f^{\prime \prime}(\xi)
\end{align*}
$$

Differentiating it, we obtain

$$
\begin{equation*}
f^{\prime}(x)=\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)}{\mathbf{h}}+\frac{2 x-x_{0}-x_{1}}{2} f^{\prime \prime}(\xi)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} \frac{d}{d x} f^{\prime \prime}(\xi) . \tag{3.58}
\end{equation*}
$$

Thus

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}\left(\xi\left(x_{0}\right)\right) \\
f^{\prime}\left(x_{1}\right) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}+\frac{h}{2} f^{\prime \prime}\left(\xi\left(x_{1}\right)\right) \tag{3.59}
\end{align*}
$$

Definition 3.49. For $h>0$,

$$
\begin{array}{ll}
f^{\prime}\left(x_{i}\right) \approx D_{x}^{+} f\left(x_{i}\right)=\frac{f\left(x_{i}+h\right)-f\left(x_{i}\right)}{h}, & \text { (forward-difference) } \\
f^{\prime}\left(x_{i}\right) \approx D_{x}^{-} f\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i}-h\right)}{h}, & \text { (backward-difference) } \tag{3.60}
\end{array}
$$

Example 3.50. Use the forward-difference formula to approximate $f(x)=x^{3}$ at $x_{0}=1$ using $h=0.1,0.05,0.025$.
Solution. Note that $f^{\prime}(1)=3$.

```
f := x -> x^3: x0 := 1:
h := 0.1:
(f(x0 + h) - f(x0))/h
h := 0.05:
(f(x0 + h) - f(x0))/h
 3.152500000
h := 0.025:
(f(x0 + h) - f(x0))/h
3.075625000
```

The error becomes half, as $h$ halves?
Formula 3.51. (In general): Let $\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be $(n+1)$ distinct points in some interval $I$ and $f \in C^{n+1}(I)$. Then the Interpolation Error Theorem reads

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^{n}\left(x-x_{k}\right) \tag{3.61}
\end{equation*}
$$

Its derivative gives

$$
\begin{align*}
f^{\prime}(x)= & \sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}^{\prime}(x)+\frac{d}{d x}\left(\frac{f^{(n+1)}(\xi)}{(n+1)!}\right) \prod_{k=0}^{n}\left(x-x_{k}\right)  \tag{3.62}\\
& +\frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{d}{d x}\left(\prod_{k=0}^{n}\left(x-x_{k}\right)\right)
\end{align*}
$$

Hence,

$$
\begin{equation*}
f^{\prime}\left(x_{i}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}^{\prime}\left(x_{i}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0, k \neq i}^{n}\left(x_{i}-x_{k}\right) \tag{3.63}
\end{equation*}
$$

which is the $(n+1)$-point difference formula to approximate $f^{\prime}\left(x_{i}\right)$.

Formula 3.52. (Three-Point Difference Formulas $(n=2)$ ): For convenience, let

$$
x 0, x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \quad h>0 .
$$

Recall the second-order cardinal basis functions

$$
\begin{aligned}
& L_{2,0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}, \quad L_{2,1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}, \\
& L_{2,2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} .
\end{aligned}
$$

It follows from the Polynomial Interpolation Error Theorem that

$$
\begin{align*}
f(x)= & f\left(x_{0}\right) L_{2,0}(x)+f\left(x_{1}\right) L_{2,1}(x)+f\left(x_{2}\right) L_{2,2}(x) \\
& +\frac{f^{(3)}(\xi)}{3!} \prod_{k=0}^{2}\left(x-x_{k}\right), \tag{3.64}
\end{align*}
$$

and its derivative reads

$$
\begin{align*}
f^{\prime}(x)= & f\left(x_{0}\right) L_{2,0}^{\prime}(x)+f\left(x_{1}\right) L_{2,1}^{\prime}(x)+f\left(x_{2}\right) L_{2,2}^{\prime}(x) \\
& +\frac{d}{d x}\left[\frac{f^{(3)}(\xi)}{3!} \prod_{k=0}^{2}\left(x-x_{k}\right)\right] . \tag{3.65}
\end{align*}
$$

Thus, the three-point formulas read

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =f\left(x_{0}\right) L_{2,0}^{\prime}\left(x_{0}\right)+f\left(x_{1}\right) L_{2,1}^{\prime}\left(x_{0}\right)+f\left(x_{2}\right) L_{2,2}^{\prime}\left(x_{0}\right)+\frac{f^{(3)}(\xi)}{3!} \prod_{k=1}^{2}\left(x_{0}-x_{k}\right) \\
& =\frac{-\mathbf{3 f}\left(\mathbf{x}_{0}\right)+4 \mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)}{2 \mathbf{h}}+\frac{h^{2}}{3} f^{(3)}\left(\xi_{0}\right), \\
f^{\prime}\left(x_{1}\right) & =\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)}{2 \mathbf{h}}-\frac{h^{2}}{6} f^{(3)}\left(\xi_{1}\right), \\
f^{\prime}\left(x_{2}\right) & =\frac{\mathbf{f}\left(\mathbf{x}_{0}\right)-4 \mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)+\mathbf{3} \mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)}{\mathbf{2 h}}+\frac{h^{2}}{3} f^{(3)}\left(\xi_{2}\right) . \tag{3.66}
\end{align*}
$$

Formula 3.53. (Five-Point Difference Formulas):
Let $f_{i}=f\left(x_{0}+i h\right), h>0,-\infty<i<\infty$.

$$
\begin{align*}
& f^{\prime}\left(x_{0}\right)=\frac{f_{-2}-8 f_{-1}+8 f_{1}-f_{2}}{12 h}+\frac{h^{4}}{30} f^{(5)}(\xi)  \tag{3.67}\\
& f^{\prime}\left(x_{0}\right)=\frac{-25 f_{0}+48 f_{1}-36 f_{2}+16 f_{3}-3 f_{4}}{12 h}+\frac{h^{4}}{5} f^{(5)}(\xi)
\end{align*}
$$

## Summary 3.54. Numerical Differentiation:

1. $f(x)=P_{n}(x)+R_{n}(x), \quad P_{n}(x) \in \mathbb{P}_{n}, \quad R_{n}(x)=\mathcal{O}\left(h^{n+1}\right)$
2. $f^{\prime}(x)=P_{n}^{\prime}(x)+\mathcal{O}\left(h^{n}\right)$,
3. $f^{\prime \prime}(x)=P_{n}^{\prime \prime}(x)+\mathcal{O}\left(h^{n-1}\right)$, and so on.

Note: We can see from the above summary that for $f^{\prime \prime}$

- The three-point formula $(n=2)$ : its accuracy is $\mathcal{O}(h)$
- The five-point formula $(n=4)$ : its accuracy is $\mathcal{O}\left(h^{3}\right)$

These hold for every point in $\left[x_{0}, x_{n}\right]$ including all nodal points $\left\{x_{i}\right\}$.

## Midpoint Formula for $\boldsymbol{f}^{\prime \prime}$ : A higher-order Accuracy

## Recall: (Theorem 3.34, p.84). Taylor's Theorem with Lagrange

 RemainderSuppose $f \in C^{n}[a, b], f^{(n+1)}$ exists on $(a, b)$, and $x_{0} \in[a, b]$. Then, for every $x \in[a, b]$,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{R}_{n}(x) \tag{3.68}
\end{equation*}
$$

where, for some $\xi$ between $x$ and $x_{0}$,

$$
\mathcal{R}_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

## Alternative Form of Taylor's Theorem

Remark 3.55. Replacing $x$ by $x_{0}+h$ in the Taylor's Theorem, we have

$$
\begin{equation*}
f\left(x_{0}+h\right)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!} h^{k}+\mathcal{R}_{n}(h), \quad \mathcal{R}_{n}(h)=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}, \tag{3.69}
\end{equation*}
$$

for some $\xi$ between $x_{0}$ and $x_{0}+h$. In detail,

$$
\begin{align*}
f\left(x_{0}+h\right)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!} h^{3}+\cdots  \tag{3.70}\\
& +\frac{f^{(n)}\left(x_{0}\right)}{n!} h^{n}+\mathcal{R}_{n}(h) .
\end{align*}
$$

Example 3.56. Use the Taylor series to derive the midpoint formula

$$
\begin{align*}
f^{\prime \prime}\left(x_{0}\right)= & \frac{f_{-1}-2 f_{0}+f_{1}}{h^{2}}  \tag{3.71}\\
& -\frac{h^{2}}{12} f^{(4)}\left(x_{0}\right)-\frac{h^{4}}{360} f^{(6)}\left(x_{0}\right)-\frac{h^{6}}{20160} f^{(8)}\left(x_{0}\right)-\cdots
\end{align*}
$$

Solution. It follows from the Taylor's series formula (3.70) that

$$
\begin{align*}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!} h^{3}+\frac{f^{(4)}\left(x_{0}\right)}{4!} h^{4}+\cdots \\
& f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h^{2}-\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!} h^{3}+\frac{f^{(4)}\left(x_{0}\right)}{4!} h^{4}-\cdots \tag{3.72}
\end{align*}
$$

Adding these two equations, we have

$$
\begin{equation*}
f\left(x_{0}+h\right)+f\left(x_{0}-h\right)=2 f\left(x_{0}\right)+2 \frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{0}\right)}{2!} h^{2}+2 \frac{f^{(4)}\left(x_{0}\right)}{4!} h^{4}+\cdots \tag{3.73}
\end{equation*}
$$

Solve it for $f^{\prime \prime}\left(x_{0}\right)$.
Note: The higher-order accuracy in (3.71) can be achieved at the midpoint only.

Example 3.57. Use the second-derivative midpoint formula to approximate $f^{\prime \prime}(1)$ for $f(x)=x^{5}-3 x^{2}$, using $h=0.2,0.1,0.05$.

## Solution.



### 3.5. Newton's Method for the Solution of Nonlinear Equations

The Newton's method is also called the Newton-Raphson method.
The objective is to find a zero $p$ of $f$ :

$$
\begin{equation*}
f(p)=0 \tag{3.74}
\end{equation*}
$$

Strategy 3.58. Let $p_{0}$ be an approximation of $p$. We will try to find a correction term $h$ such that $\left(p_{0}+h\right)$ is a better approximation of $p$ than $p_{0}$; ideally $\left(p_{0}+h\right)=p$.

- If $f^{\prime \prime}$ exists and is continues, then by Taylor's Theorem

$$
\begin{equation*}
0=f(p)=f\left(p_{0}+h\right)=f\left(p_{0}\right)+h f^{\prime}\left(p_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}(\xi) \tag{3.75}
\end{equation*}
$$

where $h=p-p_{0}$ and $\xi$ lies between $p$ and $p_{0}$.

- If $|h|$ is small, it is reasonable to ignore the last term of (3.75) and solve for $h=p-p_{0}$ :

$$
\begin{equation*}
h=p-p_{0} \approx-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} . \tag{3.76}
\end{equation*}
$$

- Define

$$
\begin{equation*}
p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} \tag{3.77}
\end{equation*}
$$

then $p_{1}$ may be a better approximation of $p$ than $p_{0}$.

- The above can be repeated.

Algorithm 3.59. Newton's method for solving $f(x)=0$
For $p_{0}$ chosen close to a root $p$, compute $\left\{p_{n}\right\}$ repeatedly satisfying

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \quad n \geq 1 \tag{3.78}
\end{equation*}
$$

## Graphical interpretation

- Let $p_{0}$ be the initial approximation close to $p$. Then, the tangent line at $\left(p_{0}, f\left(p_{0}\right)\right)$ reads

$$
\begin{equation*}
L(x)=f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right)+f\left(p_{0}\right) \tag{3.79}
\end{equation*}
$$

- To find the $\boldsymbol{x}$-intercept of $y=L(x)$, let

$$
0=f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right)+f\left(p_{0}\right) .
$$

Solving the above equation for $x$ becomes

$$
\begin{equation*}
x=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}, \tag{3.80}
\end{equation*}
$$

of which the right-side is the same as in (3.77).


Figure 3.6: Graphical interpretation of the Newton's method.

```
f := arctan(x);
Newton(f, x = Pi/2, output = plot, maxiterations = 3);
```

3 iterations of Newton's method applied to
$f(x)=\arctan (x)$, with initial point $\boldsymbol{p}_{0}=\pi / 2$


## Remark 3.60.

- The Newton's method may diverge, unless the initialization is accurate.
- It cannot be continued if $f^{\prime}\left(p_{n-1}\right)=0$ for some $n$. As a matter of fact, the Newton's method is most effective when $f^{\prime}(x)$ is bounded away from zero near $p$.


## Convergence analysis for the Newton's method

Define the error in the $n$-th iteration: $e_{n}=p_{n}-p$. Then

$$
\begin{equation*}
e_{n}=p_{n}-p=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}-p=\frac{e_{n-1} f^{\prime}\left(p_{n-1}\right)-f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} . \tag{3.81}
\end{equation*}
$$

On the other hand, it follows from the Taylor's Theorem that

$$
\begin{equation*}
0=f(p)=f\left(p_{n-1}-e_{n-1}\right)=f\left(p_{n-1}\right)-e_{n-1} f^{\prime}\left(p_{n-1}\right)+\frac{1}{2} e_{n-1}^{2} f^{\prime \prime}\left(\xi_{n-1}\right) \tag{3.82}
\end{equation*}
$$

for some $\xi_{n-1}$. Thus, from (3.81) and (3.82), we have

$$
\begin{equation*}
e_{n}=\frac{1}{2} \frac{f^{\prime \prime}\left(\xi_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} e_{n-1}^{2} . \tag{3.83}
\end{equation*}
$$

Theorem 3.61. (Convergence of Newton's method): Let $f \in C^{2}[a, b]$ and $p \in(a, b)$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$. Then, there is a neighborhood of $p$ such that if the Newton's method is started $p_{0}$ in that neighborhood, it generates a convergent sequence $p_{n}$ satisfying

$$
\begin{equation*}
\left|p_{n}-p\right| \leq C\left|p_{n-1}-p\right|^{2} \tag{3.84}
\end{equation*}
$$

for a positive constant $C$.

Example 3.62. Apply the Newton's method to solve $f(x)=\arctan (x)=0$, with $p_{0}=\pi / 5$.

```
Newton(arctan(x), x = Pi/5, output = sequence, maxiterations = 5)
 0.6283185308, -0.1541304479, 0.0024295539, -9.562*10^(-9), 0., 0.
```

Since $p=0, e_{n}=p_{n}$ and

$$
\begin{equation*}
\left|e_{n}\right| \leq 0.67\left|e_{n-1}\right|^{3} \tag{3.85}
\end{equation*}
$$

which is an occasional super-convergence.

## Theorem 3.63. Newton's Method for a Convex Function

Let $f \in C^{2}(\mathbb{R})$ be increasing, convex, and of a zero $p$. Then, the zero $p$ is unique and the Newton iteration converges to $p$ from any starting point.

Example 3.64. Use the Newton's method to find the square root of a positive number $Q$.
Solution. Let $x=\sqrt{Q}$. Then $x$ is a root of $x^{2}-Q=0$. Define $f(x)=x^{2}-Q$; set $f^{\prime}(x)=2 x$. The Newton's method reads

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}=p_{n-1}-\frac{p_{n-1}^{2}-Q}{2 p_{n-1}}=\frac{1}{2}\left(p_{n-1}+\frac{Q}{p_{n-1}}\right) . \tag{3.86}
\end{equation*}
$$

mysqrt.m

```
function x = mysqrt(q)
%function x = mysqrt(q)
x = (q+1)/2;
for n=1:10
 x = (x+q/x)/2;
 fprintf('x_%02d = %.16f\n',n,x);
end
```

Results
>> mysqrt(16);
>> mysqrt(16);
x_01 = 5.1911764705882355
x_01 = 5.1911764705882355
x_02 = 4.1366647225462421
x_02 = 4.1366647225462421
x_03 = 4.0022575247985221
x_03 = 4.0022575247985221
x_04 = 4.0000006366929393
x_04 = 4.0000006366929393
x_05 = 4.0000000000000506
x_05 = 4.0000000000000506
x_06 = 4.0000000000000000
x_06 = 4.0000000000000000
x_07 = 4.0000000000000000
x_07 = 4.0000000000000000
x_08 = 4.0000000000000000
x_08 = 4.0000000000000000
x_09 = 4.0000000000000000
x_09 = 4.0000000000000000
x_10 = 4.0000000000000000
x_10 = 4.0000000000000000
>> mysqrt(0.1);
>> mysqrt(0.1);
x_01 = 0.3659090909090910
x_01 = 0.3659090909090910
x_02 = 0.3196005081874647
x_02 = 0.3196005081874647
x_03 = 0.3162455622803890
x_03 = 0.3162455622803890
x_04 = 0.3162277665175675
x_04 = 0.3162277665175675
x_05 = 0.3162277660168379
x_05 = 0.3162277660168379
x_06 = 0.3162277660168379
x_06 = 0.3162277660168379
x_07 = 0.3162277660168379
x_07 = 0.3162277660168379
x_08 = 0.3162277660168379
x_08 = 0.3162277660168379
x_09 = 0.3162277660168379
x_09 = 0.3162277660168379
x_10 = 0.3162277660168379
x_10 = 0.3162277660168379

Note: The function sqrt is implemented the same way as mysqrt.m.

### 3.6. Zeros of Polynomials

Definition 3.65. A polynomial of degree $n$ has the form

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \tag{3.87}
\end{equation*}
$$

where $a_{i}$ 's are called the coefficients of $P$ and $a_{n} \neq 0$.
The objective is to find zeros of $P$.

## Theorem 3.66. (Theorem on Polynomials).

- Fundamental Theorem of Algebra:

Every nonconstant polynomial has at least one root (possibly, in the complex field).

- Complex Roots of Polynomials:

A polynomial of degree $n$ has exactly $n$ roots in the complex plane, being agreed that each root shall be counted a number of times equal to its multiplicity. That is, there are unique (complex) constants $x_{1}, x_{2}, \cdots, x_{k}$ and unique integers $m_{1}, m_{2}, \cdots, m_{k}$ such that

$$
\begin{equation*}
P(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \cdots\left(x-x_{k}\right)^{m_{k}}, \quad \sum_{i=1}^{k} m_{i}=n . \tag{3.88}
\end{equation*}
$$

- Localization of Roots:

All roots of the polynomial $P$ lie in the open disk centered at the origin and of radius of

$$
\begin{equation*}
\rho=1+\frac{1}{\left|a_{n}\right|} \max _{0 \leq i<n}\left|a_{i}\right| . \tag{3.89}
\end{equation*}
$$

- Uniqueness of Polynomials:

Let $P(x)$ and $Q(x)$ be polynomials of degree $n$. If $x_{1}, x_{2}, \cdots, x_{r}$, with $r>n$, are distinct numbers with $P\left(x_{i}\right)=Q\left(x_{i}\right)$, for $i=1,2, \cdots, r$, then $P(x)=Q(x)$ for all $x$.

- For example, two polynomials of degree $n$ are the same if they agree at $(n+1)$ points.


### 3.6.1. Horner's Method

Note: Known as nested multiplication and also as synthetic division, Horner's method can evaluate polynomials very efficiently. It requires $n$ multiplications and $n$ additions to evaluate an arbitrary $n$-th degree polynomial.

## Algorithm 3.67. Let us try to evaluate $P(x)$ at $x=x_{0}$.

- Utilizing the Remainder Theorem, we can rewrite the polynomial as

$$
\begin{equation*}
P(x)=\left(x-x_{0}\right) Q(x)+r=\left(x-x_{0}\right) Q(x)+P\left(x_{0}\right), \tag{3.90}
\end{equation*}
$$

where $Q(x)$ is a polynomial of degree $n-1$, say

$$
\begin{equation*}
Q(x)=b_{n} x^{n-1}+\cdots+b_{2} x+b_{1} . \tag{3.91}
\end{equation*}
$$

- Substituting the above into (3.90), utilizing (3.87), and setting equal the coefficients of like powers of $x$ on the two sides of the resulting equation, we have

$$
\begin{align*}
\hline b_{n} & =a_{n} \\
b_{n-1} & =a_{n-1}+x_{0} b_{n} \\
& \vdots  \tag{3.92}\\
b_{1} & =a_{1}+x_{0} b_{2} \\
P\left(x_{0}\right) & =a_{0}+x_{0} b_{1}
\end{align*}
$$

- Introducing $b_{0}=P\left(x_{0}\right)$, the above can be rewritten as

$$
\begin{equation*}
b_{n+1}=0 ; \quad b_{k}=a_{k}+x_{0} b_{k+1}, \quad n \geq k \geq 0 \tag{3.93}
\end{equation*}
$$

- If the calculation of Horner's algorithm is to be carried out with pencil and paper, the following arrangement is often used (known as synthetic division):

	$a_{n}$	$a_{n-1}$	$a_{n-2}$	$\cdots$	$a_{0}$
$x_{0}$		$x_{0} b_{n}$	$x_{0} b_{n-1}$	$\cdots$	$x_{0} b_{1}$
	$b_{n}$	$b_{n-1}$	$b_{n-2}$	$\cdots$	$P\left(x_{0}\right)=b_{0}$

Example 3.68. Use Horner's algorithm to evaluate $P(3)$, where

$$
\begin{equation*}
P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2 . \tag{3.94}
\end{equation*}
$$

Solution. For $x_{0}=3$, we arrange the calculation as mentioned above:

3	1	-4	7	-5	-2
		3	-3	12	21
	1	-1	4	7	$19=P(3)$

Note that the 4 -th degree polynomial in (3.94) is written as

$$
P(x)=(x-3)\left(x^{3}-x^{2}+4 x+7\right)+19 .
$$

Remark 3.69. When the Newton's method is applied for finding an approximate zero of $P(x)$, the iteration reads

$$
\begin{equation*}
x_{n}=x_{n-1}-\frac{P\left(x_{n-1}\right)}{P^{\prime}\left(x_{n-1}\right)} . \tag{3.95}
\end{equation*}
$$

Thus both $P(x)$ and $P^{\prime}(x)$ must be evaluated in each iteration.
Strategy 3.70. How to evaluate $P^{\prime}(x)$ : The derivative $P^{\prime}(x)$ can be evaluated by using the Horner's method with the same efficiency. Indeed, differentiating (3.90)

$$
P(x)=\left(x-x_{0}\right) Q(x)+P\left(x_{0}\right)
$$

reads

$$
\begin{equation*}
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x) . \tag{3.96}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right) . \tag{3.97}
\end{equation*}
$$

That is, the evaluation of $Q$ at $x_{0}$ becomes the desired quantity $P^{\prime}\left(x_{0}\right)$.

Example 3.71. Evaluate $P^{\prime}(3)$ for $P(x)$ considered in Example 3.68, the previous example.
Solution. As in the previous example, we arrange the calculation and carry out the synthetic division one more time:

3	1	-4	7	-5	-2
3		3	-3	12	21
	1	-1	4	7	$19=P(3)$
3		3	6	30	
	1	2	10	$37=Q(3)=P^{\prime}(3)$	

Example 3.72. Implement the Horner's algorithm to evaluate $P(3)$ and $P^{\prime}(3)$, for the polynomial in (3.94): $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$.

## Solution.

```
function [p,d] = horner(A,x0)
% input: A = [a_0,a_1,...,a_n]
% output: p=P(x0), d=P'(x0)
n = size(A(:),1);
p = A(n); d=0;
for i = n-1:-1:1
 d = p + x0*d;
 p = A(i) +x0*p;
end
```

                                    Call_horner.m
    ```
a = [-2 -5 7 -4 1];
x0=3;
[p,d] = horner(a,x0);
fprintf(" P(%g)=%g; P'(%g)=%g\n",x0,p,x0,d)
 Result: P(3)=19; P'(3)=37
```

Example 3.73. Let $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$, as in (3.94). Use the Newton's method and the Horner's method to implement a code and find an approximate zero of $P$ near 3 .

## Solution.

```
function [x,it] = newton_horner(A,x0,tol,itmax)
% input: A = [a_0,a_1,...,a_n]; x0: initial for P (x)=0
% outpue: x: P (x)=0
x = x0;
for it=1:itmax
 [p,d] = horner(A,x);
 h = -p/d;
 x = x + h;
 if(abs(h)<tol), break; end
end
```

Call_newton_horner.m
$a=\left[\begin{array}{lllll}-2 & -5 & 7 & -4 & 1\end{array}\right] ;$
$\mathrm{x} 0=3$;
tol $=10^{\wedge}-12$; itmax=1000;
[x,it] = newton_horner (a, x0,tol,itmax);
fprintf(" newton_horner: $x 0=\% \mathrm{~g} ; \mathrm{x}=\mathrm{\%} \mathrm{~g}$, in $\% \mathrm{~d}$ iterations $\backslash \mathrm{n} ", \mathrm{x} 0, \mathrm{x}, \mathrm{it})$
Result: newton_horner: x0=3; x=2, in 7 iterations


Figure 3.7: Polynomial $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$. Its two zeros are -0.275682 and 2 .

## Exercises for Chapter 3

3.1. In Example 3.5, we considered the curve $y=\left|x^{2}-1\right|$. Find the left-hand limit and right-hand slope of the difference quotient at $x_{0}=1$.

Ans: -2 and 2.
3.2. The number $e$ is determined so that the slope of the graph of $y=e^{x}$ at $x=0$ is exactly 1. Let $h$ be a point near 0 . Then

$$
Q(h):=\frac{e^{h}-e^{0}}{h-0}=\frac{e^{h}-1}{h}
$$

represents the average slope of the graph between the two points $(0,1)$ and $\left(h, e^{h}\right)$. Evaluate $Q(h)$, for $h=0.1,0.01,0.001,0.0001$. What can you say about the results?

Ans: For example, $Q(0.01)=1.0050$.
3.3. Recall the Taylor series for $e^{x}, \cos x$ and $\sin x$ in (3.32). Let $x=i \theta$, where $i=\sqrt{-1}$. Then

$$
\begin{equation*}
e^{i \theta}=1+i \theta+\frac{i^{2} \theta^{2}}{2!}+\frac{i^{3} \theta^{3}}{3!}+\frac{i^{4} \theta^{4}}{4!}+\frac{i^{5} \theta^{5}}{5!}+\frac{i^{6} \theta^{6}}{6!}+\cdots \tag{3.98}
\end{equation*}
$$

(a) Prove that $e^{i \theta}=\cos \theta+i \sin \theta$, which is called the Euler's identity.
(b) Prove that $e^{i \pi}+1=0$.
3.4. Implement a code to visualize complex-valued solutions of $e^{z}=-1$.

- Use fimplicit
- Visualize, with ylim([-2*pi $4 * p i])$, yticks(-pi:pi:3*pi)

Hint: Use the code in $\S 2.2$, starting with

```
syms x y real
z = x+1i*y;
%% ---- Euler's identity
g = exp(z)+1;
RE = simplify(real(g))
IM = simplify(imag(g))
A = @(x,y) <Copy RE appropriately>
B = @(x,y) <Copy IM appropriately>
%%--- Solve A=0 and B=0 --------------
```

3.5. Derive the following midpoint formula

$$
\begin{equation*}
f^{\prime \prime}\left(x_{0}\right)=\frac{-f_{-2}+16 f_{-1}-30 f_{0}+16 f_{1}-f_{2}}{12 h^{2}}+\frac{h^{4}}{90} f^{(6)}\left(x_{0}\right)+\frac{h^{6}}{1008} f^{(8)}\left(x_{0}\right)+\cdots \tag{3.99}
\end{equation*}
$$

Hint: Use the technique in Example 3.56, with $f\left(x_{0}+i h\right), i=-2,-1,0,1,2$.
3.6. Use your calculator (or pencil-and-paper) to run two iterations of Newton's method to find $x_{2}$ for given $f$ and $x_{0}$.
(a) $f(x)=x^{4}-2, x_{0}=1$
(b) $f(x)=x e^{x}-1, x_{0}=0.5$

Ans: (b) $x_{2}=0.56715557$
3.7. The graphs of $y=x^{2}(x+1)$ and $y=1 / x(x>0)$ intersect at one point $x=r$. Use Newton's method to estimate the value of $r$ to eight decimal places.

3.8. Let $f(x)=\cos x+\sin x$ be defined on on the interval $[-1,1]$.
(a) How many equally spaced nodes are required to interpolate $f$ to within $10^{-8}$ on the interval?
(b) Evaluate the interpolating polynomial at the midpoint of a subinterval and verify that the error is not larger than $10^{-8}$.

Hint: (a). Recall the formula: $\left|f(x)-P_{n}(x)\right| \leq \frac{h^{n+1}}{4(n+1)} M$. Then, for $n$, solve

$$
\frac{(2 / n)^{n+1}}{4(n+1)} \sqrt{2} \leq 10^{-8}
$$

3.9. Use the most accurate three-point formulas to determine the missing entries.

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $f^{\prime \prime}(x)$ |
| :---: | :---: | :---: | :---: |
| 1.0 | 2.0000 |  | 6.00 |
| 1.2 | 1.7536 |  |  |
| 1.4 | 1.9616 |  |  |
| 1.6 | 2.8736 |  |  |
| 1.8 | 4.7776 |  |  |
| 2.0 | 8.0000 |  |  |
| 2.2 | 12.9056 |  | 52.08 |

Hint: The central scheme is more accurate than one-sided schemes.
3.10. Consider the polynomial

$$
P(x)=3 x^{5}-7 x^{4}-5 x^{3}+x^{2}-8 x+2 .
$$

(a) Use the Horner's algorithm to find $P(4)$.
(b) Use the Newton's method to find a real-valued root, starting with $x_{0}=4$. and applying the Horner's algorithm for the evaluation of $P\left(x_{k}\right)$ and $P^{\prime}\left(x_{k}\right)$.

## Chapter 4

## Linear Algebra Basics

Real-world systems can be approximated/represented as a system of linear equations

$$
A \mathbf{x}=\mathbf{b}, \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n}  \tag{4.1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

where $b$ is the source and x is the solution.
In this chapter, we will study topics in linear algebra basics including

- Elementary row operations
- Row reduction algorithm
- Linear independence
- Invertible matrices ( $m=n$ )


## Contents of Chapter 4

4.1. Solutions of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2. Row Reduction and the General Solution of Linear Systems . . . . . . . . . . . . . . . 119
4.3. Linear Independence and Span of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4. Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

### 4.1. Solutions of Linear Systems

Definition 4.1. A linear equation in the variables $x_{1}, x_{2}, \cdots, x_{n}$ is an equation that can be written in the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b, \tag{4.2}
\end{equation*}
$$

where $b$ and the coefficients $a_{1}, a_{2}, \cdots, a_{n}$ are real or complex numbers.
A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, $x_{1}, x_{2}, \cdots, x_{n}$. Example 4.2.
(a) $\left\{\begin{array}{l}4 x_{1}-x_{2}=3 \\ 2 x_{1}+3 x_{2}=5\end{array}\right.$
(b) $\left\{\begin{aligned} 2 x+3 y-4 z & =2 \\ x-2 y+z & =1 \\ 3 x+y-2 z & =-1\end{aligned}\right.$

- Solution: A solution of the system is a list $\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ of numbers that makes each equation a true statement, when

$$
\left[x_{1}, x_{2}, \cdots, x_{n}\right] \leftarrow\left[s_{1}, s_{2}, \cdots, s_{n}\right] .
$$

- Solution Set: The set of all possible solutions is called the solution set of the linear system.
- Equivalent System: Two linear systems are called equivalent if they have the same solution set.
For example, Example 4.2 (a) is equivalent to

$$
\left\{\begin{array}{l}
2 x_{1}-4 x_{2}=-2 \\
2 x_{1}+3 x_{2}=5
\end{array} \quad R_{1}\right) \leftarrow\left(R_{1}-\overparen{R_{2}}\right.
$$

Remark 4.3. Linear systems may have
no solution
inconsistent system


Example 4.4. Consider the case of two equations in two unknowns.
(a) $\left\{\begin{array}{l}-x+y=1 \\ -x+y=3\end{array}\right.$
(b) $\left\{\begin{array}{l}x+y=1 \\ x-y=2\end{array}\right.$
(c) $\left\{\begin{array}{l}-2 x+y=2 \\ -4 x+2 y=4\end{array}\right.$

### 4.1.1. Solving a linear system

Consider a simple system of 2 linear equations:

$$
\left\{\begin{array}{rlr}
-2 x_{1}+3 x_{2} & = & -1  \tag{4.3}\\
x_{1}+2 x_{2} & =4
\end{array}\right.
$$

Such a system of linear equations can be treated much more conveniently and efficiently with matrix form; (4.3) reads

$$
\underbrace{\left[\begin{array}{rr}
-2 & 3  \tag{4.4}\\
1 & 2
\end{array}\right]}_{\text {officient matrix }}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
4
\end{array}\right] .
$$

The essential information of the system can be recorded compactly in a rectangular array called an augmented matrix:

$$
\left[\begin{array}{rrr}
-2 & 3 & -1  \tag{4.5}\\
1 & 2 & 4
\end{array}\right] \text { or }\left[\begin{array}{rr|r}
-2 & 3 & -1 \\
1 & 2 & 4
\end{array}\right]
$$

## Solving (4.3):

## System of linear equations

$$
\left\{\begin{array}{rlr}
-2 x_{1}+3 x_{2} & =-1 & (1) \\
\underline{x_{1}}+2 x_{2} & = & 4(2)
\end{array}\right.
$$

(1) $\leftrightarrow$ (2): (interchange)

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{2} & = \\
-2 x_{1} & 4 x_{2} \\
- & -1
\end{array}\right.
$$

(2) $\leftarrow$ (2) $+2 \cdot(1)$ (replacement)

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}=4  \tag{1}\\
\underline{7 x_{2}}=7
\end{array}\right.
$$

$$
\left[\begin{array}{lll}
1 & 2 & 4  \tag{2}\\
0 & 7 & 7
\end{array}\right]
$$

(2) $\leftarrow$ (2)/7: (scaling)

$$
\left\{\begin{align*}
x_{1}+\underline{2 x_{2}} & =4  \tag{1}\\
x_{2} & =1
\end{align*}\right.
$$

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 1
\end{array}\right]
$$

(1) $\leftarrow$ (1)-2•(2): (replacement)

$$
\left\{\begin{array}{lll}
x_{1} & =2 & (1) \\
& x_{2} & =1  \tag{2}\\
(2)
\end{array} \quad\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]\right.
$$

## At the last step:

LHS: solution : $\left\{\begin{array}{l}x_{1}=2 \\ x_{2}=1\end{array}\right.$

## Tools 4.5. Three Elementary Row Operations (ERO):

- Replacement: Replace one row by the sum of itself and a multiple of another row

$$
R_{i} \leftarrow R_{i}+k \cdot R_{j}, \quad j \neq i
$$

- Interchange: Interchange two rows

$$
R_{i} \leftrightarrow R_{j}, \quad j \neq i
$$

- Scaling: Multiply all entries in a row by a nonzero constant

$$
R_{i} \leftarrow k \cdot R_{i}, \quad k \neq 0
$$

Definition 4.6. Two matrices are row equivalent if there is a sequence of EROs that transforms one matrix to the other.

### 4.1.2. Matrix equation $A x=b$

A fundamental idea in linear algebra is to view a linear combination of vectors as a product of a matrix and a vector.
Definition 4.7. Let $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ be an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$, then the product of $\boldsymbol{A}$ and x , denoted by $\boldsymbol{A x}$, is the linear combination of columns of $A$ using the corresponding entries of x as weights, i.e.,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}  \tag{4.6}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

A matrix equation is of the form $A \mathrm{x}=\mathbf{b}$, where $\mathbf{b}$ is a column vector of size $m \times 1$.

Example 4.8. $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}=[-3,2]^{T}$ is the solution of the linear system.

Linear system

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
3 x_{1}+4 x_{2} & =-1
\end{aligned}
$$

Matrix equation

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Vector equation

$$
x_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Theorem 4.9. Let $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ be an $m \times n$ matrix, $\mathbf{x} \in \mathbb{R}^{n}$, and $\mathrm{b} \in \mathbb{R}^{m}$. Then the matrix equation

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{4.7}
\end{equation*}
$$

has the same solution set as the vector equation

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}, \tag{4.8}
\end{equation*}
$$

which, in turn, has the same solution set as the system with augmented matrix

$$
\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots  \tag{4.9}\\
\mathbf{a}_{n}: \mathbf{b}
\end{array}\right]
$$

Two Fundamental Questions about a Linear System:

1. (Existence): Is the system consistent; that is, does at least one solution exist?
2. (Uniqueness): If a solution exists, is it the only one; that is, is the solution unique?

Example 4.10. Determine the values of $h$ such that the given system is a consistent linear system

$$
\begin{aligned}
x+h y & =-5 \\
2 x-8 y & =6
\end{aligned}
$$

## Solution.

### 4.2. Row Reduction and the General Solution of Linear Systems

Example 4.11. Solve the following system of linear equations, using the three EROs. Then, determine if the system is consistent.

$$
\begin{aligned}
x_{2}-2 x_{3} & =0 \\
x_{1}-2 x_{2}+2 x_{3} & =3 \\
4 x_{1}-8 x_{2}+6 x_{3} & =14
\end{aligned}
$$

## Solution.

Ans: $\mathbf{x}=[1,-2,-1]^{T}$
Note: The system of linear equations can be solved by transforming the augmented matrix to the reduced row echelon form (rref).
linear_equations_rref.m
$\mathrm{A}=[012 ; 1-22 ; 4-86] ;$
b $=[0 ; 3$; 14];
$\mathrm{Ab}=\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}\end{array}\right] ;$
rref (Ab)


### 4.2.1. Echelon Forms and the Row Reduction Algorithm

Definition 4.12. Echelon form: A rectangular matrix is in an echelon form if it has following properties.

1. All nonzero rows are above any zero rows (rows of all zeros).
2. Each leading entry in a row is in a column to the right of leading entry of the row above it.
3. All entries below a leading entry in a column are zeros.

Rowreduced echelon form: If a matrix in an echelon form satisfies 4 and 5 below, then it is in the row reduced echelon form (RREF), or the reduced echelon form (REF).
4. The leading entry in each nonzero row is $\mathbf{1}$.
5. Each leading 1 is the only nonzero entry in its column.

Example 4.13. Verify whether the following matrices are in echelon form, row reduced echelon form.
(a) $\left[\begin{array}{lllll}1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{llll}2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 9 \\ 0 & 1 & 0 & 6\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{lllll}1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 4\end{array}\right]$
(e) $\left[\begin{array}{llll}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{llll}0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 1 & 2\end{array}\right]$

## Solution.

## Terminologies

1) A pivot position is a location in $A$ that corresponds to a leading 1 in the reduced echelon form of $A$.
2) A pivot column is a column of $A$ that contains a pivot position.

Example 4.14. The matrix $A$ is given with its reduced echelon form. Find the pivot positions and pivot columns of $A$.

$$
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 2 & 0 \\
1 & 1 & 1 & 3 & 0 \\
1 & 1 & 0 & 2 & 4
\end{array}\right] \xrightarrow{\text { R.E.F }}\left[\begin{array}{lllll}
1 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## Solution.

## Terminologies

3) Basic variables: In the system $A \mathrm{x}=\mathrm{b}$, the variables that correspond to pivot columns (in $[A: \mathbf{b}]$ ) are basic variables.
4) Free variables: In the system $A x=b$, the variables that correspond to non-pivotal columns are free variables.

Example 4.15. For the system of linear equations, identify its basic variables and free variables.

$$
\left\{\begin{aligned}
-x_{1}-2 x_{2} & =-3 \\
2 x_{3} & =4 \\
3 x_{3} & =6
\end{aligned}\right.
$$

Solution. Hint: You may start with its augmented matrix, and apply row operations.

## Row Reduction Algorithm

Example 4.16. Row reduce the matrix into the reduced echelon form. $A=\left[\begin{array}{rrrrr}0 & -3 & -6 & 4 & 9 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7\end{array}\right]$

## Solution.

(f) $A \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrrrr}\mathbf{1} & 4 & 5 & -9 & -7 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}+2 R_{1}}\left[\begin{array}{rrrrr}\mathbf{1} & 4 & 5 & -9 & -7 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & 9\end{array}\right]$
(f) $\xrightarrow{R_{2} \leftarrow R_{2} / 5}\left[\begin{array}{rrrrr}\mathbf{1} & 4 & 5 & -9 & -7 \\ 0 & \boxed{1} & 2 & -3 & -3 \\ 0 & -3 & -6 & 4 & 9\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}+3 R_{2}}\left[\begin{array}{rrrrr}{\left[\begin{array}{rrrr}1 & 4 & 5 & -9 \\ 0 & -7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & -3 \\ 0 & 0 & 0 & -5\end{array}\right]}\end{array}\right]$
(b) $\xrightarrow{R_{3} \leftarrow R_{3} /-5}\left[\begin{array}{rrrrr}\boxed{1} & 4 & 5 & -9 & -7 \\ 0 & \mathbf{1} & 2 & -3 & -3 \\ 0 & 0 & 0 & \mathbf{1} & 0\end{array}\right] \xrightarrow{\substack{R_{1} \leftarrow R_{1}+9 R_{3} \\ R_{2} \leftarrow R_{2}+3 R_{3}}}\left[\begin{array}{rrrrr}1 & 4 & 5 & 0 & -7 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & \mathbf{1} & 0\end{array}\right]$
(b) $\xrightarrow{R_{1} \leftarrow R_{1}-4 R_{2}}\left[\begin{array}{rrrrr}\mathbf{1} & 0 & -3 & 0 & 5 \\ 0 & \mathbf{1} & 2 & 0 & -3 \\ 0 & 0 & 0 & \mathbf{1} & 0\end{array}\right]$

The combination of operations in Line (f) is called the forward phase of the row reduction, while that of Line (b) is called the backward phase.

## Remark 4.17. Pivot Positions

Once a matrix is in an echelon form, further row operations do not change the positions of leading entries. Thus, the leading entries become the leading 1's in the reduced echelon form.

Uniqueness of the Reduced Echelon Form
Theorem 4.18. Each matrix is row equivalent to one and only one reduced echelon form.

### 4.2.2. The General Solution of Linear Systems

1) For example, for an augmented matrix, its R.E.F. is given as

$$
\left[\begin{array}{rrrr}
1 & 0 & -5 & 1  \tag{4.10}\\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

2) Then, the associated system of equations reads

$$
\begin{align*}
x_{1}-5 x_{3} & =1 \\
x_{2}+x_{3} & =4  \tag{4.11}\\
0 & =0 \tag{4.14}
\end{align*}
$$

where $\left\{x_{1}, x_{2}\right\}$ are basic variables ( $\because$ pivots).
3) Rewrite (4.11) as

$$
\left\{\begin{array}{l}
x_{1}=1+5 x_{3}  \tag{4.12}\\
x_{2}=4 \quad-x_{3} \\
x_{3} r \\
\text { is free }
\end{array}\right.
$$

5) Thus, the solution of (4.11) can be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
5 \\
-1 \\
1
\end{array}\right],
$$

in which you are free to choose any value for $x_{3}$. (That is why it is called a "free variable".)

- The description in (4.14) is called a parametric description of solution set; the free variable $x_{3}$ acts as a parameter.
- The solution in (4.14) represents all the solutions of the system (4.10), which is called the general solution of the system.

Example 4.19. Find the general solution of the system whose augmented matrix is

$$
[A \mid \mathbf{b}]=\left[\begin{array}{rrrrrr}
1 & 0 & -5 & 0 & -8 & 3 \\
0 & 1 & 4 & -1 & 0 & 6 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution. Hint: You should first row reduce it for the reduced echelon form.

Example 4.20. Choose $h$ and $k$ such that the system has
a) No solution
b) Unique solution
c) Many solutions
$\left\{\begin{aligned} x_{1}-3 x_{2} & =1 \\ 2 x_{1}+h x_{2} & =k\end{aligned}\right.$
Solution.

Example 4.21. Find the general solution of the system of which
the augmented matrix is $[A \mid \mathbf{b}]=\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 7 \\ 0 & 1 & 3 & 0 & -1 \\ 2 & -1 & -3 & 2 & 15 \\ 1 & 0 & -1 & 0 & 4\end{array}\right]$

## Solution.

## linear_equations_rref.m

```
Ab = [1 0 0 1 7; 0 1 3 0 -1; 2 -1 -3 2 15; 1 0 -1 0 4];
rref(Ab)
```

Result

```
ans =
```

| 1 | 0 | 0 | 1 | 7 |
| :--- | :--- | :--- | ---: | ---: |
| 0 | 1 | 0 | -3 | -10 |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 0 | 0 | 0 | 0 |

## True-or-False 4.22.

a. The row reduction algorithm applies to only to augmented matrices for a linear system.
b. If one row in an echelon form of angmented matrix is $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 2\end{array}\right]$, then the associated linear system is inconsistent.
c. The pivot positions in a matrix depend on whether or not row interchanges are used in the row reduction process.
d. Reducing a matrix to an echelon form is called the forward phase of the row reduction process.

Solution.

### 4.3. Linear Independence and Span of Vectors

Definition 4.23. A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ in $\mathbb{R}^{n}$ is said to be linearly independent, if the vector equation

$$
\begin{equation*}
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0} \tag{4.15}
\end{equation*}
$$

has only the trivial solution (i.e., $x_{1}=x_{2}=\cdots=x_{p}=0$ ). The set of vectors $S$ is said to be linearly dependent, if there exist weights $c_{1}, c_{2}, \cdots, c_{p}$, not all zero, such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{4.16}
\end{equation*}
$$

Note: A vector in a linearly independent set $S$ cannot be expressed as a linear combination of other vectors in $S$.

Example 4.24. Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.

1) $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 5\end{array}\right]$
2) $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Remark 4.25. Let $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{p}\end{array}\right]$. The matrix equation $A \mathbf{x}=\mathbf{0}$ is equivalent to $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}$.

1. Columns of $A$ are linearly independent if and only if $A \mathbf{x}=0$ has only the trivial solution. ( $\Leftrightarrow A \mathrm{x}=\mathbf{0}$ has no free variable $\Leftrightarrow$ Every column in $A$ is a pivot column.)
2. Columns of $A$ are linearly dependent if and only if $A \mathrm{x}=0$ has nontrivial solution. ( $\Leftrightarrow A \mathrm{x}=\mathbf{0}$ has at least one free variable $\Leftrightarrow A$ has at least one non-pivot column.)

Example 4.26. Determine if the vectors are linearly independent. $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right], \quad\left[\begin{array}{r}0 \\ 0 \\ -8\end{array}\right], \quad\left[\begin{array}{r}-1 \\ 3 \\ 1\end{array}\right]$

## Solution.

Example 4.27. Determine if the vectors are linearly independent.


Solution.

Note: In the above example, vectors are in $\mathbb{R}^{n}, n=3$; the number of vectors $p=4$. As in this example, if $p>n$ then the vectors must be linearly dependent.

Definition 4.28. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ be $p$ vectors in $\mathbb{R}^{n}$. Then $\boldsymbol{\operatorname { S p a n }}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is the collection of all linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$, that can be written in the form $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$, where $c_{1}, c_{2}, \cdots, c_{p}$ are weights. That is,

$$
\begin{equation*}
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}=\left\{\mathbf{y} \mid \mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}\right\} \tag{4.17}
\end{equation*}
$$

Example 4.29. Find the value of $h$ so that $\mathbf{c}$ is in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}\}$.

$$
\mathbf{a}=\left[\begin{array}{r}
3 \\
-6 \\
1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-6 \\
4 \\
-3
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
9 \\
h \\
3
\end{array}\right]
$$

## Solution.

## True-or-False 4.30

a. The columns of any $3 \times 4$ matrix are linearly dependent.
b. If $\mathbf{u}$ and $\mathbf{v}$ are linearly independent, and if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
c. Two vectors are linearly dependent if and only if they lie on a line through the origin.
d. The columns of a matrix $A$ are linearly independent, if the equation $A \mathrm{x}=0$ has the trivial solution.

### 4.4. Invertible Matrices

Definition 4.31. An $n \times n$ (square) matrix $A$ is said to be invertible (nonsingular) if there is an $n \times n$ matrix $B$ such that $A B=I_{n}=B A$, where $I_{n}$ is the identity matrix.

Note: In this case, $B$ is the unique inverse of $A$ denoted by $A^{-1}$.
(Thus $A A^{-1}=I_{n}=A^{-1} A$.)
Example 4.32. If $A=\left[\begin{array}{rr}2 & 5 \\ -3 & -7\end{array}\right]$ and $B=\left[\begin{array}{rr}-7 & -5 \\ 3 & 2\end{array}\right]$. Find $A B$ and $B A$.

## Solution.

Theorem 4.33. (Inverse of an $n \times n$ matrix, $n \geq 2$ ) An $n \times n$ matrix $A$ is invertible if and only if $A$ is row equivalent to $I_{n}$; in this case, any sequence of elementary row operations that reduces $A$ into $I_{n}$ will also reduce $I_{n}$ to $A^{-1}$.

Algorithm 4.34. Algorithm to find $A^{-1}$ :

1) Row reduce the augmented matrix $\left[A: I_{n}\right]$
2) If $A$ is row equivalent to $I_{n}$, then $\left[A: I_{n}\right]$ is row equivalent to [ $\left.I_{n}: A^{-1}\right]$. Otherwise $A$ does not have any inverse.

Note: For the system $A \mathbf{x}=\mathbf{b}$, when $A$ is invertible,

$$
\begin{equation*}
[\mathbf{A}: \mathbf{b}] \rightarrow \cdots \rightarrow\left[\mathbf{I}_{\mathbf{n}}: \mathbf{x}\right] \Rightarrow \mathbf{x}=A^{-1} \mathbf{b} \tag{4.18}
\end{equation*}
$$

Example 4.35. Find the inverse of $A=\left[\begin{array}{ll}3 & 2 \\ 8 & 5\end{array}\right]$.
Solution. You may begin with

$$
\left[A: I_{2}\right]=\left[\begin{array}{llll}
3 & 2 & 1 & 0 \\
8 & 5 & 0 & 1
\end{array}\right]
$$

Self-study 4.36. Use pencil-and-paper to find the inverse of $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

## Solution.

When it is implemented:

```
A = [0 1 0
 1 0}
 4 -3 8];
I = eye(3);
AI = [A I];
rref(AI)
```

—— Result
ans $=$
$\begin{array}{rrrrrr}1.0000 & 0 & 0 & 2.2500 & -2.0000 & 0.7500 \\ 0 & 1.0000 & 0 & 1.0000 & 0 & 0 \\ 0 & 0 & 1.0000 & -0.7500 & 1.0000 & -0.2500\end{array}$

Definition 4.37. Given an $m \times n$ matrix $A$, the transpose of $A$ is the matrix, denoted by $A^{T}$, whose columns are formed from the corresponding rows of $A$. That is,

$$
\begin{equation*}
A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n} \Rightarrow A^{T}=\left[a_{j i}\right] \in \mathbb{R}^{n \times m} . \tag{4.19}
\end{equation*}
$$

Example 4.38. If $A=\left[\begin{array}{rrrr}1 & 4 & 8 & 1 \\ 0 & -2 & -1 & 3 \\ 9 & 0 & 0 & 5\end{array}\right]$, then $A^{T}=$

## Theorem 4.39. Properties of Invertible Matrices

a. (Inverse of a $2 \times 2$ matrix) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then $A$ is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b  \tag{4.20}\\
-c & a
\end{array}\right]
$$

b. If $A$ is an invertible matrix, then $A^{-1}$ is also invertible and $\left(A^{-1}\right)^{-1}=A$.
c. If $A$ and $B$ are $n \times n$ invertible matrices then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
d. If $A$ is invertible, then $A^{T}$ is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
e. If $A$ is an $n \times n$ invertible matrix, then for each $b \in \mathbb{R}^{n}$, the equation $A \mathrm{x}=\mathrm{b}$ has a unique solution $\mathrm{x}=A^{-1} \mathbf{b}$.

## Theorem 4.40. Invertilble Matrix Theorem

Let $A$ be an $n \times n$ matrix. Then the following are equivalent.
a. $A$ is an invertible matrix. (Def: There is $B$ s.t. $A B=B A=I$ )
b. $A$ is row equivalent to the $n \times n$ identity matrix.
c. $A$ has $n$ pivot positions.
d. The equation $A \mathrm{x}=0$ has only the trivial solution $\mathrm{x}=0$.
e. The columns of $A$ are linearly independent.
f. The linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ is one-to-one.
$g$. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^{n}$.
h. The columns of $A$ span $\mathbb{R}^{n}$.
i. The linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ maps $\mathbb{R}^{n}$ onto $\mathbb{R}^{n}$.
$j$. There is a matrix $C \in \mathbb{R}^{n \times n}$ such that $C A=I$
k. There is a matrix $D \in \mathbb{R}^{n \times n}$ such that $A D=I$
l. $A^{T}$ is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

More statements will be added in the coming sections; see Theorem 5.10, p.140, and Theorem 5.17, p.142.

Note: Let $A$ and $B$ be square matrices. If $A B=I$, then $A$ and $B$ are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.

Example 4.41. Use the Invertible Matrix Theorem to decide if A is invertible:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

## Exercises for Chapter 4

4.1. Find the general solutions of the systems (in parametric vector form) whose augmented matrices are given as
(a) $\left[\begin{array}{rrrrr}1 & -7 & 0 & 6 & 5 \\ 0 & 0 & 1 & -2 & -3 \\ -1 & 7 & -4 & 2 & 7\end{array}\right]$
(b) $\left[\begin{array}{rrrrrr}1 & 2 & -5 & -6 & 0 & -5 \\ 0 & 1 & -6 & -3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Ans: (a) $\mathbf{x}=[5,0,-3,0]^{T}+x_{2}[7,1,0,0]^{T}+x_{4}[-6,0,2,1]^{T}$; Ans: (b) $\mathbf{x}=[-9,2,0,0,0]^{T}+x_{3}[-7,6,1,0,0]^{T}+x_{4}[0,3,0,1,0]^{T}$.
4.2. In the following, we use the notation for matrices in echelon form: the leading entries with $\_$, and any values (including zero) with $*$. Suppose each matrix represents the augmented matrix for a system of linear equations. In each case, determine if the system is consistent. If the system is consistent, determine if the solution is unique.
(a) $\left[\begin{array}{llll}\mathbf{\bullet} & * & * & * \\ 0 & \mathbf{■} & * & * \\ 0 & 0 & \boxed{ } & *\end{array}\right]$
(b) $\left[\begin{array}{lllll}0 & \bullet & * & * & * \\ 0 & 0 & \bullet & * & * \\ 0 & 0 & 0 & 0 & \bullet\end{array}\right]$
(c) $\left[\begin{array}{lllll}\mathbf{a} & * & * & * & * \\ 0 & 0 & \mathbf{a} & * & * \\ 0 & 0 & 0 & \mathbf{■} & *\end{array}\right]$
4.3. Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent.
4.4. (a) For what values of $h$ is $\mathbf{v}_{3}$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and (b) for what values of $h$ is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent? Justify each answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
9 \\
-6
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
5 \\
-7 \\
h
\end{array}\right] .
$$

4.5. Find the inverses of the matrices, if exist: $A=\left[\begin{array}{ll}3 & -4 \\ 7 & -8\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4\end{array}\right]$
$A n s: B$ is not invertible.
4.6. Describe the possible echelon forms of the matrix. Use the notation of Exercise 2 above.
(a) $A$ is a $3 \times 3$ matrix with linearly independent columns.
(b) $A$ is a $2 \times 2$ matrix with linearly dependent columns.
(c) $A$ is a $4 \times 2$ matrix, $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]$ and $\mathbf{a}_{2}$ is not a multiple of $\mathbf{a}_{1}$.
4.7. If $C$ is $6 \times 6$ and the equation $C \mathbf{x}=\mathbf{v}$ is consistent for every $\mathbf{v} \in \mathbb{R}^{6}$, is it possible that for some v , the equation $C \mathrm{x}=\mathrm{v}$ has more than one solution? Why or why not?

Ans: No

## Chapter 5

## Programming with Linear Algebra

# In Chapter 4, we studied linear algebra basics. In this chapter, we will consider popular subjects in linear algebra, which are applicable for real-world problems through programming. 

## Contents of Chapter 5

5.1. Determinants ..... 136
5.2. Eigenvalues and Eigenvectors ..... 141
5.3. Dot Product, Length, and Orthogonality ..... 148
5.4. Vector Norms, Matrix Norms, and Condition Numbers ..... 151
5.5. Power Method and Inverse Power Method for Eigenvalues ..... 155
Exercises for Chapter 5 ..... 162

### 5.1. Determinants

Definition 5.1. Let $A$ be an $n \times n$ square matrix. Then the determinant of $A$ is a scalar value, denoted by $\operatorname{det} A$ or $|A|$.

1) Let $A=[a] \in \mathbb{R}^{1 \times 1}$. Then $\operatorname{det} A=a$.
2) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then $\operatorname{det} A=a d-b c$.

Example 5.2. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$. Consider a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the determinant of $A$.
(b) Determine the image of a rectangle $R=[0,2] \times[0,1]$ under $T$.
(c) Find the area of the image.
(d) Figure out how $\operatorname{det} A$, the area of the rectangle $(=2)$, and the area of the image are related.

## Solution.

Ans: (c) 12
Note: The determinant can be viewed as a volume scaling factor.

Definition 5.3. Let $A_{i j}$ be the submatrix of $A$ obtained by deleting row $i$ and column $j$ of $A$. Then the $(i, j)$-cofactor of $A=\left[a_{i j}\right]$ is the scalar $C_{i j}$, given by

$$
\begin{equation*}
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} . \tag{5.1}
\end{equation*}
$$

Definition 5.4. For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is given by the following formulas:

1. The cofactor expansion across the first row:

$$
\begin{equation*}
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \tag{5.2}
\end{equation*}
$$

2. The cofactor expansion across the row $i$ :

$$
\begin{equation*}
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \tag{5.3}
\end{equation*}
$$

3. The cofactor expansion down the column $j$ :

$$
\begin{equation*}
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \tag{5.4}
\end{equation*}
$$

Example 5.5. Find the determinant of $A=\left[\begin{array}{rrr}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$, by expanding across the first row and down column 3 .

## Solution.

Note: If $A$ is a triangular (upper or lower) matrix, then $\operatorname{det} A$ is the product of entries on the main diagonal of $A$.
Example 5.6. Compute the determinant of $A=\left[\begin{array}{rrrr}1 & -2 & 5 & 2 \\ 0 & -6 & -7 & 5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$.

## Solution.

```
A =[\begin{array}{llllllllllllllllllll}{1}&{-2 5 2; 0 -6 -7 5; 0 0 3 0; 0 0 0 4];}\end{array}]
det(A)
```

Result
ans $=$
$-72$

Remark 5.7. The matrix $A$ in Example 5.6 has a pivit position in each column $\Rightarrow \mathrm{It}$ is invertible.

## Properties of Determinants

Theorem 5.8. Let $A$ be an $n \times n$ square matrix.
a) (Replacement): If $B$ is obtained from $A$ by a row replacement, then $\operatorname{det} B=\operatorname{det} A$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 3 \\
0 & -5
\end{array}\right]
$$

b) (Interchange): If two rows of $A$ are interchanged to form $B$, then $\operatorname{det} B=-\operatorname{det} A$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

c) (Scaling): If one row of $A$ is multiplied by $k(\neq 0)$, then

$$
\operatorname{det} B=k \cdot \operatorname{det} A
$$

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 3 \\
-4 & -2
\end{array}\right]
$$

Example 5.9. Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrr}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$, after applying some elementary row operations.
Solution.

## Theorem 5.10. Invertible Matrix Theorem (p.132)

A square matrix $A$ is invertible $\Leftrightarrow(A \mathrm{x}=0 \Rightarrow \mathrm{x}=0)$
m. $\operatorname{det} A \neq 0$ (Note: det is a volume scaling factor)

Remark 5.11. Let $A$ and $B$ be $n \times n$ matrices.
a) $\operatorname{det} A^{T}=\operatorname{det} A$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right], \quad A^{T}=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]
$$

b) $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right] ; \text { then } A B=\left[\begin{array}{rr}
13 & 7 \\
6 & 4
\end{array}\right]
$$

c) If $A$ is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A} .\left(\because \operatorname{det} I_{n}=1.\right)$

Example 5.12. Suppose the sequence $5 \times 5$ matrices $A, A_{1}, A_{2}$, and $A_{3}$ are related by following elementary row operations:

$$
A \xrightarrow{R_{2} \leftarrow R_{2}-3 R_{1}} A_{1} \xrightarrow{R_{3} \leftarrow(1 / 5) R_{3}} A_{2} \xrightarrow{R_{4} \leftrightarrow R_{5}} A_{3}
$$

Find $\operatorname{det} A$, if $A_{3}=\left[\begin{array}{rrrrr}1 & 2 & 3 & 4 & 1 \\ 0 & -2 & 1 & -1 & 1 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

## Solution.

### 5.2. Eigenvalues and Eigenvectors

Definition 5.13. Let $A$ be an $n \times n$ matrix. An eigenvector of $A$ is a nonzero vector $x$ such that

$$
\begin{equation*}
A \mathbf{x}=\lambda \mathbf{x} \tag{5.5}
\end{equation*}
$$

for some scalar $\lambda$. In this case, the scalar $\lambda$ is an eigenvalue and x is the corresponding eigenvector.


## Solution.

Example 5.15. Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Show that 7 is an eigenvalue of matrix $A$, and find the corresponding eigenvectors.
Solution. Hint: Start with $A \mathrm{x}=7 \mathrm{x}$. Then $(A-7 I) \mathrm{x}=\mathbf{0}$.

Remark 5.16. Let $\lambda$ be an eigenvalue of $A$. Then
(a) The homogeneous system $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has at least one free variable $(\because \mathrm{x} \neq 0)$.
(b) $\operatorname{det}(A-\lambda I)=0$.

## Theorem 5.17. Invertible Matrix Theorem (p.132)

A square matrix $A$ is invertible $\Leftrightarrow(A \mathrm{x}=0 \Rightarrow \mathrm{x}=0)$
n. The number 0 is not an eigenvalue of $A$

### 5.2.1. Characteristic Equation

Definition 5.18. The scalar equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of $A$; the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of $A$.

- The solutions of $\operatorname{det}(A-\lambda I)=0$ are the eigenvalues of $A$.

Example 5.19. Find the characteristic polynomial, eigenvalues, and corresponding eigenvectors of $A=\left[\begin{array}{ll}8 & 2 \\ 3 & 3\end{array}\right]$.

## Solution.

Example 5.20. Find the characteristic polynomial and all eigenvalues of $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 6 & 0 & 5 \\ 0 & 0 & 2\end{array}\right]$
eigenvalues.m
syms x
A = [1 1 0; $605 ; 002]$;
polyA = charpoly(A, x)
eigenA = solve(polyA)
$[P, D]=\operatorname{eig}(A) \% A * P=P * D$
$P * D * \operatorname{inv}(P)$
Results
polyA =
$12-4 * x-3 * x^{\wedge} 2+x^{\wedge} 3$
eigenA =
-2
2
3
$P=$

$$
\begin{array}{rrr}
0.4472 & -0.3162 & -0.6155 \\
0.8944 & 0.9487 & -0.6155 \\
0 & 0 & 0.4924
\end{array}
$$

D =
300
$0 \quad-2 \quad 0$
$0 \quad 0 \quad 2$
ans $=$
$1.0000 \quad 1.0000 \quad-0.0000$
$6.0000 \quad 0.0000 \quad 5.0000$
$0 \quad 0 \quad 2.0000$

### 5.2.2. Matrix Similarity and The Diagonalization Theorem

Definition 5.21. Let $A$ and $B$ be $n \times n$ matrices. Then, $A$ is similar to $B$, if there is an invertible matrix $P$ such that

$$
A=P B P^{-1} \text {, or equivalently, } P^{-1} A P=B
$$

Writing $Q=P^{-1}$, we have $B=Q A Q^{-1}$. So $B$ is also similar to $A$, and we say simply that $A$ and $B$ are similar. The map $A \mapsto P^{-1} A P$ is called a similarity transformation.

The next theorem illustrates one use of the characteristic polynomial, and it provides the foundation for several iterative methods that approximate eigenvalues.

Theorem 5.22. If $n \times n$ matrices $A$ and $B$ are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof. $B=P^{-1} A P$. Then,

$$
\begin{aligned}
B-\lambda I & =P^{-1} A P-\lambda I \\
& =P^{-1} A P-\lambda P^{-1} P \\
& =P^{-1}(A-\lambda I) P,
\end{aligned}
$$

from which we conclude that

$$
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P)=\operatorname{det}(A-\lambda I) .
$$

## Diagonalization

Definition 5.23. An $n \times n$ matrix $A$ is said to be diagonalizable if there exists an invertible matrix $P$ and a diagonal matrix $D$ such that

$$
\begin{equation*}
A=P D P^{-1} \quad\left(\text { or } P^{-1} A P=D\right) \tag{5.6}
\end{equation*}
$$

That is, diagonalizable matrices are those similar to a diagonal matrix.
Remark 5.24. Let $A$ be diagonalizable, i.e., $A=P D P^{-1}$. Then

$$
\begin{aligned}
A^{2} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1} \\
A^{k} & =P D^{k} P^{-1} \\
A^{-1} & =P D^{-1} P^{-1} \quad(\text { when } A \text { is invertible }) \\
\operatorname{det} A & =\operatorname{det} D
\end{aligned}
$$

Diagonalization enables us to compute $A^{k}$ and $\operatorname{det} A$ quickly.
Self-study 5.25. Let $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$. Find a formula for $A^{k}$, given that
$A=P D P^{-1}$, where $P=\left[\begin{array}{rr}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.

## Solution.

$$
\text { Ans: } A^{k}=\left[\begin{array}{rr}
2 \cdot 5^{k}-3^{k} & 5^{k}-3^{k} \\
2 \cdot 3^{k}-2 \cdot 5^{k} & 2 \cdot 3^{k}-5^{k}
\end{array}\right]
$$

## Theorem 5.26. (The Diagonalization Theorem)

1. An $n \times n$ matrix $A$ is diagonalizable if and only if $A$ has $n$ linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
2. In fact, $A=P D P^{-1}$ if and only if columns of $P$ are $n$ linearly independent eigenvectors of $A$. In this case, the diagonal entries of $D$ are the corresponding eigenvalues of $A$. That is,

$$
\begin{align*}
P & =\left[\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right], \\
D & =\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right], \tag{5.8}
\end{align*}
$$

where $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}, k=1,2, \cdots, n$.
Proof. Let $P=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$, arbitrary matrices. Then,

$$
A P=A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{v}_{1} & A \mathbf{v}_{2} & \cdots & A \mathbf{v}_{n} \tag{5.9}
\end{array}\right]
$$

while

$$
P D=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0  \tag{5.10}\\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \cdots & \lambda_{n} \mathbf{v}_{n}
\end{array}\right]
$$

$(\Rightarrow)$ Now suppose $A$ is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$; it follows from (5.9) and (5.10) that

$$
\left[\begin{array}{llll}
A \mathbf{v}_{1} & A \mathbf{v}_{2} & \cdots & A \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \cdots & \lambda_{n} \mathbf{v}_{n}
\end{array}\right]
$$

from which we conclude

$$
\begin{equation*}
A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}, \quad k=1,2, \cdots, n \tag{5.11}
\end{equation*}
$$

Furthermore, $P$ is invertible $\Rightarrow\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is linearly independent. $(\Leftarrow)$ It is almost trivial. $\square$

## Example 5.27. Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

## Solution.

1. Find the eigenvalues of $A$.
2. Find three linearly independent eigenvectors of $A$.
3. Construct $P$ from the vectors in step 2.
4. Construct $D$ from the corresponding eigenvalues.

Check: $A P=P D$ ?

$$
\text { Ans: } \lambda=1,-2,-2 . \mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

diagonalization.m

```
A = [1 3 3; -3 -5 -3; 3 3 1];
[P,D] = eig(A) % A*P = P*D
P*D*inv(P)
```

| $\mathrm{P}=$ |  |  |
| :---: | :---: | :---: |
| -0.5774 | -0.7876 | 0.4206 |
| 0.5774 | 0.2074 | -0.8164 |
| -0.5774 | 0.5802 | 0.3957 |
| $\mathrm{D}=$ |  |  |
| 1.0000 | 0 | 0 |
| 0 | -2.0000 | 0 |
| 0 | 0 | -2.0000 |
| ans = |  |  |
| 1.0000 | 3.0000 | 3.0000 |
| -3.0000 | -5.0000 | -3.0000 |
| 3.0000 | 3.0000 | 1.0000 |

Attention: Eigenvectors corresponding to $\lambda=-2$

### 5.3. Dot Product, Length, and Orthogonality

Definition 5.28. Let $\mathbf{u}=\left[u_{1}, u_{2}, \cdots, u_{n}\right]^{T}$ and $\mathbf{v}=\left[v_{1}, v_{2}, \cdots, v_{n}\right]^{T}$ are vectors in $\mathbb{R}^{n}$. Then, the dot product (or inner product) of $\mathbf{u}$ and $\mathbf{v}$ is given by

$$
\begin{align*}
\mathbf{u} \bullet \mathbf{v} & =\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]  \tag{5.12}\\
& =u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\sum_{k=1}^{n} u_{k} v_{k}
\end{align*}
$$

Note: In a matrix-vector multiplication $A v$, the product of a row of $A$ and the column vector v is a dot product.
Example 5.29. Let $\mathbf{u}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}3 \\ 2 \\ -4\end{array}\right]$. Find $\mathbf{u} \bullet \mathbf{v}$.

## Solution.

Theorem 5.30. Let $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ be vectors in $\mathbb{R}^{n}$, and $c$ be a scalar. Then
a. $u^{\bullet} \cdot \mathbf{v}=v^{\bullet} \mathbf{u}$
b. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u}^{\bullet} \mathbf{w}+\mathbf{v}^{\bullet} \mathbf{w}$
c. $(c \mathbf{u}) \bullet \mathbf{v}=c(\mathbf{u} \bullet \mathbf{v})=\mathbf{u} \bullet(c \mathbf{v})$
d. $\mathbf{u}^{\bullet} \mathbf{u} \geq 0$, and $\mathbf{u}^{\bullet} \mathbf{u}=0 \Leftrightarrow \mathbf{u}=0$

Definition 5.31. The length (norm) of $\mathbf{v}$ is nonnegative scalar $\|\mathbf{v}\|$ defined by

$$
\begin{equation*}
\|\mathbf{v}\|=\sqrt{\mathbf{v}^{\bullet} \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \quad \text { and } \quad\|\mathbf{v}\|^{2}=\mathbf{v}^{\bullet} \mathbf{v} \tag{5.13}
\end{equation*}
$$

Note: For any scalar $c, \quad\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
Example 5.32. Let $W$ be a subspace of $\mathbb{R}^{2}$ spanned by $\mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Find a unit vector $u$ that is a basis for $W$.

## Solution.

## Distance in $\mathbb{R}^{n}$

Definition 5.33. For $u, v \in \mathbb{R}^{n}$, the distance between $u$ and $v$ is

$$
\begin{equation*}
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| \tag{5.14}
\end{equation*}
$$

the length of the vector $\mathbf{u}-\mathbf{v}$.
Example 5.34. Compute the distance between the vectors $\mathbf{u}=(7,1)$ and $\mathbf{v}=(3,2)$.

## Solution.



Figure 5.1: The distance between $u$ and $v$ is the length of $\mathbf{u}-\mathbf{v}$.

## Orthogonal Vectors

Definition ${ }^{5.35}$. Two vectors $u$ and $v$ in $\mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
Theorem 5.36. The Pythagorean Theorem: Two vectors $\mathbf{u}$ and v are orthogonal if and only if

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} . \tag{5.15}
\end{equation*}
$$

Proof. For all $u$ and $v$ in $\mathbb{R}^{n}$,

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \bullet(\mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v} . \tag{5.16}
\end{equation*}
$$

Thus, $\mathbf{u}$ and v are orthogonal $\Leftrightarrow$ (5.15) holds
Note: The inner product can be defined as

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta, \tag{5.17}
\end{equation*}
$$

where $\theta$ is the angle between $\mathbf{u}$ and $\mathbf{v}$.
Example 5.37. Use (5.17) to find the angle between $u$ and $v$.
(a) $\mathbf{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-4 \\ 3\end{array}\right]$
(b) $\mathbf{u}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-1 / 2 \\ \sqrt{3} / 2\end{array}\right]$

Solution.

### 5.4. Vector Norms, Matrix Norms, and Condition Numbers

## Vector Norms

Definition 5.38. A norm (or, vector norm) on $\mathbb{R}^{n}$ is a function that assigns to each $\mathrm{x} \in \mathbb{R}^{n}$ a nonnegative real number $\|\mathrm{x}\|$ such that the following three properties are satisfied: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$,

$$
\begin{array}{ll}
\|\mathrm{x}\|>0 \text { if } \mathrm{x} \neq 0 & \text { (positive definiteness) } \\
\|\lambda \mathbf{x}\|=|\lambda|\|\mathrm{x}\| & \text { (homogeneity) }  \tag{5.18}\\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Example 5.39. The most common norms are

$$
\begin{equation*}
\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{5.19}
\end{equation*}
$$

which we call the $p$-norms, and

$$
\begin{equation*}
\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|, \tag{5.20}
\end{equation*}
$$

which is called the infinity-norm or maximum-norm.
Note: Two of frequently used $p$-norms are

$$
\begin{equation*}
\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|, \quad\|\mathbf{x}\|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / 2} \tag{5.21}
\end{equation*}
$$

The 2-norm is also called the Euclidean norm, often denoted by $\|\cdot\|$.
Example 5.40. Let $\mathbf{x}=[4,2,-2,-4,3]^{T}$. Find $\|\mathbf{x}\|_{p}$, for $p=1,2, \infty$. Solution.

Note: In general, $\|\mathrm{x}\|_{\infty} \leq\|\mathrm{x}\|_{2} \leq\|\mathrm{x}\|_{1}$ for all $\mathrm{x} \in \mathbb{R}^{n}$; see Exercise 5.5.

## Matrix Norms

Definition 5.41. A matrix norm on $m \times n$ matrices is a vector norm on the $m n$-dimensional space, satisfying

$$
\begin{array}{ll}
\|A\| \geq 0, \text { and }\|A\|=0 \Leftrightarrow A=0 & \text { (positive definiteness) } \\
\|\lambda A\|=|\lambda|\|A\| & \text { (homogeneity) }  \tag{5.22}\\
\|A+B\| \leq\|A\|+\|B\| & \text { (triangle inequality) }
\end{array}
$$

Example 5.42. $\|A\|_{F} \equiv\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\sqrt{\operatorname{tr}\left(A A^{T}\right)}$ is called the Frobenius norm. Here " $\operatorname{tr}(B)$ " is the trace of a square matrix $B$, the sum of elements on the main diagonal.

Definition 5.43. Once a vector norm $\|\cdot\|$ has been specified, the induced matrix norm is defined by

$$
\begin{equation*}
\|A\|=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|A \mathbf{x}\| \tag{5.23}
\end{equation*}
$$

It is also called an operator norm or subordinate norm.

## Theorem 5.44.

(a) For all operator norms and the Frobenius norm,

$$
\begin{equation*}
\|A x\| \leq\|A\|\|x\|, \quad\|A B\| \leq\|A\|\|B\| . \tag{5.24}
\end{equation*}
$$

(b) $\|A\|_{1} \equiv \max _{\|\mathbf{x}\|_{1}=1}\|A \mathbf{x}\|_{1}=\max _{j} \sum_{i}\left|a_{i j}\right|$
(c) $\|A\|_{\infty} \equiv \max _{\|\mathbf{x}\|_{\infty}=1}\|A \mathbf{x}\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|$
(d) $\|A\|_{2} \equiv \max _{\|\mathbf{x}\|_{2}=1}\|A \mathbf{x}\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$,
where $\lambda_{\text {max }}$ denotes the largest eigenvalue.
(e) $\|A\|_{2}=\left\|A^{T}\right\|_{2}$.
(f) $\|A\|_{2}=\max _{i}\left|\lambda_{i}(A)\right|$, when $A^{T} A=A A^{T}$ (normal matrix).

Definition 5.45. Let $A \in \mathbb{R}^{n \times n}$ be invertible. Then

$$
\begin{equation*}
\kappa(A) \equiv\|A\|\left\|A^{-1}\right\| \tag{5.25}
\end{equation*}
$$

is called the condition number of $A$, associated to the matrix norm.
Example 5.46. Let $A=\left[\begin{array}{rrr}1 & 2 & -2 \\ 0 & 1 & 1 \\ 1 & -2 & 2\end{array}\right]$. Then, we have

$$
A^{-1}=\frac{1}{8}\left[\begin{array}{rrr}
4 & 0 & -4 \\
1 & 4 & -1 \\
-1 & 4 & 1
\end{array}\right] \text { and } A^{T} A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 9 & -7 \\
0 & -7 & 9
\end{array}\right]
$$

a. Find $\|A\|_{1},\|A\|_{\infty}$, and $\|A\|_{2}$.
b. Compute the $\ell^{1}$-condition number $\kappa_{1}(A)$.

## Solution.

Example 5.47. One may consider the infinity-norm as the limit of $p$ norms, as $p \rightarrow \infty$.
Solution.

## The Induced Matrix 2 -Norm of $\bar{A}$

Definition 5.48. The induced matrix 2 -norm can be defined by

$$
\begin{equation*}
\|A\|_{2}=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\max _{\|\mathbf{x}\|_{2}=1}\|A \mathbf{x}\|_{2}=\max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=\mathbf{1}}\left|\mathbf{y}^{\mathbf{T}} \mathbf{A} \mathbf{x}\right| . \tag{5.26}
\end{equation*}
$$

It is also called an operator 2 -norm or subordinate 2 -norm.

## Theorem 5.49. Properties of the Matrix 2-Norm

(a) $\left\|A^{T}\right\|_{2}=\|A\|_{2}$
(b) $\left\|A^{T} A\right\|_{2}=\|A\|_{2}^{2}$
(c) $\left\|A A^{T}\right\|_{2}=\|A\|_{2}^{2}$

## Proof.

(a) The claim follows from the fact that $\mathbf{y}^{T} A \mathrm{x}$ is a scalar and therefore $\left(\mathbf{y}^{T} A \mathbf{x}\right)^{T}=\mathbf{x}^{T} A^{T} \mathbf{y}$ and $\left|\mathbf{y}^{T} A \mathbf{x}\right|=\left|\mathbf{x}^{T} A^{T} \mathbf{y}\right|$.
(b) Using the Cauchy-Schwarz inequality,

$$
\begin{align*}
\left\|A^{T} A\right\|_{2} & =\max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1}\left|\mathbf{y}^{T} A^{T} A \mathbf{x}\right|  \tag{5.27}\\
& \leq \max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1}\|A \mathbf{y}\|_{2}\|A \mathbf{x}\|_{2}=\|A\|_{2}^{2}
\end{align*}
$$

Now, we choose a unit vector $\mathbf{z}$, for which $\|A z\|_{2}=\|A\|_{2}$. Then

$$
\begin{align*}
\|A\|_{2}^{2} & =\|A \mathbf{z}\|_{2}^{2}=(A \mathbf{z})^{T}(A \mathbf{z})=\mathbf{z}^{T} A^{T} A \mathbf{z} \\
& \leq \max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1}\left|\mathbf{y}^{T} A^{T} A \mathbf{x}\right| \equiv\left\|A^{T} A\right\|_{2} \tag{5.28}
\end{align*}
$$

(c) Using the results in (a) and (b),

$$
\begin{equation*}
\|A\|_{2}^{2}=\left\|A^{T}\right\|_{2}^{2}=\left\|\left(A^{T}\right)^{T} A^{T}\right\|_{2}=\left\|A A^{T}\right\|_{2}, \tag{5.29}
\end{equation*}
$$

which completes the proof.

### 5.5. Power Method and Inverse Power Method for Eigenvalues

### 5.5.1. The Power Method

The power method is an iterative algorithm:
Given a square matrix $A \in \mathbb{R}^{n \times n}$, the algorithm finds a number $\lambda$, which is the largest eigenvalue of $A$ (in modulus), and its corresponding eigenvector v .

Assumption. To apply the power method, we assume that $A \in \mathbb{R}^{n \times n}$ has

- $n$ eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$,
- $n$ associated eigenvectors $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{n}\right\}$, which are linearly independent, and
- exactly one eigenvalue that is largest in magnitude, $\lambda_{1}$ :

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right| . \tag{5.30}
\end{equation*}
$$

The power method approximates the largest eigenvalue $\lambda_{1}$ and its associated eigenvector $\mathrm{v}_{1}$.

## Derivation of Power Iteration

- Since eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ are linearly independent, any vector $\mathrm{x} \in \mathbb{R}^{n}$ can be expressed as

$$
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j} \tag{5.31}
\end{equation*}
$$

for some constants $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$.

- Multiplying both sides of (5.31) by $A$ and $A^{2}$ gives

$$
\begin{align*}
& A \mathbf{x}=A\left(\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} \beta_{j} A \mathbf{v}_{j}=\sum_{j=1}^{n} \beta_{j} \lambda_{j} \mathbf{v}_{j}  \tag{5.32}\\
& A^{2} \mathbf{x}=A\left(\sum_{j=1}^{n} \beta_{j} \lambda_{j} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} \beta_{j} \lambda_{j}^{2} \mathbf{v}_{j}
\end{align*}
$$

- In general,

$$
\begin{equation*}
A^{k} \mathbf{x}=\sum_{j=1}^{n} \beta_{j} \lambda_{j}^{k} \mathbf{v}_{j}, \quad k=1,2, \cdots \tag{5.33}
\end{equation*}
$$

which gives

$$
\begin{equation*}
A^{k} \mathbf{x}=\lambda_{1}^{k} \cdot \sum_{j=1}^{n} \beta_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \mathbf{v}_{j}=\lambda_{1}^{k} \cdot\left[\beta_{1}\left(\frac{\lambda_{1}}{\lambda_{1}}\right)^{k} \mathbf{v}_{1}+\beta_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \mathbf{v}_{2}+\cdots+\beta_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \mathbf{v}_{n}\right] \tag{5.34}
\end{equation*}
$$

- For $j=2,3, \cdots, n$, since $\left|\lambda_{j} / \lambda_{1}\right|<1$, we have $\lim _{k \rightarrow \infty}\left|\lambda_{j} / \lambda_{1}\right|^{k}=0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A^{k} \mathbf{x}=\lim _{k \rightarrow \infty} \lambda_{1}^{k} \beta_{1} \mathbf{v}_{1} \tag{5.35}
\end{equation*}
$$

Remark 5.50. The sequence in (5.35) converges to 0 if $\left|\lambda_{1}\right|<1$ and diverges if $\left|\lambda_{1}\right|>1$, provided that $\beta_{1} \neq 0$.

- The entries of $A^{k} \mathbf{x}$ will grow with $k$ if $\left|\lambda_{1}\right|>1$ and will go to 0 if $\left|\lambda_{1}\right|<1$.
- In either case, it is hard to decide the largest eigenvalue $\lambda_{1}$ and its associated eigenvector $\mathrm{v}_{1}$.
- To take care of that possibility, we scale $A^{k} \mathbf{x}$ in an appropriate manner to ensure that the limit in (5.35) is finite and nonzero.

Algorithm 5.51. (The Power Iteration) Given $x \neq 0$ :
initialization : $\mathrm{x}^{0}=\mathrm{x} /\|\mathrm{x}\|_{\infty}$
for $k=1,2, \cdots$

$$
\begin{align*}
& \mathbf{y}^{k}=A \mathbf{x}^{k-1} ; \quad \mu_{k}=\left\|\mathbf{y}^{k}\right\|_{\infty}  \tag{5.36}\\
& \mathbf{x}^{k}=\mathbf{y}^{k} / \mu_{k}
\end{align*}
$$

end for
Claim 5.52. Let $\left\{\mathrm{x}^{k}, \mu_{k}\right\}$ be a sequence produced by the power method. Then,

$$
\begin{equation*}
\mathbf{x}^{k} \rightarrow \mathbf{v}_{1}, \quad \mu_{k} \rightarrow\left|\lambda_{1}\right|, \quad \text { as } k \rightarrow \infty \tag{5.37}
\end{equation*}
$$

More precisely, the power method converges as

$$
\begin{equation*}
\mu_{k}=\left|\lambda_{1}\right|+\mathcal{O}\left(\left|\lambda_{2} / \lambda_{1}\right|^{k}\right) \tag{5.38}
\end{equation*}
$$

Example 5.53. The matrix $A=\left[\begin{array}{rrr}5 & -2 & 2 \\ -2 & 3 & -4 \\ 2 & -4 & 3\end{array}\right]$ has eigenvalues and eigenvectors as follows

$$
\operatorname{eig}(A)=\left[\begin{array}{r}
9 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

Verify that the sequence produced by the power method converges to the largest eigenvalue and its associated eigenvector.
Solution. The algorithm is implemented in both Matlab and Python.

```
A = [5 -2 2; -2 3 -4; 2 -4 3];
[V,D] = eig(A);
 evalues = diag(D)';
 [~,ind] = sort(evalues,'descend');
 evalues = evalues(ind)
 V = V(:,ind); V = V./max(abs(V), [],1)
x = [1 0 0]';
fmt = ['k=%2d: x=[',repmat('%.5f, ',1,numel(x)-1),'%.5f], ',...
 'mu=%.5f (error=%.7f)\n'];
for k=1:10
 y = A*x;
 [~,ind] = max(abs(y)); mu = y(ind);
 x =y/mu;
 fprintf(fmt,k,x,mu,abs(evalues(1)-mu))
end
```

                    power_iteration.py
    ```
import numpy as np;
np.set_printoptions(suppress=True)
A = np.array([[5,-2, 2],[-2, 3, -4],[2,-4,3]])
evalues, EVectors = np.linalg.eig(A)
Sorting eigenvalues: descend
idx = evalues.argsort()[::-1]
evalues = evalues[idx]; EVectors = EVectors[:,idx]
EVectors /= np.max(abs(EVectors),axis=0) #normalize
```

```
print('evalues=',evalues)
print('EVectors=\n',EVectors)
x = np.array([1,0,0]).T
for k in range(10):
 y = A.dot(x)
 ind = np.argmax (np.abs(y)); mu = y [ind]
 x = y/mu
 print('k=%2d; x=[%.5f, %.5f, %.5f]; mu=%.5f (error=%.7f)'
 %(k,*x,mu,np.abs(evalues[0]-mu)));
```

The results are the same; here is the output from the Matlab code.

```
evalues =
 9.0000 3.0000-1.0000
V =
 1.0000e+00 }rrr\mp@code{1.0000e+00
k= 1: x=[1.00000, -0.40000, 0.40000], mu=5.00000 (error=4.0000000)
k= 2: x=[1.00000, -0.72727, 0.72727], mu=6.60000 (error=2.4000000)
k= 3: x=[1.00000, -0.89655, 0.89655], mu=7.90909 (error=1.0909091)
k= 4: x=[1.00000, -0.96386, 0.96386], mu=8.58621 (error=0.4137931)
k= 5: x=[1.00000, -0.98776, 0.98776], mu=8.85542 (error=0.1445783)
k= 6: x=[1.00000, -0.99590, 0.99590], mu=8.95102 (error=0.0489796)
k= 7: x=[1.00000, -0.99863, 0.99863], mu=8.98358 (error=0.0164159)
k= 8: x=[1.00000, -0.99954, 0.99954], mu=8.99452 (error=0.0054820)
k= 9: x=[1.00000, -0.99985, 0.99985], mu=8.99817 (error=0.0018284)
k=10: x=[1.00000, -0.99995, 0.99995], mu=8.99939 (error=0.0006096)
```

Notice that $\left|9-\mu_{k}\right| \approx \frac{1}{3}\left|9-\mu_{k-1}\right|$, for which $\left|\lambda_{2} / \lambda_{1}\right|=\frac{1}{3}$.

### 5.5.2. The Inverse Power Method

Some applications require to find an eigenvalue of the matrix $A$, near a prescribed value $q$. The inverse power method is a variant of the Power method to solve such a problem.

- We begin with the eigenvalues and eigenvectors of $(A-q I)^{-1}$. Let

$$
\begin{equation*}
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i=1,2, \cdots, n \tag{5.39}
\end{equation*}
$$

- Then it is easy to see that

$$
\begin{equation*}
(A-q I) \mathbf{v}_{i}=\left(\lambda_{i}-q\right) \mathbf{v}_{i} . \tag{5.40}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
(A-q I)^{-1} \mathbf{v}_{i}=\frac{1}{\lambda_{i}-q} \mathbf{v}_{i} . \tag{5.41}
\end{equation*}
$$

- That is, when $q \notin\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$, the eigenvalues of $(A-q I)^{-1}$ are

$$
\begin{equation*}
\frac{1}{\lambda_{1}-q}, \frac{1}{\lambda_{2}-q}, \cdots, \frac{1}{\lambda_{n}-q}, \tag{5.42}
\end{equation*}
$$

with the same eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ of $A$.

Algorithm 5.54. (Inverse Power Method) Applying the power method to $(A-q I)^{-1}$ gives the inverse power method. Given $\mathbf{x} \neq 0$ :

$$
\begin{aligned}
& \text { set : } \quad \mathbf{x}^{0}=\mathbf{x} /\|\mathbf{x}\|_{\infty} \\
& \text { for } k=1,2, \cdots \\
& \quad \mathbf{y}^{k}=(A-q I)^{-1} \mathbf{x}^{k-1} ; \quad \mu_{k}=\left\|\mathbf{y}^{k}\right\|_{\infty} \\
& \mathbf{x}^{k}=\mathbf{y}^{k} / \mu_{k} \\
& \quad \lambda_{k}=1 / \mu_{k}+q
\end{aligned}
$$

end for

Note: All eigenvalues of a square matrix can be found simultaneously by applying the QR iteration; see $\S 9.5$ below.

Example 5.55. The matrix $A$ is as in Example 5.53: $A=\left[\begin{array}{rrr}5 & -2 & 2 \\ -2 & 3 & -4 \\ 2 & -4 & 3\end{array}\right]$. Find the the eigenvalue of $A$ nearest to $q=4$, using the inverse power method.

## Solution.

```
A = [5 -2 2; -2 3 -4; 2 -4 3];
[V,D] = eig(A);
 evalues = diag(D)';
 [~,ind] = sort(evalues,'descend');
 evalues = evalues(ind)
 V = V(:,ind); V = V./max(abs(V), [],1)
x = [1 0 0]';
fmt = ['k=%2d: x = [',repmat('%.5f, ',1,numel(x)-1),'%.5f], ',...
 'lambda=%.7f (error = %.7f)\n'];
q = 4; B = inv(A-q*eye(3));
for k=1:10
 y = B*x;
 [~,ind] = max(abs(y)); mu = y(ind);
 x =y/mu;
 lambda = 1/mu + q;
 fprintf(fmt,k,x,lambda,abs(evalues(2)-lambda))
end
```

                                    inverse_power.py
    ```
import numpy as np;
np.set_printoptions(suppress=True)
A = np.array([[5,-2, 2],[-2,3,-4],[2, -4,3]])
evalues, EVectors = np.linalg.eig(A)
Sorting eigenvalues: largest to smallest
idx = evalues.argsort()[::-1]
evalues = evalues[idx]; EVectors = EVectors[:,idx]
EVectors /= np.max(abs(EVectors),axis=0) #normalize
print('evalues=',evalues)
print('EVectors=\n',EVectors)
q = 4; x = np.array([1,0,0]).T
```

```
B = np.linalg.inv(A-q*np.identity(3))
for k in range(10):
 y = B.dot(x)
 ind = np.argmax(np.abs(y)); mu = y [ind]
 x = y/mu
 Lambda = 1/mu + q
 print('k=%2d; x=[%.5f, %.5f, %.5f]; Lambda=%.7f (error=%.7f)'
 %(k,*x,Lambda,np.abs(evalues[1]-Lambda)));
```

            Output from inverse_power.py
    ```
evalues= [9. 3. -1.]
EVectors=
 [[-1. -1. -0.]
 [1. -0.5 1.]
 [-1. 0.5 1.]]
k= 0; x=[1.00000, 0.66667, -0.66667]; Lambda=2.3333333 (error=0.6666667)
k= 1; x=[1.00000, 0.47059, -0.47059]; Lambda=3.1176471 (error=0.1176471)
k= 2; x=[1.00000, 0.50602, -0.50602]; Lambda=2.9759036 (error=0.0240964)
k= 3; x=[1.00000, 0.49880, -0.49880]; Lambda=3.0047962 (error=0.0047962)
k= 4; x=[1.00000, 0.50024, -0.50024]; Lambda=2.9990398 (error=0.0009602)
k= 5; x=[1.00000, 0.49995, -0.49995]; Lambda=3.0001920 (error=0.0001920)
k= 6; x=[1.00000, 0.50001, -0.50001]; Lambda=2.9999616 (error=0.0000384)
k= 7; x=[1.00000, 0.50000, -0.50000]; Lambda=3.0000077 (error=0.0000077)
k= 8; x=[1.00000, 0.50000, -0.50000]; Lambda=2.9999985 (error=0.0000015)
k= 9; x=[1.00000, 0.50000, -0.50000]; Lambda=3.0000003 (error=0.0000003)
```

Note: When $q=4$, eigenvalues of $(A-q I)^{-1}$ are $\{1 / 5,-1,-1 / 5\}$.

- The initial vector: $\mathbf{x}_{0}=[1,0,0]^{T}=\frac{1}{3}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$; see Example 5.53.
- Thus, each iteration must reduce the error by a factor of 5 .

```
 When q=3.1
k= 0; x=[1.00000, 0.51282, -0.51282]; Lambda=2.9487179 (error=0.0512821)
k= 1; x=[1.00000, 0.49978, -0.49978]; Lambda=3.0008617 (error=0.0008617)
k= 2; x=[1.00000, 0.50000, -0.50000]; Lambda=2.9999854 (error=0.0000146)
k= 3; x=[1.00000, 0.50000, -0.50000]; Lambda=3.0000002 (error=0.0000002)
k= 4; x=[1.00000, 0.50000, -0.50000]; Lambda=3.0000000 (error=0.0000000)
```


## See Exercise 5.8.

## Exercises for Chapter 5

5.1. Let $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$. Write $5 A$. Is $\operatorname{det}(5 A)=5 \operatorname{det} A$ ?
5.2. Let $A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 0 & 2 & 8 \\ 2 & 4 & 2\end{array}\right]$.
(a) Find $\operatorname{det} A$.
(b) Let $\mathcal{U}=[0,1]^{3}$, the unit cube. What can you say about $A(U)$, the image of $\mathcal{U}$ under the matrix multiplication by $A$.
5.3. Use pencil-and-paper to compute $\operatorname{det}\left(B^{6}\right)$, where $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.

Ans: 64
5.4. A matrix is not always diagonalizable. Let $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$. Use $[P, D]=\operatorname{eig}(A)$ in Matlab to verify
(a) $P$ does not have its inverse.
(b) $A P=P D$.
5.5. Show that $\|\mathrm{x}\|_{\infty} \leq\|\mathrm{x}\|_{2} \leq\|\mathrm{x}\|_{1}$ for all $\mathrm{x} \in \mathbb{R}^{n}$.
5.6. The matrix in Example 5.55 has eigenvalues $\{-6,-3,-1\}$. We may try to find the eigenvalue of $A$ nearest to $q=-3.1$.
(a) Estimate (mathematically) the convergence speed of the inverse power method.
(b) Verify it by implementing the inverse power method, with $\mathbf{x}_{0}=[0,1,0]^{T}$.
5.7. Let $A=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 4 & -2 \\ 0 & -1 & -2 & 4\end{array}\right]$. Use indicated methods to approximate eigenvalues and their associated eigenvectors of $A$ within to $10^{-12}$ accuracy.
(a) The power method, the largest eigenvalue.
(b) The inverse power method, an eigenvalue near $q=3$.
(c) The inverse power method, the smallest eigenvalue.
5.8. What is the theoretical error reduction rate for the convergence of the inverse power iteration, when $q=3.1$, shown on p.161.

Ans: 59.

## Chapter 6

## Multivariable Calculus

In this chapter, we will learn subjects in multivariable calculus, such as

- The gradient vector
- Optimization: Method of Lagrange multipliers
- The gradient descent method


## Contents of Chapter 6

6.1. Multi-Variable Functions and Their Partial Derivatives . . . . . . . . . . . . . . . . . . 164
6.2. Directional Derivatives and the Gradient Vector . . . . . . . . . . . . . . . . . . . . . . 168
6.3. Optimization: Method of Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . 173
6.4. The Gradient Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

### 6.1. Multi-Variable Functions and Their Partial Derivatives

### 6.1.1. Functions of Several Variables

Definition 6.1. A function of two variables, $f$, is a rule that assigns each ordered pair of real numbers $(x, y)$ in a set $D \subset \mathbb{R}^{2}$ a unique real number denoted by $f(x, y)$. The set $D$ is called the domain of $f$ and its range is the set of values that $f$ takes on, that is, $\{f(x, y):(x, y) \in D\}$.

Definition 6.2. Let $f$ be a function of two variables, and $z=f(x, y)$. Then $x$ and $y$ are called independent variables and $z$ is called a dependent variable.

Example 6.3. Let $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$. Evaluate $f(3,2)$ and give its domain.
Solution.

Ans: $f(3,2)=\sqrt{6} / 2 ; D=\{(x, y): x+y+1 \geq 0, x \neq 1\}$
Example 6.4. Find the domain and the range of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$.

## Solution.

### 6.1.2. First-order Partial Derivatives

Recall: A function $y=f(x)$ is differentiable at $a$ if

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { exists. }
$$




Figure 6.1: Ordinary derivative $f^{\prime}(a)$ and partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$.
$f_{x}=\partial f / \partial x$
Let $f$ be a function of two variables $(x, y)$. Suppose we let only $x$ vary while keeping $y$ fixed, say $\boldsymbol{y}=\boldsymbol{b}$. Then $\boldsymbol{g}(\boldsymbol{x}):=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{b})$ is a function of a single variable. If $g$ is differentiable at $a$, then we call it the partial derivative of $f$ with respect to $x$ at $(a, b)$ and denoted by $f_{x}(a, b)$.

$$
\begin{align*}
g^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}=: f_{x}(a, b) . \tag{6.1}
\end{align*}
$$

$\boldsymbol{f}_{y}=\partial \boldsymbol{f} / \partial \boldsymbol{y}$
Similarly, the partial derivative of $f$ with respect to $y$ at $(a, b)$, denoted by $f_{y}(a, b)$, is obtained keeping $x$ fixed, say $\left.\overline{\boldsymbol{x}} \boldsymbol{\overline { a }}\right]$, and finding the ordinary derivative at $b$ of $\boldsymbol{G}(\boldsymbol{y}):=\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{y})$ :

$$
\begin{align*}
G^{\prime}(b) & =\lim _{h \rightarrow 0} \frac{G(b+h)-G(b)}{h}  \tag{6.2}\\
& =\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}=: f_{y}(a, b) .
\end{align*}
$$

Example 6.5. Find $f_{x}(0,0)$, when $f(x, y)=\sqrt[3]{x^{3}+y^{3}}$.

## Solution. Using the definition,

$f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}$

Definition 6.6. If $f$ is a function of two variables, its partial derivatives are the functions $f_{x}=\frac{\partial f}{\partial x}$ and $f_{y}=\frac{\partial f}{\partial y}$ defined by:

$$
\begin{align*}
f_{x}(x, y) & =\frac{\partial f}{\partial x}(x, y)
\end{align*}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad \text { and }
$$

## Observation 6.7. Partial Derivatives

- The partial derivative with respect to $x$ represents the slope of the tangent lines to the curve that are parallel to the $x z$-plane (i.e. in the direction of $\langle 1,0, \gamma\rangle$ ).
- Similarly, the partial derivative with respect to $\boldsymbol{y}$ represents the slope of the tangent lines to the curve that are parallel to the $y z$-plane (i.e. in the direction of $\langle 0,1, \cdot\rangle$ ).


## Rule for finding Partial Derivatives of $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

- To find $f_{x}$, regard $y$ as a constant and differentiate $f$ w.r.t. $x$.
- To find $f_{y}$, regard $x$ as a constant and differentiate $f$ w.r.t. $y$.


## Example 6.8. If $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$, find $f_{x}(2,1), f_{y}(2,1)$, and $\boldsymbol{f}_{x y}(2,1)$. Solution.

Ans: $f_{x}(2,1)=16 ; f_{y}(2,1)=8$
Example 6.9. (Functions of Three Variables). Let $f(x, y, z)=\sin \left(\frac{x z}{1+y}\right)$.
Find the first partial derivatives of $f(x, y, z)$.
Solution.

### 6.2. Directional Derivatives and the Gradient Vector



Figure 6.2

Recall: For $z=f(x, y)$, the partial derivatives $\left(f_{x}, f_{y}\right)$ represent the rates of change of $z$ in the $(x, y)$-directions, i.e., in the directions of the unit vectors $(\mathbf{i}, \mathbf{j})$.

Note: It would be nice to be able to find the slope of the tangent line to a surface $S$ in the direction of an arbitrary unit vector $\mathrm{u}=\langle a, b\rangle$.

Definition 6.10. The directional derivative of $f$ at $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
\begin{equation*}
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}, \tag{6.4}
\end{equation*}
$$

if the limit exists.
Note that

$$
\begin{aligned}
f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right) & =f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}+h b\right) \\
& +f\left(x_{0}, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h} & =a \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}+h b\right)}{h a} \\
& +b \frac{f\left(x_{0}, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h b}
\end{aligned}
$$

which converges to " $a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)$ " as $h \rightarrow 0$.

Theorem 6.11. If $f$ is a differentiable function of $x$ and $y$, then $f$ has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
\begin{align*}
D_{\mathbf{u}} f(x, y) & =f_{x}(x, y) a+f_{y}(x, y) b \\
& =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot\langle a, b\rangle  \tag{6.5}\\
& =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot \mathbf{u} .
\end{align*}
$$

Example 6.12. Let $f(x, y)=x^{3}+2 x y+y^{4}$. Find the directional derivative $D_{\mathbf{u}} f(x, y)$, when $\mathbf{u}$ is the unit vector given by the angle $\theta=\frac{\pi}{4}$. What is $D_{\mathbf{u}} f(2,3)$ ?
Solution. $\mathbf{u}=\langle\cos (\pi / 4), \sin (\pi / 4)\rangle=\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle$.


Figure 6.3

Self-study 6.13. Find the directional derivative of $f(x, y)=x+\sin (x y)$ at the point $(1,0)$ in the direction given by the angle $\theta=\pi / 3$.
Solution.

Example 6.14. (Functions of Three Variables).
If $f(x, y, z)=x^{2}-2 y^{2}+z^{4}$, find the directional derivative of $f$ at $(1,3,1)$ in the direction of $\mathbf{v}=\langle 2,-2,-1\rangle$.

## Solution.

## The Gradient Vector

Definition 6.15. Let $f$ be a differentiable function of two variables $x$ and $y$. Then the gradient of $f$ is the vector function

$$
\begin{equation*}
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} \tag{6.6}
\end{equation*}
$$

## Example 6.16. If $f(x, y)=\sin (x)+e^{x y}$, find $\nabla f(x, y)$ and $\nabla f(0,1)$. <br> Solution.

Ans: $\langle 2,0\rangle$
Remark 6.17. With this notation of the gradient vector, we can rewrite

$$
\begin{equation*}
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}=f_{x}(x, y) a+f_{y}(x, y) b, \quad \text { where } \mathbf{u}=\langle a, b\rangle \tag{6.7}
\end{equation*}
$$

Example 6.18. Find the directional derivative of $f(x, y)=x^{2} y^{3}-4 y$ at the point $(2,-1)$ and in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$.

## Solution.

## Maximizing the Directional Derivative

Note: Let $\theta$ is the angle between $\nabla f$ and $\mathbf{u}$. Then

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta=|\nabla f| \cos \theta,
$$

of which the maximum occurs when $\theta=0$.
Theorem 6.19. Let $f$ be a differentiable function of two or three variables. Then

$$
\begin{equation*}
\max _{\mathbf{u}} D_{\mathbf{u}} f(\mathbf{x})=|\nabla f(\mathbf{x})| \tag{6.8}
\end{equation*}
$$

and it occurs when $\mathbf{u}$ has the same direction as $\nabla f(\mathbf{x})$.
Example 6.20. Let $f(x, y)=x e^{y}$.
(a) Find the rate of change of $f$ at $P(1,0)$ in the direction from $P$ to $Q(-1,2)$.
(b) In what direction does $f$ have the maximum rate of change? What is the maximum rate of change?

## Solution.

Ans: (a) 0; (b) $\sqrt{2}$
Remark 6.21. Let $\mathbf{u}=\frac{\nabla f(\mathbf{x})}{|\nabla f(\mathbf{x})|}$, the unit vector in the gradient direction. Then

$$
\begin{equation*}
D_{\mathbf{u}} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot \mathbf{u}=\nabla f(\mathbf{x}) \cdot \frac{\nabla f(\mathbf{x})}{|\nabla f(\mathbf{x})|}=|\nabla f(\mathbf{x})| . \tag{6.9}
\end{equation*}
$$

This implies that the directional derivative is maximized in the gradient direction.

Claim 6.22. The gradient direction is the direction where the function changes fastest, more precisely, increases fastest!

### 6.3. Optimization: Method of Lagrange Multipliers

Recall: (Claim 6.22) The gradient direction is the direction where the function changes fastest, more precisely, increases fastest!

## Level Curves.

Example 6.23. Consider the unit circle, the circle of radius 1:

$$
\begin{equation*}
F(x, y)=x^{2}+y^{2}=1 . \tag{6.10}
\end{equation*}
$$

What can you say about the gradient of $F, \nabla F$ ?
Solution. The curve can be parametrized as

$$
\begin{equation*}
\boldsymbol{r}(t)=\langle x(t), y(t)\rangle=\langle\cos t, \sin t\rangle, \quad 0 \leq t \leq 2 \pi \tag{6.11}
\end{equation*}
$$

- Apply the Chain Rule to have

$$
\frac{d}{d t} F=F_{x} \frac{d x}{d t}+F_{y} \frac{d y}{d t}=0,
$$

and therefore

$$
\begin{equation*}
\nabla F \cdot\langle-\sin t, \cos t\rangle=0 \tag{6.12}
\end{equation*}
$$

- Note that $\langle-\sin t, \cos t\rangle=\boldsymbol{r}^{\prime}(t)$ is the tangential direction to the unit circle. Thus $\nabla F$ must be normal to the curve.
- Indeed,

$$
\begin{equation*}
\nabla F=\langle 2 x, 2 y\rangle \tag{6.13}
\end{equation*}
$$

which is normal to the curve and the fastest increasing direction.
Claim 6.24. Given a level curve $F(\mathrm{x})=k$, the gradient vector $\boldsymbol{\nabla} \boldsymbol{F}(\mathrm{x})$ is normal to the curve and pointing the fastest increasing direction.

### 6.3.1. Optimization Problems with Equality Constraints

We first consider Lagrange's method to solve the problem of the form

$$
\begin{equation*}
\max _{\mathbf{x}} f(\mathbf{x}) \quad \text { subj.to } \quad g(\mathbf{x})=c \tag{6.14}
\end{equation*}
$$




Figure 6.4: The method of Lagrange multipliers in $\mathbb{R}^{2}: \nabla f / / \nabla g$, at maximum.

Strategy 6.25. (Method of Lagrange multipliers). For the maximum and minimum values of $f(x, y, z)$ subject to $g(x, y, z)=c$,
(a) Find all values of $(x, y, z)$ and $\lambda$ such that

$$
\begin{equation*}
\nabla f(x, y, z)=\lambda \nabla g(x, y, z) \text { and } g(x, y, z)=c \tag{6.15}
\end{equation*}
$$

(b) Evaluate $f$ at all these points, to find the maximum and minimum.

Example 6.26. A topless rectangular box is made from $12 \mathrm{~m}^{2}$ of cardboard. Find the dimensions of the box that maximizes the volume of the box.
Solution. Maximize $V=x y z$ subj.to $2 x z+2 y z+x y=12$.

$$
\text { Ans: } 4(x=y=2 z=2)
$$

Example 6.27. Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.
Solution. $\nabla f=\lambda \nabla g \Longrightarrow\left[\begin{array}{l}2 x \\ 4 y\end{array}\right]=\lambda\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$. Therefore, $\left\{\begin{array}{l}2 x=2 x \lambda \\ 4 y=2 y \lambda \\ x^{2}+y^{2}=1\end{array}\right.$
From (1), $x=0$ or $\lambda=1$.

## Example 6.28. (Continuation of Example 6.27)

Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the disk $x^{2}+y^{2} \leq 1$.
Solution. Hint: You may use Lagrange multipliers when $x^{2}+y^{2}=1$.

Ans: min: $f(0,0)=0 ; f(0, \pm 1)=2$

## Remark 6.29. The Method of Lagrange Multipliers

- (Geometric Formula) For the optimization problem (6.14):

$$
\begin{equation*}
\max _{\mathbf{x}} f(\mathbf{x}) \quad \text { subj.to } \quad g(\mathbf{x})=c \tag{6.16}
\end{equation*}
$$

the method finds values of x and $\lambda$ such that

$$
\begin{equation*}
\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x}) \text { and } g(\mathbf{x})=c . \tag{6.17}
\end{equation*}
$$

- (Interpretation by Calculus) It can be interpreted as follows: Find the critical points of

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \lambda) \xlongequal{\text { def }} f(\mathbf{x})-\lambda(g(\mathbf{x})-c) \tag{6.18}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) & =\nabla f(\mathbf{x})-\lambda \nabla g(\mathbf{x}) \\
\frac{\partial}{\partial \lambda} \mathcal{L}(\mathbf{x}, \lambda) & =g(\mathbf{x})-c \tag{6.19}
\end{align*}
$$

By equating the right-side with zero, we obtain (6.17).
The function $\mathcal{L}(\mathrm{x}, \lambda)$ is called the Lagrangian for the problem (6.16).

### 6.3.2. Optimization Problems with Inequality Constraints



Figure 6.5: $\min _{x} x^{2}$ subj.to $x \geq 1$.

For simplicity, consider

$$
\begin{equation*}
\min _{x} x^{2} \quad \text { subj.to } x \geq 1 \tag{6.20}
\end{equation*}
$$

Rewriting the constraint

$$
x-1 \geq 0,
$$

we formulate the Lagrangian:

$$
\begin{equation*}
\mathcal{L}(x, \alpha)=x^{2}-\alpha(x-1) . \tag{6.21}
\end{equation*}
$$

Now, consider

$$
\begin{equation*}
\min _{x} \max _{\alpha} \mathcal{L}(x, \alpha) \text { subj.to } \alpha \geq 0 . \tag{6.22}
\end{equation*}
$$

Claim 6.30. The minimization problem (6.20) is equivalent to the minimax problem (6.22).

Proof. (1) Let $x>1 . \Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=0$ and $\alpha^{*}=0$. Thus,

$$
\mathcal{L}(x, \alpha)=x^{2} . \text { (original objective) }
$$

(2) Let $x=1 . \Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=0$ and $\alpha$ is arbitrary. Thus, again,

$$
\mathcal{L}(x, \alpha)=x^{2} . \text { (original objective) }
$$

(3) Let $x<1$. $\Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=\infty$. However, $\min _{x}$ won't make this happen! $\left(\min _{x}\right.$ is fighting $\left.\max _{\alpha}\right)$ That is, when $x<1$, the objective $\mathcal{L}(x, \alpha)$ becomes huge as $\alpha$ grows; then, $\min _{x}$ will push $x \nearrow 1$ or increase it to become $x \geq 1$. In other words, $\min _{x}$ forces $\max _{\alpha}$ to behave, so constraints will be satisfied.

## Remark 6.31. A Formal Argument for the Equivalence

Let $f(x)=x^{2}$ and $\boldsymbol{f}^{*}$ be the optimal value of the problem (6.20):

$$
\begin{equation*}
\min _{x} f(x) \quad \text { subj.to } x \geq 1 . \tag{6.23}
\end{equation*}
$$

Then it is clear to see

$$
\begin{align*}
& x \geq 1 \Rightarrow \mathcal{L}(x, \alpha)=f(x)-\alpha(x-1) \leq f(x) \Rightarrow \max _{\alpha \geq 0} \mathcal{L}(\mathbf{x}, \alpha)=\mathbf{f}(\mathbf{x}) \\
& x \nsupseteq 1 \Rightarrow \max _{\alpha \geq 0} \mathcal{L}(\mathbf{x}, \alpha)=\infty \tag{6.24}
\end{align*}
$$

Thus

$$
\begin{equation*}
\min _{x} \max _{\alpha \geq 0} \mathcal{L}(x, \alpha)=\min _{x \geq 1} f(x)=f^{*}, \tag{6.25}
\end{equation*}
$$

where $\min _{x}$ does not require $x$ to satisfy $x \geq 1$.
The above analysis implies that the (original) minimization problem (6.23) is equivalent to the minimax problem.

Recall: The minimax problem (6.22), which is equivalent to the (original) primal problem:

$$
\begin{equation*}
\min _{x} \max _{\alpha} \mathcal{L}(x, \alpha) \quad \text { subj.to } \quad \alpha \geq 0, \quad \text { (Primal) } \tag{6.26}
\end{equation*}
$$

where

$$
\mathcal{L}(x, \alpha)=x^{2}-\alpha(x-1) .
$$

Definition 6.32. The dual problem of (6.26) is formulated by swapping $\min _{x}$ and $\max _{\alpha}$ as follows:

$$
\begin{equation*}
\max _{\alpha} \min _{x} \mathcal{L}(x, \alpha) \quad \text { subj.to } \quad \alpha \geq 0, \quad \text { (Dual) } \tag{6.27}
\end{equation*}
$$

In the maximin problem, the term $\min _{x} \mathcal{L}(x, \alpha)$ is called the Lagrange dual function and the Lagrange multiplier $\alpha$ is also called the dual variable.

How to solve it'. For the Lagrange dual function $\min _{x} \mathcal{L}(x, \alpha)$, the minimum occurs where the gradient is equal to zero.

$$
\begin{equation*}
\frac{d}{d x} \mathcal{L}(x, \alpha)=2 x-\alpha=0 \Rightarrow x=\frac{\alpha}{2} . \tag{6.28}
\end{equation*}
$$

Plugging this to $\mathcal{L}(x, \alpha)$, we have

$$
\mathcal{L}(x, \alpha)=\left(\frac{\alpha}{2}\right)^{2}-\alpha\left(\frac{\alpha}{2}-1\right)=\alpha-\frac{\alpha^{2}}{4} .
$$

We can rewrite the dual problem (6.27) as

$$
\begin{equation*}
\max _{\alpha \geq 0}\left[\alpha-\frac{\alpha^{2}}{4}\right] . \quad \text { (Dual) } \tag{6.29}
\end{equation*}
$$

$\Rightarrow$ the maximum is 1 when $\alpha^{*}=2$ (for the dual problem).
Plugging $\alpha=\alpha^{*}$ into (6.28) to get $x^{*}=1$. Or, using the Lagrangian objective, we have

$$
\begin{equation*}
\mathcal{L}(x, \alpha)=x^{2}-2(x-1)=(x-1)^{2}+1 . \tag{6.30}
\end{equation*}
$$

$\Rightarrow$ the minimum is 1 when $x^{*}=1$ (for the primal problem).

## Multiple Constraints

Consider the problem of the form

$$
\begin{equation*}
\max _{\mathbf{x}} f(\mathbf{x}) \quad \text { subj.to } \quad g(\mathbf{x})=c \text { and } h(\mathbf{x})=d \tag{6.31}
\end{equation*}
$$

Then, at extrema we must have

$$
\begin{equation*}
\nabla f \in \operatorname{Plane}(\nabla g, \nabla h):=\left\{c_{1} \nabla g+c_{2} \nabla h\right\} . \tag{6.32}
\end{equation*}
$$

Thus (6.31) can be solved by finding all values of $(x, y, z)$ and $(\lambda, \mu)$ such that

$$
\begin{align*}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z) \\
g(x, y, z) & =c  \tag{6.33}\\
h(x, y, z) & =d
\end{align*}
$$

Example 6.33. Find the maximum value of the function $f(x, y, z)=z$ on the curve of the intersection of the cone $2 x^{2}+2 y^{2}=z^{2}$ and the plane $x+y+z=4$.
Solution. Letting $g=2 x^{2}+2 y^{2}-z^{2}=0$ (4) and $h=x+y+z-4=0$ (5), we have

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
4 x \\
4 y \\
-2 z
\end{array}\right]+\mu\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \Longrightarrow\left\{\begin{array}{rrr}
0= & 4 \lambda x+\mu(1) \\
0= & 4 \lambda y+\mu(2) \\
1= & -2 \lambda z+\mu & (3)
\end{array}\right.
$$

From (1) and (2), we conclude $x=y$; using (4), we have $z= \pm 2 x$.

### 6.4. The Gradient Descent Method

### 6.4.1. Introduction to the Gradient Descent Method

Problem 6.34. (Minimization Problem) Let $\Omega \subset \mathbb{R}^{n}, n \geq 1$. Given a real-valued function $f: \Omega \rightarrow \mathbb{R}$, the general problem of finding the value that minimizes $f$ is formulated as follows.

$$
\begin{equation*}
\min _{\mathbf{x} \in \Omega} f(\mathbf{x}) . \tag{6.34}
\end{equation*}
$$

In this context, $f$ is the objective function (sometimes referred to as loss function or cost function). $\Omega \subset \mathbb{R}^{n}$ is the domain of the function (also known as the constraint set).

In this section, we solve the minimization problem (6.34) iteratively as follows: Given an initial guess $\mathrm{x}_{0} \in \mathbb{R}^{n}$, find successive approximations $\mathbf{x}_{k} \in \mathbb{R}^{n}$ of the form

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\gamma_{k} \mathbf{p}_{k}, \quad k=0,1, \cdots, \tag{6.35}
\end{equation*}
$$

where $\mathbf{p}_{k}$ is the search direction and $\gamma_{k}>0$ is the step length.
Note: The gradient descent method is also known as the steepest descent method or the Richardson's method.

- Recall that we would solve the minimization problem (6.34) using iterative algorithms of the form (6.35).


## Derivation of the GD method

- Given $\mathrm{x}_{k+1}$ as in (6.35), we have by Taylor's formula: for some $\boldsymbol{\xi}$,

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & =f\left(\mathbf{x}_{k}+\gamma_{k} \mathbf{p}_{k}\right) \\
& =f\left(\mathbf{x}_{k}\right)+\gamma_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\frac{\gamma_{k}^{2}}{2} \mathbf{p}_{k} \cdot f^{\prime \prime}(\boldsymbol{\xi}) \mathbf{p}_{k} \tag{6.36}
\end{align*}
$$

- Assume that $f^{\prime \prime}$ is bounded. Then

$$
f\left(\mathbf{x}_{k+1}\right)=f\left(\mathbf{x}_{k}\right)+\gamma_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\mathcal{O}\left(\gamma_{k}^{2}\right), \quad \text { as } \gamma_{k} \rightarrow 0
$$

- The Goal: To find $\mathbf{p}_{k}$ and $\gamma_{k}$ such that

$$
\begin{equation*}
f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right), \tag{6.37}
\end{equation*}
$$

which can be achieved if

$$
\begin{equation*}
f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}<0 \tag{6.38}
\end{equation*}
$$

and either $\gamma_{k}$ is sufficiently small or $f^{\prime \prime}(\boldsymbol{\xi})$ is nonnegative.

- Choice: Let $f^{\prime}\left(\mathrm{x}_{k}\right) \neq 0$. If we choose

$$
\begin{equation*}
\mathbf{p}_{k}=-f^{\prime}\left(\mathbf{x}_{k}\right), \tag{6.39}
\end{equation*}
$$

then

$$
\begin{equation*}
f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}=-\left\|f^{\prime}\left(\mathbf{x}_{k}\right)\right\|^{2}<0 \tag{6.40}
\end{equation*}
$$

which satisfies (6.38) and therefore (6.37).

- Summary: In the GD method, the search direction is the negative gradient, the steepest descent direction.


## The Gradient Descent Method in 1D

Algorithm 6.35. Consider the minimization problem in 1D:

$$
\begin{equation*}
\min _{x} f(x), \quad x \in S, \tag{6.41}
\end{equation*}
$$

where $S$ is a closed interval in $\mathbb{R}$. Then its gradient descent method reads

$$
\begin{equation*}
x_{k+1}=x_{k}-\gamma f^{\prime}\left(x_{k}\right) \tag{6.42}
\end{equation*}
$$

Picking the step length $\gamma$ : Assume that the step length was chosen to be independent of $n$, although one can play with other choices as well. The question is how to select $\gamma$ in order to make the best gain of the method. To turn the right-hand side of (6.42) into a more manageable form, we invoke Taylor's Theorem: ${ }^{1}$

$$
\begin{equation*}
f(x+t)=f(x)+t f^{\prime}(x)+\int_{x}^{x+t}(x+t-s) f^{\prime \prime}(s) d s \tag{6.43}
\end{equation*}
$$

Assuming that $\left|f^{\prime \prime}(s)\right| \leq L$, we have

$$
f(x+t) \leq f(x)+t f^{\prime}(x)+\frac{t^{2}}{2} L
$$

Now, letting $x=x_{k}$ and $t=-\gamma f^{\prime}\left(x_{k}\right)$ reads

$$
\begin{align*}
f\left(x_{k+1}\right) & =f\left(x_{k}-\gamma f^{\prime}\left(x_{k}\right)\right) \\
& \leq f\left(x_{k}\right)-\gamma f^{\prime}\left(x_{k}\right) f^{\prime}\left(x_{k}\right)+\frac{1}{2} L\left[\gamma f^{\prime}\left(x_{k}\right)\right]^{2}  \tag{6.44}\\
& =f\left(x_{k}\right)-\left[f^{\prime}\left(x_{k}\right)\right]^{2}\left(\gamma-\frac{L}{2} \gamma^{2}\right) .
\end{align*}
$$

The gain (learning) from the method occurs when

$$
\begin{equation*}
\gamma-\frac{L}{2} \gamma^{2}>0 \quad \Rightarrow \quad 0<\gamma<\frac{2}{L}, \tag{6.45}
\end{equation*}
$$

and it will be best when $\gamma-\frac{L}{2} \gamma^{2}$ is maximal. This happens at the point

$$
\begin{equation*}
\gamma=\frac{1}{L} . \tag{6.46}
\end{equation*}
$$

[^0]Thus an effective gradient descent method (6.42) can be written as

$$
\begin{equation*}
x_{k+1}=x_{k}-\gamma f^{\prime}\left(x_{k}\right)=x_{k}-\frac{1}{L} f^{\prime}\left(x_{k}\right)=x_{k}-\frac{1}{\max \left|f^{\prime \prime}(x)\right|} f^{\prime}\left(x_{k}\right) . \tag{6.47}
\end{equation*}
$$

Furthermore, it follows from (6.44) that for $\gamma=1 / L$,

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{\gamma}{2}\left[f^{\prime}\left(x_{k}\right)\right]^{2} \tag{6.48}
\end{equation*}
$$

## Remark 6.36. (Convergence of gradient descent method).

Thus it is obvious that the method defines a sequence of points $\left\{x_{k}\right\}$ along which $\left\{f\left(x_{k}\right)\right\}$ decreases.

- If $f$ is bounded from below and the level sets of $f$ are bounded, $\left\{f\left(x_{k}\right)\right\}$ converges; so does $\left\{x_{k}\right\}$. That is, there is a point $\widehat{x}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{k}=\widehat{x} . \tag{6.49}
\end{equation*}
$$

- Now, we can rewrite (6.48) as

$$
\begin{equation*}
\left[f^{\prime}\left(x_{k}\right)\right]^{2} \leq 2 L\left[f\left(x_{k}\right)-f\left(x_{k+1}\right)\right] \tag{6.50}
\end{equation*}
$$

Since $f\left(x_{k}\right)-f\left(x_{k+1}\right) \rightarrow 0$, also $f^{\prime}\left(x_{k}\right) \rightarrow 0$.

- When $f^{\prime}$ is continuous, using (6.49) reads

$$
\begin{equation*}
f^{\prime}(\widehat{x})=\lim _{n \rightarrow \infty} f^{\prime}\left(x_{k}\right)=0, \tag{6.51}
\end{equation*}
$$

which implies that the limit $\widehat{x}$ is a critical point.

- The method thus generally finds a critical point but that could still be a local minimum or a saddle point. Which it is cannot be decided at this level of analysis.


### 6.4.2. The Gradient Descent Method in Multi-Dimensions

Example 6.37. (Rosenbrock function). For example, the Rosenbrock function in the two-dimensional (2D) space is defined as ${ }^{2}$

$$
\begin{equation*}
f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2} . \tag{6.52}
\end{equation*}
$$

Use the GD method to find the minimizer, starting with $\mathbf{x}_{0}=(-1,2)$.


Figure 6.6: Plots of the Rosenbrock function $f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}$.

```
import numpy as np; import time
itmax = 10000; tol = 1.e-7; gamma = 1/500
x0 = np.array([-1., 2.])
def rosen(x):
 return (1.-x[0])**2+100*(x[1]-x[0]**2)**2
def rosen_grad(x):
 h = 1.e-5;
 g1 = (rosen([x[0]+h,x[1]]) - rosen([x[0]-h,x[1]]))/(2*h)
 g2 = (rosen([x[0],x[1]+h]) - rosen([x[0],x[1]-h]))/(2*h)
```

[^1]```
    return np.array([g1,g2])
# Now, GD iteration begins
if __name__ == '__main__':
    t0 = time.time()
    x=x0
    for it in range(itmax):
        corr = gamma*rosen_grad(x)
        x = x - corr
        if np.linalg.norm(corr)<tol: break
    print('GD Method: it = %d; E-time = %.4f' %(it+1,time.time()-t0))
    print(x)
```

GD Method: it $=7687$; E-time $=0.0521$
[0.99994416 0.99988809]

The Choice of Step Size and Line Search

Note: The convergence of the gradient descent method can be extremely sensitive to the choice of step size. It often requires to choose the step size adaptively: the step size would better be chosen small in regions of large variability of the gradient, while in regions with small variability we would like to take it large.

Strategy 6.38. Backtracking Line Search procedures allow to select a step size depending on the current iterate and the gradient. In this procedure, we select an initial (optimistic) step size γ_{k} and evaluate the following inequality (known as sufficient decrease condition):

$$
\begin{equation*}
f\left(\mathbf{x}_{k+1}\right)=f\left(\mathbf{x}_{k}-\gamma_{k} \nabla f\left(\mathbf{x}_{k}\right)\right) \leq f\left(\mathbf{x}_{k}\right)-\frac{\gamma_{k}}{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \tag{6.53}
\end{equation*}
$$

If this inequality is verified, the current step size is kept. If not, the step size is divided by 2 (or any number larger than 1) repeatedly until (6.53) is verified. To get a better understanding, refer to (6.48) on p. 184.

The gradient descent algorithm with backtracking line search then becomes
Algorithm 6.39. (The Gradient Descent Algorithm, with Backtracking Line Search).
input: initial guess \mathbf{x}_{0}, step size $\gamma>0$;
for $k=0,1,2, \cdots$ do
initial step size estimate γ_{k};
while (TRUE) do
if $f\left(\mathbf{x}_{k}-\gamma_{k} \nabla f\left(\mathbf{x}_{k}\right)\right) \leq f\left(\mathbf{x}_{k}\right)-\frac{\gamma_{k}}{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}$
break;
else $\gamma_{k}=\gamma_{k} / 2$;
end while
$\mathbf{x}_{k+1}=\mathbf{x}_{k}-\gamma_{k} \nabla f\left(\mathbf{x}_{k}\right) ;$
end for
return x_{k+1};

Remark 6.40. Incorporated with

- either a line search
- or partial updates,
the gradient descent method is the major computational algorithm for various machine learning tasks.

Note: The gradient descent method with partial updates is called the stochastic gradient descent (SGD) method.

6.4.3. The Gradient Descent Method for Positive Definite Linear Systems

Definition 6.41. A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is said to be positive definite if

$$
\begin{equation*}
\mathbf{x}^{T} A \mathbf{x}=\sum_{i, j=1}^{n} x_{i} a_{i j} x_{j}>0, \quad \forall \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{x} \neq 0 . \tag{6.55}
\end{equation*}
$$

Theorem 6.42. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then A is positive definite if and only if all eigenvalues of A are positive.

Remark 6.43. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite and consider

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{6.56}
\end{equation*}
$$

Then the algebraic system admits a unique solution $\mathrm{x} \in \mathbb{R}^{n}$, which is equivalently characterized by

$$
\begin{equation*}
\mathbf{x}=\arg \min _{\boldsymbol{\eta} \in \mathbb{R}^{n}} f(\boldsymbol{\eta}), \quad f(\boldsymbol{\eta})=\frac{1}{2} \boldsymbol{\eta} \cdot A \boldsymbol{\eta}-\mathbf{b} \cdot \boldsymbol{\eta} \tag{6.57}
\end{equation*}
$$

For the algebraic system (6.56), Krylov subspace methods update the iterates as follows.
Given an initial guess $\mathbf{x}_{0} \in \mathbb{R}^{n}$, find successive approximations $\mathbf{x}_{k} \in \mathbb{R}^{n}$ of the form

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}, \quad k=0,1, \cdots, \tag{6.58}
\end{equation*}
$$

where \mathbf{p}_{k} is the search direction and $\alpha_{k}>0$ is the step length.

- Different methods differ in the choice of the search direction and the step length.
- In this subsection, we focus on the gradient descent method.
- For other Krylov subspace methods, see e.g. [1, 7].

Derivation of the GD Method for (6.57)

- We denote the gradient and Hessian of f by f^{\prime} and $f^{\prime \prime}$, respectively:

$$
\begin{equation*}
f^{\prime}(\boldsymbol{\eta})=A \boldsymbol{\eta}-\mathbf{b}, \quad f^{\prime \prime}(\boldsymbol{\eta})=A . \tag{6.59}
\end{equation*}
$$

- Given x_{k+1} as in (6.58), we have by Taylor's formula

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & =f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \\
& =f\left(\mathbf{x}_{k}\right)+\alpha_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\frac{\alpha_{k}^{2}}{2} \mathbf{p}_{k} \cdot f^{\prime \prime}(\boldsymbol{\xi}) \mathbf{p}_{k} \tag{6.60}\\
& =f\left(\mathbf{x}_{k}\right)+\alpha_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\frac{\alpha_{k}^{2}}{2} \mathbf{p}_{k} \cdot A \mathbf{p}_{k}
\end{align*}
$$

- Since A is bounded,

$$
f\left(\mathbf{x}_{k+1}\right)=f\left(\mathbf{x}_{k}\right)+\alpha_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\mathcal{O}\left(\alpha_{k}^{2}\right), \quad \text { as } \alpha_{k} \rightarrow 0
$$

- The goal is to find \mathbf{p}_{k} and α_{k} such that

$$
\begin{equation*}
f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right), \tag{6.61}
\end{equation*}
$$

which can be achieved if

$$
\begin{equation*}
f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}<0 \tag{6.62}
\end{equation*}
$$

and either γ_{k} is sufficiently small or $A=f^{\prime \prime}(\boldsymbol{\xi})$ is nonnegative.

- Choice: When $f^{\prime}\left(x_{k}\right) \neq 0$, (6.62) holds true, if we choose:

$$
\begin{equation*}
\mathbf{p}_{k}=-f^{\prime}\left(\mathbf{x}_{k}\right)=\mathbf{b}-A \mathbf{x}_{k}=: \boldsymbol{r}_{k} \tag{6.63}
\end{equation*}
$$

That is, the search direction is the negative gradient, the steepest descent direction.

Optimal step length

We may determine α_{k} such that

$$
\begin{equation*}
f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)=\min _{\alpha} f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right) \tag{6.64}
\end{equation*}
$$

in which case α_{k} is said to be optimal.
If α_{k} is optimal, then

$$
\begin{align*}
0 & =\left.\frac{\mathrm{d}}{\mathrm{~d} \alpha} f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)\right|_{\alpha=\alpha_{k}}=f^{\prime}\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \cdot \mathbf{p}_{k} \\
& =\left(A\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)-\mathbf{b}\right) \cdot \mathbf{p}_{k} \tag{6.65}\\
& =\left(A \mathbf{x}_{k}-\mathbf{b}\right) \cdot \mathbf{p}_{k}+\alpha_{k} \mathbf{p}_{k} \cdot A \mathbf{p}_{k}
\end{align*}
$$

So,

$$
\begin{equation*}
\alpha_{k}=\frac{\boldsymbol{r}_{k} \cdot \mathbf{p}_{k}}{\mathbf{p}_{k} \cdot A \mathbf{p}_{k}} \tag{6.66}
\end{equation*}
$$

Algorithm 6.44. (GD Algorithm)

Select $\mathrm{x}_{0}, \varepsilon$;
$\boldsymbol{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}$;
Do $k=0,1, \cdots$

$$
\begin{aligned}
& \alpha_{k}=\left\|\boldsymbol{r}_{k}\right\|^{2} / \boldsymbol{r}_{k} \cdot A \boldsymbol{r}_{k} ; \quad \text { (GD1) } \\
& \mathrm{x}_{k+1}=\mathrm{x}_{k}+\alpha_{k} \boldsymbol{r}_{k} ; \quad \text { (GD2) } \\
& \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha_{k} A \boldsymbol{r}_{k} ; \quad \text { (GD3) } \\
& \text { if }\left\|\boldsymbol{r}_{\mathbf{k}+\mathbf{1}}\right\|<\varepsilon\left\|\boldsymbol{r}_{\mathbf{0}}\right\| \text {, stop; } \\
& \text { End Do }
\end{aligned}
$$

Note: The equation in (GD3) is equivalent to

$$
\begin{equation*}
\boldsymbol{r}_{k+1}=\mathbf{b}-A \mathbf{x}_{k+1} \tag{6.68}
\end{equation*}
$$

see Exercise 6.4, p.192.

Recall: (Definition 5.45) Let $A \in \mathbb{R}^{n \times n}$ be invertible. Then

$$
\begin{equation*}
\kappa(A) \equiv\|A\|\left\|A^{-1}\right\| \tag{6.69}
\end{equation*}
$$

is called the condition number of A, associated to the matrix norm.

Remark 6.45. When A is symmetric positive definite (SPD), the condition number becomes

$$
\begin{equation*}
\kappa(A)=\frac{\lambda_{\max }}{\lambda_{\min }}, \quad(A: \mathrm{SPD}) \tag{6.70}
\end{equation*}
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the minimum and the maximum eigenvalues of A, respectively.

Theorem 6.46. (Convergence of the GD method): The GD method converges, satisfying

$$
\begin{equation*}
\left\|\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right\| \leq\left(1-\frac{1}{\kappa(A)}\right)^{k}\left\|\mathrm{x}-\mathrm{x}_{\mathbf{0}}\right\| . \tag{6.71}
\end{equation*}
$$

Thus, the number of iterations required to reduce the error by a factor of ε is in the order of the condition number of A :

$$
\begin{equation*}
k \geq \kappa(A) \log \frac{1}{\varepsilon} \tag{6.72}
\end{equation*}
$$

Exercises for Chapter 6

6.1. Find the partial derivatives of the functions.
(a) $z=y \cos (x y)$
(c) $w=\ln (x+2 y+3 z)$
(b) $f(u, v)=\left(u v-v^{3}\right)^{2}$
(d) $u=\sin \left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)$
Ans: (d) $\partial u / \partial x_{i}=2 x_{i} \cdot \cos \left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)$
6.2. Use Lagrange multipliers to find extreme values of the function subject to the given constraint.
(a) $f(x, y)=x y ; \quad x^{2}+4 y^{2}=2$
(b) $f(x, y)=x+y+2 z ; \quad x^{2}+y^{2}+z^{2}=6$

Ans: max: $f(1,1,2)=6$; $\min : f(-1,-1,-2)=-6$
6.3. Use the method of Lagrange multipliers to solve the problem.

$$
\min _{x, y} x_{1}^{2}+x_{2}^{2}, \quad \text { subj.to } \quad\left\{\begin{array}{l}
x_{1} \geq 1 \tag{6.73}\\
x_{2} \geq 2
\end{array}\right.
$$

Hint: You may start with the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(x_{1}, x_{2}, \alpha_{1}, \alpha_{2}\right)=x_{1}^{2}+x_{2}^{2}-\alpha_{1}\left(x_{1}-1\right)-\alpha_{2}\left(x_{2}-2\right), \quad \alpha_{1}, \alpha_{2} \geq 0 \tag{6.74}
\end{equation*}
$$

and consider the dual problem $\max _{\boldsymbol{\alpha} \geq 0} \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha})$, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}\right)$. Then

$$
\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha})=\left[\begin{array}{l}
2 x_{1}-\alpha_{1} \tag{6.75}\\
2 x_{2}-\alpha_{2}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{1} / 2 \\
\alpha_{2} / 2
\end{array}\right]
$$

Ans: 5

6.4. When the boundary-value problem

$$
\left\{\begin{array}{l}
-u_{x x}=-2, \quad 0<x<4 \tag{6.76}\\
u_{x}(0)=0, \quad u(4)=16
\end{array}\right.
$$

is discretized by the second-order finite difference method with $h=1$, the algebraic system reads $A \mathrm{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrrr}
2 & -2 & 0 & 0 \tag{6.77}\\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-2 \\
-2 \\
-2 \\
14
\end{array}\right]
$$

and the exact solution is $\mathbf{x}=[0,1,4,9]^{T}$.
(a) Find the condition number of A.
(b) Prove that (GD3) in the GD algorithm, Algorithm 6.44, is equivalent to 6.68 . Why do we consider such a manipulation?
(c) Implement the GD algorithm to find a numerical solution in 6-digit accuracy.

Сhapter 7
 Least-Squares and Regression Analysis

Contents of Chapter 7

7.1. The Least-Squares Problem . 194
7.2. Regression Analysis . 198
7.3. Scene Analysis with Noisy Data: Weighted Least-Squares and RANSAC 204

Exercises for Chapter 7 . 209

7.1. The Least-Squares Problem

Definition 7.1. For a given dataset $\left\{\left(x_{i}, y_{i}\right)\right\}$, let a continuous function $p(x)$ be constructed.
(a) p is an interpolation if it passes (interpolates) all the data points.
(b) p is an approximation if it approximates (represents) the data points.

Dataset, in Maple

```
with(LinearAlgebra) : with(CurveFitting):
\(\mathrm{n}:=100:\) roll \(:=\) rand (-n..n):
\(m:=10:\) xy \(:=\operatorname{Matrix}(m, 2)\) :
for \(i\) to \(m\) do
    xy[i, 1] := i;
    \(x y[i, 2]:=i+\operatorname{roll}() / n\);
end do:
plot(xy,color=red, style=point, symbol=solidbox, symbolsize=20);
```


$$
\begin{aligned}
& p:=\text { PolynomialInterpolation }(x y, x) ; \\
& \begin{aligned}
& \frac{1507}{12096000} x^{9}-\frac{27977}{4032000} x^{8}+\frac{36751}{224000} x^{7}-\frac{68851}{32000} x^{6}+\frac{1975291}{115200} x^{5} \\
&-\frac{5471791}{64000} x^{4}+\frac{199836041}{756000} x^{3}-\frac{486853651}{1008000} x^{2}+\frac{39227227}{84000} x-\frac{1771}{10} \\
& L:=\text { CurveFitting[LeastSquares] }(x y, x) ; \\
&-\frac{121}{500}+\frac{523}{500} x
\end{aligned}
\end{aligned}
$$

Note: Interpolation may be too oscillatory to be useful. Furthermore, it may not be defined.

The Least-Squares (LS) Problem

Note: Let A is an $m \times n$ matrix. Then $A \mathbf{x}=\mathbf{b}$ may have no solution, particularly when $m>n$. In real-world,

- $m \gg n$, where m represents the number of data points and n denotes the dimension of the points
- Need to find a best solution for $A \mathrm{x} \approx \mathrm{b}$

Definition 7.2. Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and $\mathbf{b} \in \mathbb{R}^{m}$. The least-squares problem is to find $\widehat{\mathrm{x}} \in \mathbb{R}^{n}$ which minimizes $\|A \mathrm{x}-\mathbf{b}\|_{2}$:

$$
\begin{align*}
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}, \\
& \text { or, equivalently }, \tag{7.1}\\
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2},
\end{align*}
$$

where $\widehat{\mathrm{x}}$ is called a least-squares solution of $A \mathrm{x}=\mathrm{b}$.

The Method of Normal Equations

Theorem 7.3. The set of $L S$ solutions of $A \mathrm{x}=\mathrm{b}$ coincides with the nonempty set of solutions of the normal equations

$$
\begin{equation*}
A^{T} A \mathbf{x}=A^{T} \mathbf{b} \tag{7.2}
\end{equation*}
$$

Method of Calculus

Let $\mathcal{J}(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|^{2}=(A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b})$ and $\widehat{\mathbf{x}}$ a minimizer of $\mathcal{J}(\mathbf{x})$.

- Then we must have

$$
\begin{equation*}
\nabla_{\mathrm{x}} \mathcal{J}(\widehat{\mathbf{x}})=\left.\frac{\partial \mathcal{J}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\widehat{\mathbf{x}}}=\mathbf{0} \tag{7.3}
\end{equation*}
$$

- Let's compute the gradient of \mathcal{J}.

$$
\begin{align*}
\frac{\partial \mathcal{J}(\mathbf{x})}{\partial \mathbf{x}} & =\frac{\partial\left((A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b})\right)}{\partial \mathbf{x}} \\
& =\frac{\partial\left(\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{x}^{T} A^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b}\right)}{\partial \mathbf{x}} \tag{7.4}\\
& =2 A^{T} A \mathbf{x}-2 A^{T} \mathbf{b}
\end{align*}
$$

- By setting the last term to zero, we obtain normal equations.

Remark 7.4. Theorem 7.3 implies that LS solutions of $A \mathrm{x}=\mathrm{b}$ are solutions of the normal equations $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$.

- When $A^{T} A$ is not invertible, the normal equations have either no solution or infinitely many solutions.
- So, data acquisition is important, to make it invertible.

Theorem 7.5. (Method of Normal Equations) Let $A \in \mathbb{R}^{m \times n}, m \geq n$. The following statements are logically equivalent:
a. The equation $A \mathbf{x}=\mathbf{b}$ has a unique $L S$ solution for each $\mathbf{b} \in \mathbb{R}^{m}$.
b. The matrix $A^{T} A$ is invertible.
c. Columns of A are linearly independent.

When these statements hold true, the unique $L S$ solution \widehat{x} is given by

$$
\begin{equation*}
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \tag{7.5}
\end{equation*}
$$

Definition 7.6. $A^{+}:=\left(A^{T} A\right)^{-1} A^{T}$ is called the pseudoinverse of A.
Example 7.7. Describe all least squares solutions of the equation $A \mathrm{x}=\mathrm{b}$, given

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

Solution. Let's try to solve the problem with pencil-and-paper.

```
A = [1 1 0; 0 1 0; 0 0 1; 1 0 1];
b = [1; 3; 8; 2];
x = (A'*A)\(A'*b)
```


7.2. Regression Analysis

Definition 7.8. Regression analysis is a set of statistical methods used to estimate relationships between one or more independent variables and a dependent variable.

7.2.1. Regression line

Figure 7.1: A least-squares regression line.

Definition 7.9. Suppose a set of experimental data points are given as

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{m}, y_{m}\right)
$$

such that the graph is close to a line. We (may and must) determine a line

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x \tag{7.6}
\end{equation*}
$$

that is as close as possible to the data points. Then this line is called the least-squares line; it is also called the regression line of y on x and β_{0}, β_{1} are called regression coefficients.

Calculation of Least-Squares Lines

Consider a least-squares (LS) model of the form $y=\beta_{0}+\beta_{1} x$, for a given data set $\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, m\right\}$.

- Then

$$
\begin{array}{ccc|}
\hline \text { Predicted } y \text {-value } & & \left.\begin{array}{|c}
\text { Observed } y \text {-value } \\
\hline \beta_{0}+\beta_{1} x_{1} \\
\\
\beta_{0}+\beta_{1} x_{2} \\
=
\end{array}\right] \tag{7.7}\\
\vdots & & y_{2} \\
\beta_{0}+\beta_{1} x_{m} & = & y_{m} \\
\hline
\end{array}
$$

- It can be equivalently written as

$$
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} \tag{7.8}
\end{equation*}
$$

where

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] .
$$

Here we call X the design matrix, $\boldsymbol{\beta}$ the parameter vector, and y the observation vector.

- Thus the LS solution can be determined by solving the normal equations:

$$
\begin{equation*}
X^{T} X \boldsymbol{\beta}=X^{T} \mathbf{y} \tag{7.9}
\end{equation*}
$$

provided that $X^{T} X$ is invertible.

- The normal equations for the regression line read

$$
\left[\begin{array}{cc}
m & \Sigma x_{i} \tag{7.10}\\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right] .
$$

Remark 7.10. (Pointwise construction of the normal equations)

The normal equations for the regression line in (7.10) can be rewritten
as

$$
\sum_{i=1}^{m}\left[\begin{array}{rr}
1 & x_{i} \tag{7.11}\\
x_{i} & x_{i}^{2}
\end{array}\right] \boldsymbol{\beta}=\sum_{i=1}^{m}\left[\begin{array}{c}
y_{i} \\
x_{i} y_{i}
\end{array}\right]
$$

- The pointwise construction of the normal equation is convenient when either points are first to be searched or weights are applied depending on the point location.
- The idea is applicable for other regression models as well.

Example 7.11. Find the equation $y=\beta_{0}+\beta_{1} x$ of least-squares line that best fits the given points:
$(-1,0),(0,1),(1,2),(2,4)$

Solution.

7.2.2. Least-squares fitting of other curves

Remark 7.12. Consider a regression model of the form

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2},
$$

for a given data set $\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, m\right\}$. Then

| Predicted y-value | Observed y-value
 $\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}$
 $\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}$
 \vdots | y_{1} |
| :---: | :---: | :---: |
| \vdots | | \vdots |
| $\beta_{0}+\beta_{1} x_{m}+\beta_{2} x_{m}^{2}$ | $=$ | y_{m} |

It can be equivalently written as

$$
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} \tag{7.13}
\end{equation*}
$$

where

$$
X=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{m} & x_{m}^{2}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] .
$$

Now, it can be solved through normal equations:

$$
X^{T} X \boldsymbol{\beta}=\left[\begin{array}{ccc}
\Sigma 1 & \Sigma x_{i} & \Sigma x_{i}^{2} \tag{7.14}\\
\Sigma x_{i} & \Sigma x_{i}^{2} & \Sigma x_{i}^{3} \\
\Sigma x_{i}^{2} & \Sigma x_{i}^{3} & \Sigma x_{i}^{4}
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i} \\
\Sigma x_{i}^{2} y_{i}
\end{array}\right]=X^{T} \mathbf{y}
$$

Self-study 7.13. Find an LS curve of the form $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ that best fits the given points:
$(0,1),(1,1),(1,2),(2,3)$.

Solution.

7.2.3. Nonlinear regression: Linearization

Strategy 7.14. For nonlinear models, a change of variables can be applied to get a linear model.

| Model | Change of Variables | Linearization |
| :--- | :---: | :--- | :--- |
| $y=A+\frac{B}{x}$ | $\widetilde{x}=\frac{1}{x}, \widetilde{y}=y$ | $\Rightarrow \widetilde{y}=A+B \widetilde{x}$ |
| $y=\frac{1}{A+B x}$ | $\widetilde{x}=x, \widetilde{y}=\frac{1}{y}$ | $\Rightarrow \widetilde{y}=A+B \widetilde{x}$ |
| $y=C e^{D x}$ | $\widetilde{x}=x, \widetilde{y}=\ln y$ | $\Rightarrow \widetilde{y}=\ln C+D \widetilde{x}$ |
| $y=\frac{1}{A+B \ln x}$ | $\widetilde{x}=\ln x, \widetilde{y}=\frac{1}{y}$ | $\Rightarrow \widetilde{y}=A+B \widetilde{x}$ |

The above table contains just a few examples of linearization; for other nonlinear models, use your imagination and creativity.

Example 7.15. Find the best fitting curve of the form $y=c e^{d x}$ for the data
$\left[\begin{array}{rr}0.1 & 1.9940 \\ 0.2 & 2.0087 \\ 0.3 & 1.8770 \\ 0.4 & 3.5783 \\ 0.5 & 3.9203 \\ 0.6 & 4.7617 \\ 0.7 & 6.7246 \\ 0.8 & 7.1491 \\ 0.9 & 9.5777 \\ 1.0 & 11.5625\end{array}\right]$

Solution. Applying the natural log function (ln) to $y=c e^{d x}$ gives

$$
\begin{equation*}
\ln y=\ln c+d x \tag{7.16}
\end{equation*}
$$

Using the change of variables

$$
Y=\ln y, \quad a_{0}=\ln c, \quad a_{1}=d, \quad X=x
$$

the equation (7.16) reads

$$
\begin{equation*}
Y=a_{0}+a_{1} X \tag{7.17}
\end{equation*}
$$

for which one can apply the linear LS procedure.
Linearized regression, in Maple

```
# The transformed data
xlny := Matrix(m, 2):
for i to m do
    xlny[i, 1] := xy[i, 1];
    xlny[i, 2] := ln(xy[i, 2]);
end do:
# The linear LS
L := CurveFitting[LeastSquares](xlny, x, curve = b*x + a);
    0.295704647799999 + 2.1530740654363654 x
# Back to the original parameters
c := exp(0.295704647799999) = 1.344073123
d := 2.15307406543637:
# The desired nonlinear model
c*exp(d*x);
    1.344073123 exp(2.15307406543637 x)
```


—— LS-model: $\mathrm{y}=\mathrm{c}^{*} \exp (\mathrm{dx})$

7.3. Scene Analysis with Noisy Data: Weighted Least-Squares and RANSAC

Note: Scene analysis is concerned with the interpretation of acquired data in terms of predefined models. It consists of 2 subproblems:

1. Finding the best model (classification problem)
2. Computing the best parameter values
(parameter estimation problem)

- Traditional parameter estimation techniques, such as leastsquares (LS), optimize the model to all data points.
- Those techniques are simple averaging methods, based on the smoothing assumption: There will always be good data points enough to smooth out any gross deviation.
- However, in many interesting parameter estimation problems, the smoothing assumption does not hold; that is, the dataset may involve gross errors such as noise.
- Thus, in order to obtain more reliable model parameters, there must be internal mechanisms to determine which points are matching to the model (inliers) and which points are false matches (outliers).

7.3.1. Weighted Least-Squares

Definition 7.16. When certain data points are more important or more reliable than the others, one may try to compute the coefficient vector with larger weights on more reliable data points. The weighted leastsquares method is an LS method which involves a weight matrix W, often given as a diagonal matrix

$$
\begin{equation*}
W=\operatorname{diag}\left(w_{1}, w_{2}, \cdots, w_{m}\right) \tag{7.18}
\end{equation*}
$$

which can be decided either manually or automatically.

Algorithm 7.17. (Weighted Least-Squares)

- Given data $\left\{\left(x_{i}, y_{i}\right)\right\}, 1 \leq i \leq m$, the best-fitting curve can be found by solving an over-determined algebraic system (7.8):

$$
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} . \tag{7.19}
\end{equation*}
$$

- When a weight matrix is applied, the above system can be written as

$$
\begin{equation*}
W X \boldsymbol{\beta}=W \mathbf{y} \tag{7.20}
\end{equation*}
$$

- Thus its weighted normal equations read

$$
\begin{equation*}
X^{T} W X \boldsymbol{\beta}=X^{T} W \mathbf{y} . \tag{7.21}
\end{equation*}
$$

Example 7.18. Given data, find the LS line with and without a weight. When a weight is applied, weigh the first and the last data point by $1 / 4$.

$$
\mathrm{xy}:=\left[\begin{array}{cccccccccc}
1 . & 2 . & 3 . & 4 . & 5 . & 6 . & 7 . & 8 . & 9 . & 10 . \\
5.89 & 1.92 & 2.59 & 4.41 & 4.49 & 6.22 & 7.74 & 7.07 & 9.05 & 5.7
\end{array}\right]^{T}
$$

Solution.

```
LS := CurveFitting[LeastSquares](xy, x);
    2.7639999999999967 + 0.49890909090909125 x
WLS := CurveFitting[LeastSquares](xy, x,
        weight = [1/4,1,1,1,1,1,1,1,1,1/4]);
    1.0466694879390623 + 0.8019424460431653 x
```


7.3.2. RANdom SAmple Consensus (RANSAC)

The random sample consensus (RANSAC) is one of the most powerful tools for the reconstruction of ground structures from point cloud observations in many applications. The algorithm utilizes iterative search techniques for a set of inliers, to find a proper model for given data.

Algorithm 7.19. (RANSAC) (Fischler-Bolles, 1981) [5]
Input: Measurement set $\boldsymbol{X}=\left\{\mathbf{x}_{i}\right\}$, the error tolerance τ_{e}, the stopping threshold η, and the maximum number of iterations N.

1. Select randomly a minimum point set S, required to determine a hypothesis.
2. Generate a hypothesis $\mathbf{p}=g(S)$.
3. Compute the hypothesis consensus set, fitting within the error tolerance τ_{e} :

$$
\mathcal{C}=\operatorname{inlier}\left(\boldsymbol{X}, \mathbf{p}, \tau_{\mathrm{e}}\right)
$$

4. If $|\mathcal{C}| \geq \gamma=\eta|\boldsymbol{X}|$, then re-estimate a hypothesis $\mathbf{p}=g(\mathcal{C})$ and stop.
5. Otherwise, repeat steps $1-4$ (maximum of N times).

Example 7.20. Let's set a hypothesis for a regression line.

1. Minimum point set S : a set of two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
2. Hypothesis p: $y=a+b x \quad(\Rightarrow a+b x-y=0)$

$$
y=b\left(x-x_{1}\right)+y_{1}=a+b x \Leftarrow b=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, a=y_{1}-b x_{1} .
$$

3. Consensus set \mathcal{C} :

$$
\begin{equation*}
\mathcal{C}=\left\{\left(x_{i}, y_{i}\right) \in \boldsymbol{X} \left\lvert\, d=\frac{\left|a+b x_{i}-y_{i}\right|}{\sqrt{b^{2}+1}} \leq \tau_{e}\right.\right\} \tag{7.22}
\end{equation*}
$$

Note: Implementation of RANSAC

- Step 2: A hypothesis p is the set of model parameters, rather than the model itself.
- Step 3: The consensus set can be represented more conveniently by considering \mathcal{C} as an index array. That is,

$$
\mathcal{C}(i)= \begin{cases}1 & \text { if } \mathbf{x}_{i} \in \mathcal{C} \tag{7.23}\\ 0 & \text { if } \mathbf{x}_{i} \notin \mathcal{C}\end{cases}
$$

See inlier.m implemented for Exercise 7.2, p. 209.

Remark 7.21. The "inlier" function in Step 3 collects points whose distance from the model, $f(\mathbf{p})$, is not larger than τ_{e}.
Thus, the distance can be interpreted as an automatic weighting mechanism. Indeed, for each point \mathbf{x}_{i},

$$
\operatorname{dist}\left(f(\mathbf{p}), \mathbf{x}_{i}\right)\left\{\begin{array}{l}
\leq \tau_{e}, \text { then } w_{i}=1 \tag{7.24}\\
>\tau_{e}, \text { then } w_{i}=0
\end{array}\right.
$$

Then the re-estimation in Step 4, $\mathbf{p}=g(\mathcal{C})$, can be seen as an parameter estimation $\mathbf{p}=g(\boldsymbol{X})$ with the corresponding weight matrix $W=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$.

Note: The Basic RANSAC Algorithm

- It is an iterative search method for a set of inliers which may produce presumably accurate model parameters.
- It is simple to implement and efficient. However, it is problematic and often erroneous.
- The main disadvantage of RANSAC is that RANSAC is unrepeatable; it may yield different results in each run so that none of the results can be optimal.

Figure 7.2: The RANSAC for linear-type synthetic datasets.

Table 7.1: The RANSAC: model fitting $y=a_{0}+a_{1} x$. The algorithm runs 1000 times for each dataset to find the standard deviation of the error: $\sigma\left(a_{0}-\widehat{a}_{0}\right)$ and $\sigma\left(a_{1}-\widehat{a}_{1}\right)$.

| Data | $\sigma\left(a_{0}-\widehat{a}_{0}\right)$ | $\sigma\left(a_{1}-\widehat{a}_{1}\right)$ | E-time (sec) |
| :---: | :---: | :---: | :---: |
| 1 | 0.1156 | 0.0421 | 0.0156 |
| 2 | 0.1101 | 0.0391 | 0.0348 |

RANSAC is neither repeatable nor optimal.

In order to overcome the drawback, various variants have been studied in the literature. For variants, see e.g.,

- Maximum Likelihood Estimation Sample Consensus (MLESAC) [12]
- Progressive Sample Consensus (PROSAC) [3]
- Recursive RANSAC (R-RANSAC) [8]

Nonetheless, RANSAC remains a prevailing algorithm for finding inliers.

Exercises for Chapter 7

7.1. Given data

| x_{i} | 0.2 | 0.4 | 0.6 | 0.8 | 1. | 1.2 | 1.4 | 1.6 | 1.8 | 2. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y_{i} | 1.88 | 2.13 | 1.76 | 2.78 | 3.23 | 3.82 | 6.13 | 7.22 | 6.66 | 9.07 |

(a) Plot the data (scattered point plot)
(b) Decide what curve fits the data best.
(c) Use the method of normal equations to find the LS solution.
(d) Plot the curves superposed over the point plot.
7.2. This problem uses the data in Example 7.18, p.205.
(a) Implement the method of normal equations for the least-squares regression to find the best-fitting line.
(b) The RANSAC, Algorithm 7.19 is implemented for you below. Use the code to analyze the performance of the RANSAC.

- Set $\tau_{e}=1, \gamma=\eta|\boldsymbol{X}|=8$, and $N=100$.
- Run ransac2 100 times to get the minimum, maximum, and average number of iterations for the RANSAC to find an acceptable hypothesis consensus set.
(c) Plot the best-fitting lines found from (a) and (b), superposed over the data.

```
get_hypothesis_WLS.m
function p = get_hypothesis_WLS(X,C)
% Get hypothesis p, with C being used as weights
% Output: p = [a,b], where y= a+b*x
m = size(X,1);
A = [ones(m,1) X(:,1)];
A = A.*C; %A = bsxfun(@times,A,C);
r = X(:,2).*C;
p = ((A'*A)\(A'*r))';
```

```
function C = inlier(X,p,tau_e)
% Input: p=[a,b] s.t. a+b*x-y=0
m = size(X,1);
C = zeros(m,1);
a = p(1); b=p(2);
factor = 1./sqrt(b^2+1);
for i=1:m
    xi = X(i,1); yi = X(i,2);
    dist = abs(a+b*xi-yi)*factor; %distance from point to line
    if dist<=tau_e, C(i)=1; end
end
```

```
function [p,C,iter] = ransac2(X,tau_e,gamma,N)
% Input: X = {(x_i,y_i)}
% tau_e: the error tolerance
% gamma = eta* |X|
% N: the maximum number of iterations
% Output: p = [a,b], where y= a+b*x
%%
[m,n] = size(X);
if n>m, X=X'; [m,n] = size(X); end
for iter = 1:N
    % step 1
    s1 = randi([1 m]); s2 = randi([1 m]);
    while s1==s2, s2 = randi([1 m]); end
    S = [X(s1,:);X(s2,:)];
    % step 2
    p = get_hypothesis_WLS(S,[1;1]);
    % step 3
    C = inlier(X,p,tau_e);
    % step 4
    if sum(C)>=gamma
        p = get_hypothesis_WLS(X,C);
        break;
    end
end
```


Сhapter 8 Python Basics

Contents of Chapter 8
8.1. Why Python? 212
8.2. Python Essentials in 30 Minutes 215
8.3. Zeros of a Polynomial in Python 221
8.4. Python Classes 225
Exercises for Chapter 8 232

8.1. Why Python?

Note: A good programming language must be easy to learn and use and flexible and reliable.

Advantages of Python

Python has the following characteristics.

- Easy to learn and use
- Flexible and reliable
- Extensively used in Data Science
- Handy for Web Development purposes
- Having Vast Libraries support
- Among the fastest-growing programming languages in the tech industry

Disadvantage of Python

Python is an interpreted and dynamically-typed language. The line-byline execution of code, built with a high flexibility, most likely leads to slow execution. Python scripts are way slow!

Remark 8.1. Speed up Python Programs

- Use numpy and scipy for all mathematical operations.
- Always use built-in functions wherever possible.
- Cython: It is designed as a C-extension for Python, which is developed for users not familiar with C. A good choice!
- You may create and import your own C/C++/Fortran-modules into Python. If you extend Python with pieces of compiled modules, then the resulting code is easily $100 \times$ faster than Python scripts. The Best Choice!

How to call C/C++/Fortran from Python

Functions in C/C++/Fortran can be compiled using the shell script.

```
                                    Compile-f90-c-cpp
#!/usr/bin/bash
LIB_F90='lib_f90'
LIB_GCC='lib_gcc'
LIB_GPP='lib_gpp'
### Compiling: f90
f2py3 -c --f90flags='-03' -m $LIB_F90 *.f90
### Compiling: C (PIC: position-independent code)
gcc -fPIC -03 -shared -o $LIB_GCC.so *.c
### Compiling: C++
g++ -fPIC -03 -shared -o $LIB_GPP.so *.cpp
```


The shared objects (*.so) can be imported to the Python wrap-up.

```
                                    Python Wrap-up
#!/usr/bin/python3
import numpy as np
import ctypes, time
from lib_py3 import *
from lib_f90 import *
lib_gcc = ctypes.CDLL("./lib_gcc.so")
lib_gpp = ctypes.CDLL("./lib_gpp.so")
### For C/C++ -------------------------------------------------
# e.g., lib_gcc.CFUNCTION(double array,double array,int,int)
# returns a double value.
#------------------------------------------------------------
IN_ddii = [np.ctypeslib.ndpointer(dtype=np.double),
    np.ctypeslib.ndpointer(dtype=np.double),
    ctypes.c_int, ctypes.c_int] #input type
OUT_d = ctypes.c_double #output type
lib_gcc.CFUNCTION.argtypes = IN_ddii
lib_gcc.CFUNCTION.restype = OUT_d
result = lib_gcc.CFUNCTION(x,y,n,m)
```

- The library numpy is designed for a Matlab-like implementation.
- Python can be used as a convenient desktop calculator.
- First, set a startup environment
- Use Python as a desktop calculator

```
#.bashrc: export PYTHONSTARTUP=~/.python_startup.py
#.cshrc: setenv PYTHONSTARTUP ~/.python_startup.py
#-------------------------------------------------------
print("\t^[[1;33m~ /.python_startup.py")
import numpy as np; import sympy as sym
import numpy.linalg as la; import matplotlib.pyplot as plt
print("\tnp=numpy; la=numpy.linalg; plt=matplotlib.pyplot; sym=sympy")
from numpy import zeros,ones
print("\tzeros,ones, from numpy")
import random
from sympy import *
x,y,z,t = symbols('x,y,z,t');
print("\tfrom sympy import *; x,y,z,t = symbols('x,y,z,t')")
print("\t^[[1;37mTo see details: dir() or dir(np)^[[m")
```

```
[Thu Jan.12] python
Python 3.8.10 (default, Nov]14 2022, 12:59:47)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
            ~/.python_startup.py
    np=numpy;-la=numpy.linalg; plt=matplotlib.pyplot; sym=sympy
    zeros,ones, from numpy
    from sympy import *; x,y,z,t = symbols('x,y,z,t')
    To see details: dir() or dir(np)
```

Figure 8.1: Python startup.

8.2. Python Essentials in 30 Minutes

Key Features of Python

- Python is a simple, readable, open source programming language which is easy to learn.
- It is an interpreted language, not a compiled language.
- In Python, variables are untyped; i.e., there is no need to define the data type of a variable while declaring it.
- Python supports object-oriented programming models.
- It is platform-independent and easily extensible and embeddable.
- It has a huge standard library with lots of modules and packages.
- Python is a high level language as it is easy to use because of simple syntax, powerful because of its rich libraries and extremely versatile.

Programming Features

- Python has no support pointers.
- Python codes are stored with .py extension.
- Indentation: Python uses indentation to define a block of code.
- A code block (body of a function, loop, etc.) starts with indentation and ends with the first unindented line.
- The amount of indentation is up to the user, but it must be consistent throughout that block.

- Comments:

- The hash (\#) symbol is used to start writing a comment.
- Multi-line comments: Python uses triple quotes, either '", or " " ".

Python Essentials

- Sequence datatypes: list, tuple, string
- [list]: defined using square brackets (and commas) >>> li = ["abc", 14, 4.34, 23]
- (tuple): defined using parentheses (and commas)
>>> tu $=(23,(4,5), ' a ', 4.1,-7)$
- "string": defined using quotes (", ', or """)
>>> st = 'Hello World'
>>> st = "Hello World"
>>> st = """This is a multi-line string
.. . that uses triple quotes."""
- Retrieving elements
>>> li [0]
'abc'
>>> tu[1], tu[2], tu[-2]
($\left.(4,5),{ }^{2}{ }^{\prime}, 4.1\right)$
>>> st [25:36]
'ng \backslash nthat use'
- Slicing
>>> tu[1:4] \# be aware
$((4,5), ' a ', 4.1)$
- The + and $*$ operators
>>> $[1,2,3]+[4,5,6,7]$
$[1,2,3,4,5,6,7]$
>>> "Hello" + " " + 'World'
Hello World
>>> $(1,2,3) * 3$
(1, 2, 3, 1, 2, 3, 1, 2, 3)
- Reference semantics

```
>>> a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> b
[1, 2, 3, 4]
```

Be aware with copying lists and numpy arrays!

- numpy, range, and iteration
>>> range(8)
[0, 1, 2, 3, 4, 5, 6, 7]
>>> import numpy as np
>>> for k in range(np.size(li)):
... li[k]
... <Enter>
'abc'
14
4.34

23

- numpy array and deepcopy
>>> from copy import deepcopy
>>> A = np.array ([1, 2, 3])
$\ggg B=A$
>>> C = deepcopy(A)
>>> A *= 4
>>> B
$\operatorname{array}([4,8,12])$
>>> C
$\operatorname{array}([1,2,3])$

Frequently used Python Rules

frequently_used_rules.py

```
## Multi-line statement
a = 1 + 2 + 3 + 4 + 5 +\
    6+7+8+9 + 10
b}=(1+2+3+4+5
    6 + 7 + 8 + 9 + 10) #inside (), [], or {}
print(a,b)
# Output: 55 55
```

\#\# Multiple statements in a single line using ";"
$\mathrm{a}=1 ; \mathrm{b}=2 ; \mathrm{c}=3$
\#\# Docstrings in Python
def double(num):
"""Function to double the value"""
return 2*num
print(double.__doc__)
\# Output: Function to double the value
\#\# Assigning multiple values to multiple variables
a, b, c = 1, 2, "Hello"
\#\# Swap
b, $c=c, b$
print (a,b, c)
\# Output: 1 Hello 2
\#\# Data types in Python
a = 5; b = 2.1
print("type of (a,b)", type(a), type(b))
\# Output: type of (a,b) <class 'int'> <class 'float'>
\#\# Python Set: 'set' object is not subscriptable
$a=\{5,2,3,1,4\} ; b=\{1,2,2,3,3,3\}$
print("a=", a, "b=", b)
\# Output: $a=\{1,2,3,4,5\} b=\{1,2,3\}$

```
## Python Dictionary
d = {'key1':'value1', 'Seth':22, 'Alex':21}
print(d['key1'],d['Alex'],d['Seth'])
# Output: value1 21 22
## Output Formatting
x = 5.1; y = 10
print('x = %d and y = %d' %(x,y))
print('x = %f and y = %d' %(x,y))
print('x = {} and y = {}'.format(x,y))
print('x = {1} and y = {0}'.format(x,y))
# Output: x = 5 and y = 10
# x = 5.100000 and y = 10
# x = 5.1 and y = 10
# x = 10 and y = 5.1
print("x=",x,"y=",y, sep="#",end="&\n")
# Output: x=#5.1#y=#10&
## Python Interactive Input
C = input('Enter any: ')
print(C)
# Output: Enter any: Starkville
# Starkville
```


Looping and Functions

Example 8.2. Compose a Python function which returns cubes of natural numbers.

Solution.

get_cubes.py

```
def get_cubes(num):
    cubes = []
    for i in range(1,num+1):
        value = i**3
        cubes.append(value)
    return cubes
if __name__ == ' __main__':
    num = input('Enter a natural number: ')
    cubes = get_cubes(int(num))
    print(cubes)
```


Remark 8.3. get_cubes . py

- Lines 8-11 are added for the function to be called directly. That is, [Sun Nov.05] python get_cubes.py
Enter a natural number: 6
[1, 8, 27, 64, 125, 216]
- When get_cubes is called from another function, the last four lines will not be executed.

```
call_get_cubes.py
```

from get_cubes import *
cubes = get_cubes(8)
print (cubes)
[Sun Nov.05] python call_get_cubes.py [1, 8, 27, 64, 125, 216, 343, 512]

8.3. Zeros of a Polynomial in Python

In this section, we will implement a Python code for zeros of a polynomial and compare it with a Matlab code.

Recall: Let's begin with recalling how to find zeros of a polynomial, presented in §3.6.

- Remark 3.69: When the Newton's method is applied for finding an approximate zero of $P(x)$, the iteration reads

$$
\begin{equation*}
x_{n}=x_{n-1}-\frac{P\left(x_{n-1}\right)}{P^{\prime}\left(x_{n-1}\right)} . \tag{8.1}
\end{equation*}
$$

Thus both $P(x)$ and $P^{\prime}(x)$ must be evaluated in each iteration.

- Strategy 3.70: The derivative $P^{\prime}(x)$ can be evaluated by using the Horner's method with the same efficiency. Indeed, differentiating (3.90)

$$
P(x)=\left(x-x_{0}\right) Q(x)+P\left(x_{0}\right)
$$

reads

$$
\begin{equation*}
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x) \tag{8.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right) . \tag{8.3}
\end{equation*}
$$

That is, the evaluation of Q at x_{0} becomes the desired quantity $P^{\prime}\left(x_{0}\right)$.

Example 8.4. (Revisit of Example 3.73, p. 108)

Let $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$. Use the Newton's method and the Horner's method to implement a code and find an approximate zero of P near 3 .
Solution. First, let's try to use built-in functions.
zeros_of_poly_built_in.py

```
import numpy as np
coeff = [1, -4, 7, -5, -2]
P = np.poly1d(coeff)
Pder = np.polyder(P)
print(P)
print(Pder)
print(np.roots(P))
print(P(3), Pder(3))
```

```
1x-4 x + 7 x - 5 x - 2
    3 2
4 x - 12 x + 14 x - 5
[ 2. +0.j 1.1378411+1.52731225j 1.1378411-1.52731225j -0.2756822+0.j]
1937
```

 Output
 Observation 8.5. We will see:
Python programming is as easy and simple as Matlab programming.

- In particular, numpy is developed for Matlab-like implementation, with enhanced convenience.
- Numpy is used extensively in most of scientific Python packages: SciPy, Pandas, Matplotlib, scikit-learn, ...

Now, we implement a code in Python for Newton-Horner method to find an approximate zero of P near 3 .

Zeros-Polynomials-Newton-Horner.py

```
def horner(A,x0):
    """ input: A = [a_n,...,a_1,a_0]
        output: p,d = P(x0),DP(x0) = horner(A,x0) """
    n = len(A)
    p = A[0]; d = 0
    for i in range(1,n):
        d = p + x0*d
        p = A[i] +x0*p
    return p,d
def newton_horner(A,x0,tol,itmax):
    """ input: A = [a_n,...,a_1,a_0]
        output: x: P(x)=0 """
    x=x0
    for it in range(1,itmax+1):
        p,d = horner(A,x)
        h = -p/d;
        x = x + h;
        if(abs(h)<tol): break
    return x,it
if __name__ == '__main__':
    coeff = [1, -4, 7, -5, -2]; x0 = 3
    tol = 10**(-12); itmax = 1000
    x,it =newton_horner(coeff,x0,tol,itmax)
    print("newton_horner: x0=%g; x=%g, in %d iterations" %(x0,x,it))
```


Execution

[Sat Jul.23] python Zeros-Polynomials-Newton-Horner.py newton_horner: $x 0=3$; $x=2$, in 7 iterations

Note: The above Python code must be compared with the Matlab code in §3.6:
horner.m

```
function [p,d] = horner(A,x0)
% input: A = [a_0,a_1,...,a_n]
% output: p=P(x0), d=P'(x0)
n = size(A(:),1);
p = A(n); d=0;
for i = n-1:-1:1
    d = p + x0*d;
    p = A(i) +x0*p;
end
```

 newton_horner.m
 function [x,it] = newton_horner(A, x0,tol,itmax)
\% input: $A=\left[a _0, a _1, \ldots, a _n\right]$; $x 0$: initial for $P(x)=0$
\% outpue: x : $\mathrm{P}(\mathrm{x})=0$
$\mathrm{x}=\mathrm{x} 0$;
for it=1:itmax
[p,d] = horner (A, x);
h $=-\mathrm{p} / \mathrm{d}$;
$\mathrm{x}=\mathrm{x}+\mathrm{h}$;
if (abs(h)<tol), break; end
end

Call_newton_horner.m

```
a = [-2 -5 7 -4 1];
x0=3;
tol = 10^-12; itmax=1000;
    [x,it] = newton_horner(a,x0,tol,itmax);
fprintf(" newton_horner: x0=%g; x=%g, in %d iterations\n",x0,x,it)
    Result: newton_horner: x0=3; x=2, in 7 iterations
```


8.4. Python Classes

Remark 8.6. Object-Oriented Programming (OOP)

Classes are a key concept in the object-oriented programming.
Classes provide a means of bundling data and functionality together.

- A class is a user-defined template or prototype from which realworld objects are created.
- The major merit of using classes is on the sharing mechanism between functions/methods and objects.
- Initialization and the sharing boundaries must be declared clearly and conveniently.
- A class tells us
- what data an object should have,
- what are the initial/default values of the data, and
- what methods are associated with the object to take actions on the objects using their data.
- An object is an instance of a class, and creating an object from a class is called instantiation.

In the following, we would build a simple class, as Dr. Xu did in [14, Appendix B.5]; you will learn how to initiate, refine, and use classes.

Initiation of a Class

```
class Polynomial():
    """A class of polynomials"""
    def __init__(self,coefficient):
        """Initialize coefficient attribute of a polynomial."""
        self.coeff = coefficient
    def degree(self):
        """Find the degree of a polynomial"""
        return len(self.coeff)-1
if __name__ == '__main__':
    p2 = Polynomial([1,2,3])
    print(p2.coeff) # a variable; output: [1, 2, 3]
    print(p2.degree()) # a method; output: 2
```

- Lines 1-2: define a class called Polynomial with a docstring.
- The parentheses in the class definition are empty because we create this class from scratch.
- Lines 4-10: define two functions, __init__() and degree(). A function in a class is called a method.
- The __init__() method is a special method for initialization; it is called the __init__() constructor.
- The self Parameter and Its Sharing
* The self parameter is required and must come first before the other parameters in each method.
* The variable self.coeff (prefixed with self) is available to every method and is accessible by any objects created from the class. (Variables prefixed with self are called attributes.)
* We do not need to provide arguments for self.
- Line 13: The line $\mathrm{p} 2=$ Polynomial $([1,2,3])$ creates an object p 2 (a polynomial $x^{2}+2 x+3$), by passing the coefficient list $[1,2,3]$.
- When Python reads this line, it calls the method __init__() in the class Polynomial and creates the object named p2 that represents this particular polynomial $x^{2}+2 x+3$.

Refinement of the Polynomial class

```
class Polynomial():
    """A class of polynomials"""
    count = 0 #Polynomial.count
    def __init__(self):
        """Initialize coefficient attribute of a polynomial."""
        self.coeff = [1]
        Polynomial.count += 1
    def __del__(self):
        """Delete a polynomial object"""
        Polynomial.count -= 1
    def degree(self):
        """Find the degree of a polynomial"""
        return len(self.coeff)-1
    def evaluate(self,x):
        """Evaluate a polynomial."""
        n = self.degree(); eval = []
        for xi in x:
            p = self.coeff[0] #Horner's method
            for k in range(1,n+1): p = self.coeff[k]+ xi*p
            eval.append(p)
        return eval
if __name__ == '__main__':
    poly1 = Polynomial()
    print('poly1, default coefficients:', poly1.coeff)
    poly1.coeff = [1,2,-3]
    print('poly1, coefficients after reset:', poly1.coeff)
    print('poly1, degree:', poly1.degree())
    poly2 = Polynomial(); poly2.coeff = [1,2,3,4,-5]
    print('poly2, coefficients after reset:', poly2.coeff)
    print('poly2, degree:', poly2.degree())
    print('number of created polynomials:', Polynomial.count)
    del poly1
    print('number of polynomials after a deletion:', Polynomial.count)
    print('poly2.evaluate([-1,0,1,2]):',poly2.evaluate([-1,0,1,2]))
```

- Line 4: (Global Variable) The variable count is a class attribute of Polynomial.
- It belongs to the class but not a particular object.
- All objects of the class share this same variable (Polynomial.count).
- Line 8: (Initialization) Initializes the class attribute self.coeff.
- Every object or class attribute in a class needs an initial value.
- One can set a default value for an object attribute in the __init__() constructor; and we do not have to include a parameter for that attribute. See Lines 29 and 35.
- Lines 11-13: (Deletion of Objects) Define the __del_() method in the class for the deletion of objects. See Line 40.
- del is a built-in function which deletes variables and objects.
- Lines 19-28: (Add Methods) Define another method called evaluate, which uses the Horner's method. See Example 8.4, p.222.

```
poly1, default coefficients: [1]
poly1, coefficients after reset: [1, 2, -3]
poly1, degree: 2
poly2, coefficients after reset: [1, 2, 3, 4, -5]
poly2, degree: 4
number of created polynomials: 2
number of polynomials after a deletion: 1
poly2.evaluate([-1,0,1,2]): [-7, -5, 5, 47]
```


Inheritance

Note: If we want to write a class that is just a specialized version of another class, we do not need to write the class from scratch.

- We call the specialized class a child class and the other general class a parent class.
- The child class can inherit all the attributes and methods form the parent class.
- It can also define its own special attributes and methods or even overrides methods of the parent class.
Classes can import functions implemented earlier, to define methods.

```
                                    Classes.py
from util_Poly import *
class Polynomial():
    """A class of polynomials"""
    def __init__(self,coefficient):
        """Initialize coefficient attribute of a polynomial."""
        self.coeff = coefficient
    def degree(self):
        """Find the degree of a polynomial"""
        return len(self.coeff)-1
class Quadratic(Polynomial):
    """A class of quadratic polynomial"""
    def __init__(self,coefficient):
        """Initialize the coefficient attributes ."""
        super().__init__(coefficient)
        self.power_decrease = 1
    def roots(self):
        return roots_Quad(self.coeff,self.power_decrease)
    def degree(self):
        return 2
```

- Line 1: Imports functions implemented earlier.
- Line 14: We must include the name of the parent class in the parentheses of the definition of the child class (to indicate the parent-child relation for inheritance).
- Line 19: The super () function is to give an child object all the attributes defined in the parent class.
- Line 20: An additional child class attribute self.power_decrease is initialized.
- Lines 22-23: define a new method called roots, reusing a function implemented earlier.
- Lines 25-26: The method degree() overrides the parent's method.

```
def roots_Quad(coeff,power_decrease):
    a,b,c = coeff
    if power_decrease != 1:
        a,c = c,a
    discriminant = b**2-4*a*c
    r1 = (-b+discriminant**0.5)/(2*a)
    r2 = (-b-discriminant**0.5)/(2*a)
    return [r1,r2]
```


call_Quadratic.py

from Classes import *
quad1 = Quadratic([2,-3,1])
print('quad1, roots:',quad1.roots())
quad1. power_decrease = 0
print('roots when power_decrease $=0:$ ', quad1. roots())
Output

```
quad1, roots: [1.0, 0.5]
roots when power_decrease = 0: [2.0, 1.0]
```


Final Remarks on Python Implementation

- A proper modularization must precede implementation, as for other programming languages.
- Classes are used quite frequently.
- You do not have to use classes for small projects.
- Try to use classes smartly. Quite often, they add unnecessary complications and their methods are hardly applicable directly for other projects.
- You may implement stand-alone functions to import.
- This strategy enhances reusability of functions.

For example, the function roots_Quad defined in util_Poly.py (page 230) can be used directly for other projects.

- Afterwards, you will get your own utility functions; using them, you can complete various programming tasks effectively.

Exercises for Chapter 8

You should use Python for the following problems.

8.1. Use nested for loops to assign entries of a 5×5 matrix A such that $A[i, j]=i j$.
8.2. The variable d is initially equal to 1 . Use a while loop to keep dividing d by 2 until $d<10^{-6}$.
(a) Determine how many divisions are made.
(b) Verify your result by algebraic derivation.

Note: A while loop has not been considered in the lecture. However, you can figure it out easily by yourself.
8.3. Write a function that takes as input a list of values and returns the largest value. Do this without using the Python $\max ()$ function; you should combine a for loop and an if statement.
(a) Produce a random list of size 10-20 to verify your function.
8.4. Let $P_{4}(x)=2 x^{4}-5 x^{3}-11 x^{2}+20 x+10$. Solve the following.
(a) Plot P_{4} over the interval $[-3,4]$.
(b) Find all zeros of P_{4}, modifying Zeros-Polynomials-Newton-Horner.py, p. 222 .
(c) Add markers for the zeros to the plot.
(d) Find all roots of $P_{4}^{\prime}(x)=0$.
(e) Add markers for the zeros of P_{4}^{\prime} to the plot.

Hint: For plotting, you may import: "import matplotlib.pyplot as plt" then use plt.plot(). You will see the Python plotting is quite similar to Matlab plotting.

Chapter 9

Vector Spaces and Orthogonality

Contents of Chapter 9
9.1. Subspaces of \mathbb{R}^{n} 234
9.2. Orthogonal Sets and Orthogonal Matrix 238
9.3. Orthogonal Projections 243
9.4. The Gram-Schmidt Process and QR Factorization 248
9.5. QR Iteration for Finding Eigenvalues 253
Exercises for Chapter 9 257

9.1. Subspaces of \mathbb{R}^{n}

Definition 9.1. A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:
a) The zero vector is in H.
b) For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u}+\mathbf{v}$ is in H.
c) For each \mathbf{u} in H and each scalar c, the vector $\mathbf{c u}$ is in H.

That is, H is closed under linear combinations.

Remark 9.2. \mathbb{R}^{n}, with the standard addition and scalar multiplication, is a vector space.

Example 9.3.

1. A line through the origin in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}.
2. Any plane through the origin in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}.

Figure 9.1: $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ as a plane through the origin.
3. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n}.
4. Every spanned set in \mathbb{R}^{n} is a subspace.

Given a matrix $A \in \mathbb{R}^{m \times n}$, we may consider the subspace spanned by the column vectors of A.

Definition 9.4. Let A be an $m \times n$ matrix.
The column space of A is the set $(\operatorname{Col} A)$ of all linear combinations of columns of A. That is, if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\begin{equation*}
\operatorname{Col} A=\left\{\mathbf{u} \mid \mathbf{u}=c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+\cdots+c_{n} \mathbf{a}_{n}\right\}, \tag{9.1}
\end{equation*}
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are scalars. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
Example 9.5. Let $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}3 \\ 3 \\ -4\end{array}\right]$. Determine whether
\mathbf{b} is in the column space of $A, \operatorname{Col} A$.
Solution. Clue: (1) $\mathrm{b} \in \operatorname{Col} A$
\Leftrightarrow (2) \mathbf{b} is a linear combinations of columns of A
\Leftrightarrow (3) $A \mathrm{x}=\mathrm{b}$ is consistent
$\Leftrightarrow(4)[A \mathrm{~b}]$ has a solution

Definition 9.6. Let A be an $m \times n$ matrix. The null space of $A, \operatorname{Nul} A$, is the set of all solutions of the homogeneous system $A \mathrm{x}=0$.

Theorem 9.7. Nul A is a subspace of \mathbb{R}^{n}.

Proof.

Basis for a Subspace

Definition 9.8. A basis for a subspace H in \mathbb{R}^{n} is a set of vectors that

1. is linearly independent, and
2. spans H.

Remark 9.9.

1. $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.
2. Let $\mathbf{e}_{1}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \cdots, \mathbf{e}_{n}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right]$. Then $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\}$ is called the standard basis for \mathbb{R}^{n}.

Example 9.10. Find a basis for the column space of the matrix

$$
B=\left[\begin{array}{rrrrr}
1 & 0 & -3 & 5 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution. Observation: $\mathbf{b}_{3}=-3 \mathbf{b}_{1}+2 \mathbf{b}_{2}$ and $\mathbf{b}_{4}=5 \mathbf{b}_{1}-\mathbf{b}_{2}$.

Theorem 9.11. In general, non-pivot columns are linear combinations of preceding pivot columns. Thus the pivot columns of a matrix A forms a basis for $\operatorname{Col} A$.

Example 9.12. Find bases for the column space and the null space of the matrix
$A=\left[\begin{array}{rrrr}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right]$.
Solution. $A \sim\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$

Theorem 9.13. A basis for Nul A can be obtained from the parametric vector form of solutions of $A \mathrm{x}=0$. That is, suppose that the solutions of $A \mathrm{x}=0$ reads

$$
\mathbf{x}=x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+\cdots+x_{k} \mathbf{u}_{k}
$$

where $x_{1}, x_{2}, \cdots, x_{k}$ correspond to free variables. Then, a basis for Nul A is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}\right\}$.

Theorem 9.14. (Rank Theorem) Let $A \in \mathbb{R}^{m \times n}$. Then

$$
\begin{gathered}
\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A=\operatorname{rank} A+\operatorname{nullity} A=n \\
=(\text { the number of columns in } A)
\end{gathered}
$$

Here, "dim Nul A " is called the nullity of A : nullity A

9.2. Orthogonal Sets and Orthogonal Matrix

Definition $\}$ 9.15. A set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal. That is,

$$
\mathbf{u}_{i} \bullet \mathbf{u}_{j}=0, \quad \text { for } i \neq j
$$

If the vectors in S are nonzero, then S is linearly independent and therefore forms a basis for the subspace spanned by S.

Definition 9.16. An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

The following theorem shows one of reasons why orthogonality is a useful property in vector spaces and matrix algebra.

Theorem 9.17. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each y in W, the weights in the linear combination

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p} \tag{9.2}
\end{equation*}
$$

are given by

$$
\begin{equation*}
c_{j}=\frac{\mathbf{y}^{\bullet} \mathbf{u}_{j}}{\mathbf{u}_{j} \bullet \mathbf{u}_{j}} \quad(j=1,2, \cdots, p) . \tag{9.3}
\end{equation*}
$$

Proof. $y \bullet \mathbf{u}_{j}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \bullet \mathbf{u}_{j}=c_{j} \mathbf{u}_{j} \bullet \mathbf{u}_{j}$, from which we can conclude (9.3).
Example 9.18. Consider a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$, where
$\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{u}_{3}=\left[\begin{array}{r}-5 \\ -2 \\ 1\end{array}\right]$. (a) Is S orthogonal? (b) Express the vector $\mathbf{y}=[11,0,-5]^{T}$ as a linear combination of the vectors in S.

Solution.

An Orthogonal Projection

Note: Given a nonzero vector u in \mathbb{R}^{n}, consider the problem of decomposing a vector $y \in \mathbb{R}^{n}$ into sum of two vectors, one a multiple of u and the other orthogonal to u. Let

$$
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}, \quad \widehat{\mathbf{y}} / / \mathbf{u} \text { and } \mathbf{z} \perp \mathbf{u}
$$

Let $\widehat{\mathbf{y}}=\alpha \mathbf{u}$. Then

$$
0=\mathbf{z}^{\bullet} \mathbf{u}=(\mathbf{y}-\alpha \mathbf{u}) \bullet \mathbf{u}=\mathbf{y}^{\bullet} \mathbf{u}-\alpha \mathbf{u} \bullet \mathbf{u} .
$$

Thus $\alpha=\mathbf{y}^{\bullet} \mathbf{u} / \mathbf{u}^{\bullet} \mathbf{u}$.

Figure 9.2: Orthogonal projection: $\mathbf{y}=\widehat{\mathbf{y}}+\mathrm{z}$.
Definition $]$ 9.19. Given a nonzero vector \mathbf{u} in \mathbb{R}^{n}, for $\mathbf{y} \in \mathbb{R}^{n}$, let

$$
\begin{equation*}
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}, \quad \widehat{\mathbf{y}} / / \mathbf{u} \text { and } \mathbf{z} \perp \mathbf{u} . \tag{9.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\widehat{\mathbf{y}}=\alpha \mathbf{u}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}, \quad \mathbf{z}=\mathbf{y}-\widehat{\mathbf{y}} . \tag{9.5}
\end{equation*}
$$

The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of y onto u, and z is called the component of y orthogonal to u. Let $L=\operatorname{Span}\{\mathbf{u}\}$. Then we denote

$$
\begin{equation*}
\widehat{\mathbf{y}}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}=\operatorname{proj}_{L} \mathbf{y} \tag{9.6}
\end{equation*}
$$

which is called the orthogonal projection of y onto L.

Example 9.20. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(a) Find the orthogonal projection of y onto u.
(b) Write \mathbf{y} as the sum of two orthogonal vectors, one in $L=\operatorname{Span}\{\mathbf{u}\}$ and one orthogonal to u.
(c) Find the distance from y to L.

Solution.

Figure 9.3: The orthogonal projection of \mathbf{y} onto $L=\operatorname{Span}\{\mathbf{u}\}$.

Orthonormal Sets

Definition 9.21. A set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal set, if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent.

Example 9.22. In Example 9.18, p. 238, we know $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{r}-5 \\ -2 \\ 1\end{array}\right]$ form an orthogonal basis for \mathbb{R}^{3}. Find the corresponding orthonormal basis.
Solution.

Theorem 9.23. An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

Proof. To simplify notation, we suppose that U has only three columns: $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right], \mathbf{u}_{i} \in \mathbb{R}^{m}$. Then

$$
U^{T} U=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T} \\
\mathbf{u}_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{u}_{1}^{T} \mathbf{u}_{1} & \mathbf{u}_{1}^{T} \mathbf{u}_{2} & \mathbf{u}_{1}^{T} \mathbf{u}_{3} \\
\mathbf{u}_{2}^{T} \mathbf{u}_{1} & \mathbf{u}_{2}^{T} \mathbf{u}_{2} & \mathbf{u}_{2}^{T} \mathbf{u}_{3} \\
\mathbf{u}_{3}^{T} \mathbf{u}_{1} & \mathbf{u}_{3}^{T} \mathbf{u}_{2} & \mathbf{u}_{3}^{T} \mathbf{u}_{3}
\end{array}\right] .
$$

Thus, U has orthonormal columns $\Leftrightarrow U^{T} U=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. The proof of the general case is essentially the same.

Theorem 9.24. Let U be an $m \times n$ matrix with orthonormal columns, and let $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$. Then
(a) $\|U \mathrm{x}\|=\|\mathrm{x}\|$
(b) $(U \mathbf{x}) \bullet(U \mathbf{y})=\mathbf{x} \bullet \mathbf{y}$
(length preservation)
(c) $(U \mathbf{x}) \bullet(U \mathbf{y})=0 \Leftrightarrow \mathbf{x}^{\bullet} \mathbf{y}=0$
(dot product preservation)
(orthogonality preservation)

Proof.

Theorems 9.23 and 9.24 are particularly useful when applied to square matrices.
Definition 9.25. An orthogonal matrix is a square matrix U such that $U^{T}=U^{-1}$, i.e.,

$$
\begin{equation*}
U \in \mathbb{R}^{n \times n} \quad \text { and } \quad U^{T} U=I . \tag{9.7}
\end{equation*}
$$

Let's generate a random orthogonal matrix and test it.

```
_ orthogonal_matrix.m
n = 4;
[Q,~] = qr(rand(n));
U = Q;
disp("U ="); disp(U)
disp("U'*U ="); disp(U'*U)
x = rand([n,1]);
fprintf("\nx' ="); disp(x')
fprintf("||x||_2 =");disp(norm(x,2))
fprintf("||*x||_2=");disp(norm(U*x,2))
```

| $\mathrm{U}=$ | | | | | | |
|---|---|---|---|---|---|---|
| -0.5332 | 0.4892 | 0.6519 | 0.2267 |
| -0.5928 | -0.7162 | 0.1668 | -0.3284 |
| -0.0831 | 0.4507 | -0.0991 | -0.8833 |
| -0.5978 | 0.2112 | -0.7331 | 0.2462 |
| $\mathrm{U}^{\prime} * \mathrm{U}=$ | | | |
| 1.0000 | -0.0000 | 0 | -0.0000 |
| -0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 0 | 0.0000 | 1.0000 | -0.0000 |
| -0.0000 | 0.0000 | -0.0000 | 1.0000 |
| $x^{\prime}=0.4218$ | 0.9157 | 0.7922 | 0.9595 |
| \||x||_2 = | 1.6015 | | |
| \||U*x||_2= | 1.6015 | | |

9.3. Orthogonal Projections

Definition 9.26. Let W be a subspace of \mathbb{R}^{n}.

- A vector $\mathrm{z} \in \mathbb{R}^{n}$ is said to be orthogonal to the subspace W if $\mathbf{z} \cdot \mathbf{w}=0$ for all $\mathbf{w} \in W$.
- The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (and read as " W perpendicular" or simply " W perp"). That is,

$$
\begin{equation*}
W^{\perp}=\{\mathbf{z} \mid \mathbf{z} \bullet \mathbf{w}=0, \quad \forall \mathbf{w} \in W\} . \tag{9.8}
\end{equation*}
$$

Example 9.27. Let W be a plane through the origin in \mathbb{R}^{3}, and let L be the line through the origin and perpendicular to W.
If $\mathbf{z} \in L$ and and $\mathbf{w} \in W$, then

$$
\mathbf{z}^{\bullet} \mathbf{w}=0 .
$$

See Figure 9.4.
In fact, L consists of all vectors that are orthogonal to the w's in W, and W consists of all vectors orthogonal to the z's in L. That is,

$$
L=W^{\perp} \quad \text { and } \quad W=L^{\perp}
$$

Figure 9.4: A plane and line through the origin as orthogonal complements.

Remark 9.28. Let W be a subspace of \mathbb{R}^{n}.

1. A vector x is in $W^{\perp} \Leftrightarrow \mathrm{x}$ is orthogonal to every vector in a set that spans W.
2. W^{\perp} is a subspace of \mathbb{R}^{n}.

Recall: (Definition 9.19, § 9.2) Given a nonzero vector u in \mathbb{R}^{n}, for $\mathbf{y} \in$ \mathbb{R}^{n}, let

$$
\begin{equation*}
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}, \quad \widehat{\mathbf{y}} / / \mathbf{u} \text { and } \mathbf{z} \perp \mathbf{u} \tag{9.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\widehat{\mathbf{y}}=\alpha \mathbf{u}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}, \quad \mathbf{z}=\mathbf{y}-\widehat{\mathbf{y}} . \tag{9.10}
\end{equation*}
$$

The vector $\widehat{\mathbf{y}}$ is called the orthogonal projection of y onto u , and z is called the component of \mathbf{y} orthogonal to \mathbf{u}. Let $L=\operatorname{Span}\{\mathbf{u}\}$. Then we denote

$$
\begin{equation*}
\widehat{\mathbf{y}}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}=\operatorname{proj}_{L} \mathbf{y} \tag{9.11}
\end{equation*}
$$

which is called the orthogonal projection of y onto L.
We generalize this orthogonal projection to subspaces.
Theorem 9.29. (The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^{n}. Then each $y \in \mathbb{R}^{n}$ can be written uniquely in the form

$$
\begin{equation*}
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}, \tag{9.12}
\end{equation*}
$$

where $\widehat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. In fact, if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for W, then

$$
\begin{align*}
\widehat{\mathbf{y}} & =\operatorname{proj}_{W} \mathbf{y}=\frac{\mathbf{y}^{\bullet} \mathbf{u}_{\mathbf{1}}}{\mathbf{u}_{1} \bullet \mathbf{u}_{\mathbf{1}}} \mathbf{u}_{1}+\frac{\mathbf{y}^{\bullet} \mathbf{u}_{\mathbf{2}}}{\mathbf{u}_{\mathbf{2}} \bullet \mathbf{u}_{\mathbf{2}}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y}^{\bullet} \mathbf{u}_{p}}{\mathbf{u}_{p} \bullet \mathbf{u}_{p}} \mathbf{u}_{p}, \tag{9.13}\\
\mathbf{z} & =\mathbf{y}-\widehat{\mathbf{y}} .
\end{align*}
$$

Figure 9.5: Orthogonal projection of y onto W.

Example 9.30. Let $\mathbf{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right], \quad$ and $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
(a) Write y as the sum of a vector in W and a vector orthogonal to W.
(b) Find the distance from y to W.

Solution. $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z} \Rightarrow \widehat{\mathbf{y}}=\frac{\mathbf{y}^{\bullet} \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y}^{\bullet} \mathbf{u}_{2}}{\mathbf{u}_{2} \bullet \mathbf{u}_{\mathbf{2}}} \mathbf{u}_{2}$ and $\mathrm{z}=\mathbf{y}-\widehat{\mathbf{y}}$.

Figure 9.6: A geometric interpretation of the orthogonal projection.

Remark 9.31. (Properties of Orthogonal Decomposition)

Let $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}$, where $\widehat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. Then

1. $\widehat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto $W\left(=\operatorname{proj}_{W} \mathbf{y}\right)$
2. $\widehat{\mathbf{y}}$ is the closest point to y in W.
(in the sense $\|\mathbf{y}-\widehat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{v}\|$, for all $\mathbf{v} \in W$)
3. \widehat{y} is called the best approximation to y by elements of W.
4. If $\mathbf{y} \in W$, then $\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}$.

Proof. 2. For an arbitrary $\mathbf{v} \in W, \mathbf{y}-\mathbf{v}=(\mathbf{y}-\widehat{\mathbf{y}})+(\widehat{\mathbf{y}}-\mathbf{v})$, where $(\widehat{\mathbf{y}}-\mathbf{v}) \in W$. Thus, by the Pythagorean theorem,

$$
\|\mathbf{y}-\mathbf{v}\|^{2}=\|\mathbf{y}-\widehat{\mathbf{y}}\|^{2}+\|\widehat{\mathbf{y}}-\mathbf{v}\|^{2}
$$

which implies that $\|\mathbf{y}-\mathrm{v}\| \geq\|\mathbf{y}-\widehat{\mathbf{y}}\|$.
Self-study 9.32. Find the closest point to y in the subspace $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and hence find the distance from y to W.

$$
\mathbf{y}=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right]
$$

Solution.

Theorem 9.33. If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y}^{\bullet} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \bullet \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \bullet \mathbf{u}_{p}\right) \mathbf{u}_{p} \tag{9.14}
\end{equation*}
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}, \quad \text { for all } \mathbf{y} \in \mathbb{R}^{n} \tag{9.15}
\end{equation*}
$$

Thus the orthogonal projection can be viewed as a matrix transformation.

Proof. Notice that

$$
\begin{aligned}
& \left(\mathbf{y} \bullet \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \bullet \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \bullet \mathbf{u}_{p}\right) \mathbf{u}_{p} \\
& \quad=\left(\mathbf{u}_{1}^{T} \mathbf{y}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2}^{T} \mathbf{y}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{u}_{p}^{T} \mathbf{y}\right) \mathbf{u}_{p} \\
& \quad=U\left(U^{T} \mathbf{y}\right) .
\end{aligned}
$$

Example 9.34. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 9\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}1 / \sqrt{10} \\ -3 / \sqrt{10}\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{u}_{1}\right\}$.
(a) Let U be the 2×1 matrix whose only column is \mathbf{u}_{1}. Compute $U^{T} U$ and $U U^{T}$.
(b) Compute $\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y}^{\bullet} \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{1}$ and $U U^{T} \mathbf{y}$.

Solution.

Ans: (a) $U U^{T}=\frac{1}{10}\left[\begin{array}{rr}1 & -3 \\ -3 & 9\end{array}\right]$ (b) $\left[\begin{array}{r}-2 \\ 6\end{array}\right]$

9.4. The Gram-Schmidt Process and QR Factorization

Note: The Gram-Schmidt process is an algorithm to produce an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^{n}.
Example 9.35. Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, where $\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Find an orthogonal basis for W.

Main idea: Orthogonal projection

$$
\left\{\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array} { l }
{ \mathbf { x } _ { 1 } } \\
{ \mathbf { x } _ { 2 } = \alpha \mathbf { x } _ { 1 } + \mathbf { v } _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathbf{v}_{1}=\mathbf{x}_{1} \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\alpha \mathbf{x}_{1}
\end{array}\right.\right.
$$

where $\mathbf{x}_{1} \bullet \mathbf{v}_{2}=0$. Then $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Solution.

Figure 9.7: Construction of an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Theorem 9.36. (The Gram-Schmidt Process) Given a basis
$\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{p}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{align*}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{\mathbf{2}}{ }^{\bullet} \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}}{ }^{\bullet} \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{\mathbf{3}}{ }^{\bullet} \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}}{ }^{\bullet} \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{3}}{ }^{\bullet} \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}}{ }^{\bullet} \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{2} \tag{9.16}\\
& \text {; } \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\frac{\mathbf{x}_{\mathbf{p}}{ }^{\bullet} \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}}^{\bullet} \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{p}}{ }^{\bullet} \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}}{ }^{\bullet} \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{\mathbf{p}}{ }^{\bullet} \mathbf{v}_{p-\mathbf{1}}}{\mathbf{v}_{p-\mathbf{1}}{ }^{\bullet} \mathbf{v}_{p-\mathbf{1}}} \mathbf{v}_{p-1}
\end{align*}
$$

Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. In addition,

$$
\begin{equation*}
\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}, \quad \text { for } 1 \leq k \leq p \tag{9.17}
\end{equation*}
$$

Remark 9.37. For the result of the Gram-Schmidt process, define

$$
\begin{equation*}
\mathbf{u}_{k}=\frac{\mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|}, \quad \text { for } 1 \leq k \leq p \tag{9.18}
\end{equation*}
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W. In practice, it is often implemented with the normalized Gram-Schmidt process.

Example 9.38. Find an orthonormal basis for $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$, where

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}
-2 \\
2 \\
1 \\
0
\end{array}\right], \text { and } \mathbf{x}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
1
\end{array}\right] .
$$

Solution.

QR Factorization of Matrices

Theorem 9.39. (The QR Factorization) If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as

$$
\begin{equation*}
A=Q R \tag{9.19}
\end{equation*}
$$

where

- Q is an $m \times n$ matrix whose columns are orthonormal.
- R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Proof. The columns of A form a basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right\}$ for $W=\operatorname{Col} A$.

1. Construct an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$ for W (the GramSchmidt process). Set

$$
Q \xlongequal{\text { def }}\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \tag{9.20}
\end{array}\right]
$$

2. (Expression) Since $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}\right\}, 1 \leq$ $k \leq n$, there are constants $r_{1 k}, r_{2 k}, \cdots, r_{k k}$ such that

$$
\begin{equation*}
\mathbf{x}_{k}=r_{1 k} \mathbf{u}_{1}+r_{2 k} \mathbf{u}_{2}+\cdots+r_{k k} \mathbf{u}_{k}+0 \cdot \mathbf{u}_{k+1}+\cdots+0 \cdot \mathbf{u}_{n} \tag{9.21}
\end{equation*}
$$

We may assume hat $r_{k k}>0$. (If $r_{k k}<0$, multiply both $r_{k k}$ and \mathbf{u}_{k} by -1.)
3. Let $\boldsymbol{r}_{k}=\left[r_{1 k}, r_{2 k}, \cdots, r_{k k}, 0, \cdots, 0\right]^{T}$. Then

$$
\begin{equation*}
\mathbf{x}_{k}=Q \boldsymbol{r}_{k} \tag{9.22}
\end{equation*}
$$

4. Define

$$
\begin{equation*}
R \xlongequal{\text { def }}\left[\boldsymbol{r}_{1} \boldsymbol{r}_{2} \cdots \boldsymbol{r}_{n}\right] \tag{9.23}
\end{equation*}
$$

Then we see $A=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right]=\left[\begin{array}{llll}Q \boldsymbol{r}_{1} Q \boldsymbol{r}_{2} & \cdots & Q \boldsymbol{r}_{n}\end{array}\right]=Q R$.

The QR Factorization is summarized as follows.

Algorithm 9.40. (QR Factorization) Let $A=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right]$.

- Apply the Gram-Schmidt process to obtain an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$.
- Then, as in (9.21),

$$
\begin{align*}
\mathbf{x}_{1} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{1}\right) \mathbf{u}_{1} \\
\mathbf{x}_{2} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{2}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2} \bullet \mathbf{x}_{2}\right) \mathbf{u}_{2} \\
\mathbf{x}_{3} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{2}+\left(\mathbf{u}_{3} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{3} \tag{9.24}\\
& \vdots \\
\mathbf{x}_{n} & =\sum_{j=1}^{n}\left(\mathbf{u}_{j} \bullet \mathbf{x}_{n}\right) \mathbf{u}_{j}
\end{align*}
$$

- Thus

$$
A=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \tag{9.25}
\end{array}\right]=Q R
$$

implies that

$$
\begin{align*}
Q & =\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{n}\right], \\
R & =\left[\begin{array}{ccccc}
\mathbf{u}_{1} \bullet \mathbf{x}_{1} & \mathbf{u}_{1} \bullet \mathbf{x}_{2} & \mathbf{u}_{1} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{1} \bullet \mathbf{x}_{n} \\
0 & \mathbf{u}_{2} \bullet \mathbf{x}_{2} & \mathbf{u}_{2} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{2} \bullet \mathbf{x}_{n} \\
0 & 0 & \mathbf{u}_{3} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{3} \bullet \mathbf{x}_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathbf{u}_{n} \bullet \mathbf{x}_{n}
\end{array}\right]=Q^{T} A . \tag{9.26}
\end{align*}
$$

- In practice, the coefficients $r_{i j}=\mathbf{u}_{i}{ }^{\bullet} \mathbf{x}_{j}, i<j$, can be saved during the (normalized) Gram-Schmidt process.
Example 9.41. Find the QR factorization for $A=\left[\begin{array}{rr}4 & -1 \\ 3 & 2\end{array}\right]$.

Solution.

$$
\text { Ans: } Q=\left[\begin{array}{rr}
0.8 & -0.6 \\
0.6 & 0.8
\end{array}\right] R=\left[\begin{array}{ll}
5 & 0.4 \\
0 & 2.2
\end{array}\right]
$$

Alternative Calculations of Least-Squares Solutions

Recall: (Theorem 7.5, p.197) Let $A \in \mathbb{R}^{m \times n}, m \geq n$ and $\operatorname{rank}(A)=n$. Then the equation $A \mathbf{x}=\mathbf{b}$ has a unique $L S$ solution for each $\mathbf{b} \in \mathbb{R}^{m}$:

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b} \Rightarrow \widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

which is the Method of Normal Equations. The matrix

$$
\begin{equation*}
A^{+}:=\left(A^{T} A\right)^{-1} A^{T} \tag{9.27}
\end{equation*}
$$

is called the pseudoinverse of A.

Theorem 9.42. Given an $m \times n$ matrix A with linearly independent columns, let $A=Q R$ be a $\boldsymbol{Q R}$ factorization of A, as in Algorithm 9.40. Then, for each $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathrm{x}=\mathrm{b}$ has a unique $L S$ solution, given by

$$
\begin{equation*}
\widehat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b} \tag{9.28}
\end{equation*}
$$

Proof. Let $A=Q R$. Then the pseudoinverse of A :

$$
\begin{align*}
\left(A^{T} A\right)^{-1} A^{T} & =\left((Q R)^{T} Q R\right)^{-1}(Q R)^{T}=\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} \\
& =R^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T}=R^{-1} Q^{T}, \tag{9.29}
\end{align*}
$$

which completes the proof.
Self-study 9.43. Find the LS solution of $A \mathbf{x}=\mathbf{b}$ for

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{r}
3 \\
5 \\
7 \\
-3
\end{array}\right] \text {, where } A=Q R=\left[\begin{array}{rrr}
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]
$$

Solution.

9.5. QR Iteration for Finding Eigenvalues

Algorithm 9.44. (QR Iteration) Let $A \in \mathbb{R}^{n \times n}$.
set $A_{0}=A$ and $U_{0}=I$
for $k=1,2, \cdots$ do
(a) $A_{k-1}=Q_{k} R_{k}$; $\% \mathrm{QR}$ factorization
(b) $A_{k}=R_{k} Q_{k}$;
(c) $U_{k}=U_{k-1} Q_{k}$; \% Update transformation matrix
end for
set $T:=A_{\infty}$ and $U:=U_{\infty}$

Remark 9.45. It follows from (a) and (b) of Algorithm 9.44 that

$$
\begin{equation*}
A_{k}=R_{k} Q_{k}=Q_{k}^{T} A_{k-1} Q_{k}, \tag{9.31}
\end{equation*}
$$

and therefore

$$
\begin{align*}
A_{k} & =R_{k} Q_{k}=Q_{k}^{T} A_{k-1} Q_{k}=Q_{k}^{T} Q_{k-1}^{T} A_{k-2} Q_{k-1} Q_{k}=\cdots \\
& =Q_{k}^{T} Q_{k-1}^{T} \cdots Q_{1}^{T} A_{0} \underbrace{Q_{1} Q_{2} \cdots Q_{k}}_{U_{k}} \tag{9.32}
\end{align*}
$$

The above converges to

$$
\begin{equation*}
T=U^{T} A U \tag{9.33}
\end{equation*}
$$

Claim 9.46.

- Algorithm 9.44 produces an upper triangular matrix T, with its diagonals being eigenvalues of A, and an orthogonal matrix U such that

$$
\begin{equation*}
A=U T U^{T}, \tag{9.34}
\end{equation*}
$$

which is called the Schur decomposition of A.

- If A is symmetric, then T becomes a diagonal matrix of eigenvalues of A and U is the collection of corresponding eigenvectors.

Example 9.47. Let $A=\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 6 & 4 \\ 6 & 7 & 8\end{array}\right]$ and $B=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]$. Apply the QR algorithm, Algorithm 9.44, to find their Schur decompositions.
Solution. You will solve this example once more implementing the QR iteration algorithm in Python; see Exercise 9.7.

```
qr_iteration.m
function [T,U,iter] = qr_iteration(A)
% It produces the Schur decomposition: A = U*T*U^T
% T: upper triangular, with diagonals being eigenvalues of A
% U: orthogonal
% Once A is symmetric,
% T becomes diagonal && U contains eigenvectors of A
T = A; U = eye(size(A));
% for stopping
D0 = diag(T); change = 1;
tol = 10^-15; iter=0;
%%
while change>tol
    [Q,R] = qr (T);
    T = R*Q;
    U = U*Q;
    % for stopping
    iter= iter+1;
    D=diag(T); change=norm(D-DO); DO=D;
    %if iter<=8, fprintf('A_%d =\n',iter); disp(T); end
end
```


We may call it as

```
\(A=[313 ; 164 ; 678]\);
    [T1,U1,iter1] = qr_iteration(A)
    U1*T1*U1'
    [V1,D1] = eig(A)
    B =[4 -1 1; -1 3 -2; 1 -2 3];
    [T2,U2,iter2] = qr_iteration(B)
    U2*T2*U2'
    [V2,D2] = eig(B)
```

A
$\mathrm{T} 1=$

$$
\begin{array}{rrr}
13.8343 & 1.0429 & -4.0732 \\
0.0000 & 3.3996 & 0.5668 \\
0.0000 & -0.0000 & -0.2339
\end{array}
$$

U1 =

$$
0.2759-0.5783-0.7677
$$

$$
0.4648 \quad 0.7794 \quad-0.4201
$$

$$
\begin{array}{lll}
0.8414 & -0.2409 & 0.4838
\end{array}
$$

iter1 =
26
ans $=$

$$
\begin{array}{lll}
3.0000 & 1.0000 & 3.0000 \\
1.0000 & 6.0000 & 4.0000 \\
6.0000 & 7.0000 & 8.0000
\end{array}
$$

$$
\%----[V 1, D 1]=\operatorname{eig}(A)
$$

V1 =

$$
\begin{array}{lll}
-0.2759 & -0.5630 & 0.6029
\end{array}
$$

$$
\begin{array}{lll}
-0.4648 & -0.3805 & -0.7293
\end{array}
$$

$$
\begin{array}{lll}
-0.8414 & 0.7337 & 0.3234
\end{array}
$$

D1 =
$13.8343 \quad 0 \quad 0$
$\begin{array}{lrr}0 & -0.2339 & 0 \\ 0 & 0 & 3.3996\end{array}$
3.3996

```
```

T2 =

```
```

```
```

T2 =

```
```

B

| 6.0000 | -0.0000 | 0.0000 |
| ---: | ---: | ---: |
| -0.0000 | 3.0000 | -0.0000 |
| 0.0000 | -0.0000 | 1.0000 |

$\mathrm{U} 2=$
$0.5774 \quad 0.8165 \quad-0.0000$

| -0.5774 | 0.4082 | 0.7071 |
| :--- | :--- | :--- |

$$
0.5774 \quad-0.4082 \quad 0.7071
$$

iter2 =
28
ans $=$
$4.0000-1.0000 \quad 1.0000$
$-1.0000 \quad 3.0000 \quad-2.0000$
$1.0000-2.0000 \quad 3.0000$
\%---- [V2,D2] = eig(B)
V2 $=$

| -0.0000 | 0.8165 | 0.5774 |
| ---: | ---: | ---: |
| 0.7071 | 0.4082 | -0.5774 |
| 0.7071 | -0.4082 | 0.5774 |

D2 =

| 1.0000 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 3.0000 | 0 |

Cpnvergence Check

$\% A=\left[\begin{array}{llllllll}3 & 1 & 3 ; & 6 & 4 ; & 7 & 8\end{array}\right]$;
A_1 =

| 12.0652 | 4.4464 | 4.2538 |
| ---: | ---: | ---: |
| 3.3054 | 5.0728 | 0.9038 |
| 0.2644 | 0.0192 | -0.1380 |

A_2 =
$13.6436 \quad 2.0123-4.1057$
$\begin{array}{lll}0.9772 & 3.5927 & 0.1704\end{array}$
A_3 =
$\begin{array}{rrr}13.8038 & 1.2893 & 4.0854 \\ 0.2459 & 3.4300 & -0.4708 \\ 0.0001 & -0.0005 & -0.2338\end{array}$
A_4 =
$13.8279 \quad 1.1035 \quad-4.0765$
$0.0607 \quad 3.4060 \quad 0.5430$
$0.0000-0.0000-0.2339$
A_5 =
$13.8328 \quad 1.0578 \quad 4.0740$
$0.0149 \quad 3.4011 \quad-0.5609$
$0.0000-0.0000-0.2339$
A_6 =
$13.8339 \quad 1.0465 \quad-4.0734$
$\begin{array}{rrr}0.0037 & 3.3999 & 0.5653 \\ 0.0000 & -0.0000 & -0.2339\end{array}$
A_7 =
$13.8342 \quad 1.0438 \quad 4.0733$
$0.0009 \quad 3.3997 \quad-0.5664$
$0.0000-0.0000-0.2339$
A_8 =
$13.8343 \quad 1.0431 \quad-4.0732$
$0.0002 \quad 3.3996 \quad 0.5667$
$0.0000-0.0000 \quad-0.2339$

| $\% \mathrm{~B}=\left[\begin{array}{lllllllll}4 & -1 & 1 & -1 & 3 & -2 ; & -2 & 3\end{array}\right]$; | | |
| :---: | :---: | :---: |
| A_1 = | | |
| 5.0000 | -1.3765 | -0.3244 |
| -1.3765 | 3.8421 | 0.6699 |
| -0.3244 | 0.6699 | 1.1579 |
| A_2 = | | |
| 5.6667 | -0.9406 | 0.0640 |
| -0.9406 | 3.3226 | -0.1580 |
| 0.0640 | -0.1580 | 1.0108 |
| A_3 = | | |
| 5.9091 | -0.5141 | -0.0112 |
| -0.5141 | 3.0899 | 0.0454 |
| -0.0112 | 0.0454 | 1.0010 |
| A_4 = | | |
| 5.9767 | -0.2631 | 0.0019 |
| -0.2631 | 3.0232 | -0.0145 |
| 0.0019 | -0.0145 | 1.0001 |
| A_5 = | | |
| 5.9942 | -0.1323 | -0.0003 |
| -0.1323 | 3.0058 | 0.0048 |
| -0.0003 | 0.0048 | 1.0000 |
| A_6 = | | |
| 5.9985 | -0.0663 | 0.0001 |
| -0.0663 | 3.0015 | -0.0016 |
| 0.0001 | -0.0016 | 1.0000 |
| A_7 = | | |
| 5.9996 | -0.0331 | -0.0000 |
| -0.0331 | 3.0004 | 0.0005 |
| -0.0000 | 0.0005 | 1.0000 |
| A_8 = | | |
| 5.9999 | -0.0166 | 0.0000 |
| -0.0166 | 3.0001 | -0.0002 |
| 0.0000 | -0.0002 | 1.0000 |

Exercises for Chapter 9

9.1. Suppose \mathbf{y} is orthogonal to \mathbf{u} and v. Prove that \mathbf{y} is orthogonal to every win $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
9.2. Let $\mathbf{u}_{1}=\left[\begin{array}{r}3 \\ -3 \\ 0\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}5 \\ -3 \\ 1\end{array}\right]$.
(a) Check if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}.
(b) Express \mathbf{x} as a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.

Ans: $\mathbf{x}=\frac{4}{3} \mathbf{u}_{1}+\frac{1}{3} \mathbf{u}_{2}+\frac{1}{3} \mathbf{u}_{3}$
9.3. Let U and V be $n \times n$ orthogonal matrices. Prove that $U V$ is an orthogonal matrix. Hint: See Definition 9.25, where $U^{-1}=U^{T} \Leftrightarrow U^{T} U=I$.
9.4. Find the best approximation to \mathbf{z} by vectors of the form $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$.
(a) $\mathbf{z}=\left[\begin{array}{r}3 \\ -1 \\ 1 \\ 13\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ -1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-4 \\ 1 \\ 0 \\ 3\end{array}\right] \quad$ (b) $\mathbf{z}=\left[\begin{array}{r}3 \\ -7 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}2 \\ -1 \\ -3 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ 1 \\ 0 \\ -1\end{array}\right]$

Ans: (a) $\widehat{\mathbf{z}}=3 \mathbf{v}_{1}+\mathbf{v}_{2}$
9.5. Find an orthogonal basis for the column space of the matrix $\left[\begin{array}{rrr}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$ Ans: $\mathbf{v}_{3}=(1,1,-3,1)$
9.6. Implement a code for the problem. Let $A=\left[\begin{array}{rrrr}-10 & 13 & 7 & -11 \\ 2 & 1 & -5 & 3 \\ -6 & 3 & 13 & -3 \\ 16 & -16 & -2 & 5 \\ 2 & 1 & -5 & -7\end{array}\right]$
(a) Use the Gram-Schmidt process to produce an orthogonal basis for the column space of A.
(b) Use Algorithm 9.40 to produce a QR factorization of A.
(c) Apply the QR iteration to find eigenvalues of $\mathrm{A}(1: 4,1: 4)$.

Ans: (a) $\mathbf{v}_{4}=(0,5,0,0,-5)$
9.7. Solve Example 9.47 by implementing the $Q R$ iteration algorithm in Python; you may use qr_iteration.m, p. 254.

Chapter 10
 Introduction to Machine Learning

In this chapter, you will learn:

- What machine learning (ML) is
- Popular ML classifiers
- Scikit-Learn: A Python ML library
- A machine learning modelcode

The chapter is a brief introduction to ML. I hope it would be useful.

Contents of Chapter 10

10.1.What is Machine Learning? 260
10.2.Binary Classifiers 265
10.3.Popular Machine Learning Classifiers 275
10.4.Neural Networks 283
10.5.Scikit-Learn: A Python Machine Learning Library 292
A Machine Learning Modelcode 296
Exercises for Chapter 10 301

10.1. What is Machine Learning?

The Three Tasks (T3)

Most real-world problems are expressed as

$$
\begin{equation*}
f(\mathbf{x})=y \tag{10.1}
\end{equation*}
$$

where f is an operation, \mathbf{x} denotes the input, and y is the output.

1. Known: $(f, \mathbf{x}) \Rightarrow y$: simple to get
2. Known: $(f, y) \Rightarrow \mathrm{x}$: solve the equation (10.1)
3. Known: $(x, y) \Rightarrow f$: approximated; Machine Learning

Definition 10.1. Machine Learning (ML)

- ML algorithms are algorithms that can learn from data (input) and produce functions/models (output).
- Machine learning is the science of getting machines to act, without functions/models being explicitly programmed to do so.

Example 10.2. There are different types of ML:

- Supervised learning: e.g., classification, regression \Leftarrow Labeled data
- Unsupervised learning: e.g., clustering \Leftarrow No labels
- Reinforcement learning: e.g., chess engine \Leftarrow Reward system

The most popular type is supervised learning.

A Belief in Machine Learning

The average is correct (at least, acceptable)

- "Guess The Weight of the Ox" Competition
- Questioner: Francis Galton - a cousin of Charles Darwin
- A county fair, Plymouth, MA, 1907
- The annual West of England Fat Stock and Poultry Exhibition
- 800 people gathered: mean=1197 lbs; real=1198 lbs

Supervised Learning

Assumption. Given a data set $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}$, where y_{i} are labels, there exists a relation $f: X \rightarrow Y$.

Supervised learning:

$\left\{\begin{array}{l}\text { Given: A training data }\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid i=1, \cdots, N\right\} \\ \text { Find: } \widehat{f}: X \rightarrow Y \text {, a good approximation to } f\end{array}\right.$

Figure 10.1: Supervised learning and prediction.

Figure 10.2: Classification and regression.

Unsupervised Learning

Note:

- In supervised learning, we know the right answer beforehand when we train our model, and in reinforcement learning, we define a measure of reward for particular actions by the agent.
- In unsupervised learning, however, we are dealing with unlabeled data or data of unknown structure. Using unsupervised learning techniques, we are able to explore the structure of our data to extract meaningful information, without the guidance of a known outcome variable or reward function.
- Clustering is an exploratory data analysis technique that allows us to organize a pile of information into meaningful subgroups (clusters) without having any prior knowledge of their group memberships.

Figure 10.3: Clustering.

Why is ML not Always Simple?

Major Issues in ML

1. Overfitting: Fitting training data too tightly

- Difficulties: Accuracy drops significantly for test data
- Remedies:
- More training data (often, impossible)
- Early stopping; feature selection
- Regularization; ensembling (multiple classifiers)

2. Curse of Dimensionality: The feature space becomes increasingly sparse for an increasing number of dimensions (of a fixedsize training dataset)

- Difficulties: Larger error, more computation time;

Data points appear equidistant from all the others

- Remedies
- More training data (often, impossible)
- Dimensionality reduction (e.g., Feature selection, PCA)

c) $30-64$ regions

3. Multiple Local Minima Problem

Training often involves minimizing an objective function.

- Difficulties: Larger error, unrepeatable
- Remedies
- Gaussian sailing; regularization
- Careful access to the data (e.g., mini-batch)

4. Interpretability:

Although ML has come very far, researchers still don't know exactly how some algorithms (e.g., deep nets) work.

- If we don't know how training nets actually work, how do we make any real progress?

5. One-Shot Learning:

We still haven't been able to achieve one-shot learning. Traditional gradient-based networks need a huge amount of data, and are often in the form of extensive iterative training.

- Instead, we should find a way to enable neural networks to learn, using just a few examples.

10.2. Binary Classifiers

General Remarks

A binary classifier is a function which can decide whether or not an input vector belongs to a specific class (e.g., spam/ham).

- Binary classification often refers to those classification tasks that have two class labels. (two-class classification)
- It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function.
Examples: Perceptron [10], Adaline, Logistic Regression, Support Vector Machine [4]

Binary classifiers are artificial neurons.

Note: Neurons are interconnected nerve cells, involved in the processing and transmitting of chemical and electrical signals. Such a nerve cell can be described as a simple logic gate with binary outputs;

- multiple signals arrive at the dendrites,
- they are integrated into the cell body,
- and if the accumulated signal exceeds a certain threshold, an output signal is generated that will be passed on by the axon.

Figure 10.4: A schematic description of a neuron.

Definition 10.3. Let $\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}$ be labeled data, with $\mathbf{x}^{(i)} \in \mathbb{R}^{d}$ and $y^{(i)} \in\{0,1\}$. A binary classifier finds a hyperplane in \mathbb{R}^{d} that separates data points $X=\left\{\mathbf{x}^{(i)}\right\}$ to two classes:

Figure 10.5: A binary classifier, finding a hyperplane in \mathbb{R}^{d}.

Observation 10.4. Binary Classifiers

- The labels $\{0,1\}$ are chosen for simplicity.
- A hyperplane can be formulated by a normal vector $\mathbf{w} \in \mathbb{R}^{d}$ and a shift (bias) w_{0} :

$$
\begin{equation*}
z=\mathbf{w}^{T} \mathbf{x}+w_{0} \tag{10.4}
\end{equation*}
$$

- To learn w and w_{0}, you may formulate a cost function to minimize, as the Sum of Squared Errors (SSE):

$$
\begin{equation*}
\mathcal{J}(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y^{(i)}-\phi\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+w_{0}\right)\right)^{2} \tag{10.5}
\end{equation*}
$$

where $\phi(z)$ is an activation function.

10.2.1. The Perceptron Algorithm

The perceptron is a binary classifier of supervised learning.

- 1957: Perceptron algorithm is invented by Frank Rosenblatt, Cornell Aeronautical Laboratory
- Built on work of Hebbs (1949)
- Improved by Widrow-Hoff (1960): Adaline
- 1960: Perceptron Mark 1 Computer - hardware implementation
- 1970's: Learning methods for two-layer neural networks

Definition 10.5. We can pose the perceptron as a binary classifier, in which we refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity.

- Input values: $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{d}\right)^{T}$
- Weight vector: $\mathbf{w}=\left(w_{1}, w_{2}, \cdots, w_{d}\right)^{T}$
- Net input: $z=w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{d} x_{d}$
- Activation function: $\phi(z)$, defined by

$$
\phi(z)=\left\{\begin{array}{lc}
1 & \text { if } z \geq \theta \tag{10.6}\\
-1 & \text { otherwise }
\end{array}\right.
$$

where θ is a threshold.
For simplicity, we can bring the threshold θ in (10.6) to the left side of the equation; define a weight-zero as $w_{0}=-\theta$ and reformulate as

$$
\phi(z)=\left\{\begin{array}{lc}
1 & \text { if } z \geq 0, \tag{10.7}\\
-1 & \text { otherwise },
\end{array} \quad z=\mathbf{w}^{T} \mathbf{x}=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}\right.
$$

In the ML literature, the variable w_{0} is called the bias.
The equation $w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}=0$ represents a hyperplane in \mathbb{R}^{d}, while w_{0} decides the intercept.

The Perceptron Learning Rule

The whole idea behind the Rosenblatt's thresholded perceptron model is to use a reductionist approach to mimic how a single neuron in the brain works: it either fires or it doesn't.

Algorithm 10.6. Rosenblatt's Initial Perceptron Rule

1. Initialize the weights to 0 or small random numbers.
2. For each training sample $\mathbf{x}^{(i)}$,
(a) Compute the output value $\widehat{y}^{(i)}\left(:=\phi\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right)\right)$.
(b) Update the weights.

The update of the weight vector w can be more formally written as:

$$
\begin{array}{ll}
\mathbf{w}=\mathbf{w}+\Delta \mathbf{w}, & \Delta \mathbf{w}=\eta\left(y^{(i)}-\widehat{y}^{(i)}\right) \mathbf{x}^{(i)} \\
w_{0}=w_{0}+\Delta w_{0}, & \Delta w_{0}=\eta\left(y^{(i)}-\widehat{y}^{(i)}\right) \tag{10.8}
\end{array}
$$

where η is the learning rate, $0<\eta<1, y^{(i)}$ is the true class label of the i-th training sample, and $\widehat{y}^{(i)}$ denotes the predicted class label.

Remark 10.7. A simple thought experiment for the perceptron learning rule:

- Let the perceptron predict the class label correctly. Then $y^{(i)}-\widehat{y}^{(i)}=0$ so that the weights remain unchanged.
- Let the perceptron make a wrong prediction. Then

$$
\Delta w_{j}=\eta\left(y^{(i)}-\widehat{y}^{(i)}\right) x_{j}^{(i)}= \pm 2 \eta x_{j}^{(i)}
$$

so that the weight w_{j} is pushed towards the direction of the positive or negative target class, respectively.

Perceptron for Iris Dataset

```
                                    perceptron.py
import numpy as np
class Perceptron():
    def __init__(self, xdim, epoch=10, learning_rate=0.01):
        self.epoch = epoch
        self.learning_rate = learning_rate
        self.weights = np.zeros(xdim + 1)
    def activate(self, x):
        net_input = np.dot(x,self.weights[1:])+self.weights[0]
        return 1 if (net_input > 0) else 0
    def fit(self, Xtrain, ytrain):
        for k in range(self.epoch):
            for x, y in zip(Xtrain, ytrain):
                yhat = self.activate(x)
                self.weights[1:] += self.learning_rate*(y-yhat)*x
                self.weights[0] += self.learning_rate*(y-yhat)
    def predict(self, Xtest):
        yhat= []
        #for x in Xtest: yhat.append(self.activate(x))
        [yhat.append(self.activate(x)) for x in Xtest]
        return yhat
    def score(self, Xtest, ytest):
        count=0;
        for x, y in zip(Xtest, ytest):
            if self.activate(x)==y: count+=1
        return count/len(ytest)
    #----------------------------------------------------
    def fit_and_fig(self, Xtrain, ytrain):
        wgts_all = []
        for k in range(self.epoch):
            for x, y in zip(Xtrain, ytrain):
                yhat = self.activate(x)
                self.weights[1:] += self.learning_rate*(y-yhat)*x
                self.weights[0] += self.learning_rate*(y-yhat)
                if k==0: wgts_all.append(list(self.weights))
        return np.array(wgts_all)
```

Iris_perceptron.py

```
import numpy as np; import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets; #print(dir(datasets))
np.set_printoptions(suppress=True)
from perceptron import Perceptron
#----------------------------------------------------------------
data_read = datasets.load_iris(); #print(data_read.keys())
X = data_read.data;
y = data_read.target
targets = data_read.target_names; features = data_read.feature_names
N,d = X.shape; nclass=len(set(y));
print('N,d,nclass=',N,d,nclass)
#---- Take 2 classes in 2D
X2 = X[y<=1]; y2 = y[y<=1];
X2 = X2[:, [0,2]]
#---- Train and Test -------------------------------------------
Xtrain, Xtest, ytrain, ytest = train_test_split(X2, y2,
    random_state=None, train_size=0.7e0)
clf = Perceptron(X2.shape[1],epoch=2)
#clf.fit(Xtrain, ytrain);
wgts_all = clf.fit_and_fig(Xtrain, ytrain);
accuracy = clf.score(Xtest, ytest); print('accuracy =', accuracy)
#yhat = clf.predict(Xtest);
```


Figure 10.6: A part of Iris data (left) and the convergence of Perceptron iteration (right).

10.2.2. Adaline: ADAptive LInear NEuron

- (Widrow \& Hoff, 1960)
- Weights are updated based on linear activation: e.g.,

$$
\phi\left(\mathbf{w}^{T} \mathbf{x}\right)=\mathbf{w}^{T} \mathbf{x} .
$$

That is, ϕ is the identity function.

- Adaline algorithm is particularly interesting because it illustrates the key concept of defining and minimizing continuous cost functions, which will lay the groundwork for understanding more advanced machine learning algorithms for classification, such as logistic regression and support vector machines, as well as regression models.
- Continuous cost functions allow the ML optimization to incorporate advanced mathematical techniques such as calculus.

Figure 10.7: Perceptron vs. Adaline

Algorithm 10.8. Adaline Learning:

Given a dataset $\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \mid i=1,2, \cdots, N\right\}$, learn the weights \mathbf{w} and bias $b=w_{0}$:

- Activation function: $\phi(z)=z$ (i.e., identity activation)
- Cost function: the SSE

$$
\begin{equation*}
\mathcal{J}(\mathbf{w}, b)=\frac{1}{2} \sum_{i=1}^{N}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right)^{2}, \tag{10.9}
\end{equation*}
$$

where $\boldsymbol{z}^{(i)}=\mathrm{w}^{\boldsymbol{T}} \mathbf{x}^{(i)}+\boldsymbol{b}$ and $\phi=I$, the identity.
The dominant algorithm for the minimization of the cost function is the the Gradient Descent Method.

Algorithm 10.9. The Gradient Descent Method uses $-\nabla \mathcal{J}$ for the search direction (update direction):

$$
\begin{align*}
& \mathbf{w}=\mathbf{w}+\Delta \mathbf{w}=\mathbf{w}-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b), \tag{10.10}\\
& b=b+\Delta b=b-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b),
\end{align*}
$$

where $\eta>0$ is the step length (learning rate).

Computation of $\nabla \mathcal{J}$ for Adaline :

The partial derivatives of the cost function \mathcal{J} w.r.to w_{j} and b read

$$
\begin{align*}
& \frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}}=-\sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) x_{j}^{(i)} \tag{10.11}\\
& \frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial b}=-\sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right)
\end{align*}
$$

Thus, with $\phi=I$,

$$
\begin{align*}
& \Delta \mathbf{w}=-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \mathbf{x}^{(i)}, \\
& \Delta b=-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) . \tag{10.12}
\end{align*}
$$

You will modify perceptron.py for Adaline; an implementation issue is considered in Exercise 10.2, p.301.

Hyperparameters

Definition 10.10. In ML, a hyperparameter is a parameter whose value is set before the learning process begins. Thus it is an algorithmic parameter. Examples are

- The learning rate (η)
- The number of maximum epochs/iterations (n_iter)

Figure 10.8: Well-chosen learning rate vs. a large learning rate

Note: There are effective searching schemes to set the learning rate η automatically.

Multi-class Classification

Figure 10.9: Classification for three classes.

One-versus-all (one-versus-rest) classification

OvA (OvR) is readily applicable for classification of general n classes, $n \geq 2$.

10.3. Popular Machine Learning Classifiers

Remark 10.11. (The standard logistic sigmoid function)

$$
\begin{equation*}
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{1+e^{x}} \tag{10.13}
\end{equation*}
$$

- The standard logistic function is the solution of the simple firstorder non-linear ordinary differential equation

$$
\begin{equation*}
\frac{d}{d x} y=y(1-y), \quad y(0)=\frac{1}{2} . \tag{10.14}
\end{equation*}
$$

- It can be verified easily as

$$
\begin{equation*}
\sigma^{\prime}(x)=\frac{e^{x}\left(1+e^{x}\right)-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=\sigma(x)(1-\sigma(x)) . \tag{10.15}
\end{equation*}
$$

- σ^{\prime} is even: $\sigma^{\prime}(-x)=\sigma^{\prime}(x)$.
- Rotational symmetry about $(0,1 / 2)$:

$$
\begin{equation*}
\sigma(x)+\sigma(-x)=\frac{1}{1+e^{-x}}+\frac{1}{1+e^{x}}=\frac{2+e^{x}+e^{-x}}{2+e^{x}+e^{-x}} \equiv 1 . \tag{10.16}
\end{equation*}
$$

- $\int \sigma(x) d x=\int \frac{e^{x}}{1+e^{x}} d x=\ln \left(1+e^{x}\right)$, which is known as the softplus function in artificial neural networks. It is a smooth approximation of the the rectifier (an activation function) defined as

$$
\begin{equation*}
f(x)=x^{+}=\max (x, 0) \tag{10.17}
\end{equation*}
$$

Figure 10.11: Popular activation functions: (left) The standard logistic sigmoid function and (right) the rectifier and softplus function.

10.3.1. Logistic Regression

Logistic regression is a probabilistic model.

- Logistic regression maximizes the likelihood of the parameter w ; in realization, it is similar to Adaline.
- Only the difference is the activation function (the sigmoid function), as illustrated in the figure:

Figure 10.12: Adaline vs. Logistic regression.

- The prediction (the output of the sigmoid function) is interpreted as the probability of a particular sample belonging to class 1 ,

$$
\begin{equation*}
\phi(z)=p(y=1 \mid \mathbf{x} ; \mathbf{w}), \tag{10.18}
\end{equation*}
$$

given its features \mathbf{x} parameterized by the weights $\mathbf{w}, z=\mathbf{w}^{T} \mathbf{x}+b$.

Derivation of the Logistic Cost Function

- Assume that the individual samples in our dataset are independent of one another. Then we can define the likelihood L as

$$
\begin{align*}
L(\mathbf{w}) & =P(\mathbf{y} \mid \mathbf{x} ; \mathbf{w})=\Pi_{i=1}^{N} P\left(y^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right) \\
& =\Pi_{i=1}^{N}\left(\phi\left(z^{(i)}\right)\right)^{y^{(i)}}\left(1-\phi\left(z^{(i)}\right)\right)^{1-y^{(i)}} \tag{10.19}
\end{align*}
$$

where $z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}+b$.

- In practice, it is easier to maximize the (natural) \log of this equation, which is called the log-likelihood function:

$$
\begin{equation*}
\ell(\mathbf{w})=\ln (L(\mathbf{w}))=\sum_{i=1}^{N}\left[y^{(i)} \ln \left(\phi\left(z^{(i)}\right)\right)+\left(1-y^{(i)}\right) \ln \left(1-\phi\left(z^{(i)}\right)\right)\right] \tag{10.20}
\end{equation*}
$$

Algorithm 10.12. Logistic Regression Learning:

From data $\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}$, learn the weights \mathbf{w} and bias b, with

- Activation function: $\phi(z)=\sigma(z)$, the logistic sigmoid function
- Cost function: The likelihood is maximized.

Based on the log-likelihood, we define the logistic cost function to be minimized:

$$
\begin{equation*}
\mathcal{J}(\mathbf{w}, b)=\sum_{i}\left[-y^{(i)} \ln \left(\phi\left(z^{(i)}\right)\right)-\left(1-y^{(i)}\right) \ln \left(1-\phi\left(z^{(i)}\right)\right)\right] \tag{10.21}
\end{equation*}
$$

where $z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}+b$.

Computation of $\nabla \mathcal{J}$ for Logistic Regression:

Let's start by calculating the partial derivative of the logistic cost function with respect to the j-th weight, w_{j} :

$$
\begin{equation*}
\frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}}=\sum_{i}\left[-y^{(i)} \frac{1}{\phi\left(z^{(i)}\right)}+\left(1-y^{(i)}\right) \frac{1}{1-\phi\left(z^{(i)}\right)}\right] \frac{\partial \phi\left(z^{(i)}\right)}{\partial w_{j}} \tag{10.22}
\end{equation*}
$$

where, using $z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}$ and (10.15),

$$
\frac{\partial \phi\left(z^{(i)}\right)}{\partial w_{j}}=\phi^{\prime}\left(z^{(i)}\right) \frac{\partial z^{(i)}}{\partial w_{j}}=\phi\left(z^{(i)}\right)\left(1-\phi\left(z^{(i)}\right)\right) x_{j}^{(i)}
$$

Thus, if follows from the above and (10.22) that

$$
\begin{aligned}
\frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}} & =\sum_{i}\left[-y^{(i)}\left(1-\phi\left(z^{(i)}\right)\right)+\left(1-y^{(i)}\right) \phi\left(z^{(i)}\right)\right] x_{j}^{(i)} \\
& =-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w})=-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \mathbf{x}^{(i)} \tag{10.23}
\end{equation*}
$$

Similarly, one can get

$$
\begin{equation*}
\nabla_{b} \mathcal{J}(\mathbf{w})=-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \tag{10.24}
\end{equation*}
$$

Algorithm 10.13. Gradient descent learning for Logistic Regression is formulated as

$$
\begin{equation*}
\mathbf{w}:=\mathbf{w}+\Delta \mathbf{w}, \quad b:=b+\Delta b, \tag{10.25}
\end{equation*}
$$

where $\eta>0$ is the step length (learning rate) and

$$
\begin{align*}
& \Delta \mathbf{w}=-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \mathbf{x}^{(i)}, \\
& \Delta b=-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \tag{10.26}
\end{align*}
$$

Note: The above gradient descent rule for Logistic Regression is of the same form as that of Adaline; see (10.12) on p.272. Only the difference is the activation function ϕ.

10.3.2. Support Vector Machine

- Support vector machine (SVM), developed in 1995 by CortesVapnik [4], can be considered as an extension of the Perceptron/Adaline, which maximizes the margin.
- The rationale behind having decision boundaries with large margins is that they tend to have a lower generalization error, whereas models with small margins are more prone to overfitting.

Figure 10.13: Linear support vector machine.

To find an optimal hyperplane that maximizes the margin, let's begin with considering the positive and negative hyperplanes that are parallel to the decision boundary:

$$
\begin{align*}
w_{0}+\mathbf{w}^{T} \mathbf{x}_{+} & =1, \tag{10.27}\\
w_{0}+\mathbf{w}^{T} \mathbf{x}_{-} & =-1 .
\end{align*}
$$

where $\mathbf{w}=\left[w_{1}, w_{2}, \cdots, w_{d}\right]^{T}$. If we subtract those two linear equations from each other, then we have

$$
\mathbf{w} \cdot\left(\mathbf{x}_{+}-\mathbf{x}_{-}\right)=2
$$

and therefore

$$
\begin{equation*}
\frac{\mathbf{w}}{\|\mathrm{w}\|} \cdot\left(\mathbf{x}_{+}-\mathbf{x}_{-}\right)=\frac{2}{\|\mathrm{w}\|} \tag{10.28}
\end{equation*}
$$

Note: $\mathbf{w}=\left[w_{1}, w_{2}, \cdots, w_{d}\right]^{T}$ is a normal vector to the decision boundary (a hyperplane) so that the left side of (10.28) is the distance between the positive and negative hyperplanes.

Maximizing the distance (margin) is equivalent to minimizing its reciprocal $\frac{1}{2}\|\mathbf{w}\|$, or minimizing $\frac{1}{2}\|\mathbf{w}\|^{2}$.

Problem 10.14. The linear SVM is formulated as

$$
\begin{align*}
& \min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2}, \quad \text { subject to } \\
& \qquad\left[\begin{array}{ll}
w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)} \geq 1 & \text { if } y^{(i)}=1 \\
w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)} \leq-1 & \text { if } y^{(i)}=-1
\end{array}\right. \tag{10.29}
\end{align*}
$$

The minimization problem in (10.29) can be solved by the method of Lagrange multipliers; See Appendices A.1, A.2, and A.3.

Remark 10.15. The constraints in Problem 10.14 can be written as

$$
\begin{equation*}
y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1 \geq 0, \quad \forall i . \tag{10.30}
\end{equation*}
$$

- The beauty of linear SVM is that if the data is linearly separable, there is a unique global minimum value.
- An ideal SVM analysis should produce a hyperplane that completely separates the vectors (cases) into two non-overlapping classes.
- However, perfect separation may not be possible, or it may result in a model with so many cases that the model does not classify correctly.
- There are variations of the SVM:
- soft-margin classification, for noisy data
- nonlinear SVMs, kernel methods

10.3.3. k-Nearest Neighbors

The k-nearest neighbor (k-NN) classifier is a typical example of a lazy learner.

- It is called lazy not because of its apparent simplicity, but because it doesn't learn a discriminative function from the training data, but memorizes the training dataset instead.
- Analysis of the training data is delayed until a query is made to the system.

Algorithm 10.16. (k-NN algorithm). The algorithm itself is fairly straightforward and can be summarized by the following steps:

1. Choose the number k and a distance metric.
2. For the new sample, find the k-nearest neighbors.
3. Assign the class label by majority vote.

Figure 10.14: Illustration for how a new data point (?) is assigned the triangle class label, based on majority voting, when $k=5$.

k-NN: pros and cons

- Since it is memory-based, the classifier immediately adapts as we collect new training data.
- (Prediction Cost) The computational complexity for classifying new samples grows linearly with the number of samples in the training dataset in the worst-case scenario. ${ }^{a}$
- Furthermore, we can't discard training samples since no training step is involved. Thus, storage space can become a challenge if we are working with large datasets.
${ }^{a}$ J. H. Friedman, J. L. Bentley, and R.A. Finkel (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM transactions on Mathematical Software (TOMS), 3, no. 3, pp. 209226. The algorithm in the article is called the KD-tree.

k-NN: what to choose k and a distance metric?

- The right choice of k is crucial to find a good balance between overfitting and underfitting.
(For sklearn.neighbors.KNeighborsClassifier, default n_neighbors = 5.)
- We also choose a distance metric that is appropriate for the features in the dataset. (e.g., the simple Euclidean distance, along with data standardization)
- Alternatively, we can choose the Minkowski distance:

$$
\begin{equation*}
d(\mathbf{x}, \mathbf{z})=\|\mathbf{x}-\mathbf{z}\|_{p} \xlongequal{\text { def }}\left(\sum_{i=1}^{m}\left|x_{i}-z_{i}\right|^{p}\right)^{1 / p} \tag{10.31}
\end{equation*}
$$

(For sklearn.neighbors.KNeighborsClassifier, default $\mathrm{p}=2$.)

10.4. Neural Networks

Recall: The Perceptron (or, Adaline, Logistic Regression) is the simplest artificial neuron that makes decisions by weighting up evidence.

Figure 10.15: A simplest artificial neuron.

Complex Neural Networks

- Obviously, a simple artificial neuron is not a complete model of human decision-making!
- However, they can be used as building blocks for more complex neural networks.

Figure 10.16: A complex neural network.

10.4.1. A Simple Network to Classify Hand-written Digits: MNIST Dataset

- The problem of recognizing hand-written digits has two components: segmentation and classification.

$$
504 / 92=504192
$$

Figure 10.17: Segmentation.

- We'll focus on algorithmic components for the classification of individual digits.

MNIST dataset:

A modified subset of two datasets collected by NIST (US National Institute of Standards and Technology):

- Its first part contains 60,000 images (for training)
- The second part is 10,000 images (for test), each of which is in 28×28 grayscale pixels

A Simple Neural Network

Figure 10.18: A sigmoid network having a single hidden layer.

What the Neural Network Will Do: An Interpretation

- Let's concentrate on the first output neuron, the one that is trying to decide whether or not the input digit is a $\mathbf{0}$.
- It does this by weighing up evidence from the hidden layer of neurons.

- What are those hidden neurons doing?

- Let's suppose for the sake of argument that the first neuron in the hidden layer may detect whether or not the input image contains

It can do this by heavily weighting the corresponding pixels, and lightly weighting the other pixels.

- Similarly, let's suppose that the second, third, and fourth neurons in the hidden layer detect whether or not the input image contains

- These four parts together make up a 0 image:

- Thus, if all four of these hidden neurons are firing, then we can conclude that the digit is a 0 .

Remark 10.17. Explainable AI (XAI)

- The above is a common interpretation for neural networks.
- It hardly helps end users understand XAI
- Neural networks may have been designed ineffectively.

Learning with Gradient Descent

- Data set $\left\{\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right)\right\}, i=1,2, \cdots, N$
(e.g., if an image $\mathbf{x}^{(k)}$ depicts a 2, then $\mathbf{y}^{(k)}=(0,0,1,0,0,0,0,0,0,0)^{T}$.)
- Cost function

$$
\begin{equation*}
C(\boldsymbol{W}, B)=\frac{1}{2 N} \sum_{i}\left\|\mathbf{y}^{(i)}-\mathbf{a}\left(\mathbf{x}^{(i)}\right)\right\|^{2} \tag{10.32}
\end{equation*}
$$

where \boldsymbol{W} denotes the collection of all weights in the network, B all the biases, and $\mathbf{a}\left(\mathbf{x}^{(i)}\right)$ is the vector of outputs from the network when $\mathbf{x}^{(i)}$ is input.

- Gradient descent method

$$
\left[\begin{array}{c}
\boldsymbol{W} \tag{10.33}\\
B
\end{array}\right] \leftarrow\left[\begin{array}{c}
\boldsymbol{W} \\
B
\end{array}\right]+\left[\begin{array}{c}
\Delta \boldsymbol{W} \\
\Delta B
\end{array}\right]
$$

where

$$
\left[\begin{array}{c}
\Delta \boldsymbol{W} \\
\Delta B
\end{array}\right]=-\eta\left[\begin{array}{c}
\nabla_{\boldsymbol{W}} C \\
\nabla_{B} C
\end{array}\right]
$$

Note: To compute the gradient ∇C, we need to compute the gradients $\nabla C_{\mathbf{x}^{(i)}}$ separately for each training input, $\mathbf{x}^{(i)}$, and then average them:

$$
\begin{equation*}
\nabla C=\frac{1}{N} \sum_{i} \nabla C_{\mathbf{x}^{(i)}} \tag{10.34}
\end{equation*}
$$

Unfortunately, when the number of training inputs is very large, it can take a long time, and learning thus occurs slowly. An idea called stochastic gradient descent can be used to speed up learning.

Stochastic Gradient Descent

The idea is to estimate the gradient ∇C by computing $\nabla C_{\mathbf{x}^{(i)}}$ for a small sample of randomly chosen training inputs. By averaging over this small sample, it turns out that we can quickly get a good estimate of the true gradient ∇C; this helps speed up gradient descent, and thus learning.

- Pick out a small number of randomly chosen training inputs $(m \ll N)$:

$$
\widetilde{\mathbf{x}}^{(1)}, \widetilde{\mathbf{x}}^{(2)}, \cdots, \widetilde{\mathbf{x}}^{(m)},
$$

which we refer to as a mini-batch.

- Average $\nabla C_{\widetilde{\mathbf{x}}^{(k)}}$ to approximate the gradient ∇C. That is,

$$
\begin{equation*}
\frac{1}{m} \sum_{k=1}^{m} \nabla C_{\widetilde{\mathbf{x}}^{(k)}} \approx \nabla C \xlongequal{\text { def }} \frac{1}{N} \sum_{i} \nabla C_{\mathbf{x}^{(i)}} . \tag{10.35}
\end{equation*}
$$

- For classification of hand-written digits for the MNIST dataset, you may choose: batch_size = 10 .

Note: In practice, you can implement the stochastic gradient descent as follows. For an epoch,

- Shuffle the dataset
- For each m samples (selected from the beginning), update (\boldsymbol{W}, B) using the approximate gradient (10.35).

10.4.2. Implementation for MNIST Digits Dataset [9]
 network.py

```
|||
network.py (by Michael Nielsen)
~~~~~~~~~~
A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network. Gradients are calculated
using backpropagation. """
#### Libraries
# Standard library
import random
# Third-party libraries
import numpy as np
class Network(object):
    def __init__(self, sizes):
        """The list `'sizes`` contains the number of neurons in the
        respective layers of the network. For example, if the list
        was [2, 3, 1] then it would be a three-layer network, with the
        first layer containing 2 neurons, the second layer 3 neurons,
        and the third layer 1 neuron. """
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)
            for x, y in zip(sizes[:-1], sizes[1:])]
    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a
    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):
        """Train the neural network using mini-batch stochastic
        gradient descent. The '`training_data`` is a list of tuples
        ``(x, y)`` representing the training inputs and the desired
        outputs. """
        if test_data: n_test = len(test_data)
        n = len(training_data)
        for j in xrange(epochs):
            random.shuffle(training_data)
            mini_batches = [
                    training_data[k:k+mini_batch_size]
                for k in xrange(0, n, mini_batch_size)]
```

```
        for mini_batch in mini_batches:
            self.update_mini_batch(mini_batch, eta)
        if test_data:
            print "Epoch {0}: {1} / {2}".format(
            j, self.evaluate(test_data), n_test)
        else:
            print "Epoch {0} complete".format(j)
def update_mini_batch(self, mini_batch, eta):
    """Update the network's weights and biases by applying
    gradient descent using backpropagation to a single mini batch.
    The '`mini_batch`` is a list of tuples `'(x, y)``, and '`eta``
    is the learning rate."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
        delta_nabla_b, delta_nabla_w = self.backprop(x, y)
        nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
        nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [w-(eta/len(mini_batch))*nw
                for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
                for b, nb in zip(self.biases, nabla_b)]
def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. '`nabla_b`` and
    ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
    to '`self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] #list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases, self.weights):
        z = np.dot(w, activation)+b
        zs.append(z)
        activation = sigmoid(z)
        activations.append(activation)
    # backward pass
    delta = self.cost_derivative(activations[-1], y) * \
        sigmoid_prime(zs[-1])
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose())
    for l in xrange(2, self.num_layers):
```

```
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
            return (nabla_b, nabla_w)
    def evaluate(self, test_data):
    test_results = [(np.argmax(self.feedforward(x)), y)
                for (x, y) in test_data]
    return sum(int(x == y) for (x, y) in test_results)
    def cost_derivative(self, output_activations, y):
    """Return the vector of partial derivatives \partial C_x /
    \partial a for the output activations."""
    return (output_activations-y)
#### Miscellaneous functions
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))
```


The code is executed using

```
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
import network
n_neurons = 20
net = network.Network([784 , n_neurons, 10])
n_epochs, batch_size, eta = 30, 10, 3.0
net.SGD(training_data , n_epochs, batch_size, eta, test_data = test_data)
```

len $($ training_data $)=50000$, len(validation_data) $=10000$, len(test_data) $=10000$

Validation Accuracy

Validation Accuracy

```
Epoch 0: 9006 / 10000
Epoch 1: 9128 / 10000
Epoch 2: 9202 / 10000
Epoch 3: 9188 / 10000
Epoch 4: 9249 / 10000
Epoch 25: 9356 / 10000
Epoch 26: 9388 / 10000
Epoch 27: 9407 / 10000
Epoch 28: 9410 / 10000
Epoch 29: 9428 / 10000
```


Accuracy Comparisons

- scikit-learn's SVM classifier using the default settings: 9435/10000
- A well-tuned SVM: $\approx 98.5 \%$
- Well-designed Convolutional NN (CNN): 9979/10000 (only 21 missed!)

Note: For well-designed neural networks, the performance is close to human-equivalent, and is arguably better, since quite a few of the MNIST images are difficult even for humans to recognize with confidence, e.g.,

$$
\begin{aligned}
& \begin{array}{lllllllll}
0 & 3 & 7 & 1 & 8 & 0
\end{array}
\end{aligned}
$$

Figure 10.19: MNIST images difficult even for humans to recognize.

XAI \approx (Neural Network Design)

- The above neural network converges slowly. Why?
- Can we design a new (explainable) form of neural network
- which converges in 2-3 epochs
- to a model showing a better accuracy?

10.5. Scikit-Learn: A Python Machine Learning Library

Scikit-learn is one of the most useful and robust libraries for machine learning.

- It provides various tools for machine learning and statistical modeling, including
- preprocessing,
- classification, regression, clustering, and
- ensemble methods.
- This library is built upon Numpy, SciPy, Matplotlib, and Pandas.
- Prerequisites: The following are required/recommended, before we start using scikit-learn.
- Python 3
- Numpy, SciPy, Matplotlib
- Pandas (data analysis)
- Seaborn (visualization)
- Scikit-Learn Installation: For example (on Ubuntu), pip install -U scikit-learn sudo apt-get install python3-sklearn python3-sklearn-lib

Five Main Steps, in Machine Learning

1. Selection of features
2. Choosing a performance metric
3. Choosing a classifier and optimization algorithm
4. Evaluating the performance of the model
5. Tuning the algorithm

In practice :

- Each algorithm has its own characteristics and is based on certain assumptions.
- No Free Lunch Theorem: No single classifier works best across all possible scenarios.
- Best Model: It is always recommended that you compare the performance of at least a handful of different learning algorithms to select the best model for the particular problem.

Why Scikit-Learn?

- Nice documentation and usability
- The library covers most machine-learning tasks:
- Preprocessing modules
- Algorithms
- Analysis tools
- Robust Model: Given a dataset, you may
(a) Compare algorithms
(b) Build an ensemble model
- Scikit-learn scales to most data problems
\Rightarrow Easy-to-use, convenient, and powerful enough

A Simple Example Code

```
#--------------------------------------------------------
# Load Data
#-------------------------------------------------------
from sklearn import datasets
# dir(datasets); load_iris, load_digits, load_breast_cancer, load_wine, ...
iris = datasets.load_iris()
feature_names = iris.feature_names
target_names = iris.target_names
print("## feature names:", feature_names)
print("## target names :", target_names)
print("## set(iris.target):", set(iris.target))
#-
# Create "model instances"
#------------------------------------------------------
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
LR = LogisticRegression(max_iter = 1000)
KNN = KNeighborsClassifier(n_neighbors = 5)
#-
# Split, Train, and Test
#---------------------------------------------------------
import numpy as np
from sklearn.model_selection import train_test_split
X = iris.data; y = iris.target
iter = 100; Acc = np.zeros([iter,2])
for i in range(iter):
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=i, stratify=y)
    LR.fit(X_train, y_train); Acc[i,0] = LR.score(X_test, y_test)
    KNN.fit(X_train, y_train); Acc[i,1] = KNN.score(X_test, y_test)
acc_mean = np.mean(Acc,axis=0)
acc_std = np.std(Acc,axis=0)
print('## iris.Accuracy.LR : %.4f +- %.4f' %(acc_mean[0],acc_std[0]))
print('## iris.Accuracy.KNN: %.4f +- %.4f' %(acc_mean[1],acc_std[1]))
```

```
#----------------------------------------------------------
# New Sample ---> Predict
#-------------------------------------------------------
sample = [[5, 3, 2, 4], [4, 3, 3, 6]];
print('## New sample =',sample)
predL = LR.predict(sample); predK = KNN.predict(sample)
print(" ## sample.LR.predict :",target_names[predL])
print(" ## sample.KNN.predict:",target_names[predK])
```

```
Output
## feature names: ['sepal length (cm)', 'sepal width (cm)',
    'petal length (cm)', 'petal width (cm)']
## target names : ['setosa' 'versicolor' 'virginica']
## set(iris.target): {0, 1, 2}
## iris.Accuracy.LR : 0.9631 +- 0.0240
## iris.Accuracy.KNN: 0.9658 +- 0.0202
## New sample = [[5, 3, 2, 4], [4, 3, 3, 6]]
    ## sample.LR.predict : ['setosa' 'virginica']
    ## sample.KNN.predict: ['versicolor' 'virginica']
```

In Scikit-Learn, particularly with ensembling, you can finish most machine learning tasks conveniently and easily.

A Machine Learning Modelcode: Scikit-Learn Comparisons and Ensembling

In machine learning, you can write a code easily and effectively using the following modelcode. It is also useful for algorithm comparisons and ensembling. You may download https://skim.math.msstate.edu/LectureNotes/data/Machine-Learning-Modelcode.PY.tar.

Machine_Learning_Model.py
import numpy as np; import pandas as pd; import time import seaborn as sbn; import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets
np.set_printoptions (suppress=True)
\#======================================
\# Upload a Dataset: print(dir(datasets))
\# load_iris, load_wine, load_breast_cancer, ...
 data_read = datasets.load_iris(); \#print(data_read.keys())

X = data_read.data
y = data_read.target
dataname = data_read.filename
targets = data_read.target_names
features = data_read.feature_names
\#-
\# SETTING

$\mathrm{N}, \mathrm{d}=\mathrm{X}$. shape; nclass=len(set (y)) ;
print('DATA: N, d, nclass =', N,d, nclass)
rtrain $=0.7 e 0 ;$ run $=50 ;$ CompEnsm $=2$;
def multi_run(clf, X,y,rtrain,run):
t0 $=$ time.time(); acc = np.zeros([run,1])
for it in range (run):
Xtrain, Xtest, ytrain, ytest = train_test_split (
X, y, train_size=rtrain, random_state=it, stratify = y)
clf.fit(Xtrain, ytrain);
acc[it] = clf.score (Xtest, ytest)
etime $=$ time.time()-t0
return $\mathrm{np} . \operatorname{mean}(\mathrm{acc}) * 100, \mathrm{np} . \operatorname{std}(\mathrm{acc}) * 100$, etime \# accmean,acc_std,etime


```
# My Classifier
#=========================================================================
from myclf import * # My Classifier = MyCLF()
if 'MyCLF' in locals():
    accmean, acc_std, etime = multi_run(MyCLF(mode=1),X,y,rtrain,run)
    print('%s: MyCLF() : Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
        %(dataname,accmean,acc_std,etime/run))
#=========================================================================
# Scikit-learn Classifiers, for Comparisions && Ensembling
#===========================================================================
if CompEnsm >= 1:
    exec(open("sklearn_classifiers.py").read())
```


myclf.py

```
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.tree import DecisionTreeClassifier
class MyCLF(BaseEstimator, ClassifierMixin): #a child class
    def __init__(self, mode=0, learning_rate=0.01):
        self.mode = mode
        self.learning_rate = learning_rate
        self.clf = DecisionTreeClassifier(max_depth=5)
        if self.mode==1: print('MyCLF() = %s' %(self.clf))
    def fit(self, X, y):
        self.clf.fit(X, y)
    def predict(self, X):
        return self.clf.predict(X)
    def score(self, X, y):
        return self.clf.score(X, y)
```

Note: Replace DecisionTreeClassifier() with your own classier.

- The classifier must be implemented as a child class if if it is used in ensembling.

```
#=========================================================================
# Required: X, y, multi_run [dataname, rtrain, run, CompEnsm]
#========================================================================
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.ensemble import VotingClassifier
#------------------------------------------------------
classifiers = [
    LogisticRegression(max_iter = 1000),
    KNeighborsClassifier(5),
    SVC(kernel="linear", C=0.5),
    SVC(gamma=2, C=1),
    RandomForestClassifier(max_depth=5, n_estimators=50, max_features=1),
    MLPClassifier(hidden_layer_sizes=[100], activation='logistic',
                        alpha=0.5, max_iter=1000),
    AdaBoostClassifier(),
    GaussianNB(),
    QuadraticDiscriminantAnalysis(),
    GaussianProcessClassifier(),
]
names = [
    "Logistic-Regr",
    "KNeighbors-5 ",
    "SVC-Linear ",
    "SVC-RBF ",
    "Random-Forest",
    "MLPClassifier",
    "AdaBoost ",
    "Naive-Bayes ",
    "QDA ",
    "Gaussian-Proc",
]
```

```
#-
if dataname is None: dataname = 'No-dataname';
if run is None: run = 50;
if rtrain is None: rtrain = 0.7e0;
if CompEnsm is None: CompEnsm = 2;
#========================================================================
print('====== Comparision: Scikit-learn Classifiers =================')
#===========================================================================
import os;
acc_max=0; Acc_CLF = np.zeros([len(classifiers),1]);
for k, (name, clf) in enumerate(zip(names, classifiers)):
    accmean, acc_std, etime = multi_run(clf,X,y,rtrain,run)
    Acc_CLF[k] = accmean
    if accmean>acc_max: acc_max,algname = accmean,name
    print(1%s: %s: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
        %(os.path.basename(dataname), name,accmean,acc_std,etime/run))
print('-----------------------------------------------------------------------
print('sklearn classifiers Acc: (mean,max) = (%.2f,%.2f)%%; Best = %s'
        %(np.mean(Acc_CLF),acc_max,algname))
if CompEnsm <2: quit()
#==========================================================================
print('====== Ensembling: SKlearn Classifiers =======================')
#=========================================================================
names = [x.rstrip() for x in names]
popped_clf = []
popped_clf.append(names.pop(9)); classifiers.pop(9); #Gaussian Proc
popped_clf.append(names.pop(7)); classifiers.pop(7); #Naive Bayes
popped_clf.append(names.pop(6)); classifiers.pop(6); #AdaBoost
popped_clf.append(names.pop(4)); classifiers.pop(4); #Random Forest
popped_clf.append(names.pop(0)); classifiers.pop(0); #Logistic Regr
#print('popped_clf=',popped_clf[::-1])
CLFs = [(name, clf) for name, clf in zip(names, classifiers)]
#if 'MyCLF' in locals(): CLFs += [('MyCLF',MyCLF())]
EnCLF = VotingClassifier(estimators=CLFs, voting='hard')
accmean, acc_std, etime = multi_run(EnCLF,X,y,rtrain,run)
print('EnCLF =',[lis[0] for lis in CLFs])
print('%s: Ensemble CLFs: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
        %(os.path.basename(dataname),accmean,acc_std,etime/run))
```

Output

```
DATA: N, d, nclass = 150 4 3
MyCLF() = DecisionTreeClassifier(max_depth=5)
iris.csv: MyCLF() : Acc.(mean,std) = (94.53,3.12)%; E-time= 0.00074
====== Comparision: Scikit-learn Classifiers ==================
iris.csv: Logistic-Regr: Acc.(mean,std) = (96.13,2.62)%; E-time= 0.01035
iris.csv: KNeighbors-5 : Acc.(mean,std) = (96.49,1.99)%; E-time= 0.00176
iris.csv: SVC-Linear : Acc.(mean,std) = (97.60,2.26)%; E-time= 0.00085
iris.csv: SVC-RBF : Acc.(mean,std) = (96.62,2.10)%; E-time= 0.00101
iris.csv: Random-Forest: Acc.(mean,std) = (94.84,3.16)%; E-time= 0.03647
iris.csv: MLPClassifier: Acc.(mean,std) = (98.58,1.32)%; E-time= 0.20549
iris.csv: AdaBoost : Acc.(mean,std) = (94.40,2.64)%; E-time= 0.04119
iris.csv: Naive-Bayes : Acc.(mean,std) = (95.11,3.20)%; E-time= 0.00090
iris.csv: QDA : Acc.(mean,std) = (97.64,2.06)%; E-time= 0.00085
iris.csv: Gaussian-Proc: Acc.(mean,std) = (95.64,2.63)%; E-time= 0.16151
sklearn classifiers Acc: (mean,max) = (96.31,98.58)%; Best = MLPClassifier
====== Ensembling: SKlearn Classifiers =========================
EnCLF = ['KNeighbors-5', 'SVC-Linear', 'SVC-RBF', 'MLPClassifier', 'QDA']
iris.csv: Ensemble CLFs: Acc.(mean,std) = (97.60,1.98)%; E-time= 0.22272
```


Ensembling:
 You may stack the best and its siblings of other options.

Exercises for Chapter 10

10.1. Machine Learning Modelcode

(a) Search the database to get at least five datasets.
(You may try "print (dir(datasets))".)
(b) Run the Machine Learning Modelcode, p. 296, to compare the performances of 10 selected classifiers.
10.2. Modify perceptron. py, p. 269, to get a code for Adaline.

- For a given training dataset, Adaline converges to a unique weights, while Perceptron does not.
- Note that the correction terms are accumulated from all data points in each iteration. As a consequence, the learning rate η may be chosen smaller as the number of points increases.
Implementation: In order to overcome the problem, you may scale the correction terms by the number of data points.
- Redefine the cost function (10.9):

$$
\begin{equation*}
\mathcal{J}(\mathbf{w}, b)=\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right)^{2} \tag{10.36}
\end{equation*}
$$

where $z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}+b$ and $\phi=I$, the identity.

- Then the correction terms in (10.12) become correspondingly

$$
\begin{align*}
\Delta \mathbf{w} & =\eta \frac{1}{N} \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \mathbf{x}^{(i)} \\
\Delta b & =\eta \frac{1}{N} \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \tag{10.37}
\end{align*}
$$

Chapter 11
 Principal Component Analysis

Contents of Chapter 11
11.1.Principal Component Analysis 304
11.2.Singular Value Decomposition 315
11.3.Applications of the SVD to LS Problems 321
Exercises for Chapter 11 329

11.1. Principal Component Analysis

Definition 11.1. Principal component analysis (PCA) is the process of computing and using the principal components to perform a change of basis on the data, sometimes with only the first few principal components and ignoring the rest.

The PCA, in a Nutshell

- The PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of linearly uncorrelated variables called the principal components.
- The orthogonal axes of the new subspace can be interpreted as the directions of maximum variance given the constraint that the new feature axes are orthogonal to each other:

Figure 11.1: Principal components.

- It can be shown that the principal directions are eigenvectors of the data's covariance matrix.
- The PCA directions are highly sensitive to data scaling, and we need to standardize the features prior to PCA, particularly when the features were measured on different scales and we want to assign equal importance to all features.

11.1.1. The covariance matrix

Definition 11.2. Variance measures the variation of a single random variable, whereas covariance is a measure of the joint variability of two random variables. Let the random variable pair (\mathbf{x}, y) take on the values $\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, n\right\}$, with equal probabilities $p_{i}=1 / n$. Then

- The formula for variance of x is given by

$$
\begin{equation*}
\sigma_{\mathbf{x}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathbf{x}}\right)^{2}, \tag{11.1}
\end{equation*}
$$

where \bar{x} is the mean of x values.

- The covariance $\sigma(\mathbf{x}, \mathbf{y})$ of two random variables \mathbf{x} and \mathbf{y} is given by

$$
\begin{equation*}
\operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathbf{x}}\right)\left(y_{i}-\overline{\mathbf{y}}\right) \tag{11.2}
\end{equation*}
$$

Remark 11.3. In reality, data are saved in a matrix $X \in \mathbb{R}^{n \times d}$:

- each of the n rows represents a different data point, and
- each of the d columns gives a particular kind of feature.

Thus, d describes the dimension of data points and also can be considered as the number of random variables.

Definition 11.4. The covariance matrix of a data matrix $X \in \mathbb{R}^{n \times d}$ is a square matrix $C \in \mathbb{R}^{d \times d}$, whose (i, j)-entry is the covariance of the i-th column and the j-th column of X. That is,

$$
\begin{equation*}
C=\left[C_{i j}\right] \in \mathbb{R}^{d \times d}, \quad C_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right) . \tag{11.3}
\end{equation*}
$$

Example 11.5. Let \widehat{X} be the data X subtracted by the mean columnwisely: $\widehat{X}=X-E[X]$. Then the covariance matrix of X reads

$$
\begin{equation*}
C=\frac{1}{n} \widehat{X}^{T} \widehat{X}=\frac{1}{n}(X-E[X])^{T}(X-E[X]) \tag{11.4}
\end{equation*}
$$

for which the scaling factor $1 / n$ is often ignored in reality.

Example 11.6. Generate a synthetic data X in 2D to find its covariance matrix and principal directions.

Solution.

```
import numpy as np
# Generate data
def generate_data(n):
    # Normally distributed around the origin
    x = np.random.normal(0,1, n)
    y = np.random.normal (0,1, n)
    S = np.vstack((x, y)).T
    # Transform
    sx, sy = 1, 3;
    Scale = np.array([[sx, 0], [0, sy]])
    theta = 0.25*np.pi; c,s = np.cos(theta), np.sin(theta)
    Rot = np.array([[c, -s], [s, c]]).T #T, due to right multiplication
    return S.dot(Scale).dot(Rot) +[5,2]
# Covariance
def cov(x, y):
    xbar, ybar = x.mean(), y.mean()
    return np.sum((x - xbar)*(y - ybar))/len(x)
# Covariance matrix
def cov_matrix(X):
    return np.array([[cov(X[:,0], X[:,0]), cov(X[:,0], X[:,1])], \
        [cov(X[:,1], X[:,0]), cov(X[:,1], X[:,1])]])
            Covariance.py
import numpy as np
import matplotlib.pyplot as plt
from util_Covariance import *
# Generate data
n = 200
X = generate_data(n)
print('Generated data: X.shape =', X.shape)
# Covariance matrix
C = cov_matrix(X)
```

```
print('C:\n',C)
# Principal directions
eVal, eVec = np.linalg.eig(C)
xbar,ybar = np.mean(X,0)
print('eVal:\n',eVal); print('eVec:\n',eVec)
print('np.mean(X, 0) =',xbar,ybar)
# Plotting
plt.style.use('ggplot')
plt.scatter(X[:, 0],X[:, 1],c='#00a0c0',s=10)
plt.axis('equal');
plt.title('Generated Data')
plt.savefig('py-data-generated.png')
for e, v in zip(eVal, eVec.T):
    plt.plot([0,2*np.sqrt(e)*v[0]]+xbar,\
    [0,2*np.sqrt(e)*v[1]]+ybar, 'r-', lw=2)
plt.title('Principal Directions')
plt.savefig('py-data-principal-directions.png')
plt.show()
```


Figure 11.2: Synthetic data and its principal directions (right).

```
Generated data: X.shape = (200, 2)
C :
    [[ 5.10038723 -4.15289232]
    [-4.15289232 4.986776 ]}
eVal:
    [9.19686242 0.89030081]
eVec:
    [[[ 0.71192601 0.70225448]
    [-0.70225448 0.71192601]}
np.mean(X, 0) = 4.986291809096116 2.1696690114181947
```


Observation 11.7. Covariance Matrix.

- Symmetry: The covariance matrix C is symmetric so that it is diagonalizable. (See §5.2.2, p.144.) That is,

$$
\begin{equation*}
C=U D U^{-1} \tag{11.5}
\end{equation*}
$$

where D is a diagonal matrix of eigenvalues of C and U is the corresponding eigenvectors of C such that $U^{T} U=I$. (Such a square matrix U is called an orthogonal matrix.)

- Principal directions: The principal directions are eigenvectors of the data's covariance matrix.
- Minimum volume enclosing ellipsoid (MVEE): The PCA can be viewed as fitting a d-dimensional ellipsoid to the data, where each axis of the ellipsoid represents one of principal directions.
- If some axis of the ellipsoid is small, then the variance along that axis is also small.

11.1.2. Computation of principal components

- Consider a data matrix $X \in \mathbb{R}^{n \times d}$:
- each of the n rows represents a different data point,
- each of the d columns gives a particular kind of feature, and
- each column has zero empirical mean (e.g., after standardization).
- Our goal is to find an orthogonal weight matrix $W \in \mathbb{R}^{d \times d}$ such that

$$
\begin{equation*}
Z=X W \tag{11.6}
\end{equation*}
$$

where $Z \in \mathbb{R}^{n \times d}$ is call the score matrix. Columns of Z represent principal components of X.

First weight vector w_{1} : the first column of \boldsymbol{W} :

In order to maximize variance of z_{1}, the first weight vector w_{1} should satisfy

$$
\begin{align*}
\mathbf{w}_{1} & =\arg \max _{\|\mathbf{w}\|=1}\left\|\mathbf{z}_{1}\right\|^{2}=\arg \max _{\|\mathbf{w}\|=1}\|X \mathbf{w}\|^{2} \\
& =\arg \max _{\|\mathbf{w}\|=1} \mathbf{w}^{T} X^{T} X \mathbf{w}=\arg \max _{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} X^{T} X \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} \tag{11.7}
\end{align*}
$$

where the quantity to be maximized can be recognized as a Rayleigh quotient.

Theorem 11.8. For a positive semidefinite matrix (such as $X^{T} X$), the maximum of the Rayleigh quotient is the same as the largest eigenvalue of the matrix, which occurs when w is the corresponding eigenvector, i.e.,

$$
\begin{equation*}
\mathbf{w}_{1}=\arg \max _{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} X^{T} X \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \quad\left(X^{T} X\right) \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1} \tag{11.8}
\end{equation*}
$$

where λ_{1} is the largest eigenvalue of $X^{T} X \in \mathbb{R}^{d \times d}$.
Example 11.9. With w_{1} found, the first principal component of a data vector $\mathbf{x}^{(i)}$, the i-th row of X, is then given as a score $z_{1}^{(i)}=\mathbf{x}^{(i)} \cdot \mathbf{w}_{1}$.

Further weight vectors $\mathrm{w}_{\boldsymbol{k}}$:

The k-th weight vector can be found by (1) subtracting the first $(k-1)$ principal components from X :

$$
\begin{equation*}
\widehat{X}_{k}:=X-\sum_{i=1}^{k-1} X \mathbf{w}_{i} \mathbf{w}_{i}^{T} \tag{11.9}
\end{equation*}
$$

and then (2) finding the weight vector which extracts the maximum variance from this new data matrix

$$
\begin{equation*}
\mathbf{w}_{k}=\arg \max _{\|\mathbf{w}\|=1}\left\|\widehat{X}_{k} \mathbf{w}\right\|^{2} \tag{11.10}
\end{equation*}
$$

which turns out to give the remaining eigenvectors of $\boldsymbol{X}^{T} \boldsymbol{X}$.
Remark 11.10. The principal components transformation can also be associated with the singular value decomposition (SVD) of X :

$$
\begin{equation*}
X=U \Sigma V^{T} \tag{11.11}
\end{equation*}
$$

where
U : $n \times d$ orthogonal (the left singular vectors of X.)
$\Sigma: d \times d$ diagonal (the singular values of X.)
$V: d \times d$ orthogonal (the right singular vectors of X.)

- The matrix Σ explicitly reads

$$
\begin{equation*}
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{d}\right) \tag{11.12}
\end{equation*}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{d} \geq 0$.

- In terms of this factorization, the matrix $X^{T} X$ reads

$$
\begin{equation*}
X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} \tag{11.13}
\end{equation*}
$$

- Comparing with the eigenvector factorization of $X^{T} X$, we conclude
- the right singular vectors $V \cong$ the eigenvectors of $X^{T} X \Rightarrow V \cong W$
- (the square of singular values of $X)=\left(\right.$ the eigenvalues of $\left.X^{T} X\right)$

$$
\Rightarrow \sigma_{j}^{2}=\lambda_{j}, j=1,2, \cdots, d
$$

Summary 11.11. (Computation of Principal Components)

1. Computer the singular value decomposition (SVD) of X :

$$
\begin{equation*}
X=U \Sigma V^{T} \tag{11.14}
\end{equation*}
$$

2. Set

$$
\begin{equation*}
W=V . \tag{11.15}
\end{equation*}
$$

Then the score matrix, the set of principal components, is

$$
\begin{align*}
Z & =X W=X V=U \Sigma V^{T} V=U \Sigma \\
& =\left[\sigma_{1} \mathbf{u}_{1}\left|\sigma_{2} \mathbf{u}_{2}\right| \cdots \mid \sigma_{d} \mathbf{u}_{d}\right] \tag{11.16}
\end{align*}
$$

* The SVD will be discussed in §11.2.

11.1.3. Dimensionality reduction: Data compression

- The transformation $Z=X W$ maps a data vector $\mathbf{x}^{(i)} \in \mathbb{R}^{d}$ to a new space of d variables which are now uncorrelated.
- However, not all the principal components need to be kept.
- Keeping only the first k principal components, produced by using only the first k eigenvectors of $X^{T} X(k \ll d)$, gives the truncated score matrix:

$$
\begin{equation*}
Z_{k}:=X W_{k}=U \Sigma V^{T} W_{k}=U \Sigma_{k}, \tag{11.17}
\end{equation*}
$$

where $Z_{k} \in \mathbb{R}^{n \times k}, W_{k} \in \mathbb{R}^{d \times k}$, and

$$
\begin{equation*}
\Sigma_{k}:=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right) \tag{11.18}
\end{equation*}
$$

- It follows from (11.17) that the corresponding truncated data matrix reads

$$
\begin{equation*}
X_{k}=Z_{k} W_{k}^{T}=U \Sigma_{k} W_{k}^{T}=U \Sigma_{k} W^{T}=U \Sigma_{k} V^{T} . \tag{11.19}
\end{equation*}
$$

Quesitons. How can we choose k ? \&
Is the difference $\left\|X-X_{k}\right\|$ (that we truncated) small?

Claim 11.12. It follows from (11.11) and (11.19) that

$$
\begin{align*}
\left\|X-X_{k}\right\|_{2} & =\left\|U \Sigma V^{T}-U \Sigma_{k} V^{T}\right\|_{2} \\
& =\left\|U\left(\Sigma-\Sigma_{k}\right) V^{T}\right\|_{2} \tag{11.20}\\
& =\left\|\Sigma-\Sigma_{k}\right\|_{2}=\sigma_{k+1}
\end{align*}
$$

where $\|\cdot\|_{2}$ is the induced matrix L^{2}-norm.

Remark 11.13. Efficient algorithms exist to compute the SVD of X without having to form the matrix $X^{T} X$, so computing the SVD is now the standard way to carry out the PCA. See [6, 13].

Image Compression

- Dyadic Decomposition: The data matrix $X \in \mathbb{R}^{m \times n}$ is expressed as a sum of rank-1 matrices:

$$
\begin{equation*}
X=U \Sigma V^{T}=\sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \tag{11.21}
\end{equation*}
$$

where

$$
V=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad U=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] .
$$

- Approximation: X can be approximated as

$$
\begin{equation*}
X \approx X_{k}:=U \Sigma_{k} V^{T}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \tag{11.22}
\end{equation*}
$$

is closest to X among matrices of rank $\leq k$, and

$$
\left\|X-X_{k}\right\|_{2}=\sigma_{k+1}
$$

- It only takes $n \cdot k+m \cdot k=(m+n) \cdot k$ words to store $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right]$ and $\left[\sigma_{1} \mathbf{u}_{1}, \sigma_{2} \mathbf{u}_{2}, \cdots, \sigma_{k} \mathbf{u}_{k}\right]$, from which we can reconstruct X_{k}.
- We use X_{k} as our compressed images, stored using $(m+n) \cdot k$ words.

A Matlab code to demonstrate the SVD compression of images:
peppers_compress.m

```
img = imread('Peppers.png'); [m,n,d]=size(img);
[U,S,V] = svd(reshape(im2double(img),m,[]));
%%---- select k <= p=min(m,n)
k = 20;
img_k = U(:,1:k)*S(1:k,1:k)*V(:,1:k)';
img_k = reshape(img_k,m,n,d);
figure, imshow(img_k)
```

The "Peppers" image is in $[270,270,3] \in \mathbb{R}^{270 \times 810}$.

Image compression using k singular values

Peppers: Singular values

Singular Values

Peppers: Compression quality

$$
\operatorname{PSNR}(\mathrm{dB})= \begin{cases}13.7 & \text { when } k=1 \\ 20.4 & \text { when } k=10 \\ 23.7 & \text { when } k=20 \\ 29.0 & \text { when } k=50 \\ 32.6 & \text { when } k=100 \\ 37.5 & \text { when } k=150\end{cases}
$$

where PSNR is the "Peak Signal-to-Noise Ratio."

Peppers Storage: It requires $(m+n) \cdot k$ words. For example, when $k=50$,

$$
\begin{equation*}
(m+n) \cdot k=(270+810) \cdot 50=54,000 \tag{11.23}
\end{equation*}
$$

which is approximately a quarter the full storage space

$$
270 \times 270 \times 3=218,700
$$

11.2. Singular Value Decomposition

Here we will deal with the SVD in detail.
Theorem 11.14. (SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. Then we can write

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{11.24}
\end{equation*}
$$

where $U \in \mathbb{R}^{m \times n}$ and satisfies $U^{T} U=I, V \in \mathbb{R}^{n \times n}$ and satisfies $V^{T} V=I$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)$, where

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

Remark 11.15. The matrices are illustrated pictorially as

$$
\left[\begin{array}{l}
 \tag{11.25}\\
\end{array}\right]=\left[\begin{array}{l}
\\
\\
\end{array}\right]\left[\begin{array}{l}
\\
\\
\\
\\
\\
\\
\end{array}\right]
$$

where
U : $m \times n$ orthogonal (the left singular vectors of A.)
$\Sigma: n \times n$ diagonal (the singular values of A.)
$V: n \times n$ orthogonal (the right singular vectors of A.)

- For some $r \leq n$, the singular values may satisfy

$$
\begin{equation*}
\underbrace{\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}}_{\text {nonzero singular values }}>\sigma_{r+1}=\cdots=\sigma_{n}=0 \tag{11.26}
\end{equation*}
$$

In this case, $\operatorname{rank}(A)=r$.

- If $m<n$, the SVD is defined by considering A^{T}.

Proof. (of Theorem 11.14) Use induction on m and n : we assume that the $S V D$ exists for $(m-1) \times(n-1)$ matrices, and prove it for $m \times n$. We assume $A \neq 0$; otherwise we can take $\Sigma=0$ and let U and V be arbitrary orthogonal matrices.

- The basic step occurs when $n=1(m \geq n)$. We let $A=U \Sigma V^{T}$ with $U=A /\|A\|_{2}, \Sigma=\|A\|_{2}, V=1$.
- For the induction step, choose \mathbf{v} so that

$$
\|\mathbf{v}\|_{2}=1 \text { and }\|A\|_{2}=\|A \mathbf{v}\|_{2}>0
$$

- Let $\mathbf{u}=\frac{A \mathbf{v}}{\|A \mathbf{v}\|_{2}}$, which is a unit vector. Choose \tilde{U}, \tilde{V} such that

$$
U=\left[\begin{array}{ll}
\mathbf{u} & \tilde{U}
\end{array}\right] \in \mathbb{R}^{m \times n} \text { and } V=\left[\begin{array}{ll}
\mathbf{v} & \tilde{V}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

are orthogonal.

- Now, we write

$$
U^{T} A V=\left[\begin{array}{c}
\mathbf{u}^{T} \\
\tilde{U}^{T}
\end{array}\right] \cdot A \cdot[\mathbf{v} \quad \tilde{V}]=\left[\begin{array}{cc}
\mathbf{u}^{T} A \mathbf{v} & \mathbf{u}^{T} A \tilde{V} \\
\tilde{U}^{T} A \mathbf{v} & \tilde{U}^{T} A \tilde{V}
\end{array}\right]
$$

Since

$$
\begin{aligned}
\mathbf{u}^{T} A \mathbf{v} & =\frac{(A \mathbf{v})^{T}(A \mathbf{v})}{\|A \mathbf{v}\|_{2}}=\frac{\|A \mathbf{v}\|_{2}^{2}}{\|A \mathbf{v}\|_{2}}=\|A \mathbf{v}\|_{2}=\|A\|_{2} \equiv \sigma \\
\tilde{U}^{T} A \mathbf{v} & =\tilde{U}^{T} \mathbf{u}\|A \mathbf{v}\|_{2}=0
\end{aligned}
$$

we have

$$
U^{T} A V=\left[\begin{array}{cc}
\sigma & 0 \\
0 & U_{1} \Sigma_{1} V_{1}^{T}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & U_{1}
\end{array}\right]\left[\begin{array}{cc}
\sigma & 0 \\
0 & \Sigma_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right]^{T}
$$

or equivalently

$$
A=\left(U\left[\begin{array}{cc}
1 & 0 \tag{11.27}\\
0 & U_{1}
\end{array}\right]\right)\left[\begin{array}{cc}
\sigma & 0 \\
0 & \Sigma_{1}
\end{array}\right]\left(V\left[\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right]\right)^{T}
$$

Equation (11.27) is our desired decomposition.

11.2.1. Algebraic interpretation of the SVD

Let $\operatorname{rank}(A)=r$. let the SVD of A be $A=U \Sigma V^{T}$, with

$$
\begin{aligned}
U & =\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}
\end{array}\right], \\
\Sigma & =\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right), \\
V & =\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right],
\end{aligned}
$$

and σ_{r} be the smallest positive singular value. Since

$$
A=U \Sigma V^{T} \Longleftrightarrow A V=U \Sigma V^{T} V=U \Sigma,
$$

we have

$$
\left.\begin{array}{rl}
A V & =A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lllll}
A \mathbf{v}_{1} & A \mathbf{v}_{2} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \cdots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{llllll}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & \ddots & \\
& =\left[\begin{array}{llllll}
\sigma_{1} \mathbf{u}_{1} & \cdots & \sigma_{r} \mathbf{u}_{r} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right] .
\end{array}\right. \tag{11.28}\\
& \\
&
\end{array}\right]
$$

Therefore,

$$
A=U \Sigma V^{T} \Leftrightarrow \begin{cases}A \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{j}, & j=1,2, \cdots, r \tag{11.29}\\ A \mathbf{v}_{j}=\mathbf{0}, & j=r+1, \cdots, n\end{cases}
$$

Similarly, starting from $A^{T}=V \Sigma U^{T}$,

$$
A^{T}=V \Sigma U^{T} \Leftrightarrow \begin{cases}A^{T} \mathbf{u}_{j}=\sigma_{j} \mathbf{v}_{j}, & j=1,2, \cdots, r \tag{11.30}\\ A^{T} \mathbf{u}_{j}=\mathbf{0}, & j=r+1, \cdots, n\end{cases}
$$

Summary 11.16. It follows from (11.29) and (11.30) that

- $\left(\mathbf{v}_{j}, \sigma_{j}^{2}\right), j=1,2, \cdots, r$, are eigenvector-eigenvalue pairs of $A^{T} A$.

$$
\begin{equation*}
A^{T} A \mathbf{v}_{j}=A^{T}\left(\sigma_{j} \mathbf{u}_{j}\right)=\sigma_{j}^{2} \mathbf{v}_{j}, \quad j=1,2, \cdots, r \tag{11.31}
\end{equation*}
$$

So, the singular values play the role of eigenvalues.

- Similarly, we have

$$
\begin{equation*}
A A^{T} \mathbf{u}_{j}=A\left(\sigma_{j} \mathbf{v}_{j}\right)=\sigma_{j}^{2} \mathbf{u}_{j}, \quad j=1,2, \cdots, r . \tag{11.32}
\end{equation*}
$$

- Equation (11.31) gives how to find the singular values $\left\{\sigma_{j}\right\}$ and the right singular vectors V, while (11.29) shows a way to compute the left singular vectors U.
- (Dyadic decomposition) The matrix $A \in \mathbb{R}^{m \times n}$ can be expressed as

$$
\begin{equation*}
A=\sum_{j=1}^{n} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} . \tag{11.33}
\end{equation*}
$$

When $\operatorname{rank}(A)=r \leq n$,

$$
\begin{equation*}
A=\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} . \tag{11.34}
\end{equation*}
$$

This property has been utilized for various approximations and applications, e.g., by dropping singular vectors corresponding to small singular values.

11.2.2. Computation of the SVD

For $A \in \mathbb{R}^{m \times n}$, the procedure is as follows.

1. Form $A^{T} A$ ($A^{T} A$ - covariance matrix of A).
2. Find the eigen-decomposition of $A^{T} A$ by orthogonalization process, i.e., $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$,

$$
A^{T} A=V \Lambda V^{T},
$$

where $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]$ is orthogonal, i.e., $V^{T} V=I$.
3. Sort the eigenvalues according to their magnitude and let

$$
\sigma_{j}=\sqrt{\lambda_{j}}, \quad j=1,2, \cdots, n
$$

4. Form the U matrix as follows,

$$
\mathbf{u}_{j}=\frac{1}{\sigma_{j}} A \mathbf{v}_{j}, \quad j=1,2, \cdots, r .
$$

If necessary, pick up the remaining columns of U so it is orthogonal. (These additional columns must be in $\operatorname{Null}\left(A A^{T}\right)$.)
5. $A=U \Sigma V^{T}=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{r} \cdots \mathbf{u}_{n}\right] \operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0\right)$

$$
\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

Lemma 11.17. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then (a) all the eigenvalues of A are real and (b) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Example 11.18. Find the $S V D$ for $A=\left[\begin{array}{rr}1 & 2 \\ -2 & 1 \\ 3 & 2\end{array}\right]$.

Solution.

1. $A^{T} A=\left[\begin{array}{rr}14 & 6 \\ 6 & 9\end{array}\right]$.
2. Solving $\operatorname{det}\left(A^{T} A-\lambda I\right)=0$ gives the eigenvalues of $A^{T} A$

$$
\lambda_{1}=18 \text { and } \lambda_{2}=5,
$$

of which corresponding eigenvectors are

$$
\tilde{\mathbf{v}}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \tilde{\mathbf{v}}_{2}=\left[\begin{array}{r}
-2 \\
3
\end{array}\right] . \Longrightarrow V=\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]
$$

3. $\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{18}=3 \sqrt{2}, \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{5}$. So

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{18} & 0 \\
0 & \sqrt{5}
\end{array}\right]
$$

4. $\mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{\sqrt{18}} A\left[\begin{array}{l}\frac{3}{\sqrt{13}} \\ \frac{2}{\sqrt{13}}\end{array}\right]=\frac{1}{\sqrt{18}} \frac{1}{\sqrt{13}}\left[\begin{array}{r}7 \\ -4 \\ 13\end{array}\right]=\left[\begin{array}{c}\frac{7}{\sqrt{234}} \\ -\frac{4}{\sqrt{234}} \\ \frac{13}{\sqrt{234}}\end{array}\right]$
$\mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}=\frac{1}{\sqrt{5}} A\left[\begin{array}{c}\frac{-2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}}\end{array}\right]=\frac{1}{\sqrt{5}} \frac{1}{\sqrt{13}}\left[\begin{array}{l}4 \\ 7 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{4}{\sqrt{65}} \\ \frac{7}{\sqrt{65}} \\ 0\end{array}\right]$.
5. $A=U \Sigma V^{T}=\left[\begin{array}{cc}\frac{7}{\sqrt{234}} & \frac{4}{\sqrt{65}} \\ -\frac{4}{\sqrt{234}} & \frac{7}{\sqrt{65}} \\ \frac{13}{\sqrt{234}} & 0\end{array}\right]\left[\begin{array}{cc}\sqrt{18} & 0 \\ 0 & \sqrt{5}\end{array}\right]\left[\begin{array}{cc}\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}\end{array}\right]$

11.3. Applications of the SVD to LS Problems

Recall: (Definition 7.2, p. 195): Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and $\mathbf{b} \in \mathbb{R}^{m}$. The least-squares problem is to find $\widehat{\mathbf{x}} \in \mathbb{R}^{n}$ which minimizes $\|A \mathbf{x}-\mathbf{b}\|_{2}$:

$$
\begin{align*}
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}, \\
& \text { or, equivalently }, \tag{11.35}\\
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2},
\end{align*}
$$

where $\widehat{\mathrm{x}}$ called a least-squares solution of $A \mathrm{x}=\mathbf{b}$.
Note: When $A^{T} A$ is invertible, the equation $A \mathrm{x}=\mathrm{b}$ has a unique LS solution for each $b \in \mathbb{R}^{m}$ (Theorem 7.5). It can be solved by the method of normal equations; the unique LS solution \widehat{x} is given by

$$
\begin{equation*}
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \tag{11.36}
\end{equation*}
$$

Recall: (Definition 7.6, p. 197): $\left(A^{T} A\right)^{-1} A^{T}$ is called the pseudoinverse of A. Let $A=U \Sigma V^{T}$ be the SVD of A. Then

$$
\begin{equation*}
\left(A^{T} A\right)^{-1} A^{T}=V \Sigma^{-1} U^{T} \xlongequal{\text { def }} A^{+} \tag{11.37}
\end{equation*}
$$

Example 11.19. Find the pseudoinverse of $A=\left[\begin{array}{rr}1 & 2 \\ -2 & 1 \\ 3 & 2\end{array}\right]$.
Solution. From Example 11.18, p.320, we have

$$
A=U \Sigma V^{T}=\left[\begin{array}{cc}
\frac{7}{\sqrt{234}} & \frac{4}{\sqrt{65}} \\
-\frac{4}{\sqrt{234}} & \frac{7}{\sqrt{65}} \\
\frac{13}{\sqrt{234}} & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{18} & 0 \\
0 & \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\
-\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
A^{+} & =V \Sigma^{-1} U^{T}=\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{18}} & 0 \\
0 & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{7}{\sqrt{234}} & -\frac{4}{\sqrt{234}} & \frac{13}{\sqrt{234}} \\
\frac{4}{\sqrt{65}} & \frac{7}{\sqrt{65}} & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
-\frac{1}{30} & -\frac{4}{15} & \frac{1}{6} \\
\frac{11}{45} & \frac{13}{45} & \frac{1}{9}
\end{array}\right] .
\end{aligned}
$$

Quesiton. What if $A^{T} A$ is not invertible? Although it is invertible, what if the hypothesis space is either too big or too small?

Solving LS Problems by the SVD

Let $A \in \mathbb{R}^{m \times n}, m>n$, with $\operatorname{rank}(A)=\boldsymbol{k} \leq \boldsymbol{n}$.

- Suppose that the SVD of A is given, that is,

$$
A=U \Sigma V^{T}
$$

- Since U and V are ℓ^{2}-norm preserving, we have

$$
\begin{equation*}
\|A \mathbf{x}-\mathbf{b}\|=\left\|U \Sigma V^{T} \mathbf{x}-\mathbf{b}\right\|=\left\|\Sigma V^{T} \mathbf{x}-U^{T} \mathbf{b}\right\| . \tag{11.38}
\end{equation*}
$$

- Define $\mathbf{z}=V^{T} \mathbf{x}$ and $\mathbf{c}=U^{T} \mathbf{b}$. Then

$$
\begin{equation*}
\|A \mathbf{x}-\mathbf{b}\|=\left(\sum_{i=1}^{k}\left(\sigma_{i} z_{i}-c_{i}\right)^{2}+\sum_{i=k+1}^{n} c_{i}^{2}\right)^{1 / 2} \tag{11.39}
\end{equation*}
$$

- Thus the norm is minimized when z is chosen with

$$
z_{i}= \begin{cases}c_{i} / \sigma_{i}, & \text { when } i \leq k \tag{11.40}\\ \text { arbitrary, } & \text { otherwise }\end{cases}
$$

- After determining z , one can find the solution as

$$
\begin{equation*}
\widehat{\mathbf{x}}=V \mathbf{z} \tag{11.41}
\end{equation*}
$$

Then the least-squares error reads

$$
\begin{equation*}
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|=\left(\sum_{i=k+1}^{n} c_{i}^{2}\right)^{1 / 2} \tag{11.42}
\end{equation*}
$$

Strategy 11.20. When z is obtained as in (11.40), it is better to choose zero for the "arbitrary" part:

$$
\begin{equation*}
\mathbf{z}=\left[c_{1} / \sigma_{1}, c_{2} / \sigma_{2}, \cdots, c_{k} / \sigma_{k}, 0, \cdots, 0\right]^{T} \tag{11.43}
\end{equation*}
$$

In this case, z can be written as

$$
\begin{equation*}
\mathbf{z}=\Sigma_{k}^{+} \mathbf{c}=\Sigma_{k}^{+} U^{T} \mathbf{b} \tag{11.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{k}^{+}=\left[1 / \sigma_{1}, 1 / \sigma_{2}, \cdots, 1 / \sigma_{k}, 0, \cdots, 0\right]^{T} \tag{11.45}
\end{equation*}
$$

Thus the corresponding LS solution reads

$$
\begin{equation*}
\widehat{\mathbf{x}}=V \mathbf{z}=V \Sigma_{k}^{+} U^{T} \mathbf{b} \tag{11.46}
\end{equation*}
$$

Note that \widehat{x} involves no components of the null space of A; \widehat{x} is unique in this sense.

'Remark 11.21.

- When $\operatorname{rank}(A)=k=n$: It is easy to see that

$$
\begin{equation*}
V \Sigma_{k}^{+} U^{T}=V \Sigma^{-1} U^{T} \tag{11.47}
\end{equation*}
$$

which is the pseudoinverse of A.

- When $\operatorname{rank}(\boldsymbol{A})=\boldsymbol{k}<\boldsymbol{n}: A^{T} A$ not invertible. However,

$$
\begin{equation*}
A_{k}^{+}:=V \Sigma_{k}^{+} U^{T} \tag{11.48}
\end{equation*}
$$

plays the role of the pseudoinverse of A. Thus we will call it the k-th pseudoinverse of A.

Note: For some LS applications, although $\operatorname{rank}(A)=n$, the k-th pseudoinverse A_{k}^{+}, with a small $k<n$, may give more reliable solutions.

Example 11.22. Generate a synthetic dataset in 2D to find least-squares solutions, using

(a) the method of normal equations and
(b) the SVD with various numbers of principal components.

Solution. Here we implement a Matlab code. You will redo it in Python; see Exercise 11.2.

```
classdef util,
methods(Static)
    %---------------------------------------
    function data = get_data(npt,bx,sigma)
    data = zeros(npt,2);
    data(:,1) = rand(npt,1)*bx;
    data(:,2) = max(bx/3,2*data(:,1)-bx);
    r = randn(npt,1)*sigma; theta = randn(npt,1)*pi;
    noise = r.*[cos(theta),sin(theta)];
    data = data+noise;
    end % indentation is not required, but an extra 'end' is.
    %-------------------------------------
    function mysave(gcf,filename)
        exportgraphics(gcf,filename,'Resolution',100)
        fprintf('saved: %s\n',filename)
    end
    %------------------------------------------
    function A = get_A(data,n)
        npt = size(data,1);
        A = ones(npt,n);
        for j=2:n
        A(:,j) = A(:,j-1).*data;
        end
    end
    %--------------------------------------
    function Y = predict_Y(X,coeff,S_mean,S_std)
        n = numel(coeff);
        if nargin==2, S_mean=zeros(1,n); S_std=ones(1,n); end
        A = util.get_A(X(:),n);
        Y = ((A-S_mean)./S_std)*coeff;
    end
end, end
```

Note: In Matlab, you can save multiple functions in a file, using classdef and methods (Static).

- The functions will be called as class_name.function_name().
- Lines 12, 17, 25, 32: The extra 'end' is required for Matlab to distinguish functions without ambiguity.
- You may put the extra 'end' also for stand-alone functions.
- Line 29: A Matlab function can be implemented so that you may call the function without some arguments using default arguments.
- Line 30: See how to call a class function from another function.

```
                                    pca_regression.m
function [sol_PCA,S_mean,S_std] = pca_regression(A,b,npc)
% input: npc = the number of principal components
    %% Standardization
    %%
    S_mean = mean(A); S_std = std(A);
    if S_std(1)==0, S_std(1)=1/S_mean(1); S_mean(1)=0; end
    AS = (A-S_mean)./S_std;
    %% SVD regression, using the pseudoinverse
    %%------------------------------------------------
    [U,S,V] = svd(AS,'econ');
    S1 = diag(S); % a column vector
    C1 = zeros(size(S1));
    C1(1:npc) = 1./S1(1:npc);
    C = diag(C1); % a matrix
    sol_PCA = V*C*U'*b;
end
```

Note: The standardization variables are included in output to be used for the prediction.

- Line 7: Note that $A(:, 1)=1$ so that its std must be 0 .
- Lines 13 and 16: The function $\operatorname{diag}()$ toggles between a column vector and a diagonal matrix.
- Line 19: The function puts an extra 'end' at the end.

```
clear all; close all;
%%
%% Setting
%%------------------------------------------------------------
regen_data = 0; %==1, regenerate the synthetic data
poly_n = 9;
npt=300; bx=5.0; sigma=0.50; %for synthetic data
datafile = 'synthetic-data.txt';
%%-
%% Data: Generation and Read
%%
if regen_data || ~isfile(datafile)
    DATA = util.get_data(npt,bx,sigma);
    writematrix(DATA, datafile);
    fprintf('%s: re-generated.\n',datafile)
end
DATA = readmatrix(datafile,"Delimiter",",");
%%-------------------------------------------------------------
%% The system: A x = b
%%----------------------------------------------------------
A = util.get_A(DATA(:,1),poly_n+1);
b = DATA(:,2);
%%----------------------------------------------------------
%% Method of Noral Equations
%%-
sol_NE = (A'*A)\(A'*b);
    figure,
    plot(DATA(:, 1),DATA(:, 2),'k.','MarkerSize', 8);
    axis tight; hold on
    yticks(1:5); ax = gca; ax.FontSize=13; %ax.GridAlpha=0.25
    title(sprintf('Synthetic Data: npt = %d',npt),'fontsize',13)
    util.mysave(gcf,'data-synthetic.png');
    x=linspace(min(DATA(:,1)),max(DATA (:, 1)), 51);
    plot(x,util.predict_Y(x,sol_NE),'r-','linewidth',2);
    Pn = ['P_',int2str(poly_n)];
    legend('data',Pn, 'location','best','fontsize',13)
    TITLEO=sprintf('Method of NE: npt = %d',npt);
    title(TITLEO,'fontsize',13)
    hold off
```

```
    util.mysave(gcf,'data-synthetic-sol-NE.png');
%%
%% PCA Regression
%%
for npc=1:size(A,2);
    [sol_PCA,S_mean,S_std] = pca_regression(A,b,npc);
        figure,
        plot(DATA(:,1),DATA(:,2),'k.','MarkerSize',8);
        axis tight; hold on
        yticks(1:5); ax = gca; ax.FontSize=13; %ax.GridAlpha=0.25
        x=linspace(min(DATA(:, 1)),max(DATA(:,1)),51);
        plot(x,util.predict_Y(x,sol_PCA,S_mean,S_std),'r-','linewidth', 2);
        Pn = ['P_',int2str(poly_n)];
        legend('data',Pn, 'location','best','fontsize',13)
        TITLEO=sprintf('Method of PC: npc = %d',npc);
        title(TITLE0,'fontsize',13)
        hold off
        savefile = sprintf('data-sol-PCA-npc-%02d.png',npc);
        util.mysave(gcf,savefile);
end
```

Note: Regression_Analysis is the main function. The code is simple; the complication is due to plotting.

- Lines 6, 14-19: Data is read from a datafile.
- Setting regen_data = 1 will regenerate the datafile.

Figure 11.3: The synthetic data and the LS solution $P_{9}(x)$, overfitted.

Figure 11.4: PCA regression of the data, with various numbers of principal components.
The best regression is achieved when npc $=3$.

Exercises for Chapter 11

11.1. Download wine. data from the UCI database:
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
The data is extensively used in the Machine Learning community. The first column of the data is the label and the others are features of three different kinds of wines.
(a) Add lines to the code given, to verify (11.20), p.312. For example, set $k=5$.

```
                                    Wine_data.py
import numpy as np
from numpy import diag,dot
from scipy.linalg import svd,norm
import matplotlib.pyplot as plt
data = np.loadtxt('wine.data', delimiter=',')
X = data[:,1:]; y = data[:,0]
#---------------------------------------------------
# Standardization
#--------------------------------------------------
X_mean, X_std = np.mean(X,axis=0), np.std(X,axis=0)
XS = (X - X_mean)/X_std
#-------------------------------------------------
# SVD
#-------------------------------------------------
U, s, VT = svd(XS)
if U.shape[0]==U.shape[1]:
    U = U[:,:len(s)] # cut the nonnecessary
Sigma = diag(s) # transform to a matrix
print('U:',U.shape, 'Sigma:',Sigma.shape, 'VT:',VT.shape)
```


Note:

- Line 12: np.mean and np.std are applied, with the option axis=0, to get the quantities column-by-column vertically. Thus X_mean and X_std are row vectors.
- Line 18: In Python, svd produces [U, s, VT], where VT $=V^{T}$. If you would like to get V, then $\mathrm{V}=\mathrm{VT} . \mathrm{T}$.
11.2. Implement the code in Example 11.22, in Python.
(a) Report your complete code.
(b) Attached figures as in Figures 11.3 and 11.4.

Clue: The major reason that a class is used in the Matlab code in Example 11.22 is to combine multiple functions to be saved in a file. In Python, you do not have to use a class to save multiple functions in a file. You may start with the following.

```
util.py
mport numpy as np
import matplotlib.pyplot as plt
def get_data(npt,bx,sigma):
    data = np.zeros([npt,2]);
    data[:,0] = np.random.uniform(0,1,npt)*bx;
    data[:,1] = np.maximum(bx/3,2*data[:,0]-bx);
    r = np.random.normal(0,1,npt)*sigma;
    theta = np.random.normal(0,1,npt)*np.pi;
    noise = np.column_stack((r*np.cos(theta),r*np.sin(theta)));
    data += noise;
    return data
def mysave(filename):
    plt.savefig(filename,bbox_inches='tight')
    print('saved:',filename)
# Add other functions
```

 Regression_Analysis.py
    ```
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from os.path import exists
import util
##---------------------------------------------------------
## Setting
##--------------------------------------------------------
regen_data = 1; #==1, regenerate the synthetic data
poly_n = 9;
npt=300; bx=5.0; sigma=0.50; #for synthetic data
datafile = 'synthetic-data.txt';
plt.style.use('ggplot')
##-
## Data: Generation and Read
##----------------------------------------------------------
if regen_data or not exists(datafile):
    DATA = util.get_data(npt,bx,sigma);
    np.savetxt(datafile,DATA, delimiter=',');
```

```
    print('%s: re-generated.' %(datafile))
DATA = np.loadtxt(datafile, delimiter=',')
plt.figure() # initiate a new plot
plt.scatter(DATA[:,0],DATA[:,1],s=8,c='k')
plt.title('Synthetic Data: npc = '+ str(npt))
util.mysave('data-synthetic-py.png')
#plt.show()
##-------------------------------------------------------
## The system: A x = b
##------------------------------------------------------
```

Note: The semi-colons (;) are not necessary in Python nor harmful; they are included from copy-and-paste of Matlab lines. The ggplot style emulates "ggplot", a popular plotting package for R. When Regression_Analysis.py is executed, you will have a saved image:

Figure 11.5: data-synthetic-py.png

appendix \mathbf{A} Appendices

Contents of Chapter A

A.1. Optimization: Primal and Dual Problems . 334
A.2. Weak Duality, Strong Duality, and Complementary Slackness338
A.3. Geometric Interpretation of Duality 342
A.4. Rank-One Matrices and Structure Tensors 349
A.5. Boundary-Effects in Convolution Functions in Matlab and Python SciPy 353
A.6. From Python, Call C, C++, and Fortran 357

A.1. Optimization: Primal and Dual Problems

A.1.1. The Lagrangian

Problem A.1. Consider a general optimization problem of the form

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { subj.to } & h_{i}(\mathbf{x}) \leq 0, \quad i=1, \cdots, m \quad \text { (Primal) } \tag{A.1.1}\\
& q_{j}(\mathbf{x})=0, \quad j=1, \cdots, p
\end{array}
$$

We define its Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ as

$$
\begin{align*}
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) & =f(\mathbf{x})+\sum_{i=1}^{m} \alpha_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x}) \tag{A.1.2}\\
& =f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})
\end{align*}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right) \geq 0$ and $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{p}\right)$ are Lagrange multipliers.

Definition A.2. The set of points that satisfy the constraints,

$$
\begin{equation*}
\mathcal{C} \xlongequal{\text { def }}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \boldsymbol{h}(\mathrm{x}) \leq 0 \text { and } \boldsymbol{q}(\mathrm{x})=0\right\} \tag{A.1.3}
\end{equation*}
$$

is called the feasible set.

Lemma A.3. For each x in the feasible set \mathcal{C},

$$
\begin{equation*}
f(\mathbf{x})=\max _{\alpha \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \mathbf{x} \in \mathcal{C} \tag{A.1.4}
\end{equation*}
$$

The maximum is taken iff α satisfies

$$
\begin{equation*}
\alpha_{i} h_{i}(\mathbf{x})=0, \quad i=1, \cdots, m \tag{A.1.5}
\end{equation*}
$$

Proof. When $\mathrm{x} \in \mathcal{C}$, we have $\boldsymbol{h}(\mathrm{x}) \leq 0$ and $\boldsymbol{q}(\mathrm{x})=0$ and therefore

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x}) \leq f(\mathbf{x})
$$

Clearly, the last inequality becomes equality iff (A.1.5) holds. \square

Remark A.4. Recall $\mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathrm{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathrm{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathrm{x})$ and $\mathcal{C}=\{\mathbf{x} \mid \boldsymbol{h}(\mathbf{x}) \leq 0$ and $\boldsymbol{q}(\mathbf{x})=0\}$. It is not difficult to see

$$
\begin{equation*}
\max _{\alpha \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=\infty, \quad \mathbf{x} \notin \mathcal{C} \tag{A.1.6}
\end{equation*}
$$

Theorem A.5. Let f^{*} be the optimal value of the primal problem (A.1.1):

$$
f^{*}=\min _{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) .
$$

Then f^{*} satisfies

$$
\begin{equation*}
f^{*}=\min _{\mathbf{x}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \tag{A.1.7}
\end{equation*}
$$

Note: The minimum in (A.1.7) does not require x in \mathcal{C}.
Proof. For $\mathrm{x} \in \mathcal{C}$, it follows from (A.1.4) that

$$
\begin{equation*}
f^{*}=\min _{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})=\min _{\mathbf{x} \in \mathcal{C}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \tag{A.1.8}
\end{equation*}
$$

When $\mathrm{x} \notin C$, since (A.1.6) holds, we have

$$
\begin{equation*}
\min _{\mathbf{x} \notin \mathcal{C}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=\infty \tag{A.1.9}
\end{equation*}
$$

The assertion (A.1.7) follows from (A.1.8) and (A.1.9).

Summary A.6. Primal Problem

The primal problem (A.1.1) is equivalent to the minimax problem

$$
\begin{equation*}
\min _{\mathbf{x}} \max _{\alpha \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { (Primal) } \tag{A.1.10}
\end{equation*}
$$

where

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})
$$

Here the minimum does not require x in the feasible set \mathcal{C}.

A.1.2. Lagrange Dual Problem

Given a Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$, we define its Lagrange dual function as

$$
\begin{align*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta}) & \xlongequal{\text { def }} \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \tag{A.1.11}\\
& =\min _{\mathbf{x}}\{f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})\} .
\end{align*}
$$

Claim A.7. Lower Bound Property

$$
\begin{equation*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta}) \leq f^{*}, \quad \text { for } \boldsymbol{\alpha} \geq 0 \tag{A.1.12}
\end{equation*}
$$

Proof. Let $\alpha \geq 0$. Then for $\mathrm{x} \in \mathcal{C}$,

$$
f(\mathbf{x}) \geq \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \geq \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=g(\boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Minimizing over all feasible points x gives $f^{*} \geq g(\boldsymbol{\alpha}, \boldsymbol{\beta})$.
Definition A.8. Given primal problem (A.1.1), we define its Lagrange dual problem as

$$
\begin{array}{rl}
\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \min _{\mathbf{x}} & \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \\
\text { subj.to } & \boldsymbol{\alpha} \geq 0 \tag{A.1.13}
\end{array}
$$

Thus the dual problem is a maximin problem.

Remark A.9. It is clear to see from the definition, the optimal value of the dual problem, named as g^{*}, satisfies

$$
\begin{equation*}
g^{*}=\max _{\alpha \geq 0, \boldsymbol{\beta}} \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \tag{A.1.14}
\end{equation*}
$$

Although the primal problem is not convex, the dual problem is always convex (actually, concave).
Theorem A.10. The dual problem (A.1.13) is a convex optimization problem. Thus it is easy to optimize.

Proof. From the definition,

$$
g(\boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{x}}\{f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})\},
$$

which can be viewed as pointwise infimum of affine functions of α and β. Thus it is concave. Hence the dual problem is a concave maximization problem, which is a convex optimization problem.

Summary A.11. Given the optimization problem (A.1.1):

- It is equivalent to the minimax problem

$$
\begin{equation*}
\min _{\mathbf{x}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { (Primal) } \tag{A.1.15}
\end{equation*}
$$

where the Lagrangian is defined as

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x}) . \tag{A.1.16}
\end{equation*}
$$

- Its dual problem is a maximin problem

$$
\begin{equation*}
\max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { (Dual) } \tag{A.1.17}
\end{equation*}
$$

and the dual function is defined as

$$
\begin{equation*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \tag{A.1.18}
\end{equation*}
$$

- The Lagrangian and Duality
- The Lagrangian is a lower bound of the objective function.

$$
\begin{equation*}
f(\mathrm{x}) \geq \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { for } \mathrm{x} \in \mathcal{C}, \boldsymbol{\alpha} \geq 0 \tag{A.1.19}
\end{equation*}
$$

- The dual function is a lower bound of the the primal optimal.

$$
\begin{equation*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta}) \leq f^{*} \tag{A.1.20}
\end{equation*}
$$

- The dual problem is a convex optimization problem.

A.2. Weak Duality, Strong Duality, and Complementary Slackness

Recall: For an optimization problem of the form

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { subj.to } & h_{i}(\mathbf{x}) \leq 0, \quad i=1, \cdots, m \tag{A.2.1}\\
& q_{j}(\mathbf{x})=0, \quad j=1, \cdots, p
\end{array}
$$

the Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is defined as

$$
\begin{align*}
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) & =f(\mathbf{x})+\sum_{i=1}^{m} \alpha_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x}) \tag{A.2.2}\\
& =f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})
\end{align*}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right) \geq 0$ and $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{p}\right)$ are Lagrange multipliers.

- The problem (A.2.1) is equivalent to the minimax problem

$$
\begin{equation*}
\min _{\mathbf{x}} \max _{\alpha \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \tag{A.2.3}
\end{equation*}
$$

- Its dual problem is a maximin problem

$$
\begin{equation*}
\max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \min _{\mathrm{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { (Dual) } \tag{A.2.4}
\end{equation*}
$$

and the dual function is defined as

$$
\begin{equation*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \tag{A.2.5}
\end{equation*}
$$

A.2.1. Weak Duality

Theorem A.12. The dual problem yields a lower bound for the primal problem. That is, the minimax f^{*} is greater or equal to the maximin g^{*} :

$$
\begin{equation*}
f^{*}=\min _{\mathbf{x}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \geq \max _{\alpha \geq 0, \boldsymbol{\beta}} \min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=g^{*} \tag{A.2.6}
\end{equation*}
$$

Proof. Let x^{*} be the minimizer, the primal optimal. Then

$$
\mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \geq \min _{\mathrm{x}} \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=\mathcal{L}\left(\mathrm{x}^{*}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right), \quad \forall \mathrm{x}, \boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}
$$

Let $\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ be the maximizer, the dual optimal. Then

$$
\mathcal{L}\left(\mathrm{x}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)=\max _{\alpha \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \geq \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \forall \mathrm{x}, \boldsymbol{\alpha} \geq 0, \boldsymbol{\beta} .
$$

It follows from the two inequalities that for all $\mathrm{x}, \boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}$,

$$
\begin{equation*}
\mathcal{L}\left(\mathbf{x}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)=\max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \geq \min _{\mathbf{x}} \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=\mathcal{L}\left(\mathrm{x}^{*}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) . \tag{A.2.7}
\end{equation*}
$$

Notice that the left side depends on x , while the right side is a function of $(\boldsymbol{\alpha}, \boldsymbol{\beta})$. The inequality holds true for all $\mathbf{x}, \boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}$.
\Rightarrow We may take $\min _{\mathrm{x}}$ and $\max _{\alpha \geq 0, \beta}$ respectively to the left side and the right side, to conclude (A.2.6).

Definition A.13. Weak and Strong Duality

(a) It always holds true that $f^{*} \geq g^{*}$, called as weak duality.
(b) In some problems, we actually have $f^{*}=g^{*}$, which is called strong duality.

A.2.2. Strong Duality

Theorem A.14. Slater's Theorem

If the primal is a convex problem, and there exists at least one strictly feasible $\widetilde{\mathrm{x}}$, satisfying the Slater's condition:

$$
\begin{equation*}
\boldsymbol{h}(\widetilde{\mathbf{x}})<0 \quad \text { and } \quad \boldsymbol{q}(\widetilde{\mathbf{x}})=0 \tag{A.2.8}
\end{equation*}
$$

then strong duality holds.
A conception having close relationship with strong duality is the duality gap.

Definition 7 A.15. Given primal feasible x and dual feasible $(\boldsymbol{\alpha}, \boldsymbol{\beta})$, the quantity

$$
\begin{equation*}
f(\mathbf{x})-g(\boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{x})-\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \tag{A.2.9}
\end{equation*}
$$

is called the duality gap.
From the weak duality, we have

$$
f(\mathbf{x})-g(\boldsymbol{\alpha}, \boldsymbol{\beta}) \geq f^{*}-g^{*} \geq 0
$$

Furthermore, we declare a sufficient and necessary condition for duality gap equal to 0 .

Proposition A.16. With $x,(\boldsymbol{\alpha}, \boldsymbol{\beta})$, the duality gap equals to 0 iff
(a) x is the primal optimal solution,
(b) $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is the dual optimal solution, and
(c) the strong duality holds.

Proof. From definitions and the weak duality, we have

$$
f(\mathbf{x}) \geq f^{*} \geq g^{*} \geq g(\boldsymbol{\alpha}, \boldsymbol{\beta}) .
$$

The duality gap equals to 0 , iff the three inequalities become equalities.

A.2.3. Complementary Slackness

Assume that strong duality holds, x^{*} is the primal optimal, and ($\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$) is the dual optimal. Then

$$
\begin{align*}
f\left(\mathbf{x}^{*}\right)=g\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) & \xlongequal{\text { def }} \min _{\mathbf{x}} \mathcal{L}\left(\mathbf{x}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) \\
& =\min _{\mathbf{x}}\left\{f(\mathbf{x})+\sum_{i=1}^{m} \alpha_{i}^{*} h_{i}(\mathbf{x})+\sum_{j=1}^{p} \beta_{j}^{*} q_{j}(\mathbf{x})\right\} \tag{A.2.10}\\
& \leq f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \boldsymbol{\alpha}_{i}^{*} \boldsymbol{h}_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \boldsymbol{\beta}_{j}^{*} \boldsymbol{q}_{j}\left(\mathbf{x}^{*}\right) \\
& \leq f\left(\mathbf{x}^{*}\right)
\end{align*}
$$

hence two inequalities hold with equality.

- The primal optima x^{*} minimizes $\mathcal{L}\left(\mathrm{x}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$.
- The complementary slackness holds:

$$
\begin{equation*}
\alpha_{i}^{*} h_{i}\left(\mathrm{x}^{*}\right)=0, \quad \text { for all } i=1, \cdots, m, \tag{A.2.11}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\alpha_{i}^{*}>0 \Rightarrow h_{i}\left(\mathrm{x}^{*}\right)=0, \quad h_{i}\left(\mathrm{x}^{*}\right)<0 \Rightarrow \alpha_{i}^{*}=0 \tag{A.2.12}
\end{equation*}
$$

Note: Complementary slackness says that

- If a dual variable is greater than zero (slack/loose), then the corresponding primal constraint must be an equality (tight.)
- If the primal constraint is slack, then the corresponding dual variable is tight (or zero).

Remark A.17. Complementary slackness is key to designing primal-dual algorithms. The basic idea is

1. Start with a feasible dual solution α.
2. Attempt to find primal feasible x such that ($\mathrm{x}, \boldsymbol{\alpha}$) satisfy complementary slackness.
3. If Step 2 succeeded, we are done; otherwise the misfit on x gives a way to modify α. Repeat.

A.3. Geometric Interpretation of Duality

Recall: For an optimization problem of the form

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { subj.to } & h_{i}(\mathbf{x}) \leq 0, \quad i=1, \cdots, m \tag{A.3.1}\\
& q_{j}(\mathbf{x})=0, \quad j=1, \cdots, p
\end{array}
$$

the Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is defined as

$$
\begin{align*}
\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) & =f(\mathbf{x})+\sum_{i=1}^{m} \alpha_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x}) \tag{A.3.2}\\
& =f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})
\end{align*}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right) \geq 0$ and $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{p}\right)$ are Lagrange multipliers.

- The problem (A.3.1) is equivalent to the minimax problem

$$
\begin{equation*}
\min _{\mathbf{x}} \max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \quad \text { (Primal) } \tag{A.3.3}
\end{equation*}
$$

- Its dual problem is a maximin problem

$$
\begin{equation*}
\max _{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \min _{\mathrm{x}} \mathcal{L}(\mathrm{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad \text { (Dual) } \tag{А.3.4}
\end{equation*}
$$

and the dual function is defined as

$$
\begin{equation*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) . \tag{A.3.5}
\end{equation*}
$$

Definition A.18. Given a primal problem (A.2.1), we define its epigraph (supergraph) as

$$
\begin{equation*}
\mathcal{A}=\left\{(\boldsymbol{r}, \boldsymbol{s}, t) \mid \boldsymbol{h}(\mathrm{x}) \leq \boldsymbol{r}, \boldsymbol{q}(\mathrm{x})=\boldsymbol{s}, \quad f(\mathbf{x}) \leq t, \text { for some } \mathrm{x} \in \mathbb{R}^{n}\right\} \tag{A.3.6}
\end{equation*}
$$

Geometric-interpretation A.19. Here are the geometric interpretation of several key values.
(a) f^{*} is the lowest projection of \mathcal{A} to the the t-axis:

$$
\begin{align*}
f^{*} & =\min \{t \mid \boldsymbol{h}(\mathbf{x}) \leq \mathbf{0}, \boldsymbol{q}(\mathbf{x})=\mathbf{0}, \quad f(\mathbf{x}) \leq t\} \tag{A.3.7}\\
& =\min \{t \mid(\mathbf{0}, \mathbf{0}, t) \in \mathcal{A}\} .
\end{align*}
$$

(b) $g(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is the intersection of the t-axis and a hyperplane of normal vector $(\boldsymbol{\alpha}, \boldsymbol{\beta}, 1)$:

$$
\begin{align*}
g(\boldsymbol{\alpha}, \boldsymbol{\beta}) & \stackrel{\text { def }}{=} \min _{\mathbf{x}}\{f(\mathbf{x})+\boldsymbol{\alpha} \cdot \boldsymbol{h}(\mathbf{x})+\boldsymbol{\beta} \cdot \boldsymbol{q}(\mathbf{x})\} \tag{A.3.8}\\
& =\min \left\{(\boldsymbol{\alpha}, \boldsymbol{\beta}, 1)^{T}(\boldsymbol{r}, \boldsymbol{s}, t) \mid(\boldsymbol{r}, \boldsymbol{s}, t) \in \mathcal{A}\right\} .
\end{align*}
$$

This is referred to as a nonvertical supporting hyperplane, because the last component of the normal vector is nonzero (it is 1).
(c) g^{*} is the highest intersection of the t-axis and all nonvertical supporting hyperplanes of \mathcal{A}. Notice that $\boldsymbol{\alpha} \geq 0$ holds true for each nonvertical supporting hyperplane of \mathcal{A}.

From the geometric interpretation of f^{*} and g^{*}, we actually have an equivalent geometric statement of strong duality:

> Theorem A.20. The strong duality holds, iff there exists a nonvertical supporting hyperplane of \mathcal{A} passing through ($0,0, f^{*}$).

Proof. From weak duality $f^{*} \geq g^{*}$, the intersection of the t-axis and a nonvertical supporting hyperplane cannot exceed ($0,0, f^{*}$). The strong duality holds, i.e, $f^{*}=g^{*}$, iff $\left(0,0, f^{*}\right)$ is just the highest intersection, meaning that there exists a nonvertical supporting hyperplane of \mathcal{A} passing through $\left(0,0, f^{*}\right)$.

Example A.21. Solve a simple inequality-constrained convex problem

$$
\begin{align*}
\min _{x} & x^{2}+1 \tag{A.3.9}\\
\text { subj.to } & x \geq 1
\end{align*}
$$

Solution. A code is implemented to draw a figure, shown at the end of the solution.

- Lagrangian: The inequality constraint can be written as $-x+1 \leq 0$. Thus the Lagrangian reads

$$
\begin{align*}
\mathcal{L}(x, \alpha) & =x^{2}+1+\alpha(-x+1)=\mathbf{x}^{2}-\alpha \mathbf{x}+\alpha+\mathbf{1} \\
& =\left(x-\frac{\alpha}{2}\right)^{2}-\frac{\alpha^{2}}{4}+\alpha+1, \tag{A.3.10}
\end{align*}
$$

and therefore the dual function reads (when $x=\alpha / 2$)

$$
\begin{equation*}
g(\alpha)=\min _{x} \mathcal{L}(x, \alpha)=-\frac{\alpha^{2}}{4}+\alpha+1 . \tag{A.3.11}
\end{equation*}
$$

Remark A.22. The Solution of $\min _{x} \mathcal{L}(x, \alpha)$

- We may obtain it by applying a calculus technique:

$$
\begin{equation*}
\frac{\partial}{\partial x} \mathcal{L}(x, \alpha)=2 x-\alpha=0 \tag{A.3.12}
\end{equation*}
$$

and therefore $x=\alpha / 2$ and (A.3.11) follows.
Equation (A.3.12) is one of the Karush-Kuhn-Tucker (KKT) conditions, the first-order necessary conditions, which defines the relationship between the primal variable (x) and the dual variable (α).

- Using the KKT condition, (A.3.11) defines the dual function $g(\alpha)$ as a function of the dual variable (α).
- The dual function $g(\alpha)$ is concave, while the Lagrangian is an affine function of α.
- Epigraph: For the convex problem (A.3.9), its epigraph is defined as

$$
\begin{equation*}
\mathcal{A}=\left\{(r, t) \mid-x+1 \leq r, x^{2}+1 \leq t, \text { for } x \in \mathbb{R}\right\} . \tag{A.3.13}
\end{equation*}
$$

To find the edge of the epigraph, we replace inequalities with equalities:

$$
\begin{equation*}
-x+1=r, \quad x^{2}+1=t \tag{A.3.14}
\end{equation*}
$$

and define t as a function of r :

$$
\begin{equation*}
t=x^{2}+1=(-r+1)^{2}+1 \tag{A.3.15}
\end{equation*}
$$

See Figure A.1, where the shaded region is the epigraph of the problem.

Figure A.1: The epigraph of the convex problem (A.3.9), the shaded region, and strong duality.

The Primal Optimal: For a feasible point point x,

$$
-x+1 \leq 0 \Rightarrow r=-x+1 \leq 0 .
$$

Thus the left side of the t-axis in \mathcal{A} corresponds to the feasible set; it follows from (A.3.15) that

$$
\begin{equation*}
f^{*}=\min \{t \mid(0, t) \in \mathcal{A}\}=2 . \tag{A.3.16}
\end{equation*}
$$

- Nonvertical Supporting Hyperplanes: For the convex problem, it follows from a Geometric-interpretation (A.3.8) that

$$
\begin{equation*}
g(\alpha)=\min _{(r, t) \in \mathcal{A}}\{\alpha r+t\} \tag{A.3.17}
\end{equation*}
$$

For each (r, t), the above reads

$$
\alpha r+t=g(\alpha)=-\frac{\alpha^{2}}{4}+\alpha+1,
$$

where (A.3.11) is used. Thus we can define a family of nonvertical supporting hyperplanes as

$$
\begin{equation*}
t=-\alpha r-\frac{\alpha^{2}}{4}+\alpha+1 \tag{A.3.18}
\end{equation*}
$$

which is a line in the (r, t)-coordinates for a fixed α. Figure A. 1 depicts two of the lines: $\alpha=0$ and $\alpha=2$.

- Strong Duality: Note that on the t-axis ($r=0$), (A.3.18) reads

$$
\begin{equation*}
t=-\frac{\alpha^{2}}{4}+\alpha+1=-\frac{1}{4}(\alpha-2)^{2}+2 \tag{A.3.19}
\end{equation*}
$$

of which the maximum $g^{*}=2$ when $\alpha=2$. Thus we can conclude

$$
\begin{equation*}
f^{*}=g^{*}=2 \tag{A.3.20}
\end{equation*}
$$

strong duality holds for the convex problem.

```
import numpy as np
from matplotlib import pyplot as plt
# Convex: min f(x), s.t. x >= 1 (i.e., -x+1 <= 0)
def f(x): return x**2+1
def g(r,alpha): return -alpha*r+(-alpha**2/4+alpha+1)
#--- Epigraph: t= f(r)
#--------------------------------------------------------
r = np.linspace(-3,4,100); x = -r+1
t = f(x); mint = t.min(); maxt = t.max()
plt.fill_between(r,t,maxt,color='cyan', alpha=0.25)
plt.plot(r,t,color='cyan')
plt.xlabel(r'$r$',fontsize=15); plt.ylabel(r'$t$',fontsize=15)
plt.text(-1,12,r'$\cal A$',fontsize=16)
plt.plot([0,0],[mint-3,maxt],color='black',ls='-') # t-axis
plt.yticks(np.arange(-2,maxt,2)); plt.tight_layout()
#--- Two Supporting hyperplanes
#-----------------------------------------------------
r = np.linspace(-2.5,2,2)
plt.plot(r,g(r,2),color='blue',ls=' - ')
plt.plot(r,g(r,0), color='blue',ls='--')
#--- Add Texts
#------------------------------------------------------
p=2.1
plt.text(p,g(p,0),r'$\alpha=0$',fontsize=14)
plt.text(p,g(p,2),r'$\alpha=2$',fontsize=14) # the optimal
plt.plot(0,2,'r*',markersize=8)
plt.text(0.1,1.9,r'$f^*=g^*=2$',fontsize=14)
plt.savefig('png-duality-example.png',bbox_inches='tight')
plt.show()
```


Example A.23. Solve the following nonconvex problem

$$
\begin{align*}
\min _{x} & x^{4}-50 x^{2}+25 x \tag{A.3.21}\\
\text { subj.to } & x \geq-2
\end{align*}
$$

Solution. For the nonconvex problem, a code is implemented similar to duality_convex.py on p. 347 .

Figure A.2: The nonconvex problem: (left) The graph of $y=f(x)$ and (right) the epigraph and weak duality.

- The Lagrangian of the problem (A.3.21) reads

$$
\begin{equation*}
\mathcal{L}(x, \alpha)=x^{4}-50 x^{2}+25 x+\alpha(-x-2) ; \tag{A.3.22}
\end{equation*}
$$

its epigraph is defined as

$$
\begin{equation*}
\mathcal{A}=\left\{(r, t) \mid-x-2 \leq r, x^{4}-50 x^{2}+25 x \leq t, \text { for some } x\right\}, \tag{A.3.23}
\end{equation*}
$$

which is shown as the cyan-colored region in Figure A. 2.

- The primal optimal f^{*} is obtained by projecting the negative side of the epigraph $(r \leq 0)$ to the t-axis and taking the minimum, $f^{*} \approx-501.6$.
- The dual optimal g^{*} is computed as the highest intersection of the t-axis and all nonvertical supporting hyperplanes of $\mathcal{A}, g^{*} \approx-673.4$.
- For the nonconvex problem, there does not exist a supporting hyperplane of \mathcal{A} passing through $\left(0, f^{*}\right)$, thus strong duality does not hold.

A.4. Rank-One Matrices and Structure Tensors

Rank-one Matrices

Definition A.24. A rank-one matrix is a matrix with rank equal to one.

Theorem A.25. Every rank-1 matrix $A \in \mathbb{R}^{m \times n}$ can be written as an outer product

$$
\begin{equation*}
A=\mathbf{u v}^{T}, \quad \mathbf{u} \in \mathbb{R}^{m}, \quad \mathbf{v} \in \mathbb{R}^{n} \tag{A.4.1}
\end{equation*}
$$

Theorem A.26. Let $A=\mathbf{u v}^{T}$ be a rank-1 matrix. Then

$$
\begin{equation*}
\|A\|_{2}=\|A\|_{F}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} . \tag{A.4.2}
\end{equation*}
$$

Proof. Using the definitions of the norms, we have

$$
\begin{align*}
\|A\|_{2} & \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\max _{\|\mathbf{x}\|_{2}=1}\|A \mathbf{x}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\left\|\mathbf{u} \mathbf{v}^{T} \mathbf{x}\right\|_{2} \\
& =\max _{\|\mathbf{x}\|_{2}=1}^{\|\mathbf{u}\|_{2} \cdot\left|\mathbf{v}^{T} \mathbf{x}\right|=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}}, \tag{A.4.3}\\
\|A\|_{F} & =\sqrt{\operatorname{tr}\left(A A^{T}\right)}=\sqrt{\operatorname{tr}\left(\mathbf{u v}^{T} \mathbf{v u}^{T}\right)} \\
& =\sqrt{\|\mathbf{u}\|_{2}^{2}\|\mathbf{v}\|_{2}^{2}}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2},
\end{align*}
$$

which completes the proof.
Example A.27. Let $\mathbf{u}=[6,3,-6]^{T}$ and $\mathbf{v}=[1,-2,2]^{T}$.
(a) Form $A=\mathbf{u v}^{T}$.
(b) Find $\|A\|_{2}$.

Structure Tensor

Definition A.28. The structure tensor is a matrix derived from the gradient of a function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{n}$: it is defined as

$$
\begin{equation*}
S(\mathbf{x})=(\nabla f)(\nabla f)^{T}(\mathbf{x}) \tag{A.4.4}
\end{equation*}
$$

which describes the distribution of the gradient of f in a neighborhood of the point x . The structure tensor is often used in image processing and computer vision.

Claim A.29. Structure Tensor in Two Variables $\mathrm{x}=(x, y) \in \mathbb{R}^{2}$ When $\mathbf{x}=(x, y) \in \mathbb{R}^{2}$, the structure tensor in (A.4.4) reads

$$
S(\mathbf{x})=(\nabla f)(\nabla f)^{T}(\mathbf{x})=\left[\begin{array}{cc}
f_{x}^{2} & f_{x} f_{y} \tag{A.4.5}\\
f_{x} f_{y} & f_{y}^{2}
\end{array}\right](\mathbf{x})
$$

(a) The matrix S is symmetric and positive semidefinite.
(b) $\|S\|_{2}=\|\nabla f\|_{2}^{2}$, which is the maximum eigenvalue of S.
(c) $\operatorname{det} S=0$, which implies that the number 0 is an eigenvalue of S.

The two eigenvalue-eigenvector pairs $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2$, are

$$
\begin{array}{ll}
\lambda_{1}=\|\nabla f\|_{2}^{2}, & \tag{A.4.6}\\
\mathbf{v}_{1}=\nabla f \\
\lambda_{2}=0, & \mathbf{v}_{2}=\left[-f_{y}, f_{x}\right]^{T}
\end{array}
$$

Proof.

(a) The matrix S is clearly symmetric. Let $\mathrm{v} \in \mathbb{R}^{2}$. Then

$$
\begin{equation*}
\mathbf{v}^{T} S \mathbf{v}=\mathbf{v}^{T}(\nabla f)(\nabla f)^{T} \mathbf{v}=\left|(\nabla f)^{T} \mathbf{v}\right|^{2} \geq 0 \tag{A.4.7}
\end{equation*}
$$

which proves that S is positive semidefinite.
(b) It follows from (A.4.2). Since S is symmetric, $\|S\|_{2}$ must be the maximum eigenvalue of S. (See Theorem 5.44 (f).)
(c) $\operatorname{det} S=f_{x}^{2} f_{y}^{2}-\left(f_{x} f_{y}\right)^{2}=0 \Rightarrow S$ is not invertible \Rightarrow An eigenvalue of S must be 0 .
(d) It is not difficult to check that $S \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, i=1,2$.

Structure Tensor, Applied to Color Image Processing

- Let $I(\mathbf{x})=(r, g, b)(\mathbf{x})$ be a color image defined on a rectangular region $\Omega, \mathbf{x}=(x, y) \in \Omega \subset \mathbb{R}^{2}$.
- Then

$$
\nabla I(\mathbf{x})=\left[\begin{array}{c}
(r, g, b)_{x} \tag{A.4.8}\\
(r, g, b)_{y}
\end{array}\right](\mathbf{x}),
$$

and therefore the structure tensor of I reads

$$
\begin{align*}
S_{I}(\mathbf{x}) & =(\nabla I)(\nabla I)^{T}(\mathbf{x})=\left[\begin{array}{c}
(r, g, b)_{x} \\
(r, g, b)_{y}
\end{array}\right]\left[(r, g, b)_{x}^{T}(r, g, b)_{y}^{T}\right](\mathbf{x}) \tag{A.4.9}\\
& =\left[\begin{array}{cc}
r_{x}^{2}+g_{x}^{2}+b_{x}^{2} & r_{x} r_{y}+g_{x} g_{y}+b_{x} b_{y} \\
r_{x} r_{y}+g_{x} g_{y}+b_{x} b_{y} & r_{y}^{2}+g_{y}^{2}+b_{y}^{2}
\end{array}\right](\mathbf{x}) .
\end{align*}
$$

Claim A.30. For the structure tensor S_{I} in (A.4.9):
(a) We have

$$
\begin{equation*}
\left\|S_{I}\right\|_{2}=\|\nabla I\|_{2}^{2}=\lambda_{\max }\left(S_{I}\right) \tag{A.4.10}
\end{equation*}
$$

(b) Rewrite S_{I} as

$$
S_{I}=\left[\begin{array}{cc}
J_{x x} & J_{x y} \tag{A.4.11}\\
J_{x y} & J_{y y}
\end{array}\right] .
$$

Then

$$
\begin{equation*}
\lambda_{\max }\left(S_{I}\right)=\lambda_{1}=\frac{J_{x x}+J_{y y}+\sqrt{\left(J_{x x}-J_{y y}\right)^{2}+4 J_{x y}^{2}}}{2} \tag{A.4.12}
\end{equation*}
$$

and its corresponding eigenvector reads

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
J_{y y}-\lambda_{1} \tag{A.4.13}\\
-J_{x y}
\end{array}\right]
$$

which is the edge normal direction.
Proof. Here are hints.
(a) See Theorem 5.44 (f) and Theorem 5.49.
(b) Use the quadratic formula to solve $\operatorname{det}\left(S_{I}-\lambda I\right)=0$ for λ.

Matlab-code A.31. Structure Tensor

structure_tensor.m
function [grad,theta] = structure_tensor(u)
\% [grad,theta] = structure_tensor (u)
\% This program uses the Structure Tensor (ST) method to compute
$\% \quad$ the Sobel gradient magnitude, $|\operatorname{grad}(u)|$, and
\% the edge normal angle, theta.
\%\%--- Sobel Derivatives
[ux,uy] = sobel_derivatives(u);
$\% \%---J a c o b i a n: J=(g r a d u) *(g r a d u)^{\prime}-----------------$
Jxx $=\operatorname{dot}(u x, u x, 3) ; J x y=\operatorname{dot}(u x, u y, 3) ;$ Jyy $=\operatorname{dot}(u y, u y, 3) ;$
$\% \%--$ The first Eigenvalue of J and direction (e1,v1) ---
$D=\operatorname{sqrt}\left((J x x-J y y) .{ }^{\wedge} 2+4 * J x y .{ }^{\wedge} 2\right)$;
e1 = (Jxx $+J y y+D) / 2$;
grad $=\operatorname{sqrt}(e 1) ; \quad \% \operatorname{sqrt}(e 1)=$ magnitude
theta $=\operatorname{atan} 2(-J x y, J y y-e 1) ; \quad \%$ v1 $=(J y y-e 1,-J x y)$
sobel_derivatives.m

```
function [ux,uy] = sobel_derivatives(u)
% Usage: [ux,uy] = sobel_derivatives(u);
% It produces Sobel derivatives, using conv2(u,C,'valid').
%%--- initialization
if isa(u,'uint8'), u = im2double(u); end
[m,n,d] = size(u);
ux = zeros(m,n,d); uy = zeros(m,n,d);
C = [1 2 1; 0 0 0; -1 -2 -1];
%%--- conv2, with 'valid'
for k = 1:d
    ux(2:end-1,2:end-1,k) = conv2(u(:, :,k),C, 'valid');
    uy(2:end-1,2:end-1,k) = conv2(u(:, :,k),C','valid');
end
%%--- expand, up to the boundary --------------
ux(1,:,:) = ux(2,:,:); ux(end,:,:) = ux(end-1,:,: );
ux(:,1,:) = ux(:,,2,:); ux(:,end,:) = ux(:,end-1,:);
uy(1,:,:) = uy(2,:,:); uy(end,:,:) = uy(end-1,:,:);
uy(:,1,:) = uy(:,2,:); uy(:,end,:) = uy(:,end-1,:);
```


A.5. Boundary-Effects in Convolution Functions in Matlab and Python SciPy

Note: You should first understand that there are 3 different modes for the computation of convolution in Matlab and Python.

- full: At points where the given two arrays overlap partially, the arrays are padded with zeros to get the convolution there.
- valid: The output is calculated only at positions where the arrays overlap completely. This mode does not use zero padding at all.
- same: It crops the middle part out of the 'full' mode so that its size is the same as the size of the first array (Matlab) or the larger array (SciPy).

Observation A.32. Boundary-Effects in Convolutions
 A post-processing is required, if the user wants to suppress boundary effects, get the convolution result having the same size as the input, or both.

Example A.33. Let $f(x, y)=\sin (\pi x) \cos (\pi y)$.
Find the Sobel derivative $\partial f / \partial x$ by convolving the filter

$$
C=\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] .
$$

Observe boundary effects and try to suppress them.

Solution.

- Codes are implemented in
- Matlab: conv2
- SciPy: scipy.signal.convolve2d
for the 3 different modes.
- Around the boundary, values are expanded from the "valid".
- The convolution results are plotted to compare.
matlab_conv2_boundary.m

```
%%--- Initial setting
n = 21; h = 1/(n-1);
x = linspace(0,1,n); [X,Y] = meshgrid(x);
F = sin(pi*X).*\operatorname{cos}(pi*Y); % the function
Fx = pi*cos(pi*X).*\operatorname{cos(pi*Y); % the true derivative}
%%--- conv2: Sobel derivative ------------
C = [1 0-1; 2 0 -2; 1 0 -1] /(8*h);
Fx_full = conv2(F,C,'full');
Fx_same = conv2(F,C,'same');
Fx_valid = conv2(F,C,'valid');
%%--- Expansion of conv2(valid) ----------
Fx_expand = zeros(size(F));
Fx_expand(2:end-1,2:end-1) = Fx_valid;
Fx_expand(1,:) = Fx_expand(2,:); Fx_expand(end,:) = Fx_expand(end-1,:);
Fx_expand(:,1) = Fx_expand(:,2); Fx_expand(:,end) = Fx_expand(:,end-1);
```

scipy_convolve_boundary.py
import numpy as np; import scipy
import matplotlib.pyplot as plt
from matplotlib import cm; from math import pi
\#\#--- Initial setting -----------------------
$\mathrm{n}=21 ; \mathrm{h}=1 /(\mathrm{n}-1)$;
$\mathrm{x}=\mathrm{np} . \operatorname{linspace}(0,1, \mathrm{n}) ; \mathrm{X}, \mathrm{Y}=\mathrm{np} . \operatorname{meshgrid}(\mathrm{x}, \mathrm{x})$;
$\mathrm{F}=\mathrm{np} \cdot \sin (\mathrm{pi} * \mathrm{X}) * \mathrm{np} \cdot \cos (\mathrm{pi} * \mathrm{Y}) ; \quad$ \# the function
$\mathrm{Fx}=\mathrm{pi} * \mathrm{np} \cdot \cos (\mathrm{pi} * \mathrm{X}) * \mathrm{np} \cdot \cos (\mathrm{pi} * \mathrm{Y}) ;$ \# the true derivative
\#\#--- conv2: Sobel derivative -------------
$C=n p . \operatorname{array}([[1,0,-1],[2,0,-2],[1,0,-1]]) /(8 * h)$;
Fx_full = scipy.signal.convolve2d(F,C,mode='full');
Fx_same = scipy.signal.convolve2d(F,C,mode='same');
Fx_valid = scipy.signal. convolve2d(F, C, mode='valid');
\#\#--- Expansion of convolve2d(valid) -----
Fx_expand = np.zeros (F.shape);
Fx_expand[1:-1,1:-1] = Fx_valid;
$F x_{-} \operatorname{expand}[0,:]=F x_{-} \operatorname{expand}[1,:] ; \operatorname{Fx}$ expand[-1,:] = Fx_expand[-2,:];
Fx_expand [:, 0] = Fx_expand[:, 1]; Fx_expand[:, -1] = Fx_expand[:, -2];

Matlab: Fx valid

Figure A.3: Matlab convolutions.

SciPy: Fx true

SciPy: Fx full

SciPy: Fx valid

SciPy: Fx same

SciPy: Fx valid-expanded

Figure A.4: SciPy convolutions.

A.6. From Python, Call C, C++, and Fortran

Note: A good programming language must be easy to learn and use and flexible and reliable.

Python

- Advantages
- Easy to learn and use
- Flexible and reliable
- Extensively used in Data Science
- Handy for Web Development purposes
- Having Vast Libraries support
- Among the fastest-growing programming languages in the tech industry, machine learning, and AI
- Disadvantage
- Slow!!

Strategy A.34. Speed up Python Programs

- Use numpy and scipy for all mathematical operations.
- Always use built-in functions wherever possible.
- Cython: It is designed as a C-extension for Python, which is developed for users not familiar with C. A Good Choice!
- Create and import modules/functions in C, C++, or Fortran
- Easily more than $100 \times$ faster than Python scripts
- The Best Choice!!

Python Extension

Example A.35. Functions are implemented in (Python, F90, C, C++) and called from Python. Let $x, y \in \mathbb{R}^{n}$.

| ```for j=1:m dotp = dot(x,y); (V) end``` | ```for j=1:m, dotp=0; for i=1:n dotp = dotp+x(i)*y(i); (S) end end``` |
| :---: | :---: |

f90

C++]

The numeric library is included for vector operations. test_gpp.cpp

```
#include <iostream>
#include <vector>
#include <numeric>
using namespace std;
typedef double VTYPE;
extern "C" // required when using C++ compiler
VTYPE test_gpp_v(VTYPE*x,VTYPE*y, int n, int m)
{
    int i,j;
    VTYPE dotp;
    for(j=0;j<m;j++){
        dotp = inner_product(x, x+n, y, 0.0);
    }
    return dotp;
}
extern "C" // required when using C++ compiler
VTYPE test_gpp_s(VTYPE*x,VTYPE*y, int n, int m)
{
    int i,j;
    VTYPE dotp;
    for(j=0;j<m;j++){dotp=0.;
        for(i=0;i<n;i++){
            dotp += x[i]*y[i];
        }
    }
    return dotp;
}
```


Python

```
                test_py3.py
import numpy as np
def test_py3_v(x,y,m):
    for j in range(m):
        dotp = np.dot(x,y)
    return dotp
def test_py3_s(x,y,m):
    n = len(x)
    for j in range(m):
        dotp = 0;
        for i in range(n):
            dotp +=x[i]*y[i]
    return dotp
```


Compiling

Modules in $\mathrm{f} 90, \mathrm{C}$, and $\mathrm{C}++$ are compiled by executing the shell script.

| \#!/usr/bin/bash |
| :--- |
| LIB_F90='lib_f90' |
| LIB_GCC='lib_gcc' |
| LIB_GPP='lib_gpp' |
| \#\#\# Compile-f90-c-cpp |
| f2py3 -c --f90flags='-03' -m \$LIB_F90 *.f90 |
| \#\#\# Compiling: C (PIC: position-independent code) |
| gcc -fPIC -03 -shared -o \$LIB_GCC.so *.c |
| \#\#\# Compiling: C++ |
| g++ -fPIC -03 -shared -o \$LIB_GPP.so *.cpp |

Python Wrap-up

An executable Python wrap-up is implemented as follows.

```
#!/usr/bin/python3
import numpy as np
import ctypes, time
from test_py3 import *
from lib_f90 import *
lib_gcc = ctypes.CDLL("./lib_gcc.so")
lib_gpp = ctypes.CDLL("./lib_gpp.so")
n=100; m=1000000
#n=1000; m=1000000
x = np.arange(0.,n,1); y = x+0.1;
print('------------------------------------------------------
print('Speed test: (dot-product: n=%d), m=%d times' %(n,m))
print('------------------------------------------------------')
### Python ################################
t0 = time.time(); result = test_py3_v(x,y,m)
print('test_py3_v: e-time = %.4f; result = %.2f' %(time.time()-t0,result))
t0 = time.time(); result = test_py3_s(x,y,m)
print('test_py3_s: e-time = %.4f; result = %.2f\n' %(time.time()-t0,result))
### Fortran ###############################
t0 = time.time(); result = test_f90_v(x,y,m)
print('test_f90_v: e-time = %.4f; result = %.2f' %(time.time()-t0,result))
t0 = time.time(); result = test_f90_s(x,y,m)
print('test_f90_s: e-time = %.4f; result = %.2f\n' %(time.time()-t0,result))
### C #####################################
lib_gcc.test_gcc_s.argtypes = [np.ctypeslib.ndpointer(dtype=np.double),
    np.ctypeslib.ndpointer(dtype=np.double),
    ctypes.c_int,ctypes.c_int] #input type
lib_gcc.test_gcc_s.restype = ctypes.c_double #output type
t0 = time.time(); result = lib_gcc.test_gcc_s(x,y,n,m)
print('test_gcc_s: e-time = %.4f; result = %.2f\n' %(time.time()-t0,result))
```

```
### C++ ###################################
lib_gpp.test_gpp_v.argtypes = [np.ctypeslib.ndpointer(dtype=np.double),
    np.ctypeslib.ndpointer(dtype=np.double),
    ctypes.c_int,ctypes.c_int] #input type
lib_gpp.test_gpp_v.restype = ctypes.c_double #output type
t0 = time.time(); result = lib_gpp.test_gpp_v(x,y,n,m)
print('test_gpp_v: e-time = %.4f; result = %.2f' %(time.time()-t0,result))
lib_gpp.test_gpp_s.argtypes = [np.ctypeslib.ndpointer(dtype=np.double),
    np.ctypeslib.ndpointer(dtype=np.double),
    ctypes.c_int,ctypes.c_int] #input type
lib_gpp.test_gpp_s.restype = ctypes.c_double #output type
t0 = time.time(); result = lib_gpp.test_gpp_s(x,y,n,m)
print('test_gpp_s: e-time = %.4f; result = %.2f\n' %(time.time()-t0,result))
```


Performance Comparison

A Linux OS is used with an Intel Core i7-10750H CPU @ 2.60GHz.

$$
\mathrm{n}=100, \mathrm{~m}=1000000 \Rightarrow \mathbf{2 0 0 M} \text { flops }
$$

```
Speed test: (dot-product: n=100), m=1000000 times
-----------------------------------------------------
test_py3_v: e-time = 0.7672; result = 328845.00
test_py3_s: e-time = 18.2175; result = 328845.00
test_f90_v: e-time = 0.0543; result = 328845.00
test_f90_s: e-time = 0.0530; result = 328845.00
test_gcc_s: e-time = 0.0603; result = 328845.00
test_gpp_v: e-time = 0.0600; result = 328845.00
test_gpp_s: e-time = 0.0612; result = 328845.00
```


$\mathrm{n}=1000, \mathrm{~m}=1000000 \Rightarrow$ 2B flops

```
Speed test: (dot-product: n=1000), m=1000000 times
test_py3_v: e-time = 0.8984; result = 332883450.00
test_py3_s: e-time = 201.4086; result = 332883450.00
test_f90_v: e-time = 0.8331; result = 332883450.00
test_f90_s: e-time = 0.8318; result = 332883450.00
test_gcc_s: e-time = 0.8575; result = 332883450.00
test_gpp_v: e-time = 0.8638; result = 332883450.00
test_gpp_s: e-time = 0.8623; result = 332883450.00
```

 \(\mathrm{n}=100, \mathrm{~m}=10000000 \Rightarrow\) 2B flops
 Speed test: (dot-product: n=100), m=10000000 times
test_py3_v: e-time $=7.8289$; result $=328845.00$
test_py3_s: e-time = 195.0932; result = 328845.00
test_f90_v: e-time $=0.5656$; result $=328845.00$
test_f90_s: e-time $=0.5456$; result $=328845.00$
test_gcc_s: e-time $=0.6090$; result $=328845.00$
test_gpp_v: e-time = 0.6055; result = 328845.00
test_gpp_s: e-time $=0.6089$; result $=328845.00$

Summary A.36. Python Calls C, C++, and Fortran

- Compiled modules are 200+ times faster than Python Scripts.
- Compiled modules are yet faster than Python Built-in's.
- Fortran is about $5 \sim 10 \%$ faster than $\mathbf{C} / \mathbf{C + +}$.

Innovative projects often require a completely new code:

- You may search-\&-download public-domain functions, for which you do not have to re-implement in Python.
- If a function needs a long script, you should try C, C++, or Fortran.

Appendix \mathbf{P}
 Projects

Contents of Chapter P
P.1. Project: Canny Edge Detection Algorithm for Color Images 366
P.2. Project: Text Extraction from Images, PDF Files, and Speech Data 380

P.1. Project: Canny Edge Detection Algorithm for Color Images

Through the project, we will build an edge detection (ED) algorithm which can sketch the edges of objects on color images.

What are Images?

- A rectangular array of pixels
- In the RGB representation:

An image is a function

$$
u: \Omega \rightarrow \mathbb{R}_{+}^{3}:=\{(r, g, b): r, g, b \geq 0\}
$$

- In practice,

$$
u: \Omega \subset \mathbb{N}^{2} \rightarrow \mathbb{N}_{[0,255]}^{3}
$$

due to sampling \& quantization

- $u=u(m, n, d)$, for $d=1$ or 3
- rgb2gray formula:
$0.299 * R+0.587 * G+0.114 * B$
- Most of ED algorithms are developed for grayscale images. (Color images must be transformed to a grayscale image.)
- Edge detection algorithms consist of a few steps. For example, the Canny edge detection algorithm has five steps [2] (Canny, 1986):

1. Noise reduction (image blur)
2. Gradient calculation
3. Edge thinning (non-maximum suppression)
4. Double threshold
5. Edge tracking by hysteresis

We will learn Canny's algorithm, implementing every step in detail.

"edge": A Built-in Function

Edge_Detection.m

```
close all; clear all
global beta delta Dt nmax level
beta = 0.05; delta = 0.2; Dt = 0.25; nmax = 10; %TV denoising
level = 1;
if exist('OCTAVE_VERSION','builtin'), pkg load image; end
%-----------------------------------------------
TheImage = 'DATA/Lena256.png';
%TheImage = 'DATA/synthetic-Checkerboard.png';
[Filepath,Name,Ext] = fileparts(TheImage);
v0 = im2double(imread(TheImage));
[m,n,d] = size(v0);
    if level>=1, figure, imshow(v0); end
    fprintf(1%s: size=(%d,%d,%d)\n',TheImage,m,n,d)
%--- Use built-in: "edge"
vg = rgb2gray(v0);
E = edge(vg,'Canny');
    if level>=1, figure,imshow(E); end
    if level>=2, imwrite(vg,strcat(Name,'_Gray.png'));
                                    imwrite(E,strcat(Name,'_Gray-Builtin-Edge.png')); end
%---------------------------------------------
%--- New Trial: Color Edge Detection ----------
%----------------------------------------------
ES = color_edge(v0,Name);
```


Figure P.1: Edge detection, using the built-in function "edge", which is not perfect but somewhat acceptable.

A Critical Issue on Edge Detection Algorithms

Observation P.1. When color images are transformed to grayscale, it is occasionally the case that edges

- either lose their strength
- or even disappear.

Figure P.2: Canny edge detection for color images: A synthetic image produced by transform_to_gray.m, its grayscale, and the result of the built-in function "edge".

Project Objectives: The project will develop an edge detection algorithm, which is less problem (so, more effective) for color images.

- We will design an effective algorithm as good as (or better than) the well-tuned built-in function (edge).
- For your convenience and success, you will be provided with a modelcode, saved in Edge-Detection.MM.tar.

A Modelcode, for Color Edge Detection

color_edge.m
function ES = color_edge (v0,Name)
\% function ES = color_edge (v0, Name)
\% Edge detection for color images,
\% by dealing with gradients separately for RGB
global beta delta Dt nmax level
$[\mathrm{m}, \mathrm{n}, \mathrm{d}]=\operatorname{size}(\mathrm{v} 0)$;
$\mathrm{vs}=\operatorname{zeros}(m, \mathrm{n}, \mathrm{d}) ; \operatorname{grad}=\operatorname{zeros}(\mathrm{m}, \mathrm{n}, \mathrm{d})$; theta $=\operatorname{zeros}(\mathrm{m}, \mathrm{n}, \mathrm{d})$;
$\mathrm{TH}=\operatorname{zeros}(\mathrm{m}, \mathrm{n}) ; \mathrm{ES}=\operatorname{zeros}(\mathrm{m}, \mathrm{n})$;
\%--- Steps 1 \& 2: Channel-by-Channel
for $k=1: d$
\%u = imgaussfilt(v0 (:, : , k) , 2) ; \% Step 1
$\mathrm{u}=\mathrm{tv}$ _denoising $(\mathrm{v} 0(:,:, \mathrm{k}))$; $\%$ Step 1: Image Denoising/Blur
$\operatorname{vs}(:,:, k)=u$;
$[\operatorname{grad}(:,:, k), \operatorname{theta}(:,:, k)]=$ sobel_grad(u); \% Step 2: Grad Calculation
end
\%--- Combine for (1D) Gradient Intensity --------------
$[\mathrm{EO}, \mathrm{I}]=\max (\operatorname{grad},[], 3) ; \mathrm{EO}=\mathrm{E} 0 / \max (\mathrm{EO}(:))$;
for $i=1: m$, for $j=1: n, T H(i, j)=\operatorname{theta}(i, j, I(i, j))$; end, end if level>=2,
imwrite(vs,strcat(Name, '_TV_denoised.png'));
imwrite(E0, strcat (Name, '_New-Sobel-Grad.png'));
end
\%--- Step 3: Edge Thinning

E 1 = non_max_suppression(EO,TH);
if level>=2, imwrite(E1,strcat(Name, '_Sobel-Grad-Supressed.png')); end
\%--- Step 4: Double Threshold --------------------------highRatio = 0.09; lowRatio = 0.3; \% Set them appropriately!! [strong,weak] = double_threshold(E1,highRatio,lowRatio);
\%--- Step 5: Edge Tracking by Hysteresis ---------------
\% YOU WILL DO THIS
\%--- Step 6: (Extra Step) Edge-Trim --------------------
\% YOU WILL DO THIS

P.1.1. Noise Reduction: Image Blur

This step can be done by applying the Gaussian filter imgaussfilt.

- It is a simple averaging algorithm and blurs the whole image.
\Rightarrow It can make edge strength weaker; we will try another method.
Let v_{0} be an observed (noisy) image defined on $\Omega \subset \mathbb{R}^{2}$. Consider the evolutionary total variation (TV) model [11]:

$$
\begin{equation*}
u_{t}-\nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)=\beta\left(v_{0}-u\right), \tag{P.1.1}
\end{equation*}
$$

where the left-side is the negation of the mean curvature and β denotes a constraint parameter, a Lagrange multiplier.

- The TV model tends to converge to a piecewise constant image. Such a phenomenon is called the staircasing effect. \Rightarrow The TV model can be used for both noise reduction and edge sharpening.

Numerical Discretization

For the time-stepping procedure, we simply employ the explicit method, the forward Euler method:

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}-\nabla \cdot\left(\frac{\nabla u^{n}}{\left|\nabla u^{n}\right|}\right)=\beta\left(v_{0}-u^{n}\right), \quad u^{0}=v_{0} \tag{P.1.2}
\end{equation*}
$$

which equivalently reads

$$
\begin{equation*}
u^{n+1}=u^{n}+\Delta t\left(\beta\left(v_{0}-u^{n}\right)-A u^{n}\right), \quad u^{0}=v_{0} \tag{P.1.3}
\end{equation*}
$$

where

$$
A u^{n} \approx-\nabla \cdot\left(\frac{\nabla u^{n}}{\left|\nabla u^{n}\right|}\right)=-\left(\frac{u_{x}^{n}}{\left|\nabla u^{n}\right|}\right)_{x}-\left(\frac{u_{y}^{n}}{\left|\nabla u^{n}\right|}\right)_{y} .
$$

Remark P.2. The TV Denoising

- The TV model, (P.1.3), requires to set Δt small enough for stability.
- It can reduce noise effectively in a few iterations.
- Implementation details can be found from tv_denoising.m and curvaturePG.m.

```
                        test_denoising.m
close all; clear all
global beta delta Dt nmax level
beta = 0.05; delta = 0.2; Dt = 0.25; nmax = 10; %TV denoising
level = 2;
if exist('OCTAVE_VERSION','builtin'), pkg load image; end
%-
TheImage = 'DATA/Lena256.png';
v0 = im2double(imread(TheImage));
[m,n,d] = size(v0);
ug = zeros(m,n,d); ut = zeros(m,n,d);
for k=1:d
    ut(:,:,k) = tv_denoising(v0(:,:,k));
    ug(:,:,k) = imgaussfilt(v0(:,:,k),2); % sigma=2
end
imwrite(ut,'Lena256_test-TV_denoised.png')
imwrite(ug,'Lena256_test-Gaussian-filter.png')
```


Figure P.3: Step 1: Image denoising or image blur. The original Lena (left), the TVdenoised image (middle), and the Gaussian-filtered image (right).

P.1.2. Gradient Calculation: Sobel Gradient

Note: Edges correspond to a change of pixels' intensity. To detect it, the easiest way is to apply filters that highlight the intensity change in both directions: horizontal (x) and vertical (y).

Algorithm P.3. Sobel gradient

- The image gradient, $\nabla u=\left(u_{x}, u_{y}\right)$, is calculated as the convolution of the image (u) and the Sobel kernels (K_{x}, K_{y}).

$$
K_{x}=\left[\begin{array}{lll}
-1 & 0 & 1 \tag{P.1.4}\\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right], \quad K_{y}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right] .
$$

That is,

$$
\begin{equation*}
u_{x}=\operatorname{conv}\left(u, K_{x}\right), \quad u_{y}=\operatorname{conv}\left(u, K_{y}\right) . \tag{P.1.5}
\end{equation*}
$$

- Then the magnitude G and the slope θ of the gradient are calculated as follow:

$$
\begin{equation*}
G=\sqrt{u_{x}^{2}+u_{y}^{2}}, \quad \theta=\arctan \left(\frac{u_{y}}{u_{x}}\right)=\operatorname{atan} 2\left(\mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{x}}\right) . \tag{P.1.6}
\end{equation*}
$$

See sobel_grad.m on the following page.

Note: The Gradient Magnitude \& atan2

- The gradient magnitude is saved in EO.
(See Line 21 of color_edge.m on p.369.)
- It is normalized for its maximum value to be 1 , for the purpose of figuring.
- >> help atan2 atan2(Y, X) is the four quadrant arctangent of the elements of X and Y such that $-\mathrm{pi}<=\operatorname{atan} 2(Y, X)<=$ pi.

```
                        sobel_grad.m
function [grad,theta] = sobel_grad(u)
% [grad,theta] = sobel_grad(u)
% It computes the Sobel gradient magnitude, |grad(u)|,
% and edge normal angle, theta.
[m,n,d]=size(u);
grad = zeros(m,n); theta = zeros(m,n);
%%
for q=1:n
    qm=max(q-1,1); qp=min(q+1,n);
    for p=1:m
        pm=max(p-1,1); pp=min(p+1,m);
        ux = u(pp,qm)-u(pm,qm) +2.*(u(pp,q)-u(pm,q)) +u(pp,qp)-u(pm,qp);
        uy = u(pm,qp)-u(pm,qm) +2.*(u(p,qp)-u(p,qm)) +u(pp,qp)-u(pp,qm);
        grad(p,q) = sqrt(ux^2 + uy^2);
        theta(p,q) = atan2(uy,ux);
    end
end
```


Figure P.4: The gradient magnitudes of (R,G,B) components of Lena.

Note: Through the project, we may get the single-component gradient by simply taking the maximum of (R,G,B)-gradients. See Line 21 of color_edge.m, p. 369 .

Figure P.5: Step 2: The maximum of (R,G,B) gradients, for the Lena image.

Figure P.6: The color checkerboard image in Figure P. 2 (left) and the maximum of its (R,G,B)-gradients (right).

Now, more reliable edges can be detected!

P.1.3. Edge Thinning: Non-maximum Suppression

As one can see from above figures, some of the edges are thick and others are thin.

- The goal of edge thinning is to mitigate the thick edges.

Algorithm P.4. Non-maximum Suppression

- The algorithm goes through the gradient intensity matrix and
- finds the pixels with the maximum value in the edge normal directions.

The principle is simple!

non_max_suppression.m

```
function Z = non_max_suppression(EO,TH)
% function Z = non_max_suppression(EO,TH)
[m,n] = size(EO);
Z = zeros(m,n);
TH(TH<0) = TH(TH<0) +pi;
R = mod(floor((TH+pi/8)/(pi/4)),4); % region=0,1,2,3
for i=2:m-1, for j=2:n-1
    if R(i,j)==0, % around 0 degrees
        a=EO(i-1,j); b=E0(i+1,j);
    elseif R(i,j)==1, % around 45 degrees
        a=E0(i-1,j-1); b=EO(i+1,j+1);
    elseif R(i,j)==2, % around }90\mathrm{ degrees
        a=EO(i,j-1); b=E0(i,j+1);
    else, % around }135\mathrm{ degrees
        a=E0(i-1,j+1); b=E0(i+1,j-1);
    end
    if EO(i,j)>=max(a,b), Z(i,j) = EO(i,j); end
end, end
```


Figure P.7: Step 3: Non-maximum suppression. The Sobel gradient in Figure P. 5 (left) and the non-maximum suppressed (right).

P.1.4. Double Threshold

The double threshold step aims at identifying 3 kinds of pixels: strong, weak, and non-relevant:

- Strong pixels: pixels of high intensities
\Rightarrow They surely contribute to the final edge.
- Weak pixels: pixels of mid-range intensities
\Rightarrow Not to be considered as non-relevant for the edge detection.
- Other pixels are considered as non-relevant for the edge.

Note: Implementation of Doulble Threshold

0 . Set high and low thresholds.

1. High threshold is used to identify the strong pixels.
2. Low threshold is used to identify the non-relevant pixels.
3. All pixels having intensity between both thresholds are flagged as weak.
4. The Hysteresis mechanism (Step 5) will help us identify the ones that could be considered as strong and the ones that are considered as non-relevant.

In-Reality P.5. highThreshold \& lowThreshold

It is often the case that you should assign two ratios to set the highThreshold and lowThreshold.

- For example:

$$
\begin{aligned}
& \text { highRatio }=0.09 ; \text { lowRatio }=0.3 ; \\
& \text { highThreshold }=\text { highRatio*max }(\mathrm{E} 1(:)) \text {; } \\
& \text { lowThreshold }=\text { lowRatio *highThreshold; }
\end{aligned}
$$

where E1 is the non-maximum suppressed gradient intensity.
Note: In order to detect weak edges more effectively, one can employ dynamic (variable) thresholds. (\Rightarrow It requires some more research.)
double_threshold.m
unction [strong,weak] = double_threshold(E1,highRatio,lowRatio)
highThreshold = highRatio*max(E1(:));
lowThreshold $=$ lowRatio *highThreshold;
strong $=(E 1>=$ highThreshold);
weak $=(E 1<h i g h T h r e s h o l d) . *(E 1>=10 w T h r e s h o l d)$;

Figure P.8: Step 4: Double threshold. The strong pixels (left), the weak pixels (middle), and the combined (right).

Remark P.6. Step 4: Doulble Threshold

- You should select highRatio and lowRatio appropriately.
- You may have to eliminate isolated pixels from strong pixels, which can be carried out as a post-processing.

P.1.5. Edge Tracking by Hysteresis

Algorithm P.7. The Edge Tracking Rule

The hysteresis consists of transforming weak pixels into strong ones \Longleftrightarrow at least one of $\mathbf{8}$ surrounding pixels is a strong one.

You will implement a function for edge tracking.

Here are What to Do

1. Download the modelcode: Edge-Detection.MM.tar.
2. Complete Steps 4 \& $\mathbf{5}$ with color_edge.m.

- For Step 4, the major work must be to set appropriately two parameters: highRatio and lowRatio.
- For Step 5, you have to implement a function named hysteresis which realizes the edge tracking rule in Algorithm P.7.

3. Post-processing (Step 6): Implement a trimming function in order to eliminate isolated edge pixels (or, of length e.g. ≤ 3).
4. Run the resulting code of yours to get the edges.
5. Download another image, run your code, and tune it to get more reliable edges. For tuning:

- You may try to use imgaussfilt with various σ, rather than the TVdenoising. See Line 15 of color_edge.m, p.369.
- Try various combinations of highRatio and lowRatio.

6. Extra Credit:

(a) Analysis: For noise reduction, you can employ either the TVdenoising model or the builtin function imgaussfilt(Image, σ) with various choices of σ. Analyze effects of different choices of parameters and functions on edge detection.
(b) New Idea for the Gradient Intensity. We chose the maximum of (R,G,B)-gradients; see Line 21 of color_edge.m. Do you have any idea better than that?

Report what you have done, including newly-implemented Mfiles, choices of parameters and functions, and images and their edges.

P.2. Project: Text Extraction from Images, PDF Files, and Speech Data

In text extraction applications, the core technology is the Optical Character Recognition (OCR).

- Its primary function is to extract texts from images.
- In modern days, using advanced machine learning algorithms, the OCR can identify and convert image texts into audio files, for easy listening.

There are some powerful text extraction software (having accuracy $98+\%$).

- However most of them are not freely/conveniently available.
- We will develop two text extraction algorithms, one for image data and the other for speech data.

Project Objectives: To develop two separate Python programs:
pdfim2text \& speech2text.

1. PDF-Image to Text (pdfim2text)

- Input: (an image) or (a pdf file)
- A PDF may include images.
- When a PDF is generated by scanning, each page is an image.
- Core Task: Extract all texts; convert texts to audio data.

2. Speech to Text+Speech (speech2text)

- Input: speech data from (microphone) or (a wave file)
- Core Task: Extract texts; play the extracted texts.

```
An Example
                                    pdfim2text
#!/usr/bin/python
import pytesseract
from pdf2image import convert_from_path
from PIL import Image
from gtts import gTTS
from playsound import playsound
import os, pathlib, glob
from termcolor import colored
def takeInput():
    pmode = 0;
    IN = input("Enter a pdf or an image: ")
    if os.path.isfile(IN):
        path_stem = pathlib.Path(IN).stem
        path_ext = pathlib.Path(IN).suffix
        if path_ext.lower() == '.pdf': pmode=1
    else:
        exit()
    return IN, path_stem, pmode
def pdf2txt(IN):
    # you have to complete the function appropriately
    return 'Aha, it is a pdf file.\
                For pdf2txt, you may save the text here without return.'
def im2txt(IN):
    # you have to complete the function appropriately
    return 'Now, it is an image.\
                For im2txt, try to return the text to play'
if __name__ == '__main__':
    IN, path_stem, pmode = takeInput() #pmode=0:image; pmode=1:pdf
    if pmode:
        txt = pdf2txt(IN)
    else:
        txt = im2txt(IN)
    audio = gTTS(text=txt, lang="en", slow=False);
    WAV = '0000-' + path_stem + '-text.wav';
    audio.save(WAV); print(colored('Text: saved to <%s>' %(WAV),'yellow'))
    playsound(WAV); os.remove(WAV)
```


What to Do

First download https://skim.math.msstate.edu/LectureNotes/data/Image-Speech-Text-Processing.PY.tar. Untar it to see the file pdfim2text and example codes in a subdirectory example-code.

1. Complete pdfim2text appropriately.

- You may find clues from example-code/pdf2txt.py

2. Implement speech2text from scratch.

- You may get hints from speech_mic2wave.py and image2text.py in the directory example-code.

Try to put all functions into a single file for each command, which enhances portability of the commands.

Report

- Work in a directory, of which the name begins with your last name.
- Use the three-page project document as a data file for pdfim2text.
- zip or tar your work directory and submit via email.
- Write a report to explain what you have done, including images and wave files; upload it to Canvas.

PDF-Image to Texts

As a part of the project, you will develop a Python program that can extract texts from PDF files and images: and generally, from PDF files including images.

An example PDF is the one you are reading now.

Bibliography

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. EiJKhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: Building blocks for iterative methods, SIAM, Philadelphia, 1994. The postscript file is free to download from http://www.netlib.org/templates/ along with source codes.
[2] J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1986), pp. 679-698.
[3] O. Chum and J. Matas, Matching with prosac-progressive sample consensus, in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol. 1, IEEE, 2005, pp. 220-226.
[4] C. Cortes and V. N. Vapnik, Support-vector networks, Machine Learning, 20 (1995), pp. 273-297.
[5] M. Fischler and R. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24 (1981), pp. 381-395.
[6] B. Grosser and B. Lang, An $2\left(n^{2}\right)$ algorithm for the bidiagonal svd, Lin. Alg. Appl., 358 (2003), pp. 45-70.
[7] C. KELLY, Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995.
[8] P. C. Niedfeldt and R. W. Beard, Recursive ransac: multiple signal estimation with outliers, IFAC Proceedings Volumes, 46 (2013), pp. 430-435.
[9] M. Nielsen, Neural networks and deep learning. (The online book can be found at http://neuralnetworksanddeeplearning.com), 2013.
[10] F. Rosenblatt, The Perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, (1958), pp. 65-386.
[11] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), pp. 259-268.
[12] P. H. Torr and A. Zisserman, Mlesac: A new robust estimator with application to estimating image geometry, Computer vision and image understanding, 78 (2000), pp. 138-156.
[13] P. R. Willems, B. Lang, and C. Vömel, Computing the bidiagonal SVD using multiple relatively robust representations, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 907-926.
[14] S. XU, An Introduction to Scientific Computing with MATLAB and Python Tutorials, CRC Press, Boca Raton, FL, 2022.

Index

($n+1$)-point difference formula, 94
:, Python slicing, 216
:, in Matlab, 15
__init__() constructor, 226
absolute error, 47
activation function, 266
activation functions, popular, 275
Adaline, 272, 276
adaptive step size, 186
affine function, 337
algorithm, 47
algorithmic design, 4
algorithmic parameter, 273
analog signals, 38
anonymous function, 25
anonymous_function.m, 25
approximation, 194
area_closed_curve.m, 33, 62
artificial neurons, 265
atan2, 372
attributes, 226
audio files, 380
augmented matrix, 115, 119
average slope, 109
average speed, 66
backbone of programming, 8
backtracking line search, 186
backward phase, 122
backward-difference, 93
basic variables, 121
basis, 77, 236
basis function, 76
best approximation, 246
bias, 267
big Oh, 50, 51
binary classifier, 265, 266
boundary effects, 353
boundary-value problem, 192
break, 23
call_get_cubes.py, 220
Canny edge detection algorithm, 366
cardinal functions, 87
Cauchy-Schwarz inequality, 154
chain rule, 74
change of basis, 304
change of variables, 76, 202
change-of-base formula, 61
characteristic equation, 142
characteristic polynomial, 142
charpoly, 143
child class, 229
circle.m, 32
class, 225
Classes.py, 229
classification problem, 204
closest point, 246
clustering, 262
CNN, 291
code block, 215
coding, iii, 2
coding vs. programming, 5
coefficient matrix, 115
coefficients, 104
cofactor, 137
cofactor expansion, 137
color image, 351
color image processing, 351
color_edge.m, 369
column space, 235
common logarithm, 60
Compile-f90-c-cpp, 360
complementary slackness, 341
complex number system, 35
computer programming, iii, 2, 8
computer vision, 350
concave, 344
concave maximization problem, 337
condition number, 153, 191
conditionally stable, 47
consensus set, 206
consistent system, 115
constraint set, 181
continue, 24
contour, 36
contour, in Matlab, 18
conv2, 353
convergence of Newton's method, 101
convergence of order $\alpha, 48$
converges absolutely, 79
convex optimization problem, 337
convex problem, 344
convolution, 353, 372
correction term, 99
cost function, 266
covariance, 305
covariance matrix, 304-306, 308, 319
Covariance.py, 306
critical point, 184
critical points, 176
csvwrite, 32
curse of dimensionality, 263
curvaturePG.m, 370
cython, 212, 357
daspect, 32
data matrix, 309
debugging, 8
deepcopy, 217
default value, 228
deletion of objects, 228
dependent variable, 164
derivative, 71
derivative_rules.m, 74
design matrix, 199
desktop calculator, 214
det, 138
determinant, 136, 137
determinant.m, 138

DFT, 39
dft.m, 40
diagonalizable, 145, 308
diagonalization theorem, 146
diagonalization.m, 147
difference formula, $(n+1)$-points, 94
difference formula, five-point, 96
difference formula, three-point, 95
difference formula, two-point, 93
difference quotient, 66
differentiable, 165
differentiate, 72
differentiation rules, 72
digital signals, 38
directional derivative, 168
discrete Fourier transform, 38, 39
discrete_Fourier.m, 40
discrete_Fourier_inverse.m, 40
distance, 149
diverges, 79
doc, in Matlab, 18
domain, 164, 181
dot product, 13,148
dot product preservation, 242
dot, in Matlab, 13
double threshold, 377
double_threshold.m, 378
dual function, 337, 338, 342, 344
dual problem, 179, 336
dual variable, 179
duality gap, 340
duality_convex.py, 347
dyadic decomposition, 312, 318
dynamic (variable) thresholds, 377
e, 58
e, as a limit, 58
e_limit.m, 58
echelon form, 120
edge, 367,368
edge detection, 366
edge normal direction, 351
edge normal directions, 375
edge sharpening, 370
edge thinning, 375
edge tracking, 378
edge tracking rule, 378
Edge_Detection.m, 367
effective programming, 9
eig, 143, 162
eigenvalue, 141, 142
eigenvalues.m, 143
eigenvector, 141
elementary row operations, 117, 139
ellipsoid, 308
ensembling, 295, 298
epigraph, 342, 345
equivalent system, 114
Euclidean norm, 151
Euler's identity, 38, 109
Euler's number, 58
Euler, Leonhard, 58
eulers_identity.m, 109
Excel, 39
existence, 118
explainable ai, 285
explicit method, 370
exponential function, 55
exponential growth of error, 47
exponential regression, 56
eye, in Matlab, 16
fast Fourier transform, 39
fastest increasing direction, 173
feasible set, 334
FFT, 39
Fibonacci sequence, 27
Fibonacci_sequence.m, 27
fig_plot.m, 17
fimplicit, 109
finite difference method, 93
first-order necessary conditions, 344
five-point difference formula, 96
fmesh, in Matlab, 18
folding frequency, 43
for loop, 21
forward Euler method, 370
forward phase, 122, 125
forward-difference, 93
four essential components, 12, 19

Fourier transform, 38
fplot, in Matlab, 18
free variable, 123
free variables, 121
free_fall.m, 67
frequency increment, 39
frequency resolution, 39
frequently_used_rules.py, 218
Frobenius norm, 152
fsurf, in Matlab, 18
function, 53
function of two variables, 164
fundamental questions, two, 118
Fundamental Theorem of Algebra, 104
Galileo's law of free-fall, 66
general solution, 123, 125
get_cubes.py, 220
get_hypothesis_WLS.m, 209
ggplot, 331
global variable, 228
golden ratio, 26
gradient, 171, 189
gradient descent algorithm, 187
gradient descent method, 181, 184, 188, 272, 286
gradient magnitude, 372
Gram-Schmidt process, 248, 250
Gram-Schmidt process, normalized, 249
Green's Theorem, 32
Guess The Weight of the Ox Competition, 260
help, in Matlab, 7, 18
Hessian, 189
horizontal line test, 54
Horner's method, 105, 228
horner, in Python, 223
horner.m, 107, 224
hyperparameter, 273
hyperplane, 266, 267
hypothesis, 206
hypothesis space, 322
hysteresis, 366, 378
identity function, 271

IDFT, 39
idft.m, 40
imag, imaginaty part, 37
image blur, 370,371
image compression, 312
image denoising, 371
image processing, 350
image texts, 380
imaginary part, 37
imaginary unit, 35
imgaussfilt, 370, 379
inconclusive, 79
inconsistent system, 115
indentation, 215
independent variable, 164
induced matrix 2-norm, 154
induced matrix norm, 152
infinity-norm, 151
information engineering, iii
inheritance, 229
initialization, 19, 225
inlier.m, 210
inliers, 204
inner product, 148, 150
instance, 225
instantaneous speed, 66
instantiation, 225
intercept, 267
interpol_error.py, 92
interpolation, 194
Interpolation Error Theorem, 90, 94
interpretability, 264
interval of convergence, 83
inverse discrete Fourier transform, 39
inverse Fourier transform, 38
inverse function, 53,54
inverse power method, 159
inverse_matrix.m, 130
inverse_power.m, 160
inverse_power.py, 160
invertible matrix, 129
invertible matrix theorem, 132, 140, 142
Iris_perceptron.py, 270
iris_sklearn.py, 294
iteration, 19
iterative algorithm, 155
k-nearest neighbor, 281
k-NN, 281
Karush-Kuhn-Tucker conditions, 344
KD-tree, 282
KKT conditions, 344
Kronecker delta, 87
Krylov subspace methods, 188
Lagrange dual function, 179, 336
Lagrange dual problem, 336
Lagrange form of interpolating polynomial, 87
Lagrange interpolating polynomial, 87
Lagrange multiplier, 174, 370
Lagrange multipliers, 334, 338, 342
Lagrange polynomial, 93
Lagrange_interpol.py, 89
Lagrangian, 176, 177, 334, 337, 338, 342, 344
lazy learner, 281
learning rate, 268, 272
least-squares line, 198
least-squares problem, 195, 321
least-squares solution, 195, 252, 321
least_squares.m, 197
left singular vectors, 310, 315
left-hand limit, 70
length, 149
length preservation, 242
level curve, 173
likelihood, 277
linear algebra basics, 113
linear combination, 234
linear convergence, 48
linear dependence, 126
linear equation, 114
linear growth of error, 47
linear independence, 126
linear SVM, 280
linear system, 114
linear_equations_rref.m, 119
linearity rule, 74
linearization, 202
linearly dependent, 126
linearly independent, 126
linspace, in Matlab, 18
list, in Python, 216
little oh, 50, 51
load, 32
localization of roots, 104
log-likelihood function, 277
logarithmic function, 59
logistic cost function, 277
Logistic Regression, 277
logistic regression, 276
lower bound property, 336, 337
LS problem, 195, 321
M-file, 6
machine learning, 53, 260, 380
machine learning algorithm, 260
machine learning modelcode, 296
Machine_Learning_Model.py, 296
Maclaurin series, 82
majority vote, 298
mathematical analysis, 4
Matlab, 12, 353
matlab_conv2_boundary.m, 354
matrix 2-norm, 154
matrix equation, 117
matrix norm, 152
matrix transformation, 247
matrix-matrix multiplication, 16
matrix-vector multiplication, 15, 148
maximin problem, 179, 336-338, 342
maximum useful frequency, 43
maximum-norm, 151
mean curvature, 370
Mean Value Theorem, 85
mesh, 36
mesh, in Matlab, 18
method of Lagrange multipliers, 280
method of normal equations, 197, 209, 252, 321
method, in Python class, 226
microphone, 380
midpoint formula, 110
midpoint formula for $f^{\prime \prime}, 96$
mini-batch, 287
minimax problem, $177,178,335,337,338$, 342
Minimization Problem, 181
minimum point set, 206
minimum volume enclosing ellipsoid, 308
Minkowski distance, 282
MLESAC, 208
MNIST data, 284
mod, 24
modelcode, 296, 368
modularization, 8,231
module, 8
modulo, 24
monomial basis, 77, 78
multi-class classification, 274
multi-line comments, 215
multiple local minima problem, 264
multiple output, 26
MVEE, 308
myclf.py, 297
mysort.m, 10
mysqrt.m, 102
natural logarithm, 60
nested loop, 22
nested multiplication, 105
network.py, 288
neuron, 265
Newton's method, 99
Newton-Raphson method, 99
newton_horner, in Python, 223
newton_horner.m, 108, 224
No Free Lunch Theorem, 293
noise reduction, 370
non-maximum suppression, 375
non_max_suppression.m, 375
nonconvex problem, 348
nonlinear regression, 202
nonlinear SVMs, 280
nonsingular matrix, 129
nonvertical supporting hyperplane, 343, 346
norm, 149, 151
normal, 173
normal equations, 196, 201
normal matrix, 152
normal vector, 280
np.set_printoptions, 157
null space, 235
nullity, 237
numeric library, 359
numerical approximation, 32
numerical differentiation, 93
numpy, 25, 212, 222, 357
numpy.loadtxt, 331
numpy.savetxt, 331
Nyquist criterion, 43
object-oriented programming, 225
objective function, 181
observation vector, 199
OCR, 380
Octave, 25
Octave, how to import symbolic package, 36
Octave, how to know if Octave is runnging, 36
one-shot learning, 264
one-to-one function, 54
one-versus-all, 274
one-versus-rest, 274
OOP, 225
operator 2-norm, 154
operator norm, 152
optical character recognition, 380
optimal step length, 190
optimization problem, 334, 338, 342
orthogonal, 150, 243
orthogonal basis, 238, 248, 249
orthogonal complement, 243
orthogonal decomposition theorem, 244
orthogonal matrix, 242, 308
orthogonal projection, 239, 244, 246
orthogonal set, 238
orthogonal_matrix.m, 242
orthogonality preservation, 242
orthonormal basis, 241, 248, 249
orthonormal set, 241
outer product, 349
outliers, 204
overfitting, 263
p-norms, 151
parameter estimation problem, 204
parameter vector, 199
parametric description, 123
parametric vector form, 133
parent class, 229
partial derivative, 166
PCA, 304
pca_regression.m, 325
pdfim2text, 380-382
peppers_compress.m, 313
perceptron, 267
perceptron.py, 269
pivot column, 121, 126
pivot position, 121
plot, in Matlab, 17
polynomial approximation, 81
polynomial interpolation, 53
Polynomial Interpolation Error Theorem, 90, 95
Polynomial Interpolation Theorem, 86
polynomial of degree $n, 104$
Polynomial_01.py, 226
Polynomial_02.py, 227
population of the world, 56
population.m, 57
positive definite, 188
positive semidefinite, 350
positive semidefinite matrix, 309
post-processing, 353
power iteration, 155
power method, 155
power rule, 74
power series, 78
power-of-2 restriction, 39
power_iteration.m, 157
power_iteration.py, 157
principal component analysis, 304
principal components, 311
principal directions, 304, 306, 308
probabilistic model, 276
product rule, 74
programming, iii, 2, 8
PROSAC, 208
pseudocode, 47
pseudoinverse, 197, 252, 321, 323
pseudoinverse, the k-th, 323
PSNR, 314
Pythagorean theorem, 150, 246
Python, 212, 353
Python essentials, 215
Python script, 363
Python wrap-up, 213, 361
Python_calls_F90_GCC.py, 361
python_startup.py, 214
QR factorization, 250, 252
QR factorization algorithm, 251
QR factorization for least-squares problem, 252
QR iteration, 253
qr_iteration.m, 254
quadratic convergence, 48
quadratic formula, 35,351
quantization, 366
quotient rule, 74
R-RANSAC, 208
R\&D, 76
radius of convergence, 80
random orthogonal matrix, 242
random sample consensus, 206
range, 164
range, in Python, 217
rank theorem, 237
rank-1 matrix, 349
rank-one matrix, 349
RANSAC, 206
ransac2.m, 210
ratio test, 79, 83
Rayleigh quotient, 309
readmatrix, 33
real part, 37
real, real part, 37
real-valued solution, 35,37
real_imaginary_parts.m, 37
real_STFT.m, 62
rectifier, 275
reduced echelon form, 120
reduced row echelon form, 119
REF, 120
reference semantics, in Python, 217
region, 30
regression analysis, 53, 198
regression coefficients, 198
regression line, 198
Regression_Analysis.m, 326
Regression_Analysis.py, 330
relative error, 47
Remainder Theorem, 105
remarks on Python implementation, 231
repetition, 6, 19
research and development, 76
retrieving elements, in Python, 216
reusability, 5, 6, 231
reverse, 53
rgb2gray formula, 366
Richardson's method, 181
right singular vectors, 310, 315
right-hand slope, 70
Rosenbrock function, 185
rosenbrock_2D_GD.py, 185
rotational symmetry, 275
row equivalent, 117
row reduced echelon form, 120
row reduction algorithm, 122
RREF, 120
rref, 119
Run_network.py, 290
sampling, 366
save multiple functions in a file, 325
saveas, 32,33
scalar multiplication, 234
scatter plot, 56
scene analysis, 204
Schur decomposition, 253
Scikit-learn, 292
SciPy, 353
scipy, 212, 357
scipy.signal.convolve2d, 353
scipy_convolve_boundary.py, 354
score matrix, 309
search direction, 181, 188, 272
secant_lines_abs_x2_minus_1.m, 70
second-derivative midpoint formula, 96
self, 226
sequence_sqrt2.m, 49
SGD, 187
shared objects, 213
sharing boundaries, 225
short-time Fourier transform, 44
short_time_DFT.m, 45
signal_DFT.m, 41
similar, 144
similarity transformation, 144
sinc function, 83
singular value decomposition, 310, 311, 315
singular values, 310, 315
sklearn.ensemble.VotingClassifier, 298
sklearn_classifiers.py, 298
Slater's condition, 340
Slater's Theorem, 340
slicing, in Python, 216
slope of the curve, 69
smoothing assumption, 204
Sobel derivative, 353
Sobel gradient, 372
Sobel kernels, 372
sobel_derivatives.m, 352
sobel_grad.m, 372, 373
soft-margin classification, 280
softplus function, 275
solution, 114
solution set, 114
SortArray.m, 11
span, 128
spectrogram, 44
speech2text, 380
Speed up Python Programs, 212, 357
sqrt, 103
square root, 102
squareroot_Q.m, 3
squaresum.m, 6
SSE, 266
stability, 370
stable, 47
staircasing effect, 370
stand-alone functions, 231
standard basis, 236
standard basis for $\mathbb{R}^{n}, 77$
standard unit vectors, 77
Starkville, 63
stdt.m, 45
steepest descent direction, 189
steepest descent method, 181
step length, $181,188,272,278$
STFT, 44
stft2.m, 46
stochastic gradient descent, 187, 287
string, in Python, 216
strong duality, 339, 346
structure tensor, 349, 350
structure_tensor.m, 352
submatrix, 137
subordinate 2-norm, 154
subordinate norm, 152
subspace, 234
sufficient decrease condition, 186
Sum of Squared Errors, 266
super-convergence, 102
supergraph, 342
superlinear convergence, 48
supervised learning, 261
support vector machine, 279
surf, in Matlab, 18
SVD, 310
SVD theorem, 315
SVD, algebraic interpretation, 317
symbolic computation, 67
symmetric, 308
symmetric positive definite, 188
synthetic division, 105
system, 53
system of linear equations, 113,114
tangent line, 66, 69, 100
Taylor polynomial of order $n, 83$
Taylor series, 81, 82, 97
Taylor series, commonly used, 83
Taylor's formula, 182

Taylor's series formula, 97
Taylor's Theorem, 84, 96
Taylor's Theorem with integral remainder, 183
Taylor's Theorem with Lagrange Remainder, 84,96
Taylor's Theorem, Alternative Form of, 97
taylor, in Matlab, 83
Term-by-Term Differentiation, 80
term-by-term integration, 80
test_denoising.m, 371
test_f90.f90, 358
test_gpp.cpp, 359
test_py3.py, 360
three tasks, 260
three-point difference formula, 95
three-point formulas, 95
time-stepping procedure, 370
total variation, 370
trace, 152
training data, 261
transform_to_gray.m, 368
transpose, 131
truncated data matrix, 311
truncated score matrix, 311
tuple, in Python, 216
TV, 370
tv_denoising.m, 370
two-class classification, 265
two-point difference formula, 93
Ubuntu, 292
unique inverse, 129
uniqueness, 118
unit circle, 173
unit vector, 149, 241
unstable, 47
unsupervised learning, 262
update direction, 272
upper triangular matrix, 253
util.m, 324
util.py, 330
util_Covariance.py, 306
util_Poly.py, 230
variance, 305
vector norm, 151
vector space, 234
visualize_complex_solution.m, 36
volume scaling factor, 136
VotingClassifier, 298
weak duality, 339
Weierstrass Approximation Theorem, 86
weight matrix, 204
weighted least-squares method, 204
weighted normal equations, 205
while loop, 20
why, in Matlab, 16
win_cos.m, 45
Wine_data.py, 329
writematrix, 33
x-intercept, 100
XAI, 285
zero padding, 353
zero vector, 234
Zeros-Polynomials-Newton-Horner.py, 223
zeros_of_poly_built_in.py, 222

[^0]: ${ }^{1}$ Taylor's Theorem with integral remainder: Suppose $f \in C^{n+1}[a, b]$ and $x_{0} \in[a, b]$. Then, for every $x \in[a, b], f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n}(x)$, where $R_{n}(x)=\frac{1}{n!} \int_{x_{0}}^{x}(x-s)^{n} f^{(n+1)}(s) d s$.

[^1]: ${ }^{2}$ The Rosenbrock function in 3 D is given as $f(x, y, z)=\left[(1-x)^{2}+100\left(y-x^{2}\right)^{2}\right]+\left[(1-y)^{2}+100\left(z-y^{2}\right)^{2}\right]$, which has exactly one minimum at $(1,1,1)$. Similarly, one can define the Rosenbrock function in general N-dimensional spaces, for $N \geq 4$, by adding one more component for each enlarged dimension. That is, $f(\mathbf{x})=\sum_{i=1}^{N-1}\left[\left(1-x_{i}\right)^{2}+100\left(x_{i+1}-x_{i}^{2}\right)^{2}\right]$, where $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{N}\right] \in \mathbb{R}^{N}$. See Wikipedia (https://en.wikipedia.org/wiki/Rosenbrock_function) for details.

