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Prologue

Currently the lecture note is not fully grown up; other useful techniques and interesting examples
would be soon incorporated.

Some questions show answers which are thankfully computed by Mr. Sungwook Yang, a graduate
student in Aerospace Engineering, Mississippi State University.

Note: You can use any of my lecture notes as textbooks or references.

• Please just let me know what you are using.
• Any questions, suggestions, comments will be deeply appreciated. Thank you.

Seongjai Kim
July 4, 2023
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Mathematical Preliminaries

In this chapter, after briefly reviewing calculus and linear algebra, we study
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1.1. Review of Calculus

1.1.1. Continuity and differentiation

Continuity

Definition 1.1. A function f is continuous at x0 if

lim
x→x0

f(x) = f(x0). (1.1)

In other words, if for every ε > 0, there exists a δ > 0 such that

|f(x)− f(x0)| < ε for all x such that |x− x0| < δ. (1.2)

Example 1.2. Examples and Discontinuities
Solution.

Ans: Jump discontinuity, infinite discontinuity, and removable discontinuity

Definition 1.3. Let {xn}∞n=1 be an infinite sequence of real numbers.
This sequence has the limit x (converges to x), if for every ε > 0 there
exists a positive integer Nε such that |xn − x| < ε whenever n > Nε. The
notation

lim
n→∞

xn = x or xn → x as n→∞

means that the sequence {xn}∞n=1 converges to x.

Theorem 1.4. If f is a function defined on a set X of real numbers and
x ∈ X, then the following are equivalent:

• f is continuous at x

• If {xn}∞n=1 is any sequence in X converging to x, then

lim
n→∞

f(xn) = f(x).
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Differentiation

Definition 1.5. Let f be a function defined on an open interval contain-
ing x0. The function is differentiable at x0, if

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0
(1.3)

exists. The number f ′(x0) is called the derivative of f at x0.

Important theorems for continuous/differentiable functions

Theorem 1.6. If the function f is differentiable at x0, then f is contin-
uous at x0.

Note: The converse is not true.

Example 1.7. Consider f(x) = |x|.
Solution.

Theorem 1.8. (Intermediate Value Theorem; IVT): Suppose f ∈
C[a, b] and K is a number between f(a) and f(b). Then, there exists a
number c ∈ (a, b) for which f(c) = K.

Example 1.9. Show that x5 − 2x3 + 3x2 = 1 has a solution in the interval
[0, 1].

Solution. Define f(x) = x5− 2x3 + 3x2− 1. Then check values f(0) and f(1)

for the IVT.

Theorem 1.10. (Rolle’s Theorem): Suppose f ∈ C[a, b] and f is dif-
ferentiable on (a, b). If f(a) = f(b), then there exists a number c ∈ (a, b)
such that f ′(c) = 0.
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Mean Value Theorem (MVT)

Theorem 1.11. Suppose f ∈ C[a, b] and f is differentiable on (a, b).
Then there exists a number c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
, (1.4)

which can be equivalently written as

f(b) = f(a) + f ′(c)(b− a). (1.5)

Example 1.12. Let f(x) = x+sinx be defined on [0,2]. Find cwhich assigns
the average slope.

Figure 1.1: A maple implementation.
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Figure 1.2: The resulting figure, from the implementation in Figure 1.1.

Theorem 1.13. (Extreme Value Theorem): If f ∈ C[a, b], then there
exist c1, c2 ∈ [a, b] for f(c1) ≤ f(x) ≤ f(c2) for all x ∈ [a, b]. In addition, if f
is differentiable on (a, b), then the numbers c1 and c2 occur either at the
endpoints of [a, b] or where f ′ is zero.

Example 1.14. Find the absolute minimum and absolute maximum val-
ues of f(x) = 5 ∗ cos(2 ∗ x)− 2 ∗ x ∗ sin(2 ∗ x) on the interval [1, 2].

Maple-code
1 a := 1: b := 2:
2 f := x -> 5*cos(2*x) - 2*x*sin(2*x):
3 fa := f(a);
4 = 5 cos(2) - 2 sin(2)
5 fb := f(b);
6 = 5 cos(4) - 4 sin(4)
7

8 #Now, find the derivative of "f"
9 fp := x -> diff(f(x), x):

10 fp(x);
11 = -12 sin(2 x) - 4 x cos(2 x)
12

13 fsolve(fp(x), x, a..b);
14 1.358229874
15 fc := f(%);
16 -5.675301338
17 Maximum := evalf(max(fa, fb, fc));
18 = -0.241008123
19 Minimum := evalf(min(fa, fb, fc));
20 = -5.675301338
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21

22 with(plots);
23 plot([f(x), fp(x)], x = a..b, thickness = [2, 2],
24 linestyle = [solid, dash], color = black,
25 legend = ["f(x)", "f'(x)"],
26 legendstyle = [font = ["HELVETICA", 10], location = right]);

Figure 1.3: The figure from the Maple-code.

The following theorem can be derived by applying Rolle’s Theorem suc-
cessively to f, f ′, · · · and finally to f (n−1).

Theorem 1.15. (Generalized Rolle’s Theorem): Suppose f ∈ C[a, b]
is n times differentiable on (a, b). If f(x) = 0 at the (n+ 1) distinct points
a ≤ x0 < x1 < · · · < xn ≤ b, then there exists a number c ∈ (x0, xn) such
that f (n)(c) = 0.
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1.1.2. Integration

Definition 1.16. The Riemann integral of a function f on the interval
[a, b] is the following limit, provided it exists:

ˆ b

a

f(x)dx = lim
max ∆xi→0

n∑
i=1

f(x∗i )∆xi, (1.6)

where a = x0 < x1 < · · · < xn = b, with ∆xi = xi − xi−1 and x∗i arbitrarily
chosen in the subinterval [xi−1, xi].

Note: Continuous functions are Riemann integrable, which allows us to
choose, for computational convenience, the points xi to be equally spaced

in [a, b] and choose x∗i = xi, where xi = a+ i∆x, ∆x =
b− a
n

. In this case,

ˆ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x. (1.7)

Theorem 1.17. (Fundamental Theorem of Calculus; FTC): Let f
be continuous on [a, b]. Then,

Part I:
d

dx

ˆ x

a

f(t)dt = f(x).

Part II:
ˆ b

a

f(x)dx = F (b)−F (a), where F is an antiderivative of f ,

i.e. F ′ = f .

Example 1.18. Use The Fundamental Theorem of Calculus to find

lim
x→0

1

x

ˆ sin 2x

0

√
t3 + 4 dt

Solution.

Ans: 4.
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Weighted Mean Value Theorem on Integral (WMVT)

Theorem 1.19. Suppose f ∈ C[a, b], the Riemann integral of g exists
on [a, b], and g(x) does not change sign on [a, b]. Then, there exists a
number c ∈ (a, b) such that

ˆ b

a

f(x)g(x)dx = f(c)

ˆ b

a

g(x)dx. (1.8)

Example 1.20. Prove or disprove.

1. There exists a number ξ ∈ (−π, π) such that
ˆ π

−π
ln(6x+ 30) sinx dx = ln(6ξ + 30)

ˆ π

−π
sinx dx.

2. There exists a number ξ ∈ (x0, x1), x0 < x1, such that
ˆ x1

x0

sin2 x(x− x0)(x− x1) dx = sin2 ξ

ˆ x1

x0

(x− x0)(x− x1) dx.

Solution.

Remark 1.21. When g(x) ≡ 1, the WMVT becomes the usual Mean
Value Theorem on Integral, which gives the average value of f ∈
C[a, b] over the interval [a, b]:

f(c) =
1

b− a

ˆ b

a

f(x)dx. (1.9)
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1.1.3. Taylor’s Theorem

Theorem 1.22. (Taylor’s Theorem with Lagrange Remainder):
Suppose f ∈ Cn[a, b], f (n+1) exists on (a, b), and x0 ∈ [a, b]. Then, for every
x ∈ [a, b],

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k +Rn(x), (1.10)

where, for some ξ between x and x0,

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

Example 1.23. Let f(x) = cos(x) and x0 = 0. Determine the second and
third Taylor polynomials for f about x0.

Maple-code
1 f := x -> cos(x):
2 fp := x -> -sin(x):
3 fpp := x -> -cos(x):
4 fp3 := x -> sin(x):
5 fp4 := x -> cos(x):
6

7 p2 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2!:
8 p2(x);
9 = 1 - 1/2 x^2

10 R2 := fp3(xi)*x^3/3!;
11 = 1/6 sin(xi) x^3
12 p3 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2! + fp3(0)*x^3/3!:
13 p3(x);
14 = 1 - 1/2 x^2
15 R3 := fp4(xi)*x^4/4!;
16 = 1/24 cos(xi) x^4
17

18 # On the other hand, you can find the Taylor polynomials easily
19 # using built-in functions in Maple:
20 s3 := taylor(f(x), x = 0, 4);
21 = 1 - 1/2 x^2 + O(x^4)
22 convert(s3, polynom);
23 = 1 - 1/2 x^2
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1 plot([f(x), p3(x)], x = -2 .. 2, thickness = [2, 2],
2 linestyle = [solid, dash], color = black,
3 legend = ["f(x)", "p3(x)"],
4 legendstyle = [font = ["HELVETICA", 10], location = right])

Figure 1.4: f(x) = cos x and its third Taylor polynomial P3(x).

Note: When n = 0, x = b, and x0 = a, the Taylor’s Theorem reads

f(b) = f(a) +R0(b) = f(a) + f ′(ξ) · (b− a), (1.11)

which is the Mean Value Theorem.

Theorem 1.24. (Taylor’s Theorem with Integral Remainder):
Suppose f ∈ Cn[a, b] and x0 ∈ [a, b]. Then, for every x ∈ [a, b],

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k + En(x), (1.12)

where
En(x) =

1

n!

ˆ x

x0

f (n+1)(t) · (x− t)ndt.
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Alternative Form of Taylor’s Theorem

Remark 1.25. Suppose f ∈ Cn[a, b], f (n+1) exists on (a, b). Then, for
every x, x+ h ∈ [a, b],

f(x+ h) =
n∑
k=0

f (k)(x)

k!
hk +Rn(h), (1.13)

where, for some ξ between x and x+ h,

Rn(h) =
f (n+1)(ξ)

(n+ 1)!
hn+1.

In detail,

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + · · ·+ f (n)(x)

n!
hn +Rn(h).

(1.14)

Theorem 1.26. (Taylor’s Theorem for Two Variables): Let f ∈
C(n+1)([a, b]× [c, d]). If (x, y) and (x+h, y+k) are points in [a, b]× [c, d] ⊂ R2,
then

f(x+ h, y + k) =
n∑
i=0

1

i!

(
h
∂

∂x
+ k

∂

∂y

)i
f(x, y) +Rn(h, k), (1.15)

where
Rn(h, k) =

1

(n+ 1)!

(
h
∂

∂x
+ k

∂

∂y

)n+1

f(x+ θh, y + θk),

in which θ ∈ [0, 1].

Note: For n = 1, the Taylor’s theorem for two variables reads

f(x+ h, y + k) = f(x, y) + h fx(x, y) + k fy(x, y) +R1(h, k), (1.16)

where
R1(h, k) = O(h2 + k2).

Equation (1.16), as a linear approximation or tangent plane ap-
proximation, will be used for various applications.
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Example 1.27. Find the tangent plane approximation of

f(x, y) =
2x+ 3

4y + 1
at (0, 0).

Maple-code
1 f := (2*x + 3)/(4*y + 1):
2 f0 := eval(%, {x = 0, y = 0});
3 = 3
4 fx := diff(f, x);
5 = 2/(4*y + 1)
6 fx0 := eval(%, {x = 0, y = 0});
7 = 2
8 fy := diff(f, y);
9 = 4*(2*x + 3)/(4*y + 1)^2

10 fy0 := eval(%, {x = 0, y = 0});
11 = -12
12

13 # Thus the tangent plane approximation $L(x, y)$ at $(0, 0)$ is
14 L(x, y) = 3 + 2*x - 12*y
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1.2. Review of Linear Algebra

1.2.1. Vector Equations

Vectors

Definition 1.28. Let u = [u1, u2, · · · , un]T and v = [v1, v2, · · · , vn]T are
vectors in Rn. Then, the inner product (or dot product) of u and v is
given by

u•v = uTv = [u1 u2 · · · un]


v1

v2
...
vn


= u1 v1 + u2 v2 + · · ·+ un vn =

n∑
k=1

ukvk.

(1.17)

Definition 1.29. The length (Euclidean norm) of v is nonnegative
scalar ‖v‖ defined by

‖v‖ =
√
v•v =

√
v2

1 + v2
2 + · · ·+ v2

n and ‖v‖2 = v•v. (1.18)

Definition 1.30. For u,v ∈ Rn, the distance between u and v is

dist(u,v) = ‖u− v‖, (1.19)

the length of the vector u− v.

Example 1.31. Let u =

 1

−2

2

 and v =

 3

2

−4

. Find u•v, ‖u‖, and

dist(u,v).

Solution.
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Definition 1.32. Two vectors u and v in Rn are orthogonal if u•v = 0.

Theorem 1.33. Pythagorean Theorem: Two vectors u and v are
orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2. (1.20)

Note: The inner product can be defined as

u•v = ‖u‖ ‖v‖ cos θ, (1.21)

where θ is the angle between u and v.

Example 1.34. Let u =

[
1√
3

]
and v =

[
−1/2√

3/2

]
. Use (1.21) to find the angle

between u and v.

Solution.
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System of Linear Equations
Linear systems of m equations of n unknowns can be expressed as the alge-
braic system:

Ax = b, (1.22)

where b ∈ Rm is the source (input), x ∈ Rn is the solution (output), and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

 ∈ Rm×n.

The above algebraic system can be solved by the elementary row operations
applied to the augmented matrix, augmented system:

[A b] =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
... ... . . . ... ...
am1 am2 · · · amn bm

 , (1.23)

and by transforming it to the reduced echelon form.

Tools 1.35. Three Elementary Row Operations (ERO):

• Replacement: Replace one row by the sum of itself and a multiple
of another row

Ri ← Ri + k ·Rj, j 6= i

• Interchange: Interchange two rows
Ri ↔ Rj, j 6= i

• Scaling: Multiply all entries in a row by a nonzero constant
Ri ← k ·Ri, k 6= 0

Every elementary row operation can be expressed as a matrix to be left-
multiplied. Such a matrix is called an elementary matrix.
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Example 1.36. Solve the following system of linear equations, using the 3
EROs. Then, determine if the system is consistent.

4x2 + 2x3 = 6

x1 − 4x2 + 2x3 = −1

4x1 − 8x2 + 12x3 = 8

Solution.

Example 1.37. Find the parabola y = a0 + a1x + a2x
2 that passes through

(1, 1), (2, 2), and (3, 5).

Solution.

Ans: y = 2− 2x+ x2
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1.2.2. Invertible (nonsingular) matrices

Definition 1.38. An n× n matrix A is said to be invertible (nonsin-
gular) if there is an n× n matrix B such that AB = In = BA, where In
is the identity matrix.

Note: In this case, B is the unique inverse of A denoted by A−1.
(Thus AA−1 = In = A−1A.)

Theorem 1.39. (Inverse of an n× n matrix, n ≥ 2) An n× n matrix
A is invertible if and only if A is row equivalent to In and in this case any
sequence of elementary row operations that reduces A into In will also
reduce In to A−1.

Algorithm 1.40. Algorithm to find A−1:
1) Row reduce the augmented matrix [A : In]

2) If A is row equivalent to In, then [A : In] is row equivalent to [In :
A−1]. Otherwise A does not have any inverse.

Example 1.41. Find the inverse of A =

0 1 0

1 0 3

4 −3 8

, if it exists.

Solution.
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Theorem 1.42.

a. (Inverse of a 2× 2 matrix) Let A =

[
a b

c d

]
. If ad − bc 6= 0, then A

is invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
(1.24)

b. If A is an invertible matrix, then A−1 is also invertible; (A−1)−1 = A.

c. If A and B are n× n invertible matrices then AB is also invertible
and (AB)−1 = B−1A−1.

d. If A is invertible, then AT is also invertible and (AT )−1 = (A−1)T .
e. If A is an n× n invertible matrix, then for each b ∈ Rn, the equation
Ax = b has a unique solution x = A−1b.

Theorem 1.43. (Invertible Matrix Theorem) Let A be an n× n ma-
trix. Then the following are equivalent.

a. A is an invertible matrix.
b. A is row equivalent to the n× n identity matrix.
c. A has n pivot positions.
d. The columns of A are linearly independent.
e. The equation Ax = 0 has only the trivial solution x = 0.
f. The equation Ax = b has unique solution for each b ∈ Rn.
g. The linear transformation x 7→ Ax is one-to-one.
h. The linear transformation x 7→ Ax maps Rn onto Rn.
i. There is a matrix C ∈ Rn×n such that CA = I

j. There is a matrix D ∈ Rn×n such that AD = I

k. AT is invertible and (AT )−1 = (A−1)T .
l. The number 0 is not an eigenvalue of A.

m. detA 6= 0.
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1.2.3. Determinants

Definition 1.44. Let A be an n× n square matrix. Then determinant
is a scalar value denoted by detA or |A|.

1) Let A = [a] ∈ R1× 1. Then detA = a.

2) Let A =

[
a b

c d

]
∈ R2× 2. Then detA = ad− bc.

Example 1.45. LetA =

[
2 1

0 3

]
. Consider a linear transformation T : R2 → R2

defined by T (x) = Ax.

a. Find the determinant of A.
b. Determine the image of a rectangle R = [0, 2]× [0, 1] under T .
c. Find the area of the image.
d. Figure out how det A, the area of the rectangle (= 2), and the area of the

image are related.

Solution.

Ans: c. 12

Note: The determinant can be viewed as the volume scaling factor.
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Definition 1.46. Let Aij be the submatrix of A obtained by deleting row
i and column j of A. Then the (i, j)-cofactor of A = [aij] is the scalar Cij,
given by

Cij = (−1)i+jdetAij. (1.25)

Definition 1.47. For n ≥ 2, the determinant of an n× n matrix A =
[aij] is given by the following formulas:

1. The cofactor expansion across the first row:

detA = a11C11 + a12C12 + · · ·+ a1nC1n (1.26)

2. The cofactor expansion across the row i:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin (1.27)

3. The cofactor expansion down the column j:

detA = a1jC1j + a2jC2j + · · ·+ anjCnj (1.28)

Example 1.48. Find the determinant of A =

1 5 0

2 4 −1

0 −2 0

, by expanding

across the first row and down column 3.
Solution.

Ans: −2
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1.2.4. Eigenvectors and eigenvalues

Definition 1.49. Let A be an n× n matrix. An eigenvector of A is a
nonzero vector x such that Ax = λx for some scalar λ. In this case, a
scalar λ is an eigenvalue and x is the corresponding eigenvector.

Definition 1.50. The scalar equation det (A− λI) = 0 is called the
characteristic equation of A; the polynomial p(λ) = det (A− λI)
is called the characteristic polynomial of A. The solutions of
det (A− λI) = 0 are the eigenvalues of A.

Example 1.51. Find the characteristic polynomial and all eigenvalues of

A =

1 1 0

6 0 5

0 0 2


Solution.

Remark 1.52. Let A be an n× n matrix. Then the characteristic equa-
tion of A is of the form

p(λ) = det (A− λI) = (−1)n (λn + cn−1λ
n−1 + · · ·+ c1λ+ c0)

= (−1)n
n∏
i=1

(λ− λi),
(1.29)

where some of eigenvalues λi can be complex-valued numbers. Thus

detA = p(0) = (−1)n
n∏
i=1

(0− λi) =
n∏
i=1

λi. (1.30)

That is, det A is the product of all eigenvalues of A.
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Theorem 1.53. If v1, v2, · · · , vr are eigenvectors that correspond
to distinct eigenvalues λ1, λ2, · · · , λr of n× n matrix A, then the set
{v1, v2, · · · , vr} is linearly independent.

Proof.

• Assume that {v1, v2, · · · , vr} is linearly dependent.
• One of the vectors in the set is a linear combination of the preceding

vectors.
• {v1, v2, · · · , vp} is linearly independent; vp+1 is a linear combination of

the preceding vectors.
• Then, there exist scalars c1, c2, · · · , cp such that

c1 v1 + c2 v2 + · · ·+ cp vp = vp+1 (1.31)

• Multiplying both sides of (1.31) by A, we obtain

c1Av1 + c2Av2 + · · ·+ cpAvp = Avp+1

and therefore, using the fact Avk = λkvk:

c1λ1v1 + c2λ2v2 + · · ·+ cpλpvp = λp+1vp+1 (1.32)

• Multiplying both sides of (1.31) by λp+1 and subtracting the result from
(1.32), we have

c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp = 0. (1.33)

• Since {v1, v2, · · · , vp} is linearly independent,

c1(λ1 − λp+1) = 0, c2(λ2 − λp+1) = 0, · · · , cp(λp − λp+1) = 0.

• Since λ1, λ2, · · · , λr are distinct,

c1 = c2 = · · · = cp = 0 ⇒ vp+1 = 0,

which is a contradiction.
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1.2.5. Vector and matrix norms

Definition 1.54. A norm (or, vector norm) on Rn is a function that
assigns to each x ∈ Rn a nonnegative real number ‖x‖ such that the
following three properties are satisfied: for all x, y ∈ Rn and λ ∈ R,

‖x‖ > 0 if x 6= 0 (positive definiteness)
‖λx‖ = |λ| ‖x‖ (homogeneity)
‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

(1.34)

Example 1.55. The most common norms are

‖x‖p =
(∑

i

|xi|p
)1/p

, 1 ≤ p <∞, (1.35)

which we call the p-norms, and

‖x‖∞ = max
i
|xi|, (1.36)

which is called the infinity-norm or maximum-norm.

Note: Two of frequently used p-norms are

‖x‖1 =
∑
i

|xi|, ‖x‖2 =
(∑

i

|xi|2
)1/2

(1.37)

The 2-norm is also called the Euclidean norm, often denoted by ‖ · ‖.

Example 1.56. One may consider the infinity-norm as the limit of p-
norms, as p→∞.

Solution.
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Definition 1.57. A matrix norm on m× n matrices is a vector norm
on the mn-dimensional space, satisfying

‖A‖ ≥ 0, and ‖A‖ = 0 ⇔ A = 0 (positive definiteness)
‖λA‖ = |λ| ‖A‖ (homogeneity)
‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

(1.38)

Example 1.58. ‖A‖F ≡
(∑

i,j

|aij|2
)1/2

is called the Frobenius norm.

Definition 1.59. Once a vector norm || · || has been specified, the in-
duced matrix norm is defined by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

. (1.39)

It is also called an operator norm or subordinate norm.

Theorem 1.60.

a. For all operator norms and the Frobenius norm,

‖Ax‖ ≤ ‖A‖ ‖x‖, ‖AB‖ ≤ ‖A‖ ‖B‖. (1.40)

b. ‖A‖1 ≡ max
x 6=0

‖Ax‖1

‖x‖1
= max

j

∑
i

|aij|

c. ‖A‖∞ ≡ max
x 6=0

‖Ax‖∞
‖x‖∞

= max
i

∑
j

|aij|

d. ‖A‖2 ≡ max
x 6=0

‖Ax‖2

‖x‖2
=
√
λmax(ATA),

where λmax denotes the largest eigenvalue.
e. ‖A‖2 = ‖AT‖2.
f. ‖A‖2 = max

i
|λi(A)|, when ATA = AAT (normal matrix).
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Definition 1.61. Let A ∈ Rn× n. Then

κ(A) ≡ ‖A‖ ‖A−1‖

is called the condition number of A, associated to the matrix norm.

Example 1.62. Let A =

 1 2 −2

0 4 1

1 −2 2

. Then, we have

A−1 =
1

20

 10 0 10

1 4 −1

−4 4 4

 and ATA =

 2 0 0

0 24 −4

0 −4 9

 .
a. Find ‖A‖1, ‖A‖∞, and ‖A‖2.

b. Compute the `1-condition number κ1(A).

Solution.
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1.3. Computer Arithmetic and Convergence

Errors in Machine Numbers and Computational Results

• Numbers are saved with an approximation by either rounding or
chopping.

– integer: in 4 bites (32 bits)
– float: in 4 bites
– double: in 8 bites (64 bits)

• Computations can be carried out only for finite sizes of data points.

Maple-code
1 Pi;
2 = Pi
3 evalf(Pi);
4 = 3.141592654
5 evalf[8](Pi);
6 = 3.1415927
7 evalf[16](Pi);
8 = 3.141592653589793
9 evalf(Pi)*(evalf[8](Pi) - evalf[16](Pi));

10 = 1.445132621*E-07
11 #On the other hand,
12 Pi*(Pi - Pi);
13 = 0

Definition 1.63. Suppose that p∗ is an approximation to p. Then

• The absolute error is |p− p∗|, and

• the relative error is
|p− p∗|
|p|

, provided that p 6= 0.

Definition 1.64. The number p∗ is said to approximate p to t-
significant digits (or figures) if t is the largest nonnegative integer for
which

|p− p∗|
|p|

≤ 5× 10−t.



1.3. Computer Arithmetic and Convergence 27

1.3.1. Computational algorithms

Definition 1.65. An algorithm is a procedure that describes, in an
unambiguous manner, a finite sequence of steps to be carried out in a
specific order.

Algorithms consist of various steps for inputs, outputs, and functional oper-
ations, which can be described effectively by a so-called pseudocode.

Definition 1.66. An algorithm is called stable, if small changes in the
initial data produce correspondingly small changes in the final results.
Otherwise, it is called unstable. Some algorithms are stable only for
certain choices of data/parameters, and are called conditionally stable.

Notation 1.67. (Growth rates of the error): Suppose that E0 > 0
denotes an error introduced at some stage in the computation and En

represents the magnitude of the error after n subsequent operations.

• If En = C × nE0, where C is a constant independent of n, then the
growth of error is said to be linear, for which the algorithm is stable.

• If En = CnE0, for some C > 1, then the growth of error is exponential,
which turns out unstable.
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Rates (Orders) of Convergence
Definition 1.68. Let {xn} be a sequence of real numbers tending to a
limit x∗.

• The rate of convergence is at least linear if there are a constant c1 < 1
and an integer N such that

|xn+1 − x∗| ≤ c1|xn − x∗|, ∀ n ≥ N. (1.41)

• We say that the rate of convergence is at least superlinear if there
exist a sequence εn tending to 0 and an integer N such that

|xn+1 − x∗| ≤ εn|xn − x∗|, ∀ n ≥ N. (1.42)

• The rate of convergence is at least quadratic if there exist a constant
C (not necessarily less than 1) and an integer N such that

|xn+1 − x∗| ≤ C|xn − x∗|2, ∀ n ≥ N. (1.43)

• In general, we say that the rate of convergence is of α at least if there
exist a constant C (not necessarily less than 1 for α > 1) and an integer
N such that

|xn+1 − x∗| ≤ C|xn − x∗|α, ∀ n ≥ N. (1.44)

Example 1.69. Consider a sequence defined recursively as

x1 = 2, xn+1 =
xn
2

+
1

xn
. (1.45)

(a) Find the limit of the sequence; (b) show that the convergence is quadratic.

Hint : You may first prove that xn >
√

2 for all n ≥ 1 ( ∵ x2n+1 − 2 > 0). Then you can see

that xn+1 < xn ( ∵ xn − xn+1 = xn(
1

2
− 1

x2n
) > 0).

Solution.
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1.3.2. Big O and little o notation

Definition 1.70.

• A sequence {αn}∞n=1 is said to be in O (big Oh) of {βn}∞n=1 if a positive
number K exists for which

|αn| ≤ K|βn|, for large n
(

or equivalently,
|αn|
|βn|
≤ K

)
. (1.46)

In this case, we say “αn is in O(βn)" and denote αn ∈ O(βn) or αn =
O(βn).

• A sequence {αn} is said to be in o (little oh) of {βn} if there exists a
sequence εn tending to 0 such that

|αn| ≤ εn|βn|, for large n
(

or equivalently, lim
n→∞

|αn|
|βn|

= 0
)

. (1.47)

In this case, we say “αn is in o(βn)" and denote αn ∈ o(βn) or αn =
o(βn).

Example 1.71. Show that αn =
n+ 1

n2
= O

(1

n

)
and

f(n) =
n+ 3

n3 + 20n2
∈ O(n−2) ∩ o(n−1).

Solution.
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Definition 1.72. Suppose lim
h→0

G(h) = 0. A quantity F (h) is said to be in
O (big Oh) of G(h) if a positive number K exists for which

|F (h)|
|G(h)|

≤ K, for h sufficiently small. (1.48)

In this case, we say F (h) is in O(G(h)), and denote F (h) ∈ O(G(h)). Lit-
tle oh of G(h) can be defined the same way as for sequences.

Example 1.73. Taylor’s series expansion for cos(x) is given as

cos(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

= 1− 1

2
x2 +

1

24
x4 − 1

720
x6 + · · · .

If you use a computer algebra software (e.g. Maple), you will obtain

taylor(cos(x), x = 0, 4) = 1− 1

2!
x2 +O(x4)

which implies that
1

24
x4 − 1

720
x6 + · · ·︸ ︷︷ ︸

=:F (x)

= O(x4). (1.49)

Indeed,

|F (x)|
|x4|

=
∣∣∣ 1

24
− 1

720
x2 + · · ·

∣∣∣ ≤ 1

24
, for sufficiently small x. (1.50)

Thus F (x) ∈ O(x4).

Example 1.74. Choose the correct assertions (in each, n→∞)

a. (n2 + 1)/n3 ∈ o(1/n)

b. (n+ 1)/
√
n ∈ o(1)

c. 1/ lnn ∈ O(1/n)

d. 1/(n lnn) ∈ o(1/n)

e. en/n5 ∈ O(1/n)
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Example 1.75. Determine the best integer value of k in the following
equation

arctan(x) = x+O(xk), as x→ 0.

Solution.

Ans: k = 3.

Self-study 1.76. Let f(h) =
1

h
(1 + h− eh). What are the limit and the rate

of convergence of f(h) as h→ 0?

Solution.
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Self-study 1.77. Show that these assertions are not true.

a. ex − 1 = O(x2), as x→ 0

b. x = O(tan−1 x), as x→ 0

c. sinx cosx = o(x), as x→ 0

Solution.

Example 1.78. Let {an} → 0 and λ > 1. Show that

n∑
k=0

akλ
k = o(λn), as n→∞.

Hint :
|
∑n

k=0 akλ
k|

|λn|
= |an + an−1λ

−1 + · · · + a0λ
−n| =: εn. Then, we have to show εn → 0 as

n→∞. For this, you can first observe εn+1 = an+1 +
1

λ
εn, which implies that εn is bounded

and converges to ε. Now, can you see ε = 0?

Solution.
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1.4. Programming with Matlab/Octave

Note: In computer programming, important things are

• How to deal with objects (variables, arrays, functions)
• How to deal with repetition effectively
• How to make the program reusable

Vectors and matrices

The most basic thing you will need
to do is to enter vectors and matri-
ces. You would enter commands to
Matlab or Octave at a prompt that
looks like >>.

• Rows are separated by semi-
colons (;) or Enter .

• Entries in a row are separated
by commas (,) or space Space .

For example,

Vectors and Matrices
1 >> u = [1; 2; 3] % column vector
2 u =
3 1
4 2
5 3
6 >> v = [4; 5; 6];
7 >> u + 2*v
8 ans =
9 9

10 12
11 15
12 >> w = [5, 6, 7, 8] % row vector
13 w =
14 5 6 7 8
15 >> A = [2 1; 1 2]; % matrix
16 >> B = [-2, 5
17 1, 2]
18 B =
19 -2 5
20 1 2
21 >> C = A*B % matrix multiplication
22 C =
23 -3 12
24 0 9
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You can save the commands in a file to run and get the same results.
tutorial1_vectors.m

1 u = [1; 2; 3]
2 v = [4; 5; 6];
3 u + 2*v
4 w = [5, 6, 7, 8]
5 A = [2 1; 1 2];
6 B = [-2, 5
7 1, 2]
8 C = A*B

Solving equations

Let A =

1 −4 2

0 3 5

2 8 −4

 and b =

 3

−7

−3

 . Then Ax = b can be numerically

solved by implementing a code as follows.

tutorial2_solve.m
1 A = [1 -4 2; 0 3 5; 2 8 -4];
2 b = [3; -7; -3];
3 x = A\b

Result
1 x =
2 0.75000
3 -0.97115
4 -0.81731

Graphics with Matlab

In Matlab, the most popular graphic command is plot, which creates a 2D
line plot of the data in Y versus the corresponding values in X. A general
syntax for the command is

plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)

https://www.mathworks.com/help/matlab/ref/plot.html
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tutorial3_plot.m
1 close all
2

3 %% a curve
4 X1 = linspace(0,2*pi,10); % n=10
5 Y1 = cos(X1);
6

7 %% another curve
8 X2=linspace(0,2*pi,20); Y2=sin(X2);
9

10 %% plot together
11 plot(X1,Y1,'-or',X2,Y2,'--b','linewidth',3);
12 legend({'y=cos(x)','y=sin(x)'},'location','best',...
13 'FontSize',16,'textcolor','blue')
14 print -dpng 'fig_cos_sin.png'

Figure 1.5: fig_cos_sin.png: plot of y = cosx and y = sinx.

Above tutorial3_plot.m is a typical M-file for figuring with plot.

• Line 1: It closes all figures currently open.
• Lines 3, 4, 7, and 10 (comments): When the percent sign (%) appears,

the rest of the line will be ignored by Matlab.
• Lines 4 and 8: The command linspace(x1,x2,n) returns a row vector

of n evenly spaced points between x1 and x2.
• Line 11: Its result is a figure shown in Figure 1.5.
• Line 14: it saves the figure into a png format, named fig_cos_sin.png.
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Repetition: iteration loops

Note: In scientific computation, one of most frequently occurring events
is repetition. Each repetition of the process is also called an iteration.
It is the act of repeating a process, to generate a (possibly unbounded)
sequence of outcomes, with the aim of approaching a desired goal, target
or result. Thus,

• iteration must start with an initialization (starting point) and
• perform a step-by-step marching in which the results of one iteration

are used as the starting point for the next iteration.

In the context of mathematics or computer science, iteration (along with
the related technique of recursion) is a very basic building block in pro-
gramming. Matlab provides various types of loops: while loops, for loops,
and nested loops.

while loop

The syntax of a while loop in Matlab is as follows.
while <expression>

<statements>
end

An expression is true when the result is nonempty and contains all nonzero
elements, logical or real numeric; otherwise the expression is false. Here is
an example for the while loop.

n1=11; n2=20;
sum=n1;
while n1<n2

n1 = n1+1; sum = sum+n1;
end
fprintf('while loop: sum=%d\n',sum);

When the code above is executed, the result will be:

while loop: sum=155
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for loop

A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times. The syntax of
a for loop in Matlab is as following:

for index = values
<program statements>

end

Here is an example for the for loop.
n1=11; n2=20;
sum=0;
for i=n1:n2

sum = sum+i;
end
fprintf('for loop: sum=%d\n',sum);

When the code above is executed, the result will be:

for loop: sum=155

Functions: Enhancing reusability

Program scripts can be saved to reuse later conveniently. For example,
the script for the summation of integers from n1 to n2 can be saved as a form
of function.

mysum.m
1 function s = mysum(n1,n2)
2 % sum of integers from n1 to n2
3

4 s=0;
5 for i=n1:n2
6 s = s+i;
7 end

Now, you can call it with e.g. mysum(11,20).
Then the result reads ans = 155.
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Exercises for Chapter 1

1.1. Prove that the following equations have at least one solution in the given intervals.

(a) x− (lnx)3 = 0, [5, 7]

(b) (x− 1)2 − 2 sin(πx/2) = 0, [0, 2]

(c) x− 3− x2e−x = 0, [2, 4]

(d) 5x cos(πx)− 2x2 + 3 = 0, [0, 2]

Ans: (d) f(0) = 3, f(2) = 5, and f(1) = −4.

1.2. C 1 Let f(x) = 5x cos(3x)− (x− 1)2 and x0 = 0.

(a) Find the third Taylor polynomial of f about x = x0, p3(x), and use it to approxi-
mate f(0.2).

(b) Use the Taylor’s Theorem (Theorem 1.22) to find an upper bound for the error
|f(x)− p3(x)| at x = 0.2. Compare it with the actual error.

(c) Find the fifth Taylor polynomial of f about x = x0, p5(x), and use it to approximate
f(0.2).

(d) Use the Taylor’s Theorem to find an upper bound for the error |f(x) − p5(x)| at
x = 0.2. Compare it with the actual error.

Ans: (b) |f (0.2)− p3 (0.2)| = |0.1853356149096783− 0.18| = 0.005335614909678. R3 (0.2) =

f (4) (ξ)

4!
(0.2)4 =

9

250
sin (3ξ)+

27

1000
ξ cos (3ξ). Now, try to estimate the upper bound of max |R3|.

1.3. For the fair (xn, αn), is it true that xn = O(αn) as n→∞?

(a) xn = 3n2 − n4 + 1; αn = 3n2

(b) xn = n− 1√
n

+ 1; αn =
√
n

(c) xn =
√
n− 10; αn = 1

(d) xn = −n2 + 1; αn = n3

Ans: (d)

1.4. Let a sequence xn be defined recursively by xn+1 = g(xn), where g is continuously
differentiable. Suppose that xn → x∗ as n→∞ and g′(x∗) = 0. Show that

xn+2 − xn+1 = o(xn+1 − xn). (1.51)

Hint : Begin with ∣∣∣xn+2 − xn+1

xn+1 − xn

∣∣∣ =
∣∣∣g(xn+1)− g(xn)

xn+1 − xn

∣∣∣,
1The mark C indicates that you should solve the problem via computer programming. Attach hard copies

of your code and results. For other problems, if you like and doable, you may try to solve them with computer
programming.
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and use the Mean Value Theorem (on page 4) and the fact that is continuously differ-
entiable, to show that the quotient converges to zero as n→∞.

1.5. A square matrix A ∈ Rn×n is said to be skew-symmetric if AT = −A. Prove that if A
is skew-symmetric, then xTAx = 0 for all x ∈ Rn.

Hint : The quantity xTAx is scalar so that (xTAx)T = xTAx.

1.6. Suppose that A, B, and C are square matrices and that ABC is invertible. Show that
each of A,B, and C is invertible.

1.7. Find the determinant and eigenvalues of the following matrices, if it exists. Compare
the determinant with the product of eigenvalues, i.e. check if (1.30) is true.

(a) P =

[
2 3

7 6

]

(b) Q =

 1 2

−3 1

0 1



(c) R =

6 0 5

0 4 0

1 −5 2



(d) S =


1 2 4 8

0 3 0 0

0 0 5 0

0 0 5 7


1.8. Show that the `2-norm ‖x‖2, defined as

‖x‖2 =
√
x21 + x22 + · · ·+ x2n,

satisfies the three conditions in (1.34), page 23.

Hint : For the last condition, you may begin with

‖x + y‖22 = (x + y)•(x + y) = ‖x‖22 + 2x•y + ‖y‖22.

Now, compare this with (‖x‖2 + ‖y‖2)2.

1.9. Show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 for all x ∈ Rn.
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CHAPTER 2
Solutions of Nonlinear Equations

Through the chapter, the objective is to find solutions for equations of the
form

f(x) = 0. (2.1)

Various numerical methods will be considered for the solutions of (2.1). Al-
though the methods will be derived for a simple form of equations, they will
be applicable for various general problems.
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Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

41
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2.1. The Bisection Method

It is also called the binary-search method or interval-halving method.

Note: The objective is to find solutions for

f(x) = 0. (2.2)

2.1.1. Implementation of the bisection method

Assumption. For the bisection method, we assume that

1) f is continuous in [a, b].
2) f(a) · f(b) < 0 (so that there must be a solution by the IVT).
3) There is a single solution in [a, b].

Pseudocode 2.1. The Bisection Method:

• Given [a1, b1] = [a, b], p1 = (a1 + b1)/2;
• For n = 1, 2, · · · , itmax

if ( f(pn) = 0 ) then
stop;

elseif ( f(an) · f(pn) < 0 ) then
an+1 = an; bn+1 = pn;

else
an+1 = pn; bn+1 = bn;

endif
pn+1 = (an+1 + bn+1)/2
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Example 2.2. Find the solution of the equation x3 + 4x2 − 10 = 0 in [1, 2].
Bisection

1 with(Student[NumericalAnalysis]):
2 f := x -> x^3 + 4*x^2 - 10:
3

4 Bisection(f(x), x = [1,2], tolerance = 0.1,
5 stoppingcriterion = absolute, output = sequence);
6 [1., 2.],
7 [1., 1.500000000],
8 [1.250000000, 1.500000000],
9 [1.250000000, 1.375000000],

10 1.312500000
11

12 Bisection(f(x), x = [1, 2], tolerance = 0.1,
13 stoppingcriterion = absolute, output = plot)

Figure 2.1: The bisection method.
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Figure 2.2: A Maple code for the bisection method

Result
1 > bisection2(1, 2, 0.01, 20);
2 k= 1: a= 1.000000 b= 2.000000 p= 1.500000 f(p)= 2.375000
3 k= 2: a= 1.000000 b= 1.500000 p= 1.250000 f(p)=-1.796875
4 k= 3: a= 1.250000 b= 1.500000 p= 1.375000 f(p)= 0.162109
5 k= 4: a= 1.250000 b= 1.375000 p= 1.312500 f(p)=-0.848389
6 k= 5: a= 1.312500 b= 1.375000 p= 1.343750 f(p)=-0.350983
7 k= 6: a= 1.343750 b= 1.375000 p= 1.359375 f(p)=-0.096409
8 k= 7: a= 1.359375 b= 1.375000 p= 1.367188 f(p)= 0.032356
9 3 2

10 "f(x)=", x + 4 x - 10
11 p_7 = 1.367187500
12 dp = +- 0.007812 = (b0-a0)/2^k= 0.007812
13 f(p) = 0.032355785
14 175
15 ---
16 128
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2.1.2. Error analysis for the bisection method

Theorem 2.3. Suppose that f ∈ C[a, b] and f(a) · f(b) < 0. Then, the
Bisection method generates a sequence pn approximating a zero p of f
with

|p− pn| ≤
b− a

2n
, n ≥ 1. (2.3)

Proof. For n ≥ 1,

bn − an =
1

2n−1
(b− a) and p ∈ (an, bn). (2.4)

It follows from pn = (an + bn)/2 that

|p− pn| ≤
1

2
(bn − an) =

1

2n
(b− a), (2.5)

which completes the proof.

Note: The right-side of (2.3) is the upper bound of the error in the n-th
iteration.

Example 2.4. Determine the number of iterations necessary to solve x3 +

4x2 − 10 = 0 with accuracy 10−3 using [a1, b1] = [1, 2].

Solution. We have to find the iteration count n such that the error upper-
bound is not larger than 10−3. That is, incorporating (2.3),

|p− pn| ≤
b− a

2n
≤ 10−3. (2.6)

Since b − a = 1, it follows from the last inequality that 2n ≥ 103, which
implies that

n ≥ 3 ln(10)

ln(2)
≈ 9.965784285.

Ans: n = 10
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Remark 2.5. The zero p is unknown so that the quantity |p − pn| is a
theoretical value; it is not useful in computation.

Note that pn is the midpoint of [an, bn] and pn+1 is the midpoint of either
[an, pn] or [pn, bn]. So,

|pn+1 − pn| =
1

4
(bn − an) =

1

2n+1
(b− a). (2.7)

In other words,
|pn − pn−1| =

1

2n
(b− a), (2.8)

which implies that

|p− pn| ≤
1

2n
(b− a) = |pn − pn−1|. (2.9)

The approximate solution, carried out with the absolute difference |pn −
pn−1| being used for the stopping criterion, guarantees the actual error
not greater than the given tolerance.

Example 2.6. Suppose that the bisection method begins with the interval
[45, 60]. How many steps should be taken to compute a root with a relative
error not larger than 10−8?

Solution.

Ans: n ≥ ln(108/3)/ ln(2). Thus n = 25
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bisect: a Matlab code
bisect.m

1 function [c,err,fc]=bisect(f,a,b,TOL)
2 %Input - f is the function input as a string 'f'
3 % - a and b are the left and right endpoints
4 % - TOL is the tolerance
5 %Output - c is the zero
6 % - err is the error estimate for c
7 % - fc= f(c)
8

9 fa=feval(f,a);
10 fb=feval(f,b);
11 if fa*fb > 0,return,end
12 max1=1+round((log(b-a)-log(TOL))/log(2));
13

14 for k=1:max1
15 c=(a+b)/2;
16 fc=feval(f,c);
17 if fc==0
18 a=c; b=c;
19 elseif fa*fc<0
20 b=c; fb=fc;
21 else
22 a=c; fa=fc;
23 end
24 if b-a < TOL, break,end
25 end
26

27 c=(a+b)/2; err=(b-a)/2; fc=feval(f,c);

Example 2.7. You can call the above algorithm with varying function, by

>> f = @(x) x.^3+4*x.^2-10;
>> [c,err,fc]=bisect(f,1,2,0.005)
c =

1.3652
err =

0.0020
fc =

7.2025e-005
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Example 2.8. In the bisection method, does lim
n→∞

|p− pn+1|
|p− pn|

exist?

Solution.

Ans: no
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2.2. Fixed-Point Iteration

Definition 2.9. A number p is a fixed point for g, if g(p) = p.

Note: A point p is a fixed point of g, when the point remains unaltered
under the action of g.

Example 2.10. Find fixed points of g(x) = x2 − 2.

Solution.
Maple-code

1 g := x -> x^2 - 2:
2 g(p) = p;
3 2
4 p - 2 = p
5 solve(g(p) = p, p);
6 2, -1

Figure 2.3: Fixed points of g(x) = x2 − 2.

Remark 2.11. Given a root-finding problem f(p) = 0, let

g(x) = x− h(x) · f(x), (2.10)

for some h(x). Then, since g(p) = p−h(p)·f(p) = p−0 = p, Equation (2.10)
defines a fixed-point problem.
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2.2.1. Existence and uniqueness of fixed points

Theorem 2.12. (Existence and Uniqueness).

• If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least
one fixed point in [a, b].

• If, in addition, g is differentiable in (a, b) and there exists a positive
constant K < 1 such that

|g′(x)| ≤ K < 1 for all x ∈ (a, b), (2.11)

then there is a unique fixed point in [a, b].

Proof.

Figure 2.4: Illustration of the existence-and-uniqueness theorem.

Example 2.13. Show that g(x) = (x2 − 2)/3 has a unique fixed point on
[−1, 1].

Solution.
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2.2.2. Fixed-point iteration

Definition 2.14. A fixed-point iteration is an iterative procedure of
the form: For a given p0,

pn = g(pn−1) for n ≥ 1. (2.12)

If the sequence pn converges to p, since g is continuous, we have

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g( lim
n→∞

pn−1) = g(p).

This implies that the limit p is a fixed point of g, i.e., the iteration
converges to a fixed point.

Example 2.15. The equation x3 + 4x2 − 10 = 0 has a unique root in [1, 2].
There are many ways to transform the equation to the fixed-point form x =

g(x):

(1) x = g1(x) = x− (x3 + 4x2 − 10)

(2) x = g2(x) =
1

4

(10

x
− x2

)
⇐ x2 + 4x− 10

x
= 0

(3) x = g3(x) =
(10

x
− 4x

)1/2

(4) x = g4(x) =
1

2
(−x3 + 10)1/2 ⇐ 4x2 = −x3 + 10

(5) x = g5(x) =
( 10

x+ 4

)1/2

⇐ x2(x+ 4)− 10 = 0

(6) x = g6(x) = x− x3 + 4x2 − 10

3x2 + 8x

The associated fixed-point iteration may not converge for some choices of g.
Let’s check it.
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Evaluation of max
x∈[1,2]

|g′k(x)| for the fixed-point iteration

The real root of x3 + 4x2 − 10 = 0 is p = 1.3652300134142.

Maple-code
1 with(Student[NumericalAnalysis]);
2

3 g1 := x -> x - x^3 - 4*x^2 + 10:
4 maximize(abs(diff(g1(x), x)), x = 1..2);
5 27
6 FixedPointIteration(x-g1(x), x=1.5, tolerance=10^-3, output=sequence);
7 1.5, -0.875, 6.732421875, -469.7200120, 1.027545552 10 ,
8 24 72 216
9 -1.084933871 10 , 1.277055593 10 , -2.082712916 10 ,

10 648 1946 5840
11 9.034169425 10 , -7.373347340 10 , 4.008612522 10
12

13 g2 := x -> 5/2*1/x - 1/4*x^2:
14 maximize(abs(diff(g2(x), x)), x = 1..2);
15 3
16 FixedPointIteration(x-g2(x), x=1.5, tolerance=10^-3, output=sequence);
17 1.5, 1.104166667, 1.959354936, 0.3161621898, 7.882344262,
18 5
19 -15.21567323, -58.04348221, -842.3045280, -1.773692325 10 ,
20 9 19
21 -7.864961160 10 , -1.546440351 10
22

23 g3 := x -> (10/x - 4*x)^(1/2):
24 maximize(abs(diff(g3(x), x)), x = 1..2);
25 infinity
26 FixedPointIteration(x-g3(x), x=1.5, tolerance=10^-3, output=sequence);
27 1.5, 0.8164965811
28

29 g4 := x -> 1/2*(10 - x^3)^(1/2):
30 evalf(maximize(abs(diff(g4(x), x)), x = 1..2));
31 2.121320343
32 FixedPointIteration(x-g4(x), x=1.5, tolerance=10^-3, output=sequence);
33 1.5, 1.286953768, 1.402540804, 1.345458374, 1.375170253,
34 1.360094192, 1.367846968, 1.363887004, 1.365916734, 1.364878217
35

36 g5 := x -> 10^(1/2)*(1/(x + 4))^(1/2):
37 evalf(maximize(abs(diff(g5(x), x)), x = 1..2));
38 0.1414213562
39 FixedPointIteration(x-g5(x), x=1.5, tolerance=10^-3, output=sequence);
40 1.5, 1.348399725, 1.367376372, 1.364957015, 1.365264748
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41

42 g6 := x -> x - (x^3 + 4*x^2 - 10)/(3*x^2 + 8*x):
43 maximize(diff(g6(x), x), x = 1..2);
44 5
45 --
46 14
47 maximize(-diff(g6(x), x), x = 1..2);
48 70
49 ---
50 121
51 FixedPointIteration(x-g6(x), x=1.5, tolerance=10^-3, output=sequence);
52 1.5, 1.373333333, 1.365262015, 1.365230014

Theorem 2.16. (Fixed-Point Theorem):
Let g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose that g is
differentiable in (a, b) and there is a positive constant K < 1 such that

|g′(x)| ≤ K < 1 for all x ∈ (a, b). (2.13)

Then, for any number p0 ∈ [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1, (2.14)

converges to the unique fixed point p ∈ [a, b].

Proof.

• It follows from Theorem 2.12 that there exists a unique fixed point p ∈
[a, b], i.e., p = g(p) ∈ [a, b].

• Since g(x) ∈ [a, b] for all x ∈ [a, b], we have pn ∈ [a, b] for all n ≥ 1. It follows
from the MVT that

|p− pn| = |g(p)− g(pn−1)| = |g′(ξn)(p− pn−1)| ≤ K|p− pn−1|,

for some ξn ∈ (a, b). Therefore

|p− pn| ≤ K|p− pn−1| ≤ K2|p− pn−2| ≤ · · · ≤ Kn|p− p0|, (2.15)

which converges to 0 as n→∞.
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Remark 2.17. The Fixed-Point Theorem deserves some remarks.
• From (2.15), we can see

|p− pn| ≤ Kn max{p0 − a, b− p0}. (2.16)

• For m > n ≥ 1,
|pm − pn| = |pm − pm−1 + pm−1 − · · · − pn+1 + pn+1 − pn|

≤ |pm − pm−1|+ |pm−1 − pm−2|+ · · ·+ |pn+1 − pn|
≤ Km−1|p1 − p0|+Km−2|p1 − p0|+ · · ·+Kn|p1 − p0|
= Kn|p1 − p0|(1 +K +K2 + · · ·+Km−1−n).

(Here we have used the MVT, for the last inequality.) Thus,

|p− pn| = lim
m→∞

|pm − pn| ≤ Kn|p1 − p0|
∞∑
i=0

K i =
Kn

1−K
|p1 − p0|.

That is,
|p− pn| ≤

Kn

1−K
|p1 − p0|. (2.17)

• The Fixed-Point Theorem holds for any contractive mapping g de-
fined on any closed subset C ⊂ R. By a contractive mapping, we
mean a function g that satisfies for some 0 < K < 1,

|g(x)− g(y)| ≤ K|x− y| for all x, y ∈ C. (2.18)

Note: If a contractive mapping g is differentiable, then (2.18) implies
that

|g′(x)| ≤ K for all x ∈ C.

Practice 2.18. In practice, p is unknown. Consider the following:

|pn+1 − pn| ≥ |pn − p| − |pn+1 − p|
≥ |pn − p| −K|pn − p| = (1−K)|pn − p|

and therefore

|p− pn| ≤
1

1−K
|pn+1 − pn| ≤

K

1−K
|pn − pn−1|, (2.19)

which is useful for stopping of the iteration.
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Example 2.19. For each of the following equations, (1) determine an inter-
val [a, b] on which the fixed-point iteration will converge. (2) Estimate the
number of iterations necessary to obtain approximations accurate to within
10−5.

(a) x =
2− ex + x2

3
(b) x =

5

x2
+ 2

Solution. You may first try to visualize the functions.

(a) (b)

Figure 2.5: Visualization of the functions.

Ans: (a): (1) [0, 1], (2) K = 1/3⇒ n ≥ 5 ln(10)/ ln(3) ≈ 10.48.

Example 2.20. Prove that the sequence xn defined recursively as follows
is convergent.  x0 = −15

xn+1 = 3− 1

2
|xn| (n ≥ 0)

Solution. Begin with setting g(x) = 3 − 1
2 |x|; then show g is a contractive

mapping on C = R.
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2.3. Newton’s Method and Its Variants

2.3.1. The Newton’s method

The Newton’s method is also called the Newton-Raphson method.

Recall: The objective is to find a zero p of f :

f(p) = 0. (2.20)

Strategy 2.21. Let p0 be an approximation of p. We will try to find a
correction term h such that (p0 +h) is a better approximation of p than
p0; ideally (p0 + h) = p.

• If f ′′ exists and is continues, then by Taylor’s Theorem

0 = f(p) = f(p0 + h) = f(p0) + (p− p0)f
′(p0) +

(p− p0)
2

2
f ′′(ξ), (2.21)

where ξ lies between p and p0.
• If |p− p0| is small, it is reasonable to ignore the last term of (2.21) and

solve for h = p− p0:

h = p− p0 ≈ −
f(p0)

f ′(p0)
. (2.22)

• Define
p1 = p0 −

f(p0)

f ′(p0)
; (2.23)

then p1 may be a better approximation of p than p0.
• The above can be repeated.

Algorithm 2.22. (Newton’s method for solving f(x) = 0). For p0

chosen close to a root p, compute {pn} repeatedly satisfying

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, n ≥ 1. (2.24)
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Graphical interpretation
• Let p0 be the initial approximation close to p. Then, the tangent line

at (p0, f(p0)) reads
L(x) = f ′(p0)(x− p0) + f(p0). (2.25)

• To find the x-intercept of y = L(x), let
0 = f ′(p0)(x− p0) + f(p0).

Solving the above equation for x becomes

x = p0 −
f(p0)

f ′(p0)
, (2.26)

of which the right-side is the same as in (2.23).

Figure 2.6: Graphical interpretation of the Newton’s method.

An Example of Divergence
1 f := arctan(x);
2 Newton(f, x = Pi/2, output = plot, maxiterations = 3);
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Remark 2.23.

• The Newton’s method may diverge, unless the initialization is accu-
rate.

• The Newton’s method can be interpreted as a fixed-point itera-
tion:

pn = g(pn−1) := pn−1 −
f(pn−1)

f ′(pn−1)
. (2.27)

• It cannot be continued if f ′(pn−1) = 0 for some n. As a matter of fact,
the Newton’s method is most effective when f ′(x) is bounded away
from zero near p.

Convergence analysis for the Newton’s method: Define the error in
the n-th iteration: en = pn − p. Then

en = pn − p = pn−1 −
f(pn−1)

f ′(pn−1)
− p =

en−1f
′(pn−1)− f(pn−1)

f ′(pn−1)
. (2.28)

On the other hand, it follows from the Taylor’s Theorem that

0 = f(p) = f(pn−1 − en−1) = f(pn−1)− en−1f
′(pn−1) +

1

2
e2
n−1f

′′(ξn−1), (2.29)

for some ξn−1. Thus, from (2.28) and (2.29), we have

en =
1

2

f ′′(ξn−1)

f ′(pn−1)
e2
n−1. (2.30)

Theorem 2.24. (Convergence of Newton’s method): Let f ∈ C2[a, b]
and p ∈ (a, b) is such that f(p) = 0 and f ′(p) 6= 0. Then, there is a
neighborhood of p such that if the Newton’s method is started p0 in that
neighborhood, it generates a convergent sequence pn satisfying

|pn − p| ≤ C|pn−1 − p|2, (2.31)

for a positive constant C.
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Example 2.25. Apply the Newton’s method to solve f(x) = arctan(x) = 0,
with p0 = π/5.

1 Newton(arctan(x), x = Pi/5, output = sequence, maxiterations = 5)
2 0.6283185308, -0.1541304479, 0.0024295539, -9.562*10^(-9), 0., 0.

Since p = 0, en = pn and
|en| ≤ 0.67|en−1|3, (2.32)

which is an occasional super-convergence.

Theorem 2.26. (Newton’s Method for a Convex Function): Let
f ∈ C2(R) be increasing, convex, and of a zero. Then, the zero is unique
and the Newton iteration will converge to it from any starting point.

Example 2.27. Use the Newton’s method to find the square root of a
positive number Q.

Solution. Let x =
√
Q. Then x is a root of x2 −Q = 0. Define f(x) = x2 −Q;

set f ′(x) = 2x. The Newton’s method reads

pn = pn−1 −
f(pn−1)

f ′(pn−1)
= pn−1 −

p2
n−1 −Q
2pn−1

=
1

2

(
pn−1 +

Q

pn−1

)
. (2.33)

(Compare the above with (1.45), p. 28.)
NR.mw

1 NR := proc(Q, p0, itmax)
2 local p, n;
3 p := p0;
4 for n to itmax do
5 p := (p+Q/p)/2;
6 print(n, evalf[14](p));
7 end do;
8 end proc:
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Q := 16: p0 := 1: itmax := 8:
NR(Q,p0,itmax);

1, 8.5000000000000
2, 5.1911764705882
3, 4.1366647225462
4, 4.0022575247985
5, 4.0000006366929
6, 4.0000000000000
7, 4.0000000000000
8, 4.0000000000000

Q := 16: p0 := -1: itmax := 8:
NR(Q,p0,itmax);

1, -8.5000000000000
2, -5.1911764705882
3, -4.1366647225462
4, -4.0022575247985
5, -4.0000006366929
6, -4.0000000000000
7, -4.0000000000000
8, -4.0000000000000

2.3.2. Systems of nonlinear equations

The Newton’s method for systems of nonlinear equations follows the
same strategy that was used for single equation.That is,

(a) we first linearize,
(b) solve for the correction vector, and
(c) update the solution,

repeating the steps as often as necessary.

An illustration:

• We begin with a pair of equations involving two variables:{
f1(x1, x2) = 0

f2(x1, x2) = 0
(2.34)

• Suppose that (x1, x2) is an approximate solution of the system. Let us
compute the correction vector (h1, h2) so that (x1 + h1, x2 + h2) is a better
approximate solution.

0 = f1(x1 + h1, x2 + h2) ≈ f1(x1, x2) + h1
∂f1

∂x1
+ h2

∂f1

∂x2
,

0 = f2(x1 + h1, x2 + h2) ≈ f2(x1, x2) + h1
∂f2

∂x1
+ h2

∂f2

∂x2
.

(2.35)
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• Define the Jacobian of (f1, f2) at (x1, x2):

J(x1, x2) :=

[
∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

]
(x1, x2). (2.36)

Then, the Newton’s method for two nonlinear equations in two variables
reads [

xn1
xn2

]
=

[
xn−1

1

xn−1
2

]
+

[
hn−1

1

hn−1
2

]
, (2.37)

where the correction vector satisfies

J(xn−1
1 , xn−1

2 )

[
hn−1

1

hn−1
2

]
= −

[
f1(x

n−1
1 , xn−1

2 )

f2(x
n−1
1 , xn−1

2 )

]
. (2.38)

Summary 2.28. In general, the system of m nonlinear equations,

fi(x1, x2, · · · , xm) = 0, 1 ≤ i ≤ m,

can be expressed as
F (X) = 0, (2.39)

where X = (x1, x2, · · · , xm)T and F = (f1, f2, · · · , fm)T . Then

0 = F (X +H) ≈ F (X) + J(X)H, (2.40)

where H = (h1, h2, · · · , hm)T , the correction vector, and J(X) =[
∂fi
∂xj

]
(X), the Jacobian of F at X. Hence, Newton’s method for m non-

linear equations in m variables is given by

Xn = Xn−1 +Hn−1, (2.41)

where Hn−1 is the solution of the linear system:

J(Xn−1)Hn−1 = −F (Xn−1). (2.42)
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Example 2.29. Starting with (1, 1, 1)T , carry out 6 iterations of the New-
ton’s method to find a root of the nonlinear system

xy = z2 + 1

xyz + y2 = x2 + 2

ex + z = ey + 3

Solution.
Procedure NewtonRaphsonSYS.mw

1 NewtonRaphsonSYS := proc(X, F, X0, TOL, itmax)
2 local Xn, H, FX, J, i, m, n, Err;
3 m := LinearAlgebra[Dimension](Vector(X));
4 Xn := Vector(m);
5 H := Vector(m);
6 FX := Vector(m);
7 J := Matrix(m, m);
8 Xn := X0;
9 for n to itmax do

10 FX := eval(F, [seq(X[i] = Xn[i], i = 1..m)]);
11 J := evalf[15](VectorCalculus[Jacobian](F, X=convert(Xn,list)));
12 H := -MatrixInverse(J).Vector(FX);
13 Xn := Xn + H;
14 printf(" %3d %.8f ", n, Xn[1]);
15 for i from 2 to m do; printf(" %.8f ", Xn[i]); end do;
16 for i to m do; printf(" %.3g ", H[i]); end do;
17 printf("\n");
18 if (LinearAlgebra[VectorNorm](H, 2) < TOL) then break endif:
19 end do;
20 end proc:

Result
1 F := [x*y-z^2-1, x*y*z-x^2+y^2-2, exp(x)+z-exp(y)-3]:
2 X := [x, y, z]:
3 X0 := <1, 1, 1>:
4 TOL := 10^-8: itmax := 10:
5 NewtonRaphsonSYS(X, F, X0, TOL, itmax):
6 1 2.18932610 1.59847516 1.39390063 1.19 0.598 0.394
7 2 1.85058965 1.44425142 1.27822400 -0.339 -0.154 -0.116
8 3 1.78016120 1.42443598 1.23929244 -0.0704 -0.0198 -0.0389
9 4 1.77767471 1.42396093 1.23747382 -0.00249 -0.000475 -0.00182

10 5 1.77767192 1.42396060 1.23747112 -2.79e-006 -3.28e-007 -2.7e-006
11 6 1.77767192 1.42396060 1.23747112 -3.14e-012 -4.22e-014 -4.41e-012
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2.3.3. The secant method

Recall: The Newton’s method, defined as

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, n ≥ 1, (2.43)

is a powerful technique. However it has a major drawback: the need to
know the value of derivative of f at each iteration. Frequently, f ′(x) is far
more difficult to calculate than f(x).

Algorithm 2.30. (The Secant method). To overcome the disadvan-
tage of the Newton’s method, a number of methods have been proposed.
One of most popular variants is the secant method, which replaces
f ′(pn−1) by a difference quotient:

f ′(pn−1) ≈
f(pn−1)− f(pn−2)

pn−1 − pn−2
. (2.44)

Thus, the resulting algorithm reads

pn = pn−1 − f(pn−1)
[ pn−1 − pn−2

f(pn−1)− f(pn−2)

]
, n ≥ 2. (2.45)

Note:

• Two initial values (p0, p1) must be given, which however is not a
drawback.

• In each iteration, it requires only one new evaluation of f .
• Convergence:

|en| ≈
∣∣∣ f ′′(p)
2f ′(p)

en−1en−2

∣∣∣ ≈ ∣∣∣ f ′′(p)
2f ′(p)

∣∣∣0.62

|en−1|(1+
√

5)/2. (2.46)

Here evalf((1+sqrt(5))/2) = 1.618033988.

The graphical interpretation of the secant method is similar to that
of Newton’s method. The secant method utilizes the secant line, while
Newton’s method updates the iterate through the tangent line.
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Graphical interpretation
with(Student[NumericalAnalysis]):
f := x ̂ 3 - 1:
Secant(f, x = [1.5, 0.5], maxiterations = 3, output = sequence);

1.5, 0.5, 0.7692307692, 1.213510253, 0.9509757891
Secant(f, x = [1.5, 0.5], maxiterations = 3, output = plot);

Figure 2.7: Graphical interpretation of the secant method.

Example 2.31. Apply one iteration of the secant method to find p2 if

p0 = 1, p1 = 2, f(p0) = 2, f(p1) = 1.5.

Solution.

Ans: p2 = 5.0
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2.3.4. The method of false position

It generates approximations in a similar manner as the secant method;
however, it includes a test to ensure that the root is always bracketed be-
tween successive iterations.

Algorithm 2.32. (Method of false position).

• Select p0 and p1 such that f(p0) · f(p1) < 0.
• Compute

p2 = the x-intercept of the line joining (p0, f(p0)) and (p1, f(p1)).

• If (f(p1) · f(p2) < 0), set (p1 and p2 bracket the root)
p3 = the x-intercept of the line joining (p2, f(p2)) and (p1, f(p1)).

else, set
p3 = the x-intercept of the line joining (p2, f(p2)) and (p0, f(p0)).

endif

Graphical interpretation
with(Student[NumericalAnalysis]):
f := x ̂ 3 - 1:
FalsePosition(f,x=[1.5,0.5], maxiterations=3, output=plot);

Figure 2.8: Graphical interpretation of the false position method.
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Convergence Speed:
Find a root for x = cosx, starting with π/4 or [0.5, π/4].

Comparison
1 with(Student[NumericalAnalysis]):
2 f := cos(x) - x:
3

4 N := Newton(f, x=Pi/4, tolerance=10^-8, maxiterations=10,
5 output=sequence);
6 0.7853981635, 0.7395361335, 0.7390851781, 0.7390851332, 0.7390851332
7

8 S := Secant(f,x=[0.5,Pi/4],tolerance=10^-8,maxiterations=10,
9 output=sequence);

10 0.5, 0.7853981635, 0.7363841388, 0.7390581392, 0.7390851493,
11 0.7390851332, 0.7390851332
12

13 F := FalsePosition(f,x=[0.5,Pi/4],tolerance=10^-8,maxiterations=10,
14 output=sequence);
15 [0.5, 0.7853981635], [0.7363841388, 0.7853981635],
16 [0.7390581392, 0.7853981635], [0.7390848638, 0.7853981635],
17 [0.7390851305, 0.7853981635], [0.7390851332, 0.7853981635],
18 [0.7390851332, 0.7853981635], [0.7390851332, 0.7853981635],
19 [0.7390851332, 0.7853981635], [0.7390851332, 0.7853981635],
20 [0.7390851332, 0.7853981635]

# print out
n Newton Secant False Position
0 0.7853981635 0.5000000000 0.5000000000
1 0.7395361335 0.7853981635 0.7363841388
2 0.7390851781 0.7363841388 0.7390581392
3 0.7390851332 0.7390581392 0.7390848638
4 0.7390851332 0.7390851493 0.7390851305
5 0.7390851332 0.7390851332 0.7390851332
6 0.7390851332 0.7390851332 0.7390851332
7 0.7390851332 0.7390851332 0.7390851332
8 0.7390851332 0.7390851332 0.7390851332
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2.4. Zeros of Polynomials

Definition 2.33. A polynomial of degree n has a form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (2.47)

where an 6= 0 and ai’s are called the coefficients of P .

Theorem 2.34. (Theorem on Polynomials).

• Fundamental Theorem of Algebra: Every nonconstant polynomial
has at least one root (possibly, in the complex field).

• Complex Roots of Polynomials: A polynomial of degree n has ex-
actly n roots in the complex plane, being agreed that each root shall be
counted a number of times equal to its multiplicity. That is, there
are unique (complex) constants x1, x2, · · · , xk and unique integers
m1, m2, · · · , mk such that

P (x) = an(x− x1)
m1(x− x2)

m2 · · · (x− xk)mk,

k∑
i=1

mi = n. (2.48)

• Localization of Roots: All roots of the polynomial P lie in the open
disk centered at the origin and of radius of

ρ = 1 +
1

|an|
max
0≤i<n

|ai|. (2.49)

• Uniqueness of Polynomials: Let P (x) and Q(x) be polynomials of
degree n. If x1, x2, · · · , xr, with r > n, are distinct numbers with
P (xi) = Q(xi), for i = 1, 2, · · · , r, then P (x) = Q(x) for all x. For exam-
ple, two polynomials of degree n are the same if they agree at (n + 1)
points.
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2.4.1. Horner’s method

Note: Known as nested multiplication and also as synthetic divi-
sion, Horner’s method can evaluate polynomials very efficiently. It
requires n multiplications and n additions to evaluate an arbitrary n-th
degree polynomial.

Algorithm 2.35. Let us try to evaluate P (x) at x = x0.
• Utilizing the Remainder Theorem, we can rewrite the polynomial

as
P (x) = (x− x0)Q(x) + r = (x− x0)Q(x) + P (x0), (2.50)

where Q(x) is a polynomial of degree n− 1, say

Q(x) = bnx
n−1 + · · ·+ b2x+ b1. (2.51)

• Substituting the above into (2.50), utilizing (2.47), and setting equal
the coefficients of like powers of x on the two sides of the resulting
equation, we have

bn = an
bn−1 = an−1 + x0bn

...
b1 = a1 + x0b2

P (x0) = a0 + x0b1

(2.52)

• Introducing b0 = P (x0), the above can be rewritten as

bn+1 = 0; bk = ak + x0bk+1, n ≥ k ≥ 0. (2.53)

• If the calculation of Horner’s algorithm is to be carried out with pencil
and paper, the following arrangement is often used (known as syn-
thetic division):
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Example 2.36. Use Horner’s algorithm to evaluate P (3), where

P (x) = x4 − 4x3 + 7x2 − 5x− 2. (2.54)

Solution. For x0 = 3, we arrange the calculation as mentioned above:

Note that the 4-th degree polynomial in (2.54) is written as

P (x) = (x− 3)(x3 − x2 + 4x+ 7) + 19.

Note: When the Newton’s method is applied for finding an approximate
zero of P (x), the iteration reads

xn = xn−1 −
P (xn−1)

P ′(xn−1)
. (2.55)

Thus both P (x) and P ′(x) must be evaluated in each iteration.

How to evaluate P ′(x)

The derivative P ′(x) can be evaluated by using the Horner’s method with
the same efficiency.

• Recall the Remainder Theorem (2.50):

P (x) = (x− x0)Q(x) + r = (x− x0)Q(x) + P (x0).

• Differentiating (2.50) reads

P ′(x) = Q(x) + (x− x0)Q
′(x). (2.56)

• Thus
P ′(x0) = Q(x0); (2.57)

i.e., the evaluation of Q at x0 becomes the desired quantity P ′(x0).
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Example 2.37. Evaluate P ′(3) for P (x) considered in Example 2.36, the
previous example.

Solution. As in the previous example, we arrange the calculation and carry
out the synthetic division one more time:

Example 2.38. Implement the Horner’s algorithm to evaluate P (3) and
P ′(3), for the polynomial in (2.54): P (x) = x4 − 4x3 + 7x2 − 5x− 2.

Solution.
horner.m

1 function [p,d] = horner(A,x0)
2 % function [px0,dpx0] = horner(A,x0)
3 % input: A = [a_0,a_1,...,a_n]
4 % output: p=P(x0), d=P'(x0)
5

6 n = size(A(:),1);
7 p = A(n); d=0;
8

9 for i = n-1:-1:1
10 d = p + x0*d;
11 p = A(i) +x0*p;
12 end

Call_horner.m
1 a = [-2 -5 7 -4 1];
2 x0=3;
3 [p,d] = horner(a,x0);
4 fprintf(" P(%g)=%g; P'(%g)=%g\n",x0,p,x0,d)
5 % Output: P(3)=19; P'(3)=37
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Example 2.39. Let P (x) = x4 − 4x3 + 7x2 − 5x − 2, as in (2.54). Use the
Newton’s method and the Horner’s method to implement a code and find an
approximate zero of P near 3.

Solution.
newton_horner.m

1 function [x,it] = newton_horner(A,x0,tol,itmax)
2 % function x = newton_horner(A,x0)
3 % input: A = [a_0,a_1,...,a_n]; x0: initial for P(x)=0
4 % outpue: x: P(x)=0
5

6 x = x0;
7 for it=1:itmax
8 [p,d] = horner(A,x);
9 h = -p/d;

10 x = x + h;
11 if(abs(h)<tol), break; end
12 end

Call_newton_horner.m
1 a = [-2 -5 7 -4 1];
2 x0=3;
3 tol = 10^-12; itmax=1000;
4 [x,it] = newton_horner(a,x0,tol,itmax);
5 fprintf(" newton_horner: x0=%g; x=%g, in %d iterations\n",x0,x,it)
6 % Output: newton_horner: x0=3; x=2, in 7 iterations

Figure 2.9: Polynomial P (x) = x4 − 4x3 + 7x2 − 5x− 2. Its two zeros are −0.275682 and 2.
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2.4.2. Complex zeros: Finding quadratic factors

Note: (Quadratic Factors of Real-coefficient Polynomials).
As mentioned in (2.47), a polynomial of degree n has a form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. (2.58)

• Theorem on Real Quadratic Factor: If P is a polynomial whose
coefficients are all real, and if z is a nonreal root of P , then z is also a
root and

(x− z)(x− z)

is a real quadratic factor of P .
• Polynomial Factorization: If P is a nonconstant polynomial of

real coefficients, then it can be factorized as a multiple of linear and
quadratic polynomials of which coefficients are all real.

• Theorem on Quotient and Remainder: If the polynomial is divided
by the quadratic polynomial (x2 − ux − v), then we can formally write
the quotient and remainder as

Q(x) = bnx
n−2 + bn−1x

n−3 + · · ·+ b3x+ b2

r(x) = b1(x− u) + b0,
(2.59)

with which P (x) = (x2 − ux − v)Q(x) + r(x). As in Algorithm 2.35, the
coefficients bk can be computed recursively as follows.

bn+1 = bn+2 = 0

bk = ak + ubk+1 + vbk+2, n ≥ k ≥ 0.
(2.60)
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2.4.3. Bairstow’s method

Bairstow’s method seeks a real quadratic factor of P of the form (x2−ux−
v). For simplicity, all the coefficients ai’s are real so that both u and v will
be real.

Observation 2.40. In order for the quadratic polynomial to be a fac-
tor of P , the remainder r(x) must be zero. That is, the process seeks a
quadratic factor (x2 − ux− v) of P such that

b0(u, v) = 0, b1(u, v) = 0. (2.61)

The quantities b0 and b1 must be functions of (u, v), which is clear from
(2.59) and (2.60).

Key Idea 2.41. An outline of the process is as follows:

• Starting values are assigned to (u, v). We seek corrections (δu, δv) so
that

b0(u+ δu, v + δv) = b1(u+ δu, v + δv) = 0 (2.62)

• Linearization of these equations reads

0 ≈ b0(u, v) +
∂b0

∂u
δu+

∂b0

∂v
δv

0 ≈ b1(u, v) +
∂b1

∂u
δu+

∂b1

∂v
δv

(2.63)

• Thus, the corrections can be found by solving the linear system

J

[
δu

δv

]
= −

[
b0(u, v)

b1(u, v)

]
, where J =

∂(b0, b1)

∂(u, v)
. (2.64)

Here J is the Jacobian matrix.
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Question: How to compute the Jacobian matrix
Bairstow’s method
Algorithm 2.42.

• As first appeared in the appendix of the 1920 book “Applied Aerody-
namics" by Leonard Bairstow, we consider the partial derivatives

ck =
∂bk
∂u

, dk =
∂bk−1

∂v
(0 ≤ k ≤ n). (2.65)

• Differentiating the recurrence relation, (2.60), results in the follow-
ing pair of additional recurrences:

ck = bk+1 + uck+1 + vck+2 (cn+1 = cn+2 = 0)

dk = bk+1 + udk+1 + vdk+2 (dn+1 = dn+2 = 0)
(2.66)

Note that these recurrence relations obviously generate the same two
sequences (ck = dk); we need only the first.

• The Jacobian explicitly reads

J =
∂(b0, b1)

∂(u, v)
=

[
c0 c1

c1 c2

]
, (2.67)

and therefore [
δu

δv

]
= −J−1

[
b0

b1

]
=

1

c0c2 − c2
1

[
b1c1 − b0c2

b0c1 − b1c0

]
. (2.68)

We summarize the above procedure as in the following code:
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Figure 2.10: Bairstow’s method.
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Run Bairstow
1 P := x -> x^4 - 4*x^3 + 7*x^2 - 5*x - 2:
2 n := degree(P(x)):
3 a := Array(0..n):
4 for i from 0 to n do
5 a[i] := coeff(P(x), x, i);
6 end do:
7 itmax := 10: TOL := 10^-10:
8

9 u := 3:
10 v := -4:
11 Bairstow(n, a, u, v, itmax, TOL);
12 1 2.2000000 -2.7000000 -0.8 1.3
13 2 2.2727075 -3.9509822 0.07271 -1.251
14 3 2.2720737 -3.6475280 -0.0006338 0.3035
15 4 2.2756100 -3.6274260 0.003536 0.0201
16 5 2.2756822 -3.6273651 7.215e-05 6.090e-05
17 6 2.2756822 -3.6273651 6.316e-09 -9.138e-09
18 7 2.2756822 -3.6273651 -1.083e-17 -5.260e-17
19 Q(x) = (1)x^2 + (-1.72432)x^1 + (-0.551364)
20 Remainder: -2.66446e-18 (x - (2.27568)) + (-2.47514e-16)
21 Quadratic Factor: x^2 - (2.27568)x - (-3.62737)
22 Zeros: 1.137841102 +- (1.527312251) i
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Deflation
• Given a polynomial of degree n, P (x), if the Newton’s method finds a

zero (say, x̂1), it will be written as

P (x) ≈ (x− x̂1)Q1(x). (2.69)

• Then, we can find a second approximate zero x̂2 (or, a quadratic factor)
of P by applying Newton’s method to the reduced polynomial Q1(x):

Q1(x) ≈ (x− x̂2)Q2(x). (2.70)

• The computation continues up to the point that P is factorized by lin-
ear and quadratic factors. The procedure is called deflation.

Remark 2.43.

• The deflation process introduces an accuracy issue, due to the fact
that when we obtain the approximate zeros of P (x), the Newton’s
method is applied to the reduced polynomials Qk(x).

• An approximate zero x̂k+1 of Qk(x) will generally not approximate a
root of P (x) = 0; inaccuracy increases as k increases.

• One way to overcome the difficulty is to improve the approximate
zeros; starting with these zeros, apply the Newton’s method with the
original polynomial P (x).
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Exercises for Chapter 2

2.1. Let the bisection method be applied to a continuous function, resulting in intervals
[a1, b1], [a2, b2], · · · . Let pn = (an + bn)/2 and p = lim

n→∞
pn. Which of these statements can

be false?

(a) a1 ≤ a2 ≤ · · ·

(b) |p− pn| ≤
b1 − a1

2n
, n ≥ 1

(c) |p− pn+1| ≤ |p− pn|, n ≥ 1

(d) [an+1, bn+1] ⊂ [an, bn]

(e) |p− pn| = O
( 1

2n

)
as n→∞

Ans: (c)

2.2. C Modify the Matlab code used in Example 2.7 for the bisection method to incorpo-
rate {

Inputs : f, a, b, TOL, itmax
Stopping criterion : Relative error ≤ TOL or k ≤ itmax

Consider the following equations defined on the given intervals:

I. 3x− ex = 0, [0, 1]

II. 2x cos(2x)− (x+ 1)2 = 0, [−1, 0]

For each of the above equations,

(a) Use Maple or Matlab (or something else) to find a very accurate solution in the
interval.

(b) Find the approximate root by using your Matlab with TOL=10−6 and itmax=10.
(c) Report pn, |p− pn|, and |p− pn−1|, for n ≥ 1, in a table format.
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Ans:

Table 2.1: Results of Bisection Method (Problem II)

Iteration pn |p− pn| |p− pn−1|
1 -0.7500 0.0482 0.2982
2 -0.8750 0.0768 0.0482
3 -0.8125 0.0143 0.0768
4 -0.7812 0.0169 0.0143
5 -0.7969 0.0013 0.0169
6 -0.8047 0.0065 0.0013
7 -0.8008 0.0026 0.0065
8 -0.7988 0.0007 0.0026
9 -0.7979 0.0003 0.0007
10 -0.7983 0.0002 0.0003

2.3. C Let us try to find 51/3 by the fixed-point method. Use the fact that the result must
be the positive solution of f(x) = x3 − 5 = 0 to solve the following:

(a) Introduce two different fixed-point forms which are convergent for x ∈ [1, 2].
(b) Perform five iterations for each of the iterations with p0 = 1.5, and measure
|p− p5|.

(c) Rank the associated iterations based on their apparent speed of convergence with
p0 = 1.5. Discuss why one is better than the other.

2.4. Kepler’s equation in astronomy reads

y = x− ε sin(x), with 0 < ε < 1. (2.71)

(a) Show that for each y ∈ [0, π], there exists an x satisfying the equation.
(b) Interpret this as a fixed-point problem.

(c) C Find x’s for y = 1, π/2, 2, using the fixed-point iteration. Set ε = 1/2.

Hint : For (a), you may have to use the IVT for x − ε ∗ sin(x) defined on [0, π], while
for (b) you should rearrange the equation in the form of x = g(x). For (c), you may use
any source of program which utilizes the fixed-point iteration.

2.5. Consider a variation of Newton’s method in which only one derivative is needed; that
is,

pn = pn−1 −
f(pn−1)

f ′(p0)
, n ≥ 1. (2.72)

Find C and s such that
en ≈ Cesn−1. (2.73)

Hint : You may have to use f(pn−1) = en−1f
′(pn−1)−

1

2
e2n−1f

′′(ξn−1).
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2.6. (Note: Do not use programming for this problem.) Starting with x0 = (0, 1)T , carry
out two iterations of the Newton’s method on the system:{

4x2 − y2 = 0

4xy2 − x = 1

Hint : Define f1(x, y) = 4x2 − y2, f2(x, y) = 4xy2 − x − 1. Then try to use (2.37)-(2.38), p.61.

Note that J(x, y) =

[
8x −2y

4y2 − 1 8xy

]
. Thus, for example, J(x0, y0) =

[
0 −2

3 0

]
and

[
f1(x0, y0)

f2(x0, y0)

]
=[

−1

−1

]
. Now you can find the correction vector to update iterate and get x1. Do it once more for

x2.

2.7. C Consider the polynomial

P (x) = 3x5 − 7x4 − 5x3 + x2 − 8x+ 2.

(a) Use the Horner’s algorithm to find P (4).
(b) Use the Newton’s method to find a real-valued root, starting with x0 = 4. and

applying the Horner’s algorithm for the evaluation of P (xk) and P ′(xk).
(c) Apply the Bairstow’s method, with the initial point (u, v) = (0,−1), to find a pair

of complex-valued zeros.
(d) Find a disk centered at the origin that contains all the roots.

Ans: (c) Quadratic Factor = x2 − 0.3275x + 0.7703. Thus, the complex-valued solutions are
x1 = 0.1637 + 0.8623i and x2 = 0.1637− 0.8623i.



CHAPTER 3
Interpolation and Polynomial
Approximation

This chapter introduces the following.
Topics Applications/Properties
Polynomial interpolation The first step toward approximation theory

Newton form
Lagrange form Basis functions for various applications in-

cluding visualization and FEMs
Chebyshev polynomial Optimized interpolation

Divided differences
Neville’s method Evaluation of interpolating polynomials
Hermite interpolation It incorporates f(xi) and f ′(xi)

Spline interpolation Less oscillatory interpolation
B-splines
Parametric curves Curves in the plane or the space
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3.1. Polynomial Interpolation

Each continuous function can be approximated (arbitrarily close) by a poly-
nomial, and polynomials of degree n interpolating values at (n+ 1) distinct
points are all the same polynomial, as shown in the following theorems.

Theorem 3.1. (Weierstrass approximation theorem): Suppose f ∈
C[a, b]. Then, for each ε > 0, there exists a polynomial P (x) such that

|f(x)− P (x)| < ε, for all x ∈ [a, b]. (3.1)

Example 3.2. Let f(x) = ex. Then

Figure 3.1: Polynomial approximations for f(x) = ex.
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Theorem 3.3. (Polynomial Interpolation Theorem):
If x0, x1, x2, · · · , xn are (n + 1) distinct real numbers, then for arbitrary
values y0, y1, y2, · · · , yn, there is a unique polynomial pn of degree at most
n such that

pn(xi) = yi (0 ≤ i ≤ n). (3.2)

Proof. (Uniqueness).
Suppose there were two such polynomials, pn and qn. Then pn − qn would
have the property

(pn − qn)(xi) = 0, for 0 ≤ i ≤ n. (3.3)

Since the degree of pn − qn is at most n, the polynomial can have at most n
zeros unless it is a zero polynomial. Since xi are distinct, pn − qn has n + 1

zeros and therefore it must be 0. Hence,

pn ≡ qn.

(Existence).
For the existence part, we proceed inductively through construction.

• For n = 0, the existence is obvious since we may choose the constant
function

p0(x) = y0. (3.4)

• Now suppose that we have obtained a polynomial pk−1 of degree ≤ k − 1

with
pk−1(xi) = yi, for 0 ≤ i ≤ k − 1. (3.5)

• We try to construct pk in the form

pk(x) = pk−1(x) + ck(x− x0)(x− x1) · · · (x− xk−1) (3.6)

for some ck.

(a) Note that (3.6) is unquestionably a polynomial of degree ≤ k.
(b) Furthermore, pk interpolates the data that pk−1 interpolates:

pk(xi) = pk−1(xi) = yi, 0 ≤ i ≤ k − 1. (3.7)
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• Now we determine the constant ck to satisfy the condition

pk(xk) = yk, (3.8)

which leads to

pk(xk) = pk−1(xk) + ck(xk − x0)(xk − x1) · · · (xk − xk−1) = yk. (3.9)

This equation can certainly be solved for ck:

ck =
yk − pk−1(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)
, (3.10)

because the denominator is not zero.

3.1.1. Newton Form of the Interpolating Polynomials

As in the proof of the previous theorem, each pk (k ≥ 1) is obtained by adding
a single term to pk−1. Thus, at the end of the process, pn will be a sum of
terms and p0, p1, · · · , pn−1 will be easily visible in the expression of pn. Each
pk has the form

pk(x) = c0 + c1(x− x0) + · · ·+ ck(x− x0)(x− x1) · · · (x− xk−1). (3.11)

The compact form of this reads

pk(x) =
k∑
i=0

ci

i−1∏
j=0

(x− xj). (3.12)

(Here the convention has been adopted that
m∏
j=0

(x − xj) = 1 when m < 0.)

The first few cases of (3.12) are

p0(x) = c0,

p1(x) = c0 + c1(x− x0),

p2(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1).

(3.13)

These polynomials are called the interpolating polynomials in Newton
form, or Newton form of interpolating polynomials.
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Illustration of Newton’s interpolating polynomials
Example 3.4. Let f(x) = sin(x · (x − 1)) + 1. Let [0, 0.5, 1.0, 2.0, 1.5] be a
collection of distinct points. Find Newton’s interpolating polynomials which
pass {(xi, f(xi)) | i ≤ k} for each k.

A Maple implementation
1 restart:
2 with(Student[NumericalAnalysis]):
3 f := x -> sin(x*(x - 1)) + 1:
4

5 xk := 0:
6 xy := [[xk, f(xk)]]:
7 P0 := PolynomialInterpolation(xy, independentvar = x,
8 method = newton, function = f);
9 p0 := x -> Interpolant(P0):

10 p0(x)
11 1
12

13 xk := 0.5:
14 P1 := AddPoint(P0, [xk, f(xk)]):
15 p1 := x -> Interpolant(P1):
16 p1(x)
17 1. - 0.4948079186 x
18

19 xk := 1.0:
20 P2 := AddPoint(P1, [xk, f(xk)]):
21 p2 := x -> Interpolant(P2):
22 p2(x)
23 1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
24

25 xk := 2.0:
26 P3 := AddPoint(P2, [xk, f(xk)]):
27 p3 := x -> Interpolant(P3):
28 p3(x)
29 1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
30 - 0.3566447492 x (x - 0.5) (x - 1.0)
31
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32 xk := 1.5:
33 P4 := AddPoint(P3, [xk, f(xk)]):
34 p4 := x -> Interpolant(P4):
35 p4(x)
36 1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
37 - 0.3566447492 x (x - 0.5) (x - 1.0)
38 - 0.5517611839 x (x - 0.5) (x - 1.0) (x - 2.0)

Figure 3.2: Illustration of Newton’s interpolating polynomials, with f(x) = sin(x·(x−1))+1,
at [0, 0.5, 1.0, 2.0, 1.5].

Evaluation of pk(x), assuming that c0, c1, · · · , ck are known:

We may use an efficient method called nested multiplication or
Horner’s method. This can be explained most easily for an arbitrary
expression of the form

u =
k∑
i=0

ci

i−1∏
j=0

dj. (3.14)

The idea begins with rewriting it in the form

u = c0 + c1d0 + c2d0d1 + · · ·+ ck−1d0d1 · · · dk−2 + ckd0d1 · · · dk−1

= ckd0d1 · · · dk−1 + ck−1d0d1 · · · dk−2 + · · ·+ c2d0d1 + c1d0 + c0

= (ckd1 · · · dk−1 + ck−1d1 · · · dk−2 + · · ·+ c2d1 + c1)d0 + c0

= ((ckd2 · · · dk−1 + ck−1d2 · · · dk−2 + · · ·+ c2)d1 + c1)d0 + c0
. . .

= (· · · (((ck)dk−1 + ck−1)dk−2 + ck−2)dk−3 + · · ·+ c1)d0 + c0

(3.15)
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Algorithm 3.5. (Nested Multiplication). Thus the algorithm for the
evaluation of u in (3.14) can be written as

u := c[k];
for i from k-1 by -1 to 0 do

u := u*d[i] + c[i];
end do

The computation of ck, using Horner’s algorithm
Algorithm 3.6. The Horner’s algorithm for the computation of coefficients
ck in Equation (3.12) gives

c[0] := y[0];
for k to n do

d := x[k] - x[k-1];
u := c[k-1];
for i from k-2 by -1 to 0 do

u := u*(x[k] - x[i]) + c[i];
d := d*(x[k] - x[i]);

end do;
c[k] := (y[k] - u)/d;

end do

A more efficient procedure exists that achieves the same result. The al-
ternative method uses divided differences to compute the coefficients ck.
The method will be presented later.
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Example 3.7. Let

f(x) = 4x3 + 35x2 − 84x− 954.

Four values of this function are given as

xi 5 −7 −6 0

yi 1 −23 −54 −954

Construct the Newton form of the polynomial from the data.

Solution.
Maple-code

1 with(Student[NumericalAnalysis]):
2 f := 4*x^3 + 35*x^2 - 84*x - 954:
3 xy := [[5, 1], [-7, -23], [-6, -54], [0, -954]]:
4 N := PolynomialInterpolation(xy, independentvar = x,
5 method = newton, function = f):
6 Interpolant(N)
7 -9 + 2 x + 3 (x - 5) (x + 7) + 4 (x - 5) (x + 7) (x + 6)
8 # Since "-9 + 2*x = 1 + 2*(x - 5)", the coefficients are
9 # "c[0] = 1, c[1] = 2, c[2] = 3, c[3] = 4"

10 expand(Interpolant(N));
11 3 2
12 4 x + 35 x - 84 x - 954
13 # which is the same as f
14 RemainderTerm(N);
15 0 &where {-7 <= xi_var and xi_var <= 5}
16 Draw(N);
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DividedDifferenceTable(N);
1 0 0 0

−23 2 0 0

−54 −31 3 0

−954 −150 −17 4


Example 3.8. Find the Newton form of the interpolating polynomial of
the data.

xi 2 −1 1

yi 1 4 −2

Solution.

Ans: p2(x) = 1− (x− 2) + 2(x− 2)(x+ 1)
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3.1.2. Lagrange Form of Interpolating Polynomials

Let data points (xk, yk), 0 ≤ k ≤ n be given, where n + 1 abscissas xi are
distinct. The interpolating polynomial will be sought in the form

pn(x) = y0Ln,0(x) + y1Ln,1(x) + · · ·+ ynLn,n(x) =
n∑
k=0

ykLn,k(x), (3.16)

where Ln,k(x) are polynomials that depend on the nodes x0, x1, · · · , xn, but
not on the ordinates y0, y1, · · · , yn.

How to determine the basis {Ln,k(x)}

Observation 3.9. Let all the ordinates be 0 except for a 1 occupying
i-th position, that is, yi = 1 and other ordinates are all zero.

• Then,

pn(xj) =
n∑
k=0

ykLn,k(xj) = Ln,i(xj). (3.17)

• On the other hand, the polynomial pn interpolating the data must sat-
isfy pn(xj) = δij, where δij is the Kronecker delta

δij =

{
1 if i = j,

0 if i 6= j.

• Thus all the basis polynomials must satisfy

Ln,i(xj) = δij, for all 0 ≤ i, j ≤ n. (3.18)

Polynomials satisfying such a property are known as the cardinal
functions.
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Example 3.10. Construction of Ln,0(x): It is to be an nth-degree poly-
nomial that takes the value 0 at x1, x2, · · · , xn and the value 1 at x0.
Clearly, it must be of the form

Ln,0(x) = c(x− x1)(x− x2) · · · (x− xn) = c
n∏
j=1

(x− xj), (3.19)

where c is determined for which Ln,0(x0) = 1. That is,

1 = Ln,0(x0) = c(x0 − x1)(x0 − x2) · · · (x0 − xn) (3.20)

and therefore
c =

1

(x0 − x1)(x0 − x2) · · · (x0 − xn)
. (3.21)

Hence, we have

Ln,0(x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
=

n∏
j=1

(x− xj)
(x0 − xj)

. (3.22)

Summary 3.11. Each cardinal function is obtained by similar reason-
ing; the general formula is then

Ln,i(x) =
n∏

j=0, j 6=i

(x− xj)
(xi − xj)

, i = 0, 1, · · · , n. (3.23)

Example 3.12. Find the Lagrange form of interpolating polynomial for
the two-point table

x x0 x1

y y0 y1

Solution.
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Example 3.13. Determine the Lagrange interpolating polynomial that
passes through (2, 4) and (5, 1).

Solution.

Example 3.14. Let x0 = 2, x1 = 4, x2 = 5

(a) Use the points to find the second Lagrange interpolating polynomial p2

for f(x) = 1/x.

(b) Use p2 to approximate f(3) = 1/3.

Solution.
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Maple-code
1 with(Student[NumericalAnalysis]);
2 f := x -> 1/x:
3 unassign('xy'):
4 xy := [[2, 1/2], [4, 1/4], [5, 1/5]]:
5

6 L2 := PolynomialInterpolation(xy, independentvar = x,
7 method = lagrange, function = f(x)):
8 Interpolant(L2);
9 1 1 1

10 -- (x - 4) (x - 5) - - (x - 2) (x - 5) + -- (x - 2) (x - 4)
11 12 8 15
12 RemainderTerm(L2);
13 / (x - 2) (x - 4) (x - 5)\
14 |- -----------------------| &where {2 <= xi_var and xi_var <= 5}
15 | 4 |
16 \ xi_var /
17 p2 := x -> expand(Interpolant(L2));
18 1 2 11 19
19 -- x - -- x + --
20 40 40 20
21 evalf(p2(3));
22 0.3500000000

3.1.3. Polynomial interpolation error

Theorem 3.15. (Polynomial Interpolation Error Theorem). Let
f ∈ Cn+1[a, b], and let Pn be the polynomial of degree≤ n that interpolates
f at n+ 1 distinct points x0, x1, · · · , xn in the interval [a, b]. Then, for each
x ∈ (a, b), there exists a number ξx between x0, x1, · · · , xn, hence in the
interval [a, b], such that

f(x)− Pn(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
i=0

(x− xi) =: Rn(x). (3.24)
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Recall: Theorem 1.22. (Taylor’s Theorem with Lagrange Remain-
der), page 9. Suppose f ∈ Cn[a, b], f (n+1) exists on (a, b), and x0 ∈ [a, b].
Then, for every x ∈ [a, b],

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k +Rn(x), (3.25)

where, for some ξ between x and x0,

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

Example 3.16. For Example 3.14, determine the error bound in [2, 5].

Solution.
Maple-code

1 p2 := x -> interp([2, 4, 5], [1/2, 1/4, 1/5], x):
2 p2(x):
3 f := x -> 1/x:
4 fd := x -> diff(f(x), x, x, x):
5 fd(xi)
6 6
7 - ---
8 4
9 xi

10 fdmax := maximize(abs(fd(x)), x = 2..5)
11 3
12 -
13 8
14 r := x -> (x - 2)*(x - 4)*(x - 5):
15 rmax := maximize(abs(r(x)), x = 2..5);
16 /5 1 (1/2)\ /4 1 (1/2)\ /1 1 (1/2)\
17 |- - - 7 | |- + - 7 | |- + - 7 |
18 \3 3 / \3 3 / \3 3 /
19 #Thus, "|f(x)-p2(x)|<=(max)|R[2](x)|="
20 evalf(fdmax*rmax/3!)
21 0.1320382370
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Example 3.17. If the function f(x) = sin(x) is approximated by a poly-
nomial of degree 5 that interpolates f at six equally distributed points in
[−1, 1] including end points, how large is the error on this interval?

Solution. The nodes xi are −1,−0.6,−0.2, 0.2, 0.6, and 1. It is easy to see
that

|f (6)(ξ)| = | − sin(ξ)| ≤ sin(1).

g := x -> (x+1)*(x+0.6)*(x+0.2)*(x-0.2)*(x-0.6)*(x-1):
gmax := maximize(abs(g(x)), x = -1..1)

0.06922606316

Thus,

| sin(x)− P5(x)| =
∣∣∣f (6)(ξ)

6!

5∏
i=0

(x− xi)
∣∣∣ ≤ sin(1)

6!
gmax

= 0.00008090517158

(3.26)

Theorem 3.18. (Polynomial Interpolation Error Theorem for
Equally Spaced Nodes): Let f ∈ Cn+1[a, b], and let Pn be the poly-
nomial of degree ≤ n that interpolates f at

xi = a+ ih, h =
b− a
n

, i = 0, 1, · · · , n.

Then, for each x ∈ (a, b),

|f(x)− Pn(x)| ≤ hn+1

4(n+ 1)
M, (3.27)

where
M = max

ξ∈[a,b]
|f (n+1)(ξ)|.

Proof. Recall the interpolation error Rn(x) given in (3.24). We consider
bounding

max
x∈[a,b]

n∏
j=1

|x− xi|.

Start by picking an x. We can assume that x is not one of the nodes, because
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otherwise the product in question is zero. Let x ∈ (xj, xj+1), for some j. Then
we have

|x− xj| · |x− xj+1| ≤
h2

4
. (3.28)

Now note that

|x− xi| ≤

{
(j + 1− i)h for i < j

(i− j)h for j + 1 < i.
(3.29)

Thus
n∏
j=1

|x− xi| ≤
h2

4
[(j + 1)!hj] [(n− j)!hn−j−1]. (3.30)

Since (j + 1)!(n− j)! ≤ n!, we can reach the following bound
n∏
j=1

|x− xi| ≤
1

4
hn+1n!. (3.31)

The result of the theorem follows from the above bound.

Example 3.19. How many equally spaced nodes are required to interpo-
late f(x) = cos x+ sinx to within 10−8 on the interval [−1, 1]?

Solution. Recall the formula: |f(x)−Pn(x)| ≤ hn+1

4(n+ 1)
M . Then, for n, solve

(2/n)n+1

4(n+ 1)

√
2 ≤ 10−8.

Ans: n = 10
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3.1.4. Chebyshev polynomials

Recall the Polynomial Interpolation Error in (3.24), p. 93:

f(x)− Pn(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
i=0

(x− xi) =: Rn(x).

There is a term that can be minimized by choosing the nodes in a
special way. An analysis of this problem was first given by a great
mathematician Chebyshev (1821-1894). The optimization process leads
naturally to a system of polynomials called Chebyshev polynomials.

Definition 3.20. The Chebyshev polynomials (of the first kind) are
defined recursively as follows:{

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.
(3.32)

The explicit forms of the next few Tn are readily calculated:
Chebyshev-polynomials

1 T2 := x -> simplify(ChebyshevT(2, x)): T2(x)
2 2
3 2 x - 1
4

5 T3 := x -> simplify(ChebyshevT(3, x)): T3(x)
6 3
7 4 x - 3 x
8

9 T4 := x -> simplify(ChebyshevT(4, x)): T4(x)
10 4 2
11 8 x - 8 x + 1
12

13 T5 := x -> simplify(ChebyshevT(5, x)): T5(x)
14 5 3
15 16 x - 20 x + 5 x
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Figure 3.3: Chebyshev polynomials.

Theorem 3.21. (Properties of Chebyshev polynomials):

(a) Tn(x) ∈ [−1, 1], for all x ∈ [−1, 1], and the leading coefficient of Tn(x)
is 2n−1.

(b) The Chebyshev polynomials have this closed-form expression:

Tn(x) = cos
(
n cos−1(x)

)
, n ≥ 0. (3.33)

(c) It has been verified that if the nodes x0, x1, · · · , xn ∈ [−1, 1], then

max
|x|≤1

∣∣∣ n∏
i=0

(x− xi)
∣∣∣ ≥ 2−n, n ≥ 0, (3.34)

and its minimum value will be attained if
n∏
i=0

(x− xi) = 2−nTn+1(x). (3.35)

(d) The nodes then must be the roots of Tn+1, which are

xi = cos
((2i+ 1)π

2n+ 2

)
, i = 0, 1, · · · , n. (3.36)
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Theorem 3.22. (Interpolation Error Theorem, Chebyshev
nodes): If the nodes are the roots of the Chebyshev polynomial Tn+1,
as in (3.36), then the error bound for the nth-degree interpolating poly-
nomial Pn reads

|f(x)− Pn(x)| ≤ 1

2n(n+ 1)!
max
|t|≤1

∣∣f (n+1)(t)
∣∣. (3.37)

Example 3.23. (A variant of Example 3.17): If the function f(x) =

sin(x) is approximated by a polynomial of degree 5 that interpolates f at at
roots of the Chebyshev polynomial T6 in [−1, 1], how large is the error on
this interval?

Solution. From Example 3.17, we know that

|f (6)(ξ)| = | − sin(ξ)| ≤ sin(1).

Thus
|f(x)− P5(x)| ≤ sin(1)

2n(n+ 1)!
= 0.00003652217816. (3.38)

It is an optimal upper bound of the error and smaller than the one in Equa-
tion (3.26), 0.00008090517158.

Accuracy comparison between uniform nodes and Chebyshev nodes:
Maple-code

1 with(Student[NumericalAnalysis]):
2 n := 5:
3 f := x -> sin(2*x*Pi):
4 xd := Array(0..n):
5

6 for i from 0 to n do
7 xd[i] := evalf[15](-1 + (2*i)/n);
8 end do:
9 xyU := [[xd[0],f(xd[0])], [xd[1],f(xd[1])], [xd[2],f(xd[2])],

10 [xd[3],f(xd[3])], [xd[4],f(xd[4])], [xd[5],f(xd[5])]]:
11 U := PolynomialInterpolation(xyU, independentvar = x,
12 method = lagrange, function = f(x)):
13 pU := x -> Interpolant(U):
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14

15 for i from 0 to n do
16 xd[i] := evalf[15](cos((2*i + 1)*Pi/(2*n + 2)));
17 end do:
18 xyC := [[xd[0],f(xd[0])], [xd[1],f(xd[1])], [xd[2],f(xd[2])],
19 [xd[3],f(xd[3])], [xd[4],f(xd[4])], [xd[5],f(xd[5])]]:
20 C := PolynomialInterpolation(xyC, independentvar = x,
21 method = lagrange, function = f(x)):
22 pC := x -> Interpolant(C):
23

24 plot([pU(x), pC(x)], x = -1..1, thickness = [2,2],
25 linestyle = [solid, dash], color = [red, blue],
26 legend = ["Uniform nodes", "Chebyshev nodes"],
27 legendstyle = [font = ["HELVETICA", 13], location = bottom])

Figure 3.4: Accuracy comparison between uniform nodes and Chebyshev nodes.
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3.2. Divided Differences

It turns out that the coefficients ck for the interpolating polynomials in New-
ton’s form can be calculated relatively easily by using divided differences.

Remark 3.24. For {(xk, yk)}, 0 ≤ k ≤ n, the kth-degree Newton interpo-
lating polynomials are of the form

pk(x) = c0 + c1(x− x0) + · · ·+ ck(x− x0)(x− x1) · · · (x− xk−1), (3.39)

for which pk(xk) = yk. The first few cases are

p0(x) = c0 = y0,

p1(x) = c0 + c1(x− x0),

p2(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1).

(3.40)

(a) The coefficient c1 is determined to satisfy

y1 = p1(x1) = c0 + c1(x1 − x0). (3.41)

Note c0 = y0. Thus, we have

y1 − y0 = c1(x1 − x0) (3.42)

and therefore
c1 =

y1 − y0

x1 − x0
. (3.43)

(b) Now, since

y2 = p2(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1),

it follows from the above, (3.42), and (3.43) that

c2 =
y2 − y0 − c1(x2 − x0)

(x2 − x0)(x2 − x1)
=

(y2 − y1) + (y1 − y0)− c1(x2 − x0)

(x2 − x0)(x2 − x1)

=
(y2 − y1) + c1(x1 − x0)− c1(x2 − x0)

(x2 − x0)(x2 − x1)
=

(y2 − y1)/(x2 − x1)− c1

x2 − x0
.

(3.44)
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Definition 3.25. (Divided differences):

• The zeroth divided difference of the function f with respect to xi,
denoted f [xi], is the value of at xi:

f [xi] = f(xi) (3.45)

• The remaining divided differences are defined recursively. The first
divided difference of f with respect to xi, xi+1 is defined as

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
. (3.46)

• The second divided difference relative to xi, xi+1, xi+2 is defined
as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
. (3.47)

• In general, the kth divided difference relative to xi, xi+1, · · · , xi+k
is defined as

f [xi, xi+1, · · · , xi+k] =
f [xi+1, · · · , xi+k]− f [xi, · · · , xi+k−1]

xi+k − xi
. (3.48)

Note: It follows from Remark 3.24 that the coefficients of the Newton
interpolating polynomials read

c0 = f [x0], c1 = f [x0, x1], c2 = f [x0, x1, x2]. (3.49)

In general,
ck = f [x0, x1, · · · , xk]. (3.50)



3.2. Divided Differences 103

Newton’s Divided Difference Table

x f [x] DD1 (f[, ]) DD2 (f[, , ]) DD3 (f[, , , ])

x0 f [x0]

x1 f [x1] f [x0, x1]

= f [x1]−f [x0]
x1−x0

x2 f [x2] f [x1, x2] f [x0, x1, x2]

= f [x2]−f [x1]
x2−x1 = f [x1,x2]−f [x0,x1]

x2−x0
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]

= f [x3]−f [x2]
x3−x2 = f [x2,x3]−f [x1,x2]

x3−x1 = f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

(3.51)

Pseudocode 3.26. (Newton’s Divided Difference Formula):

Input: (xi, yi), i = 0, 1, · · · , n, saved as Fi,0 = yi
Output: Fi,i, i = 0, 1, · · · , n
Step 1: For i = 1, 2, · · · , n

For j = 1, 2, · · · , i

Fi,j =
Fi,j−1 − Fi−1,j−1

xi − xi−j
Step 2: Return (F0,0, F1,1, · · · , Fn,n)

Example 3.27. Determine the Newton interpolating polynomial for the
data:

x 0 1 2 5

y 1 −1 3 −189

Solution.

Ans: f(x) = 1− 2x+ 3x(x− 1)− 4x(x− 1)(x− 2)
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Theorem 3.28. (Properties of Divided Differences):

• If f is a polynomial of degree k, then
f [x0, x1, · · · , xn] = 0, for all n > k. (3.52)

• Permutations in Divided Differences: The divided difference is
a symmetric function of its arguments. That is, if z0, z1, · · · , zn is a
permutation of x0, x1, · · · , xn, then

f [z0, z1, · · · , zn] = f [x0, x1, · · · , xn]. (3.53)

• Error in Newton Interpolation: Let P be the polynomial of degree
≤ n that interpolates f at n + 1 distinct nodes, x0, x1, · · · , xn. If t is a
point different from the nodes, then

f(t)− P (t) = f [x0, x1, · · · , xn, t]
n∏
i=0

(t− xi). (3.54)

Proof: Let Q be the polynomial of degree at most (n + 1) that interpolates f at
nodes, x0, x1, · · · , xn, t. Then, we know that Q is obtained from P by adding one
more term. Indeed,

Q(x) = P (x) + f [x0, x1, · · · , xn, t]
n∏
i=0

(x− xi). (3.55)

Since f(t) = Q(t), the result follows.

• Derivatives and Divided Differences: If f ∈ Cn[a, b] and if
x0, x1, · · · , xn are distinct points in [a, b], then there exists a point
ξ ∈ (a, b) such that

f [x0, x1, · · · , xn] =
1

n!
f (n)(ξ). (3.56)

Proof: Let pn−1 be the polynomial of degree at most n − 1 that interpolates f at
x0, x1, · · · , xn−1. By the Polynomial Interpolation Error Theorem, there exists
a point ξ ∈ (a, b) such that

f(xn)− pn−1(xn) =
1

n!
f (n)(ξ)

n−1∏
i=1

(xn − xi). (3.57)

On the other hand, by the previous theorem, we have

f(xn)− pn−1(xn) = f [x0, x1, · · · , xn]
n−1∏
i=1

(xn − xi). (3.58)

The theorem follows from the comparison of above two equations.
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Self-study 3.29. Prove that for h > 0,

f(x)− 2f(x+ h) + f(x+ 2h) = h2f ′′(ξ), (3.59)

for some ξ ∈ (x, x+ 2h).

Hint : Use the last theorem; employ the divided difference formula to find f [x, x+h, x+2h].

Solution.
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3.3. Data Approximation and Neville’s Method

Remark 3.30.

• We have studied how to construct interpolating polynomials. A fre-
quent use of these polynomials involves the interpolation of tabulated
data.

• However, in many applications, an explicit representation of the
polynomial is not needed, but only the values of the polynomial at
specified points.

• In this situation, the function underlying the data might be unknown
so the explicit form of the error cannot be used to assure the accuracy
of the interpolation.

• Neville’s Method provides an adaptive mechanism for the evalua-
tion of accurate interpolating values.

Definition 3.31. (Interpolating polynomial at xm1
, xm2

, · · · , xmk
):

Let f be defined at x0, x1, · · · , xn, and suppose that m1, m2, · · · , mk are
k distinct integers with 0 ≤ mi ≤ n for each i. The polynomial that
agrees with at the points xm1

, xm2
, · · · , xmk

is denoted by Pm1, m2, · · · , mk
.

Example 3.32. Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6 and
f(x) = ex . Determine the interpolating polynomial P1,2,4(x) and use this
polynomial to approximate f(5).

Solution. It can be the Lagrange polynomial that agrees with f(x) at
x1 = 2, x2 = 3, x4 = 6:

P1,2,4(x) =
(x− 3)(x− 6)

(2− 3)(2− 6)
e2 +

(x− 2)(x− 6)

(3− 2)(3− 6)
e3 +

(x− 2)(x− 3)

(6− 2)(6− 3)
e6.

Thus
P1,2,4(5) = −1

2
e2 + e3 +

1

2
e6 ≈ 218.1054057.

On the other hand, f(5) = e5 ≈ 148.4131591.
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Theorem 3.33. Let f be defined at (n+ 1) distinct points, x0, x1, · · · , xn.
Then for each 0 ≤ i < j ≤ n,

Pi,i+1,··· ,j(x) =
(x− xi)Pi+1,i+2,··· ,j(x)− (x− xj)Pi,i+1,··· ,j−1(x)

xj − xi
, (3.60)

which is the polynomial interpolating f at xi, xi+1, · · · , xj.

Note: The above theorem implies that the interpolating polynomial can
be generated recursively. For example,

P0,1(x) =
(x− x0)P1(x)− (x− x1)P0(x)

x1 − x0

P1,2(x) =
(x− x1)P2(x)− (x− x2)P1(x)

x2 − x1

P0,1,2(x) =
(x− x0)P1,2(x)− (x− x2)P0,1(x)

x2 − x0

(3.61)

and so on. They are generated in the manner shown in the following
table, where each row is completed before the succeeding rows are begun.

x0 y0 = P0

x1 y1 = P1 P0,1

x2 y2 = P2 P1,2 P0,1,2

x3 y3 = P3 P2,3 P1,2,3 P0,1,2,3

(3.62)

For simplicity in computation, we may try to avoid multiple subscripts by
defining the new variable

Qi,j = Pi−j,i−j+1,··· ,i

Then the above table can be expressed as

x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

(3.63)
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Example 3.34. Let x0 = 2.0, x1 = 2.2, x2 = 2.3, x3 = 1.9, x4 = 2.15. Use
Neville’s method to approximate f(2.1) = ln(2.1) in a four-digit accuracy.

Solution.
Maple-code

1 with(Student[NumericalAnalysis]):
2 x0 := 2.0:
3 x1 := 2.2:
4 x2 := 2.3:
5 x3 := 1.9:
6 x4 := 2.15:
7 xy := [[x0,ln(x0)], [x1,ln(x1)], [x2,ln(x2)], [x3,ln(x3)], [x4,ln(x4)]]:
8 P := PolynomialInterpolation(xy, method = neville):
9

10 Q := NevilleTable(P, 2.1)
11 [[0.6931471806, 0, 0, 0, 0 ],
12 [0.7884573604, 0.7408022680, 0, 0, 0 ],
13 [0.8329091229, 0.7440056025, 0.7418700461, 0, 0 ],
14 [0.6418538862, 0.7373815030, 0.7417975693, 0.7419425227, 0 ],
15 [0.7654678421, 0.7407450500, 0.7418662324, 0.7419348958, 0.7419374382]]

Note that
|Q3,3 −Q2,2| = |0.7419425227− 0.7418700461| = 0.0000724766

|Q4,4 −Q3,3| = |0.7419374382− 0.7419425227| = 0.0000050845

Thus Q3,3 = 0.7419425227 is already in a four-digit accuracy.
Check: The real value is ln(2.1) = 0.7419373447. The absolute error: | ln(2.1)−
Q3,3| = 0.0000051780.

Pseudocode 3.35.

Input:

{
the nodes x0, x1, · · · , xn; the evaluation point x; the tolerance ε;
and values y0, y1, · · · , yn in the 1st column of Q ∈ R(n+1)×(n+1)

Output: Q
Step 1: For i = 1, 2, · · · , n

For j = 1, 2, · · · , i

Qi,j =
(x− xi−j)Qi,j−1 − (x− xi)Qi−1,j−1

xi − xi−j
if (|Qi,i −Qi−1,i−1| < ε) {i0 = i; break; }

Step 2: Return (Q, i0)



3.3. Data Approximation and Neville’s Method 109

Example 3.36. Neville’s method is used to approximate f(0.3), giving the
following table.

x0 = 0 Q0,0 = 1

x1 = 0.25 Q1,0 = 2 Q1,1 = 2.2

x2 = 0.5 Q2,0 Q2,1 Q2,2

x3 = 0.75 Q3,0 = 5 Q3,1 Q3,2 = 2.12 Q3,3 = 2.168

(3.64)

Determine Q2,0 = f(x2).

Solution.

Ans: Q2,2 = 2.2; Q2,1 = 2.2; Q2,0 = 3
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3.4. Hermite Interpolation

The Hermite interpolation refers to the interpolation of a function and
some of its derivatives at a set of nodes. When a distinction is being made
between this type of interpolation and its simpler type (in which no deriva-
tives are interpolated), the latter is often called Lagrange interpolation.

Key Idea 3.37. (Basic Concepts of Hermite Interpolation):

• For example, we require a polynomial of least degree that interpolates
a function f and its derivative f ′ at two distinct points, say x0 and x1.

• Then the polynomial p sought will satisfy these four conditions:

p(xi) = f(xi), p
′(xi) = f ′(xi); i = 0, 1. (3.65)

• Since there are four conditions, it seems reasonable to look for a so-
lution in P3, the space of all polynomials of degree at most 3. Rather
than writing p(x) in terms of 1, x, x2, x3, let us write it as

p(x) = a+ b(x− x0) + c(x− x0)
2 + d(x− x0)

2(x− x1), (3.66)

because this will simplify the work. This leads to

p′(x) = b+ 2c(x− x0) + 2d(x− x0)(x− x1) + d(x− x0)
2. (3.67)

• The four conditions on p, in (3.65), can now be written in the form

f(x0) = a

f ′(x0) = b

f(x1) = a+ bh+ ch2 (h = x1 − x0)

f ′(x1) = b+ 2ch+ dh2

(3.68)

Thus, the coefficients a, b, c, d can be obtained easily.
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Theorem 3.38. (Hermite Interpolation Theorem): If f ∈ C1[a, b]
and x0, x1, · · · , xn ∈ [a, b] are distinct, then the unique polynomial of least
degree agreeing with f and f ′ at the (n+ 1) points is the Hermite poly-
nomial of degree at most (2n+ 1) given by

H2n+1(x) =
n∑
i=0

f(xi)Hn,i(x) +
n∑
i=0

f(xi)Ĥn,i(x), (3.69)

where
Hn,i(x) = [1− 2(x− xi)L′n,i(xi)]L2

n,i(x),

Ĥn,i(x) = (x− xi)L2
n,i(x).

Here Ln,i(x) is the ith Lagrange polynomial of degree n. Moreover, if
f ∈ C2n+2[a, b], then

f(x)−H2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!

n∏
i=0

(x− xi)2. (3.70)

Construction of Hermite Polynomials using Divided Differences

Recall: The polynomial Pn that interpolates f at x0, x1, · · · , xn is given

Pn(x) = f [x0] +
n∑
k=1

f [x0, x1, · · · , xk](x− x0) · · · (x− xk−1). (3.71)

Strategy 3.39. (Construction of Hermite Polynomials):

• Define a new sequence by z0, z1, · · · , z2n+1 by
z2i = z2i+1 = xi, i = 0, 1, · · · , n. (3.72)

• Then the Newton form of the Hermite polynomial is given by

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, z1, · · · , zk](x− z0) · · · (x− zk−1), (3.73)

with

f [z2i, z2i+1] = f [xi, xi] =
f [xi]− f [xi]

xi − xi
replaced by f ′(xi). (3.74)
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Note: For each i = 0, 1, · · · , n,

lim
x→xi

f(x)− f(xi)

x− xi
= f ′(xi). (3.75)

The extended Newton divided difference table: Consider the Hermite
polynomial that interpolates f and f ′ at three points, x0, x1, x2.

z f(z) DD1 Higher DDs
z0 = x0 f [z0] = f(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1] = f ′(x0)

z2 = x1 f [z2] = f(x1) f [z1, z2] =
f [z2]− f [z1]

z2 − z1

z3 = x1 f [z3] = f(x1) f [z2, z3] = f ′(x1) as usual

z4 = x2 f [z4] = f(x2) f [z3, z4] =
f [z4]− f [z3]

z4 − z3

z5 = x2 f [z5] = f(x2) f [z4, z5] = f ′(x2)

(3.76)

Each zero-over-zero is replaced by its corresponding derivative value,
while other divided differences are obtained as usual.
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Example 3.40. Use the extended Newton divided difference method to
obtain a cubic polynomial that takes these values:

x f(x) f ′(x)

0 2 −9

1 −4 4

Ans: H3(x) = 2− 9x+ 3x2 + 7x2(x− 1).

Example 3.41. (Continuation): Find a quartic polynomial p4 that takes
values given in the preceding example and, in addition, satisfies p4(2) = 44.

Ans: p4(x) = H3(x) + 5x2(x− 1)2.
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3.5. Spline Interpolation

3.5.1. Runge’s phenomenon

Recall: (Weierstrass approximation theorem): Suppose f ∈ C[a, b].
Then, for each ε > 0, there exists a polynomial P (x) such that

|f(x)− P (x)| < ε, for all x ∈ [a, b]. (3.77)

Interpolation at equidistant points is a natural and common approach to
construct approximating polynomials. Runge’s phenomenon demonstrates,
however, that interpolation can easily result in divergent approximations.

Example 3.42. (Runge’s phenomenon): Consider the function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (3.78)

Runge found that if this function was interpolated at equidistant points

xi = −1 + i
2

n
, i = 0, 1, · · · , n,

the resulting interpolation pn oscillated toward the end of the interval,
i.e. close to -1 and 1. It can even be proven that the interpolation error
tends toward infinity when the degree of the polynomial increases:

lim
n→∞

(
max
−1≤x≤1

|f(x)− pn(x)|
)

=∞. (3.79)

Figure 3.5: Runge’s phenomenon.
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Mitigation to the problem
• Change of interpolation points: e.g., Chebyshev nodes
• Constrained minimization: e.g., Hermite-like higher-order poly-

nomial interpolation, whose first (or second) derivative has minimal
norm.

• Use of piecewise polynomials: e.g., Spline interpolation

Definition 3.43. A partition of the interval [a, b] is an ordered se-
quence {xi}ni=0 such that

a = x0 < x1 < x2 < · · · < xn = b.

The numbers xi are known as knots or nodes.

Definition 3.44. A function S is a spline of degree k on [a, b] if

1) The domain of S is [a, b].
2) There exits a partition {xi}ni=0 of [a, b] such that on each subinterval

[xi−1, xi], S ∈ Pk.
3) S, S ′, · · · , S(k−1) are continuous on (a, b).

3.5.2. Linear splines

A linear spline is a continuous function which is linear on each subin-
terval. Thus it is defined entirely by its values at the nodes. That is,
given

x x0 x1 · · · xn
y y0 y1 · · · yn

the linear polynomial on each subinterval is defined as

Li(x) = yi−1 +
yi − yi−1

xi − xi−1
(x− xi−1), x ∈ [xi−1, xi]. (3.80)
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Example 3.45. Find the linear spline for

x 0.0 0.2 0.5 0.8 1.0

y 1.3 3.0 2.0 2.1 2.5

Solution.

The linear spline can be easily com-
puted as

L(x) =



1.3 + 8.5x, x < 0.2

11

3
− 10x

3
, x < 0.5

13

6
+
x

3
, x < 0.8

0.5 + 2.0x, otherwise
(3.81) Figure 3.6: Linear spline.

First-Degree Spline Accuracy

Theorem 3.46. To find the error bound, we will consider the error on
a single subinterval of the partition, and apply a little calculus. Let p(x)
be the linear polynomial interpolating f(x) at the endpoints of [xi−1, xi].
Then,

f(x)− p(x) =
f ′′(ξ)

2!
(x− xi−1)(x− xi), (3.82)

for some ξ ∈ (xi−1, xi). Thus

|f(x)− p(x)| ≤ M2

8
max
1≤i≤n

(xi − xi−1)
2, x ∈ [a, b], (3.83)

where
M2 = max

x∈(a,b)
|f ′′(x)|.
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3.5.3. Quadratic (Second Degree) Splines

Remark 3.47. A quadratic spline is a piecewise quadratic function,
of which the derivative is continuous on (a, b).

• Typically, a quadratic spline Q is defined by its piecewise polynomials:
Let Qi = Q

∣∣
[xi−1,xi]

. Then

Qi(x) = aix
2 + bix+ ci, x ∈ [xi−1, xi], i = 1, 2, · · · , n. (3.84)

Thus there are 3n parameters to define Q(x).
• For each of the n subintervals, the data (xi, yi), i = 1, 2, · · · , n, gives

two equations regarding Qi(x):

Qi(xi−1) = yi−1 and Qi(xi) = yi, i = 1, 2, · · · , n. (3.85)

This is 2n equations. The continuity condition on Q′ gives a single
equation for each of the (n− 1) internal nodes:

Q′i(xi) = Q′i+1(xi), i = 1, 2, · · · , n− 1. (3.86)

This totals (3n− 1) equations, but 3n unknowns.
• Thus an additional user-chosen condition is required, e.g.,

Q′(a) = f ′(a), Q′(a) = 0, or Q′′(a) = 0. (3.87)

Alternatively, the additional condition can be given at x = b.
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Algorithm 3.48. (Construction of quadratic splines):

(0) Define
zi = Q′(xi), i = 0, 1, · · · , n; (3.88)

suppose that the additional condition is given by specifying z0.
(1) Because Q′i = Q′

∣∣
[xi−1,xi]

is a linear function satisfying

Q′i(xi−1) = zi−1 and Q′i(xi) = zi, (continuity of Q′) (3.89)

we have

Q′i(x) = zi−1 +
zi − zi−1

xi − xi−1
(x− xi−1), x ∈ [xi−1, xi]. (3.90)

(2) By integrating it and using Qi(xi−1) = yi−1 (left edge value)

Qi(x) =
zi − zi−1

2(xi − xi−1)
(x− xi−1)

2 + zi−1(x− xi−1) + yi−1. (3.91)

(3) In order to determine zi, 1 ≤ i ≤ n, we use the above at xi
(right edge value):

yi = Qi(xi) =
zi − zi−1

2(xi − xi−1)
(xi − xi−1)

2 + zi−1(xi − xi−1) + yi−1, (3.92)

which implies

yi − yi−1 =
1

2
(zi − zi−1)(xi − xi−1) + zi−1(xi − xi−1)

= (xi − xi−1)
(zi + zi−1)

2
.

Thus we have

zi = 2
yi − yi−1

xi − xi−1
− zi−1, i = 1, 2, · · · , n. (3.93)
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Note:

a. You should first decide zi using (3.93) and then finalize Qi from (3.91).
b. When zn is specified, Equation (3.93) can be replaced by

zi−1 = 2
yi − yi−1

xi − xi−1
− zi, i = n, n− 1, · · · , 1. (3.94)

Example 3.49. Find the quadratic spline for the same dataset used in
Example 3.45, p. 116:

x 0.0 0.2 0.5 0.8 1.0

y 1.3 3.0 2.0 2.1 2.5

Solution. zi = Q′i(xi) are computed as

z[0]=8.5
z[1]=8.5
z[2]=-15.1667
z[3]=15.8333
z[4]=-11.8333

Figure 3.7: The graph of Q(x) is superposed over the graph of the linear spline L(x).
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3.5.4. Cubic splines

Recall: (Definition 3.44): A function S is a cubic spline on [a, b] if

1) The domain of S is [a, b].
2) S ∈ P3 on each subinterval [xi−1, xi].
3) S, S ′, S ′′ are continuous on (a, b).

Remark 3.50. By definition, a cubic spline is a continuous piecewise
cubic polynomial whose first and second derivatives are continuous.

• On each subinterval [xi−1, xi], 1 ≤ i ≤ n, we have to determine coeffi-
cients of a cubic polynomial of the form

Si(x) = aix
3 + bix

2 + cix+ di, i = 1, 2, · · · , n. (3.95)

Thus there are 4n unknowns to define S(x).
• On the other hand, equations we can get are

left an right values of Si : 2n

continuity of S ′ : n− 1

continuity of S ′′ : n− 1

(3.96)

Thus there are (4n− 2) equations.
• Two degrees of freedom remain, and there have been various ways

of choosing them to advantage.
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Algorithm 3.51. (Construction of cubic splines):

(0) Similarly as for quadratic splines, we define

zi = S ′′(xi), i = 0, 1, · · · , n. (3.97)

(1) Because S ′′i = S ′′
∣∣
[xi−1,xi]

is a linear function satisfying

S ′′i (xi−1) = zi−1 and S ′′i (xi) = zi, (continuity of S ′′) (3.98)

and therefore is given by the straight line between zi−1 and zi:

S ′′i (x) =
zi−1(xi − x)

hi
+
zi(x− xi−1)

hi
, hi = xi − xi−1, x ∈ [xi−1, xi].

(3.99)
(2) If (3.99) is integrated twice, the result reads

Si(x) =
zi−1(xi − x)3

6hi
+
zi(x− xi−1)

3

6hi
+C(x− xi−1) +D(xi− x). (3.100)

In order to determine C and D, we use Si(xi−1) = yi−1 and Si(xi) = yi
(left and right edge values):

Si(xi−1) =
zi−1

6
h2
i +Dhi = yi−1, Si(xi) =

zi
6
h2
i + Chi = yi. (3.101)

Thus (3.100) becomes

Si(x) =
zi−1(xi − x)3

6hi
+
zi(x− xi−1)

3

6hi

+
(yi
hi
− 1

6
zihi

)
(x− xi−1) +

(yi−1

hi
− 1

6
zi−1hi

)
(xi − x).

(3.102)
(3) The values z1, z2, · · · , zn−1 can be determined from the continuity of

S ′:
S ′i(x) = −zi−1(xi − x)2

2hi
+
zi(x− xi−1)

2

2hi

+
(yi
hi
− 1

6
zihi

)
−
(yi−1

hi
− 1

6
zi−1hi

)
.

(3.103)
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Construction of cubic splines (continue):

Then substitution of x = xi and simplification lead to

S ′i(xi) =
hi
6
zi−1 +

hi
3
zi +

yi − yi−1

hi
. (3.104)

Analogously, after obtaining S ′i+1, we have

S ′i+1(xi) = −hi+1

3
zi−1 −

hi+1

6
zi+1 +

yi+1 − yi
hi+1

. (3.105)

When the right sides of (3.104) and (3.105) are set equal to each other,
the result reads

hi zi−1 + 2(hi + hi+1) zi + hi+1 zi+1 =
6(yi+1 − yi)

hi+1
− 6(yi − yi−1)

hi
,

(3.106)
for i = 1, 2, · · · , n− 1.

(4) Two additional user-chosen conditions are required to deter-
mine (n + 1) unknowns, z0, z1, · · · , zn. There are two popular ap-
proaches for the choice of the two additional conditions.

Natural Cubic Spline : z0 = 0, zn = 0

Clamped Cubic Spline : S ′(a) = f ′(a), S ′(b) = f ′(b)

Natural Cubic Splines: Let z0 = zn = 0. Then the system of linear equa-
tions in (3.106) can be written as

A


z1

z2
...

zn−1

 =


b2 − b1

b3 − b2
...

bn − bn−1

 , (3.107)

where

A =


2(h1 + h2) h2

h2 2(h2 + h3) h3
. . . . . . . . .

hn−2 2(hn−2 + hn−1) hn−1
hn−1 2(hn−1 + hn)

 and bi =
6

hi
(yi − yi−1).
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Clamped Cubic Splines: Let f ′(a) and f ′(b) be prescribed. Then the two
extra conditions read

S ′(a) = f ′(a), S ′(b) = f ′(b). (3.108)

Since a = x0 and b = xn, utilizing Equation (3.103), the conditions read

2h1z0 + h1z1 =
6

h1
(y1 − y0)− 6f ′(x0)

hnzn−1 + 2hnzn = 6f ′(xn)−
6

hn
(yn − yn−1)

(3.109)

Equation (3.106) and the above two equations clearly make (n + 1) condi-
tions for (n+ 1) unknowns, z0, z1, · · · , zn. It is a good exercise to compose an
algebraic system for the computation of clamped cubic splines.

Example 3.52. Find the natural cubic spline for the same dataset

x 0.0 0.2 0.5 0.8 1.0

y 1.3 3.0 2.0 2.1 2.5

Solution.

Figure 3.8: The graph of S(x) is superposed over the graphs of the quadratic spline Q(x)
and the linear spline L(x).
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Example 3.53. Find the natural cubic spline that interpolates the data

x 0 1 3

y 4 2 7

Solution.
Maple-code

1 with(CurveFitting):
2 xy := [[0, 4], [1, 2], [3, 7]]:
3 n := 2:
4 L := x -> Spline(xy, x, degree = 1, endpoints = 'natural'):
5 Q := x -> Spline(xy, x, degree = 2, endpoints = 'notaknot'):
6 S := x -> Spline(xy, x, degree = 3, endpoints = 'natural'):
7 S(x)
8 / 11 3 3 41 49 27 2 3 3\
9 piecewise|x < 1, 4 - -- x + - x , otherwise, -- - -- x + -- x - - x |

10 \ 4 4 8 8 8 8 /

Figure 3.9: Splines on two subintervals.
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Optimality Theorem for Natural Cubic Splines:

We now present a theorem to the effect that the natural cubic spline pro-
duces the smoothest interpolating function. The word smooth is given a
technical meaning in the theorem.

Theorem 3.54. Let f ′′ be continuous in [a, b] and a = x0 < x1 < · · · <
xn = b. If S is the natural cubic spline interpolating f at the nodes xi
for 0 ≤ i ≤ n, then

ˆ b

a

[S ′′(x)]2 dx ≤
ˆ b

a

[f ′′(x)]2 dx. (3.110)
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3.6. Parametric Curves

Consider the data of the form:

xy := [[-1, 0], [0, 1], [1, 0.5], [0, 0], [1, -1]]

of which the point plot is given

• None of the interpolation methods we have learnt so far can be used to
generate an interpolating curve for this data, because the curve cannot
be expressed as a function of one coordinate variable to the other.

• In this section we will see how to represent general curves by using a
parameter to express both the x- and y-coordinate variables.

Example 3.55. Construct a pair of interpolating polynomials, as a func-
tion of t, for the data:

i 0 1 2 3 4

t 0 0.25 0.5 0.75 1

x −1 0 1 0 1

y 0 1 0.5 0 −1

Solution.
Maple-code

1 with(CurveFitting):
2 unassign('t'):
3 tx := [[0, -1], [0.25, 0], [0.5, 1], [0.75, 0], [1, 1]]:
4 ty := [[0, 0], [0.25, 1], [0.5, 0.5], [0.75, 0], [1, -1]]:
5 x := t -> PolynomialInterpolation(tx, t, form = Lagrange):
6 y := t -> PolynomialInterpolation(ty, t, form = Lagrange):
7 plot([x(t), y(t), t = 0..1], color = blue, thickness = 2)
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Figure 3.10

Remark 3.56. (Applications in Computer Graphics):

• Required: Rapid generation of smooth curves that can be quickly and
easily modified.

• Preferred: Change of one portion of a curve should have little or no
effect on other portions of the curve.

⇒ The choice of curve is a form of the piecewise cubic Hermite
polynomial.

Example 3.57. For data {(xi, f(xi), f
′(xi)}, i = 0, 1, · · · , n, the piecewise

cubic Hermite polynomial can be generated independently in each por-
tion [xi−1, xi]. Why?

Solution.
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Piecewise cubic Hermite polynomial for General Curve Fitting

Algorithm 3.58. Let us focus on the first portion of the piecewise
cubic Hermite polynomial interpolating between

(x0, y0) and (x1, y1).

• For the first portion, the given data are

x(0) = x0, y(0) = y0,
dy

dx
(t = 0);

x(1) = x1, y(1) = y1,
dy

dx
(t = 1);

(3.111)

– Only six conditions are specified, while the cubic polynomials
x(t) and y(t) each have four parameters, for a total of eight.

– The natural form for determining x(t) and y(t) requires

x(0), x(1), x′(0), x′(1);

y(0), y(1), y′(0), y′(1);
(3.112)

– dy/dx = y′(t)/x′(t) provides flexibility for the construction of
parametric curves.

• The slopes at the endpoints can be expressed using the so-called
guidepoints which are to be chosen from the desired tangent line:

(x0 + α0, y0 + β0) : guidepoint for (x0, y0)

(x1 − α1, y1 − β1) : guidepoint for (x1, y1)
(3.113)

Thus

dy

dx
(t = 0) =

y′(0)

x′(0)
=

β0

α0
=

(y0 + β0)− y0

(x0 + α0)− x0

dy

dx
(t = 1) =

y′(1)

x′(1)
=

β1

α1
=

y1 − (y1 − β1)

x1 − (x1 − α1)

(3.114)

• Therefore, we may specify

x′(0) = α0, y
′(0) = β0; x′(1) = α1, y

′(1) = β1. (3.115)
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Formula 3.59. (The cubic Hermite polynomial (x(t), y(t)) on [0, 1]):

• The unique cubic Hermite polynomial x(t) satisfying
x(0) = x0, x

′(0) = α0; x(1) = x1, x
′(1) = α1

can be constructed as
x(t) = [2(x0 − x1) + (α0 + α1)] t

3 + [3(x1 − x0)− (2α0 + α1)] t
2

+α0 t+ x0.

(3.116)
• Similarly, the unique cubic Hermite polynomial y(t) satisfying

y(0) = y0, y
′(0) = β0; y(1) = y1, y

′(1) = β1

can be constructed as
y(t) = [2(y0 − y1) + (β0 + β1)] t

3 + [3(y1 − y0)− (2β0 + β1)] t
2

+β0 t+ y0.

(3.117)

Example 3.60. Determine the parametric curve when

(x0, y0) = (0, 0),
dy

dx
(t = 0) = 1; (x1, y1) = (1, 0),

dy

dx
(t = 1) = −1.

Solution.

• Let α0 = 1, β0 = 1 and α1 = 1, β1 = −1.

– The cubic Hermite polynomial x(t) satisfying
x0 := 0: a0 := 1: x1 := 1: a1 := 1:

is
x:=t->(2*(x0-x1)+a0+a1)*t^3+(3*(x1-x0)-a1-2*a0)*t^2+a0*t+x0

⇒ x(t) = t

– The cubic Hermite polynomial y(t) satisfying
y0 := 0: b0 := 1: y1 := 0: b1 := -1:

is
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y:=t->(2*(y0-y1)+b0+b1)*t^3+(3*(y1-y0)-b1-2*b0)*t^2+b0*t+y0
⇒ y(t) = -t^2 + t

– H1 := plot([x(t),y(t),t=0..1], coordinateview=[0..1, 0..1],
thickness=2, linestye=solid)

• Let α0 = 0.5, β0 = 0.5 and α1 = 0.5, β1 = −0.5.

– a0 := 0.5: b0 := 0.5: a1 := 0.5: b1 := -0.5:
x:=t->(2*(x0-x1)+a0+a1)*t^3+(3*(x1-x0)-a1-2*a0)*t^2+a0*t+x0
⇒ x(t) = -1.0*t^3 + 1.5*t^2 + 0.5*t
y:=t->(2*(y0-y1)+b0+b1)*t^3+(3*(y1-y0)-b1-2*b0)*t^2+b0*t+y0
⇒ y(t) = -0.5*t^2 + 0.5*t

– H2 := plot([x(t),y(t),t=0..1], coordinateview=[0..1, 0..1],
thickness=2, linestye=dash)

• Tan :=plot([t,-t+1],t =0..1, thickness=[2,2],
linestyle=dot, color = blue)

display(H1, H2, Tan)

Figure 3.11: The parametric curves: H1(t) and H2(t).
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Exercises for Chapter 3

3.1. C For the given functions f(x), let x0 = 0, x1 = 0.5, x2 = 1. Construct interpolation
polynomials of degree at most one and at most two to approximate f(0.4), and find
the absolute error.

(a) f(x) = cos x

(b) f(x) = ln(1 + x)

3.2. Use the Polynomial Interpolation Error Theorem to find an error bound for the
approximations in Problem 1 above.

3.3. The polynomial p(x) = 1 − x + x(x + 1) − 2x(x + 1)(x − 1) interpolates the first four
points in the table:

x −1 0 1 2 3

y 2 1 2 −7 10

By adding one additional term to p, find a polynomial that interpolates the whole
table. (Do not try to find the polynomial from the scratch.)
Ans: By adding another term, p4(x) == 1−x+x (x+ 1)−2x (x+ 1) (x− 1)+cx (x+ 1) (x− 1) (x− 2).
p4(3) = 10 gives c = 2.

3.4. Determine the Newton interpolating polynomial for the data:

x 4 2 0 3

y 63 11 7 28

3.5. Neville’s method is used to approximate f(0.4), giving the following table.

x0 = 0 Q0,0

x1 = 0.5 Q1,0 = 1.5 Q1,1 = 1.4

x2 = 0.8 Q2,0 Q2,1 Q2,2 = 1.2

Fill out the whole table.
Ans: Q[2,:]=[3., 1., 1.2]

3.6. Use the extended Newton divided difference method to obtain a quintic polynomial
that takes these values:

x f(x) f ′(x)

0 2 −9

1 −4 4

2 44

3 2
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3.7. Find a natural cubic spline for the data.

x −1 0 1

f(x) 5 7 9

(Do not use computer programming for this problem.)
Ans: S(x) = 2x+ 7.

3.8. C Consider the data
x 0 1 3

f(x) 4 2 7

with f ′(0) = −1/4 and f ′(3) = 5/2. (The points are used in Example 3.53, p.124.)

(a) Find the quadratic spline that interpolates the data (with z0 = f ′(0)).
(b) Find the clamped cubic spline that interpolates the data.
(c) Plot the splines and display them superposed.

3.9. Construct the piecewise cubic Hermite interpolating polynomial for

x f(x) f ′(x)

0 2 −9

1 −4 4

2 4 12

Ans: H1 (x) = 2− 9x− 3x2 + 13x2 (x− 1) and H2 (x) = −4 + 4(x− 1) + 4(x− 1)2.

3.10. C Let C be the unit circle of radius 1: x2 + y2 = 1. Find a piecewise cubic para-
metric curve that interpolates the circle at (1, 0), (0, 1), (−1, 0), (1, 0). Try to make the
parametric curve as circular as possible.

Hint : For the first portion, you may set
x0 := 1: x1 := 0: a0 := 0: a1 := -1:
x := t->(2*x0-2*x1+a0+a1)*t^3+(3*x1-3*x0-a1-2*a0)*t^2+a0*t+x0:
x(t)

3 2
t - 2 t + 1

y0 := 0: y1 := 1: b0 := 1: b1 := 0:
y := t->(2*y0-2*y1+b0+b1)*t^3+(3*y1-3*y0-b1-2*b0)*t^2+b0*t+y0:
y(t)

3 2
-t + t + t

plot([x(t),y(t),t=0..1], coordinateview = [0..1, 0..1], thickness = 2)
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Now, (1) you can make it better, (2) you should find parametric curves for the other two

portions, and (3) combine them for a piece.
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4.1. Numerical Differentiation

Note: The derivative of f at x0 is defined as

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (4.1)

This formula gives an obvious way to generate an approximation of
f ′(x0):

f ′(x0) ≈
f(x0 + h)− f(x0)

h
. (4.2)

Formula 4.1. (Two-Point Difference Formulas): Let x1 = x0 +h and
P0,1 be the first Lagrange polynomial interpolating f on [x0, x1]. Then

f(x) = P0,1(x) +
(x− x0)(x− x1)

2!
f ′′(ξ)

=
x− x1

−h
f(x0) +

x− x0

h
f(x1) +

(x− x0)(x− x1)

2!
f ′′(ξ).

(4.3)

Differentiating it, we obtain

f ′(x) =
f(x1)− f(x0)

h
+

2x− x0 − x1

2
f ′′(ξ)+

(x− x0)(x− x1)

2!

d

dx
f ′′(ξ). (4.4)

Thus
f ′(x0) =

f(x1)− f(x0)

h
− h

2
f ′′(ξ(x0))

f ′(x1) =
f(x1)− f(x0)

h
+
h

2
f ′′(ξ(x1))

(4.5)

Definition 4.2. For h > 0,

f ′(xi) ≈ D+
x f(xi) =

f(xi + h)− f(xi)

h
, (forward-difference)

f ′(xi) ≈ D−x f(xi) =
f(xi)− f(xi − h)

h
. (backward-difference)

(4.6)
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Example 4.3. Use the forward-difference formula to approximate f(x) =

x3 at x0 = 1 using h = 0.1, 0.05, 0.025.

Solution. Note that f ′(1) = 3.
Maple-code

1 f := x -> x^3: x0 := 1:
2

3 h := 0.1:
4 (f(x0 + h) - f(x0))/h
5 3.310000000
6 h := 0.05:
7 (f(x0 + h) - f(x0))/h
8 3.152500000
9 h := 0.025:

10 (f(x0 + h) - f(x0))/h
11 3.075625000

The error becomes half, as h halves?

Formula 4.4. (In general): Let {x0, x1, · · · , xn} be (n+1) distinct points
in some interval I and f ∈ Cn+1(I). Then the Interpolation Error Theo-
rem reads

f(x) =
n∑
k=0

f(xk)Ln,k(x) +
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk). (4.7)

Its derivative gives

f ′(x) =
n∑
k=0

f(xk)L
′
n,k(x) +

d

dx

(f (n+1)(ξ)

(n+ 1)!

) n∏
k=0

(x− xk)

+
f (n+1)(ξ)

(n+ 1)!

d

dx

( n∏
k=0

(x− xk)
)
.

(4.8)

Hence,

f ′(xi) =
n∑
k=0

f(xk)L
′
n,k(xi) +

f (n+1)(ξ)

(n+ 1)!

n∏
k=0,k 6=i

(xi − xk). (4.9)
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Definition 4.5. An (n + 1)-point difference formula to approximate
f ′(xi) is

f ′(xi) ≈
n∑
k=0

f(xk)L
′
n,k(xi) (4.10)

Formula 4.6. (Three-Point Difference Formulas (n = 2)): For con-
venience, let

x0, x1 = x0 + h, x2 = x0 + 2h, h > 0.

Recall

L2,0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, L2,1(x) =

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2,2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

Thus, the three-point endpoint formulas and the three-point mid-
point formula read

f ′(x0) = f(x0)L
′
2,0(x0) + f(x1)L

′
2,1(x0) +f(x2)L

′
2,2(x0) +

f (3)(ξ)

3!

2∏
k=0,k 6=0

(x0 − xk)

=
−3f(x0) + 4f(x1)− f(x2)

2h
+
h2

3
f (3)(ξ0),

f ′(x1) =
f(x2)− f(x0)

2h
− h2

6
f (3)(ξ1),

f ′(x2) =
f(x0)− 4f(x1) + 3f(x2)

2h
+
h2

3
f (3)(ξ2).

(4.11)

Formula 4.7. (Five-Point Difference Formulas): Let fi = f(x0 +
i h), h > 0, −∞ < i <∞.

f ′(x0) =
f−2 − 8f−1 + 8f1 − f2

12h
+
h4

30
f (5)(ξ),

f ′(x0) =
−25f0 + 48f1 − 36f2 + 16f3 − 3f4

12h
+
h4

5
f (5)(ξ).

(4.12)
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Summary 4.8. (Numerical Differentiation, the (n + 1)-point dif-
ference formulas):

1. f(x) = Pn(x) +Rn(x), Pn(x) ∈ Pn
2. f ′(x) = P ′n(x) +O(hn),
f ′′(x) = P ′′n (x) +O(hn−1), and so on.

Second-Derivative Midpoint Formula

Example 4.9. We can see from the above summary that

when the three-point (n = 2) or five-point (n = 4) difference formula
is applied for the approximation of f ′′, the accuracy readsO(h) orO(h3).

Use the Taylor series to derive the (central-point) formulas

f ′′(x0) =
f−1 − 2f0 + f1

h2

−h
2

12
f (4)(x0)−

h4

360
f (6)(x0)−

h6

20160
f (8)(x0)− · · ·

f ′′(x0) =
−f−2 + 16f−1 − 30f0 + 16f1 − f2

12h2

+
h4

90
f (6)(x0) +

h6

1008
f (8)(x0) + · · ·

(4.13)

Solution. See Example 4.11, p. 141, for the derivation of f ′′(x0).

Note: In general, the higher-order accuracy in (4.13) can be achieved at
the central point only.
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Example 4.10. Use the second-derivative midpoint formula to approxi-
mate f ′′(1) for f(x) = x5 − 3x2, using h = 0.2, 0.1, 0.05.

Solution.
Maple-code

1 f := x -> x^5 - 3*x^2:
2 x0 := 1:
3

4 eval(diff(f(x), x, x), x = x0)
5 14
6 h := 0.2:
7 (f(x0 - h) - 2*f(x0) + f(x0 + h))/h^2
8 14.40000000
9 h := 0.1:

10 (f(x0 - h) - 2*f(x0) + f(x0 + h))/h^2
11 14.10000000
12 h := 0.05:
13 (f(x0 - h) - 2*f(x0) + f(x0 + h))/h^2
14 14.02500000
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4.2. Richardson Extrapolation

Richardson extrapolation is used to generate high-accuracy results,
using low-order formulas (on two or more different grids).

Example 4.11. Derive the three-point midpoint formulas:

f ′(x) =
f(x+ h)− f(x− h)

2h
−
[h2

3!
f (3)(x) +

h4

5!
f (5)(x) +

h6

7!
f (7)(x) + · · ·

]
,

f ′′(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
−
[
2
h2

4!
f (4)(x) + 2

h4

6!
f (6)(x) + · · ·

]
.

(4.14)

Solution. It follows from the Taylor’s series formula (1.14) that

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 +

f (4)(x)

4!
h4 + · · ·

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2!
h2 − f ′′′(x)

3!
h3 +

f (4)(x)

4!
h4 − · · ·

(4.15)

Adding and subtracting these two equations, we have

f(x+ h) + f(x− h) = 2f(x) + 2
f ′′(x)

2!
h2 + 2

f (4)(x)

4!
h4 + · · ·

f(x+ h)− f(x− h) = 2 f ′(x)h+ 2
f ′′′(x)

3!
h3 + 2

f (5)(x)

5!
h5 + · · ·

(4.16)

Now, solve these equations for f ′′(x) and f ′(x).

Observation 4.12. The results in Example 4.11 can be written as

M = N(h) +K2h
2 +K4h

4 +K6h
6 + · · · , (4.17)

where M is the desired (unknown) quantity, N(h) is an approximation of
M using the parameter h, and Ki are independent of h.
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How can we take advantage of the observation?

Strategy 4.13. (Richardson extrapolation): Rewrite (4.17):

M = N(h) + K2h
2 +K4h

4 +K6h
6 + · · · . (4.18)

1. Let’s write out (4.18) with h replaced by h/2:

M = N(h/2) + K2h
2/4 +K4h

4/16 +K6h
6/64 + · · · . (4.19)

Then the leading term in the error series, K2h
2, can be eliminated as

follows:

M = N(h) +K2h
2 +K4h

4 +K6h
6 + · · ·

4M = 4N(h/2) +K2h
2 +K4h

4/4 +K6h
6/16 + · · ·

3M = 4N(h/2)−N(h) −3

4
K4h

4 − 15

16
K6h

6 − · · ·
(4.20)

Thus we have

M =
1

3
[4N(h/2)−N(h)]− 1

4
K4h

4 − 5

16
K6h

6 − · · · . (4.21)

The above equation embodies the first step in Richardson extrapola-
tion. It show that a simple combination of two second-order approxi-
mations, N(h) and N(h/2), furnishes an estimate of M with accuracy
O(h4).

2. For simplicity, we rewrite (4.21) as

M = N2(h)− 1

4
K4h

4 − 5

16
K6h

6 − · · · . (4.22)

Then, similarly,

M = N2(h/2)− 1

64
K4h

4 − 5

210
K6h

6 − · · · . (4.23)

Subtract (4.21) from 16 times (4.23) to produce a new O(h6) formula:

M =
1

15
[16N2(h/2)−N2(h)] +

1

64
K6h

6 + · · · . (4.24)
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Algorithm 4.14. (Richardson extrapolation): The above idea can be
applied recursively. The complete algorithm of Richardson extrapolation
algorithm is formulated as:

1. Select a convenient h and compute

D(i, 0) = N(h/2i), i = 0, 1, · · · , n. (4.25)

2. Compute additional quantities using the formula

for i = 1, 2, · · · , n do
for j = 1, 2, · · · , i do

D(i, j) =
1

4j − 1

[
4j ·D(i, j − 1)−D(i− 1, j − 1)

]
end do

end do

(4.26)

Note:

(a) One can prove that

D(i, j) = M +O(h2(j+1)). (4.27)

(b) The second step in the algorithm can be rewritten for a column-
wise computation:

for j = 1, 2, · · · , i do
for i = j, j + 1, · · · , n do

D(i, j) =
1

4j − 1

[
4j ·D(i, j − 1)−D(i− 1, j − 1)

]
end do

end do

(4.28)
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Example 4.15. Let f(x) = lnx. Use the Richardson extrapolation to esti-
mate f ′(1) = 1 using h = 0.2, 0.1, 0.05.

Solution.
Maple-code

1 f := x -> ln(x):
2 h := 0.2:
3 D00 := (f(1 + h) - f(1 - h))/(2*h);
4 1.013662770
5 h := 0.1:
6 D10 := (f(1 + h) - f(1 - h))/(2*h);
7 1.003353478
8 h := 0.05:
9 D20 := (f(1 + h) - f(1 - h))/(2*h);

10 1.000834586
11

12 D11 := (4*D10 - D00)/3;
13 0.9999170470
14 D21 := (4*D20 - D10)/3;
15 0.9999949557
16 D22 := (16*D21 - D11)/15;
17 1.000000150
18 #Error Convergence:
19 abs(1 - D11);
20 0.0000829530
21 abs(1 - D21);
22 0.0000050443
23 #The Ratio:
24 abs(1 - D11)/abs(1 - D21);
25 16.44489820

h j = 0 : O(h2) j = 1 : O(h4) j = 2 : O(h6)

0.2 D0,0 = 1.013662770

0.1 D1,0 = 1.003353478 D1,1 = 0.9999170470

0.05 D2,0 = 1.000834586 D2,1 = 0.9999949557 D2,2 = 1.000000150
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Example 4.16. Let f(x) = lnx, as in the previous example, Example 4.15.
Produce a Richardson extrapolation table for the approximation of f ′′(1) =

−1, using h = 0.2, 0.1, 0.05.

Solution.
Maple-code

1 f := x -> ln(x):
2 h := 0.2:
3 D00 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;
4 -1.020549862
5 h := 0.1:
6 D10 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;
7 -1.005033590
8 h := 0.05:
9 D20 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;

10 -1.001252088
11

12 D11 := (4*D10 - D00)/3;
13 -0.9998614997
14 D21 := (4*D20 - D10)/3;
15 -0.9999915873
16 D22 := (16*D21 - D11)/15;
17 -1.000000260
18 #Error Convergence:
19 abs(-1 - D11);
20 0.0001385003
21 abs(-1 - D21);
22 0.0000084127
23 #The Ratio:
24 abs(-1 - D11)/abs(-1 - D21);
25 16.46324010

h j = 0 : O(h2) j = 1 : O(h4) j = 2 : O(h6)

0.2 D0,0 = −1.020549862

0.1 D1,0 = −1.005033590 D1,1 = −0.9998614997

0.05 D2,0 = −1.001252088 D2,1 = −0.9999915873 D2,2 = −1.000000260
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Example 4.17. In Example 4.9, we used the Taylor series to derive the
formulas

f ′′(x0) =
f−1 − 2f0 + f1

h2

−h
2

12
f (4)(x0)−

h4

360
f (6)(x0)−

h6

20160
f (8)(x0)− · · ·

f ′′(x0) =
−f−2 + 16f−1 − 30f0 + 16f1 − f2

12h2

+
h4

90
f (6)(x0) +

h6

1008
f (8)(x0) + · · ·

(4.29)

Let N(h) be such that

f ′′(x0) = N(h)− h2

12
f (4)(x0)−

h4

360
f (6)(x0)−

h6

20160
f (8)(x0)− · · · (4.30)

Then
N(2h) =

f−2 − 2f0 + f2

(2h)2
, (4.31)

and

f ′′(x0) = N(2h)− (2h)2

12
f (4)(x0)−

(2h)4

360
f (6)(x0)−

(2h)6

20160
f (8)(x0)− · · · (4.32)

Claim 4.18. Four times of (4.30) minus (4.32), divided by 3, gives ex-
actly the same formula as the second equation of (4.29). This implies
that the Richardson extrapolation results in the numerical solution of a
higher-order accuracy on the fine grid level. See Exercise 4.3.
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4.3. Numerical Integration

Note: Numerical integration can be performed by

(1) approximating the function f by an nth-degree polynomial Pn, and
(2) integrating the polynomial over the prescribed interval.

What a simple task it is!

Let {x0, x1, · · · , xn} be distinct points (nodes) in [a, b]. Then the Lagrange
interpolating polynomial reads

Pn(x) =
n∑
i=0

f(xi)Ln,i(x), (4.33)

which interpolates the function f . Then, as just mentioned, we simply ap-
proximate

ˆ b

a

f(x) dx ≈
ˆ b

a

Pn(x) dx =
n∑
i=0

f(xi)

ˆ b

a

Ln,i(x) dx. (4.34)

Definition 4.19. In this way, we obtain a formula which is a weighted
sum of the function values:

ˆ b

a

f(x) dx ≈
n∑
i=0

Ai f(xi), (4.35)

where

Ai =

ˆ b

a

Ln,i(x) dx. (4.36)

The formula of the form in (4.35) is called a Newton-Cotes formula
when the nodes are equally spaced.
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4.3.1. The Trapezoid Rule

The simplest case results if n = 1 and the nodes are x0 = a and x1 = b. In
this case,

f(x) =
1∑
i=0

f(xi)L1,i(x) +
f ′′(ξx)

2!
(x− x0)(x− x1), (4.37)

and its integration reads

ˆ x1

x0

f(x) dx =
1∑
i=0

f(xi)

ˆ x1

x0

L1,i(x) dx+

ˆ x1

x0

f ′′(ξx)

2!
(x− x0)(x− x1) dx.

(4.38)

Derivation 4.20. Terms in the right-side of (4.38) must be verified to
get a formula and its error bound. Note that

A0 =

ˆ x1

x0

L1,0(x) dx =

ˆ x1

x0

x− x1

x0 − x1
dx =

1

2
(x1 − x0),

A1 =

ˆ x1

x0

L1,1(x) dx =

ˆ x1

x0

x− x0

x1 − x0
dx =

1

2
(x1 − x0),

(4.39)

andˆ x1

x0

f ′′(ξx)

2!
(x− x0)(x− x1) dx =

f ′′(ξ)

2!

ˆ x1

x0

(x− x0)(x− x1) dx

= −f
′′(ξ)

12
(x1 − x0)

3.

(4.40)

(Here we could use the Weighted Mean Value Theorem on Integral be-
cause (x− x0)(x− x1) ≤ 0 does not change the sign over [x0, x1].)

Definition 4.21. The corresponding quadrature formula is
ˆ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ξ), (Trapezoid) (4.41)

which is known as the trapezoid rule.
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Graphical interpretation:
with(Student[Calculus1]):
f := x^3 + 2 + sin(2*Pi*x):
ApproximateInt(f, 0..1, output = animation, partition = 1,

method = trapezoid, refinement = halve,
boxoptions = [filled = [color=pink,transparency=0.5]]);

Figure 4.1: Trapazoid rule.

Composite Trapezoid Rule
Let the interval [a, b] be partitioned as

a = x0 < x1 < · · · < xn = b.

Then the trapezoid rule can be applied to each subinterval. Here the nodes
are not necessarily uniformly spaced. Thus, we obtain the composite trape-
zoid rule reads
ˆ b

a

f(x) dx =
n∑
i=1

ˆ xi

xi−1

f(x) dx ≈
n∑
i=1

hi
2

(f(xi−1) + f(xi)) , hi = xi − xi−1.

(4.42)
With a uniform spacing:

xi = a+ i h, h =
b− a
n

,
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the composite trapezoid rule takes the form

ˆ b

a

f(x) dx ≈ h ·

[
f(a) + f(b)

2
+

n−1∑
i=1

f(xi)

]
, (4.43)

for which the composite error becomes

n∑
i=1

(
− h3

12
f ′′(ξi)

)
= −f ′′(ξ)

n∑
i=1

h3

12
= −f ′′(ξ)h

3

12
· n = −f ′′(ξ)(b− a)h2

12
, (4.44)

where we have used
(
h =

b− a
n
⇒ n =

b− a
h

)
.

Example 4.22.
with(Student[Calculus1]):
f := x^3 + 2 + sin(2*Pi*x):
ApproximateInt(f, 0..1, output = animation, partition = 8,

method = trapezoid, refinement = halve,
boxoptions = [filled = [color=pink,transparency=0.5]]);

Figure 4.2: Composite trapazoid rule.
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4.3.2. Simpson’s Rule

Remark 4.23. Let a = x0 < x1 < x2 < · · · < xn = b be a partition of [a, b].

• The Trapezoid rule uses locally linear interpolating polynomi-
als, each of which is formulated on one subinterval.

• We may utilize locally quadratic interpolating polynomials, for-
mulated on each two subintervals (as a group).

• Furthermore, three and more subintervals can be combined, for
a higher-order interpolating polynomial.

Simpson’s rule results from integrating the second Lagrange polyno-
mial with three equally spaced nodes, combining two subintervals:

x0, x1 = x0 + h, x2 = x0 + 2h,

for som h > 0.

Definition 4.24. Approximating f by the quadratic interpolating poly-
nomial on [x0, x2], the elementary Simpson’s rule readsˆ x2

x0

f(x) dx ≈
ˆ x2

x0

2∑
i=0

f(xi)L2,i(x) =
2∑
i=0

f(xi)

ˆ x2

x0

L2,i(x), (4.45)

which is reduced toˆ x2

x0

f(x) dx ≈ 2h

6

[
f(x0) + 4f(x1) + f(x2)

]
. (4.46)



152 Chapter 4. Numerical Differentiation and Integration

Graphical interpretation :
with(Student[Calculus1]):
f := x^3 + 2 + sin(2*Pi*x):
ApproximateInt(f, 0..1, output = animation, partition = 1,

method = simpson, refinement = halve,
boxoptions = [filled = [color=pink,transparency=0.5]]);

Figure 4.3: The elementary Simpson’s rule, which is exact for the given problem.

Remark 4.25. Error for the Simpson’s Rule

• The error for the elementary Simpson’s rule can be analyzed from
ˆ x2

x0

f ′′′(ξ)

3!
(x− x0)(x− x1)(x− x2) dx, (4.47)

which must be in O(h4).
• However, by approximating the problem in another way, one can

show the error is in O(h5).
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Error Analysis for the Elementary Simpson’s Rule

• It follows from the Taylor’s Theorem that for each x ∈ [x0, x2], there is a
number ξ ∈ (x0, x2) such that

f(x) = f(x1)+f
′(x1)(x−x1)+

f ′′(x1)

2!
(x−x1)

2+
f ′′′(x1)

3!
(x−x1)

3+
f (4)(ξ)

4!
(x−x1)

4.

(4.48)
• By integrating the terms over [x0, x2], we haveˆ x2

x0

f(x) dx =
∣∣∣f(x1)(x− x1) +

f ′(x1)

2
(x− x1)

2 +
f ′′(x1)

3!
(x− x1)

3

+
f ′′′(x1)

4!
(x− x1)

4
∣∣∣x2
x0

+

ˆ x2

x0

f (4)(ξ)

4!
(x− x1)

4 dx.

(4.49)

The last term can be easily computed by using the Weighted Mean Value
Theorem on Integral:
ˆ x2

x0

f (4)(ξ)

4!
(x− x1)

4 dx =
f (4)(ξ1)

4!

ˆ x2

x0

(x− x1)
4 dx =

f (4)(ξ1)

60
h5. (4.50)

• Thus, (4.49) reads
ˆ x2

x0

f(x) dx = 2h f(x1) +
h3

3
f ′′(x1) +

f (4)(ξ1)

60
h5. (4.51)

• See (4.14), p.141, to recall that

f ′′(x1) =
f(x0)− 2f(x1) + f(x2)

h2
− h2

12
f (4)(ξ2). (4.52)

• Plugging this to (4.51) readsˆ x2

x0

f(x) dx = 2h f(x1) +
h3

3

(f(x0)− 2f(x1) + f(x2)

h2

)
−h

3

3

(h2

12
f (4)(ξ2)

)
+
f (4)(ξ1)

60
h5,

(4.53)

and therefore
ˆ x2

x0

f(x) dx =
2h

6

[
f(x0) + 4f(x1) + f(x2)

]
− h5

90
f (4)(ξ3). (4.54)
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Composite Simpson’s Rule
A composite Simpson’s rule, using an even number of subintervals, is
often adopted. Let n be even, and set

xi = a+ i h, h =
b− a
n

. (0 ≤ i ≤ n)

Then

ˆ b

a

f(x) dx =

n/2∑
i=1

ˆ x2i

x2i−2

f(x) dx ≈ 2h

6

n/2∑
i=1

[
f(x2i−2) + 4f(x2i−1) + f(x2i)

]
.

(4.55)

Example 4.26. Show that the error term for the composite Simpson’s rule
becomes

−(b− a)h4

180
f (4)(ξ). (4.56)

Solution.
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4.3.3. Simpson’s Three-Eights Rule

We have developed quadrature rules when the function f is approximated
by piecewise Lagrange polynomials of degrees 1 and 2. Such integration
formulas are called the closed Newton-Cotes formulas, and the idea can
be extended for any degrees. The word closed is used, because the formulas
include endpoints of the interval [a, b] as nodes.

Theorem 4.27. When three equal subintervals are combined, the re-
sulting integration formula is called the Simpson’s three-eights rule:
ˆ x3

x0

f(x) dx =
3h

8

[
f(x0) + 3f(x1) + 3f(x2) + f(x3)

]
− 3h5

80
f (4)(ξ0). (4.57)

Example 4.28. Let n be a multiple of 3. For the nodes,

xi = a+ i h, h =
b− a
n

, (0 ≤ i ≤ n)

derive the error term for the composite Simpson’s three-eights rule.

Solution.

Ans: −(b− a)h4

80
f (4)(ξ)

Note: When n is not even, you may approximate the integration by a
combination of the Simpson’s rule and the Simpson’s three-eights rule.
For example, let n = 13 . Then you may apply the Simpson’s rule for
[x0, x10] and the Simpson’s three-eights rule for the last three subinter-
vals [x10, x13].
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Self-study 4.29. Consider
ˆ 2

0

x

x2 + 1
dx,

of which the true value is
ln 5

2
≈ 0.80471895621705018730. Use 6 equally

spaced points (n = 5) to approximate the integral using

(a) the trapezoid rule, and

(b) a combination of the Simpson’s rule and the Simpson’s three-
eights rule.

Solution.

(a) 0.7895495781.

(so, the error = 0.0151693779)

(b)
´ 0.8
0

f(x)dx+
´ 2
0.8
f(x)dx ≈ 0.2474264468 + 0.5567293981 = 0.8041558449.

(so, the error = 0.0005631111)
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4.4. Romberg Integration

Note: Romberg integration is to generate high-accuracy results, us-
ing multiple Trapezoid quadrature (obtained on refined partitions).

• In the previous section, we have found that the Composite Trape-
zoid rule has a truncation error of order O(h2).

• Over n equal subintervals of [a, b]

xk = a+ k h, h = (b− a)/n, (0 ≤ k ≤ n),

let T (n) be the Trapezoid quadrature:

T (n) = h
[1

2
f(a) +

n−1∑
k=1

f(xk) +
1

2
f(b)

]
. (4.58)

Let us begin with an effective computation technique for T (2n) as a refine-
ment of T (n).

4.4.1. Recursive Trapezoid Rule

Example 4.30. What is the explicit formula for T (1), T (2), T (4), and T (8)

in the case in which the interval is [0, 1]?

Solution. Using Equation (4.58), we have

T (1) = 1 ·
[1

2
f(0) +

1

2
f(1)

]
T (2) =

1

2
·
[1

2
f(0) + f

(1

2

)
+

1

2
f(1)

]
T (4) =

1

4
·
[1

2
f(0) + f

(1

4

)
+ f
(1

2

)
+ f
(3

4

)
+

1

2
f(1)

]
T (8) =

1

8
·
[1

2
f(0) + f

(1

8

)
+ f
(1

4

)
+ f
(3

8

)
+ f
(1

2

)
+f
(5

8

)
+ f
(3

4

)
+ f
(7

8

)
+

1

2
f(1)

]
(4.59)
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Remark 4.31. It is clear that if T (2n) is to be computed, then we can
take advantage of the work already done in the computation of T (n). For
example, from the preceding example, we see that

T (2) =
1

2
T (1) +

1

2
·
[
f
(1

2

)]
T (4) =

1

2
T (2) +

1

4
·
[
f
(1

4

)
+ f
(3

4

)]
T (8) =

1

2
T (4) +

1

8
·
[
f
(1

8

)
+ f
(3

8

)
+ f
(5

8

)
+ f
(7

8

)] (4.60)

With h = (b−a)/(2n), the general formula pertaining to any interval [a, b]
is as follows:

T (2n) =
1

2
T (n) + h [f(a+ h) + f(a+ 3h) + · · ·+ f(a+ (2n− 1)h)], (4.61)

or

T (2n) =
1

2
T (n) + h

( n∑
k=1

f(x2k−1)
)
. (4.62)

Now, if there are 2i uniform subintervals, Equation (4.61) provides a re-
cursive Trapezoid rule:

T (2i) =
1

2
T (2i−1) + hi

( 2i−1∑
k=1

f(a+ (2k − 1)hi)
)
, (4.63)

where
h0 = b− a, hi =

1

2
hi−1, i ≥ 1.
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4.4.2. The Romberg Algorithm

By the Taylor series method, it can be shown that if f ∈ C∞[a, b], the
Composite Trapezoid rule (4.58) can also be written with an error
term in the formˆ b

a

f(x) dx = T (n) +K2h
2 +K4h

4 +K6h
6 + · · · , (4.64)

where Ki are constants independent of h. Sinceˆ b

a

f(x) dx = T (2n) +K2h
2/4 +K4h

4/16 +K6h
6/64 + · · · , (4.65)

as for Richardson extrapolation, we haveˆ b

a

f(x) dx =
1

3

[
4T (2n)− T (n)

]
− 3

4
K4h

4 − 15

16
K6h

6 − · · · . (4.66)

Algorithm 4.32. (Romberg algorithm): The above idea can be ap-
plied recursively. The complete algorithm of Romberg integration is
formulated as:

1. The computation of R(i, 0) which is the trapezoid estimate with 2i

subintervals obtained using the formula (4.63):

R(0, 0) =
b− a

2
[f(a) + f(b)],

R(i, 0) =
1

2
R(i− 1, 0) + hi

( 2i−1∑
k=1

f(a+ (2k − 1)hi)
)
.

(4.67)

2. Then, evaluate higher-order approximations recursively using

for i = 1, 2, · · · , n do
for j = 1, 2, · · · , i do

R(i, j) =
1

4j − 1

[
4j ·R(i, j − 1)−R(i− 1, j − 1)

]
end do

end do

(4.68)
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Example 4.33. Use the Composite Trapezoid rule to find approximations

to
ˆ π

0

sinx dx, with n = 1, 2, 4, and 8. Then perform Romberg extrapolation

on the results.

Solution.
Romberg-extrapolation

1 a := 0: b := Pi:
2 f := x -> sin(x):
3 n := 3:
4 R := Array(0..n, 0..n):
5

6 # Trapezoid estimates
7 #----------------------------------
8 R[0, 0] := (b - a)/2*(f(a) + f(b));
9 0

10 for i to n do
11 hi := (b-a)/2^i;
12 R[i,0] := R[i-1,0]/2 +hi*add(f(a+(2*k-1)*hi), k=1..2^(i-1));
13 end do:
14

15 # Now, perform Romberg Extrapolation:
16 # -------------------------------------------------
17 for i to n do
18 for j to i do
19 R[i, j] := (4^j*R[i,j-1] - R[i-1, j-1])/(4^j-1);
20 end do
21 end do

j = 0 : O(h2) j = 1 : O(h4) j = 2 : O(h6) j = 3 : O(h8)

R0,0 = 0

R1,0 = 1.570796327 R1,1 = 2.094395103

R2,0 = 1.896118898 R2,1 = 2.004559755 R2,2 = 1.998570731

R3,0 = 1.974231602 R3,1 = 2.000269171 R3,2 = 1.999983131 R3,3 = 2.000005551

(4.69)
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Self-study 4.34. The true value for the integral:
ˆ π

0

sinx dx = 2. Use the

table in (4.69) to verify that the error is inO(h4) for j = 1 andO(h6) for j = 2.
Hint : For example, for j = 1, you should measure |R1,1 − 2|/|R2,1 − 2| and |R2,1 − 2|/|R3,1 − 2| and

interpret them.
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4.5. Gaussian Quadrature

Recall: Newton-Cotes Formulas

• In Section 4.3, we saw how to create quadrature formulas of the form
ˆ b

a

f(x) dx ≈
n∑
i=0

wi f(xi), (4.70)

that are exact for polynomials of degree ≤ n, which is the case if
and only if

wi =

ˆ b

a

Ln,i(x) dx =

ˆ b

a

n∏
j=0, j 6=i

x− xj
xi − xj

dx. (4.71)

• In those formulas, the choice of nodes x0, x1, x2, · · · , xn were made
a priori. Once the nodes were fixed, the weights were determined
uniquely from the requirement that Formula (4.70) must be an equal-
ity for f ∈ Pn.

4.5.1. The Method of Undetermined Coefficients

Example 4.35. Find w0, w1, w2 with which the following formula is exact
for all polynomials of degree ≤ 2:ˆ 1

0

f(x) dx ≈ w0 f(0) + w1 f(1/2) + w2 f(1). (4.72)

Solution. Formula (4.72) must be exact for some low-order polynomials.
Consider trial functions f(x) = 1, x, x2. Then, for each of them,

1 =

ˆ 1

0

1 dx = w0 · 1 + w1 · 1 + w2 · 1 = w0 + w1 + w2

1

2
=

ˆ 1

0

x dx = w0 · 0 + w1 ·
1

2
+ w2 · 1 =

1

2
w1 + w2

1

3
=

ˆ 1

0

x2 dx = w0 · 0 + w1 ·
(1

2

)2

+ w2 · 1 =
1

4
w1 + w2

(4.73)
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The solution of this system of three simultaneous equations is

(w0, w1, w2) =
(1

6
,

2

3
,

1

6

)
. (4.74)

Thus the formula can be written asˆ 1

0

f(x) dx ≈ 1

6

[
f(0) + 4f(1/2) + f(1)

]
, (4.75)

which will produce exact values of integrals for any quadratic polynomial,
f(x) = a0 + a1x+ a2x

2.

Note: It must be noticed that Formula (4.75) is the elementary Simpson’s
rule with h = 1/2.

Key Idea 4.36. Gaussian quadrature chooses the nodes in an
optimal way, rather than equally-spaced points.

• The nodes x1, x2, · · · , xn in the interval [a, b] and the weights
w1, w2, · · · , wn are chosen to minimize the expected error obtained
in the approximation

ˆ b

a

f(x) dx ≈
n∑
i=1

wi f(xi). (4.76)

• To measure this accuracy, we assume that the best choice of these val-
ues produces the exact result for the largest class of polynomials, that
is, the choice that gives the greatest degree of precision.

• The above formula gives 2n parameters to choose:

x1, x2, · · · , xn and w1, w2, · · · , wn

Since the class of polynomials of degree at most (2n − 1) is 2n-
dimensional (containing 2n parameters), one may try to decide the
parameters with which the quadrature formula is exact for all poly-
nomials in P2n−1.
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Example 4.37. Determine x1, x2 and w1, w2 so that the integration formula
ˆ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2) (4.77)

gives the exact result whenever f ∈ P3.

Solution. As in the previous example, we may apply the method of unde-
termined coefficients. This time, use f(x) = 1, x, x2, x3 as trial functions.

Note: The method of undetermined coefficients is a classical
method to determine the nodes and weights for formulas, but an alter-
native method can obtain them more easily. The alternative is related to
Legendre orthogonal polynomials.

• The Chebyshev polynomials, defined in Definition 3.20, are also or-
thogonal polynomials; see page 97.

• Frequently-cited classical orthogonal polynomials are: Jacobi polyno-
mials, Laguerre polynomials, Chebyshev polynomials, and Legendre
polynomials.
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4.5.2. Legendre Polynomials: Gauss and Gauss-Lobatto
Integration

Definition 4.38. Let {P0(x), P1(x), · · · , Pk(x), · · · } be a collection of poly-
nomials with Pk ∈ Pk. It is called orthogonal polynomials when it
satisfies ˆ 1

−1

Q(x)Pk(x) dx = 0, ∀Q(x) ∈ Pk−1. (4.78)

Such orthogonal polynomials can be formulated by a certain three-term
recurrence relation.

Definition 4.39. The Legendre polynomials obey the three-term re-
currence relation, known as Bonnet’s recursion formula:

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x), (4.79)

beginning with P0(x) = 1, P1(x) = x. A few first Legendre polynomials
are

P0(x) = 1

P1(x) = x

P2(x) =
3

2
(x2 − 1

3
)

P3(x) =
5

2
(x3 − 3

5
x)

P4(x) =
35

8
(x4 − 6

7
x2 +

3

35
)

P5(x) =
63

8
(x5 − 10

9
x3 +

5

21
x)

(4.80)

Figure 4.4: Legendre polynomials - Wikipedia
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Theorem 4.40. The Legendre polynomials satisfy

|Pk(x)| ≤ 1, ∀x ∈ [−1, 1],

Pk(±1) = (±1)k,ˆ 1

−1

Pj(x)Pk(x) dx = 0, j 6= k;

ˆ 1

−1

Pk(x)2 dx =
1

k + 1/2
.

(4.81)

Gauss Integration

Theorem 4.41. (Gauss integration): Suppose that {x1, x2, · · · , xn}
are the roots of the nth Legendre polynomial Pn and {w1, w2, · · · , wn}
are obtained by

wi =

ˆ 1

−1

n∏
j=1, j 6=i

x− xj
xi − xj

dx.
(

=

ˆ 1

−1

Ln−1,i(x) dx
)

(4.82)

Then, ˆ 1

−1

f(x) dx ≈
n∑
i=1

wi f(xi) is exact, ∀ f ∈ P2n−1. (4.83)

Note: Once the nodes are determined, the weights {w1, w2, · · · , wn} can
also be found by using the method of undetermined coefficients. That is,
the weights are the solution of the linear system

n∑
j=1

(xj)
iwj =

ˆ 1

−1

xi dx, i = 0, 1, · · · , n− 1. (4.84)
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Gauss-integration.mw
1 with(LinearAlgebra):
2 with(Statistics):
3 WeightSystem := proc(n, A, b, X)
4 local i, j;
5 for j to n do
6 A[1, j] := 1;
7 for i from 2 to n do
8 A[i, j] := A[i - 1, j]*X[j];
9 end do:

10 end do:
11 for i to n do
12 b[i] := int(x^(i - 1), x = -1..1);
13 end do:
14 end proc
15

16 nmax := 5:
17 for k to nmax do
18 Legendre[k] := sort(orthopoly[P](k, x));
19 end do;
20 Legendre[1] := x
21 3 2 1
22 Legendre[2] := - x - -
23 2 2
24 5 3 3
25 Legendre[3] := - x - - x
26 2 2
27 35 4 15 2 3
28 Legendre[4] := -- x - -- x + -
29 8 4 8
30 63 5 35 3 15
31 Legendre[5] := -- x - -- x + -- x
32 8 4 8
33

34 Node := Array(0..nmax): Weight := Array(0..nmax):
35

36 for k to nmax do
37 solve(Legendre[k] = 0, x):
38 Node[k] := Sort(Vector([%])):
39 n := Dimensions(Node[k]):
40 A := Matrix(n, n): b := Vector(n):
41 WeightSystem(n, A, b, Node[k]):
42 Weight[k] := A^(-1).b:
43 end do:
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44

45 for k to nmax do
46 printf(" k=%d\n", k);
47 print(Nodek = evalf(Node[k]));
48 print(Weightk = evalf(Weight[k]));
49 end do;
50 k=1
51 Nodek = [0.]
52 Weightk = [2.]
53 k=2
54 [ -0.5773502693 ]
55 Nodek = [ ]
56 [ 0.5773502693 ]
57

58 [1.]
59 Weightk = [ ]
60 [1.]
61 k=3
62 [ -0.7745966692 ]
63 [ ]
64 Nodek = [ 0. ]
65 [ ]
66 [ 0.7745966692 ]
67

68 [0.5555555556]
69 [ ]
70 Weightk = [0.8888888889]
71 [ ]
72 [0.5555555556]
73 k=4
74 [ -0.8611363114 ]
75 [ ]
76 [ -0.3399810437 ]
77 Nodek = [ ]
78 [ 0.3399810437 ]
79 [ ]
80 [ 0.8611363114 ]
81

82 [0.3478548456]
83 [ ]
84 [0.6521451560]
85 Weightk = [ ]
86 [0.6521451563]
87 [ ]
88 [0.3478548450]
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89 k=5
90 [ -0.9061798457 ]
91 [ ]
92 [ -0.5384693100 ]
93 [ ]
94 Nodek = [ 0. ]
95 [ ]
96 [ 0.5384693100 ]
97 [ ]
98 [ 0.9061798457 ]
99

100 [0.2427962711]
101 [ ]
102 [0.472491159 ]
103 [ ]
104 Weightk = [0.568220204 ]
105 [ ]
106 [0.478558682 ]
107 [ ]
108 [0.2369268937]

Remark 4.42. (Gaussian Quadrature on Arbitrary Intervals): An

integral
ˆ b

a

f(x) dx over an interval [a, b] can be transformed into an in-

tegral over [−1, 1] by using the change of variables:

T : [−1, 1]→ [a, b], x = T (t) =
b− a

2
t+

a+ b

2
. (4.85)

Using it, we have
ˆ b

a

f(x) dx =

ˆ 1

−1

f
(b− a

2
t+

a+ b

2

)b− a
2

dt. (4.86)
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Example 4.43. Find the Gaussian Quadrature for
ˆ π

0

sin(x) dx, with n =

2, 3, 4.

Solution. The transformation T : [−1, 1]→ [0, π] reads

T (t) =
π

2
(t+ 1) =

π

2
t+

π

2
(= x). (4.87)

Using the change of variables, the integral is transformed as
ˆ π

0

sin(x) dx =

ˆ 1

−1

sin(T (t))
π

2
dt (4.88)

Gaussian-Quadrature.mw
1 a := 0: b := Pi:
2 f := x -> sin(x):
3 nmax := 4:
4

5 T := t -> (b - a)/2 *t + (a+b)/2:
6 T(t)
7 1 1
8 - Pi t + - Pi
9 2 2

10 trueI := int(f(x), x = a..b)
11 2
12

13 g := t -> f(T(t))*(b - a)/2:
14 GI := Vector(nmax):
15 for k from 2 to nmax do
16 GI[k] := add(evalf(Weight[k][i]*g(Node[k][i])), i = 1..k);
17 end do:
18 for k from 2 to nmax do
19 printf(" n=%d GI=%g error=%g\n",k,GI[k],abs(trueI-GI[k]));
20 end do
21

22 n=2 GI=1.93582 error=0.0641804
23 n=3 GI=2.00139 error=0.00138891
24 n=4 GI=1.99998 error=1.5768e-05
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Gauss-Lobatto Integration

Theorem 4.44. (Gauss-Lobatto integration): Let x0 = −1, xn = 1,
and {x1, x2, · · · , xn−1} are the roots of the first-derivative of the nth
Legendre polynomial, P ′n(x). Let {w0, w1, w2, · · · , wn} be obtained by

wi =

ˆ 1

−1

n∏
j=0, j 6=i

x− xj
xi − xj

dx.
(

=

ˆ 1

−1

Ln,i(x) dx
)

(4.89)

Then, ˆ 1

−1

f(x) dx ≈
n∑
i=0

wi f(xi) is exact, ∀ f ∈ P2n−1. (4.90)

Recall: Theorem 4.41 (Gauss integration): Suppose that
{x1, x2, · · · , xn} are the roots of the nth Legendre polynomial Pn
and {w1, w2, · · · , wn} are obtained by

wi =

ˆ 1

−1

n∏
j=1, j 6=i

x− xj
xi − xj

dx.
(

=

ˆ 1

−1

Ln−1,i(x) dx
)

(4.91)

Then, ˆ 1

−1

f(x) dx ≈
n∑
i=1

wi f(xi) is exact, ∀ f ∈ P2n−1. (4.92)

Remark 4.45. Once the nodes are determined, {w0, w1, w2, · · · , wn} can
also be found by using the method of undetermined coefficients, as for
Gauss integration; the weights are the solution of the linear system

n∑
j=0

(xj)
iwj =

ˆ 1

−1

xi dx, i = 0, 1, · · · , n. (4.93)

The Gauss-Lobatto integration is a closed formula for numerical inte-
grations, which is more popular in real-world applications than open
formulas such as the Gauss integration.

Self-study 4.46. Find the Gauss-Lobatto Quadrature for
ˆ π

0

sin(x) dx,

with n = 2, 3, 4.
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Exercises for Chapter 4

4.1. Use the most accurate three-point formulas to determine the missing entries.

x f(x) f ′(x) f ′′(x)

1.0 2.0000 6.00

1.2 1.7536

1.4 1.9616

1.6 2.8736

1.8 4.7776

2.0 8.0000

2.2 12.9056 52.08

Hint : The central scheme is more accurate than one-sided schemes.

4.2. Use your results in the above table to approximate f ′(1.6) and f ′′(1.6) with O(h4)-
accuracy. Make a conclusion by comparing all results (obtained here and from Prob-
lem 1) with the exact values:

f ′(1.6) = 6.784, f ′′(1.6) = 24.72.

Hint : In order to get a 4th-order Richardson approximation, you should have a coarse
grid approximation, using f(1.2), f(1.6), f(2.0)

Ans: f ′′(1.6) ≈ 24.8

4.3. Verify Claim 4.18, p. 146: The Richardson extrapolation results in the numerical so-
lution of a higher-order accuracy on the fine grid level.

4.4. Let a numerical process be described by

M = N(h) +K1h+K2h
2 +K3h

3 + · · · (4.94)

Explain how Richardson extrapolation will work in this case. (Try to introduce a
formula described as in (4.26), page 143.)

4.5. In order to approximate
ˆ 2

0

x ln(x2 + 1) dx with h = 0.4, use

(a) the Trapezoid rule, and
(b) Simpson’s rules.

Hint : For (b), you may use the Simpson’s rule for the first two subintervals and the
Simpson’s three-eighth rule for the remained three subintervals.
Ans: (a) 2.06735. (b) 2.02253.

4.6. A car laps a race track in 65 seconds. The speed of the car at each 5 second interval
is determined by using a radar gun and is given from the beginning of the lap, in
feet/second, by the entries in the following table:

Time 0 5 10 15 20 25 30 35 40 25 50 55 60 65

Speed 0 90 124 142 156 147 133 121 109 99 95 78 89 98
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Estimate the length of the track, using the Simpson’s rules.
Ans: 7190.7 ft

4.7. C Consider integrals

I.
ˆ 3

1

1

x
dx II.

ˆ π

0

cos2 x dx

(a) For each of the integrals, use the Romberg extrapolation to find R[3, 3].
(b) Determine the number of subintervals required when the Composite Trapezoid

rule is used to find approximations within the same accuracy as R[3, 3].

Ans: (a) R[3, 3] = 1.0986

4.8. C Find the Gaussian Quadrature for
ˆ π/2

0

cos2 x dx, with n = 2, 3, 4.

Ans:

Table 4.1: Integration Resulta using Gaussian Quadrature

n Quadrature Absolute Error
2 0.785398 0.0

3 0.785398 0.2220× 10−15

4 0.785398 0.0
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5.1. Elementary Theory of Initial-Value Prob-
lems

Definition 5.1. The first-order initial value problem (IVP) is formu-
lated as follows: find {yi(x) : i = 1, 2, · · · ,M} satisfying

dyi
dx

= fi(x, y1, y2, · · · , yM),

yi(x0) = yi0,
i = 1, 2, · · · ,M, (5.1)

for a prescribed initial values {yi0 : i = 1, 2, · · · ,M}.

• We assume that (5.1) admits a unique solution in a neighborhood of x0.

• For simplicity, we consider the case M = 1:

dy

dx
= f(x, y),

y(x0) = y0.
(5.2)

Theorem 5.2. (Existence and Uniqueness of the Solution): Sup-
pose that R = {(x, y) | a ≤ x ≤ b, −∞ < y < ∞}, f is continuous on R,
and x0 ∈ [a, b]. If f satisfies a Lipschitz condition on R in the variable y,
i.e., there is a constant L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, ∀ y1, y2, (5.3)

then the IVP (5.2) has a unique solution y(x) in an interval I, where
x0 ∈ I ⊂ (a, b).

Theorem 5.3. Suppose that f(x, y) is defined on R ⊂ R2. If a constant
L > 0 exists with ∣∣∣∂f(x, y)

∂y

∣∣∣ ≤ L, ∀ (x, y) ∈ R, (5.4)

then f satisfies a Lipschitz condition onR in the variable y with the same
Lipschitz constant L.
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Example 5.4. Prove that the initial-value problem

y′ = (x+ sin y)2, y(0) = 3,

has a unique solution on the interval [−1, 2].

Solution.

Example 5.5. Show that each of the initial-value problems has a unique
solution and find the solution.

(a) y′ = ex−y, 0 ≤ x ≤ 1, y(0) = 1

(b) y′ = (1 + x2)y, 3 ≤ x ≤ 5, y(3) = 1

Solution. (Existence and uniqueness):
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(Find the solution): Here, we will find the solution for (b), using Maple.
Maple-code

1 DE := diff(y(x), x) = y(x)*(x^2 + 1);
2 d / 2 \
3 --- y(x) = y(x) \x + 1/
4 dx
5 IC := y(3) = 1;
6 y(3) = 1
7 dsolve({DE, IC}, y(x));
8 /1 / 2 \\
9 exp|- x \x + 3/|

10 \3 /
11 y(x) = -----------------
12 exp(12)

Strategy 5.6. (Numerical Solution): In the following, we describe
step-by-step methods for (5.2); that is, we start from y0 = y(x0) and
proceed stepwise.

• In the first step, we compute y1 which approximate the solution y of
(5.2) at x = x1 = x0 + h, where h is the step size.

• The second step computes an approximate value y2 of the solution
at x = x2 = x0 + 2h, etc..

Note: We first introduce the Taylor-series methods for (5.2), followed by
Runge-Kutta methods and multi-step methods. All of these methods are
applicable straightforwardly to (5.1).
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5.2. Taylor-Series Methods

Preliminary 5.7. Here we rewrite the initial value problem (IVP):{
y′ = f(x, y),

y(x0) = y0.
(IVP) (5.5)

For the problem, a continuous approximation to the solution y(x) will not
be obtained; instead, approximations to y will be generated at various
points, called mesh points in the interval [x0, T ], for some T > x0. Let

• h = (T − x0)/Nt, for an integer Nt ≥ 1

• xn = x0 + nh, n = 0, 1, 2, · · · , Nt

• yn be the approximate solution of y at xn, i.e., yn ≈ y(xn).

5.2.1. The Euler Method

Step 1
• It is to find an approximation of y(x1), marching through the first

subinterval [x0, x1] and using a Taylor-series involving only up to the
first-derivative of y.

• Consider the Taylor series

y(x1) = y(x0 + h) = y(x0) + hy′(x0) +
h2

2
y′′(x0) + · · · . (5.6)

• Utilizing y(x0) = y0 and y′(x0) = f(x0, y0), the value y(x1) can be ap-
proximated by

y1 = y0 + h f(x0, y0), (5.7)

where the second- and higher-order terms of h are ignored.



180 Chapter 5. Numerical Solution of Ordinary Differential Equations

Such an idea can be applied recursively for the computation of solution on
later subintervals. Indeed, since

y(x2) = y(x1) + hy′(x1) +
h2

2
y′′(x1) + · · · ,

by replacing y(x1) and y′(x1) with y1 and f(x1, y1), respectively, we obtain

y2 = y1 + h f(x1, y1), (5.8)

which approximates the solution at x2 = x0 + 2h.

Algorithm 5.8. Summarizing the above, the Euler method solving
the first-order IVP (5.5) is formulated as

yn+1 = yn + h f(xn, yn), n ≥ 0. (5.9)

Figure 5.1: The Euler method.

Geometrically it is an approximation of the curve {x, y(x)} by a polygon of
which the first segment is tangent to the curve at x0, as shown in the
above figure.

• For example, y1 is determined by moving the point (x0, y0) by the length of
h with the slope f(x0, y0), the evaluation of f ad the left edge point.
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Algegraic Interpretation of the Euler Method

Remark 5.9. Applying the Fundamental Theorem of Calculus
(Part 1), the solution for the IVP (5.5) can be implicitly formulated as

y(x) = y0 +

ˆ x

x0

f(t, y(t)) dt. (5.10)

• Check:

y′(x) = f(x, y(x)) and y(x0) = y0 +

ˆ x0

x0

f(t, y(t)) dt = y0.

• When x = x1, Equation (5.10) reads

y(x1) = y0 +

ˆ x1

x0

f(t, y(t)) dt. (5.11)

• Let us approximate the integral using the left edge value:
ˆ x1

x0

f(t, y(t)) dt ≈
ˆ x1

x0

f(x0, y(x0)) dt = (x1 − x0)f(x0, y0). (5.12)

• Now, it follows from (5.10) and (5.12) that

y(x1) ≈ y0 + hf(x0, y0) (=: y1), (5.13)

which represents the Euler method.
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Convergence of the Euler Method

Theorem 5.10. Let f satisfy the Lipschitz condition in its second vari-
able, i.e., there is λ > 0 such that

|f(x, y1)− f(x, y2)| ≤ λ|y1 − y2|, ∀ y1, y2. (5.14)

Then, the Euler method is convergent; more precisely,

|yn − y(xn)| ≤
C

λ
h[(1 + λh)n − 1], n = 0, 1, 2, · · · , Nt. (5.15)

Note: The term (1 + λh)n is bounded by a constant:

(1 + λh)n ≤ (1 + λh)Nt ≤ eλ(T−x0), n = 0, 1, 2, · · · , Nt. (5.16)

See Exercise 5.6.

Proof. The true solution y satisfies

y(xn+1) = y(xn) + hf(xn, y(xn)) +O(h2). (5.17)

Thus it follows from (5.9) and (5.17) that

en+1 = en + h[f(xn, yn)− f(xn, y(xn))] +O(h2)

= en + h[f(xn, y(xn) + en)− f(xn, y(xn))] +O(h2),

where en = yn − y(xn). Utilizing (5.14), we have

|en+1| ≤ (1 + λh)|en|+ Ch2. (5.18)

Here we will prove (5.15) by using (5.18) and induction. It holds trivially
when n = 0. Suppose it holds for n. Then,

|en+1| ≤ (1 + λh)|en|+ Ch2

≤ (1 + λh) · C
λ
h[(1 + λh)n − 1] + Ch2

=
C

λ
h[(1 + λh)n+1 − (1 + λh)] + Ch2

=
C

λ
h[(1 + λh)n+1 − 1],

which completes the proof.
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Example 5.11. Consider

y′ = y − x3 + x+ 1, 0 ≤ x ≤ 3,

y(0) = 0.5.
(5.19)

As the step lengths become smaller, h = 1 → 1

4
→ 1

16
, the numerical solu-

tions represent the exact solution better, as shown in the following figures:

Figure 5.2: The Euler method, with h = 1→ 1

4
→ 1

16
.

Example 5.12. Implement a code for the Euler method to solve

y′ = y − x3 + x+ 1, 0 ≤ x ≤ 3, y(0) = 0.5, with h =
1

16
.
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Solution.
Euler.mw

1 Euler := proc(f, x0, b, nx, y0, Y)
2 local h, t, w, n:
3 h := (b - x0)/nx:
4 t := x0; w := y0:
5 Y[0] := w:
6 for n to nx do
7 w := w + h*eval(f, [x = t, y = w]);
8 Y[n] := w;
9 t := t + h;

10 end do:
11 end proc:
12

13 # Now, solve it using "Euler"
14 f := -x^3 + x + y + 1:
15 x0 := 0: b := 3: y0 := 0.5:
16

17 nx := 48:
18 YEuler := Array(0..nx):
19 Euler(f, x0, b, nx, y0, YEuler):
20

21 # Check the maximum error
22 DE := diff(y(x), x) = y(x) - x^3 + x + 1:
23 dsolve([DE, y(x0) = y0], y(x))
24 2 3 7
25 y(x) = 4 + 5 x + 3 x + x - - exp(x)
26 2
27 exacty := x -> 4 + 5*x + 3*x^2 + x^3 - 7/2*exp(x):
28 maxerr := 0:
29 h := (b - x0)/nx:
30 for n from 0 to nx do
31 maxerr := max(maxerr,abs(exacty(n*h)-YEuler[n]));
32 end do:
33 evalf(maxerr)
34 0.39169859
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5.2.2. Higher-order Taylor Methods

Preliminary 5.13. Higher-order Taylor methods are based on Tay-
lor series expansion.

• If we expand the solution y(x), in terms of its mth-order Taylor poly-
nomial about xn and evaluated at xn+1, we obtain

y(xn+1) = y(xn) + hy′(xn) +
h2

2!
y′′(xn) + · · ·+ hm

m!
y(m)(xn)

+
hm+1

(m+ 1)!
y(m+1)(ξn).

(5.20)

• Successive differentiation of the solution, y(x), gives

y′(x) = f(x, y(x)), y′′(x) = f ′(x, y(x)), · · · ,

and generally,
y(k)(x) = f (k−1)(x, y(x)). (5.21)

• Thus, we have

y(xn+1) = y(xn) + hf(xn, y(xn)) +
h2

2!
f ′(xn, y(xn)) + · · ·+ hm

m!
f (m−1)(xn, y(xn))

+
hm+1

(m+ 1)!
f (m)(ξn, y(ξn))

(5.22)

Algorithm 5.14. The Taylor method of order m corresponding to
(5.22) is obtained by deleting the remainder term involving ξn:

yn+1 = yn + hTm(xn, yn), (5.23)

where

Tm(xn, yn) = f(xn, yn) +
h

2!
f ′(xn, yn) + · · ·+ hm−1

m!
f (m−1)(xn, yn). (5.24)
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Remark 5.15.

• m = 1⇒ yn+1 = yn + hf(xn, yn)
which is the Euler method.

• m = 2⇒ yn+1 = yn + h
[
f(xn, yn) +

h

2
f ′(xn, yn)

]
• As m increases, the method achieves higher-order accuracy; how-

ever, it requires to compute derivatives of f(x, y(x)).

Example 5.16. Consider the initial-value problem

y′ = y − x3 + x+ 1, y(0) = 0.5. (5.25)

(a) Find T3(x, y).
(b) Perform two iterations to find y2, with h = 1/2.

Solution. Part (a): Since y′ = f(x, y) = y − x3 + x+ 1,

f ′(x, y) = y′ − 3x2 + 1

= (y − x3 + x+ 1)− 3x2 + 1

= y − x3 − 3x2 + x+ 2

and
f ′′(x, y) = y′ − 3x2 − 6x+ 1

= (y − x3 + x+ 1)− 3x2 − 6x+ 1

= y − x3 − 3x2 − 5x+ 2

Thus
T3(x, y) = f(x, y) +

h

2
f ′(x, y) +

h2

6
f ′′(x, y)

= y − x3 + x+ 1 +
h

2
(y − x3 − 3x2 + x+ 2)

+
h2

6
(y − x3 − 3x2 − 5x+ 2)

(5.26)

For m large, the computation of Tm is time-consuming and cumbersome.
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Part (b):
Euler_T3.mw

1 T3 := y - x^3 + x + 1 + 1/2*h*(-x^3 - 3*x^2 + x + y + 2)
2 + 1/6*h^2*(-x^3 - 3*x^2 - 5*x + y + 2):
3 h := 1/2:
4 x0 := 0: y0 := 1/2:
5 y1 := y0 + h*eval(T3, [x = x0, y = y0])
6 155
7 ---
8 96
9 y2 := y1 + h*eval(T3, [x = x0 + h, y = y1])

10 16217
11 -----
12 4608
13 evalf(%)
14 3.519314236
15

16 exacty := x -> 4 + 5*x + 3*x^2 + x^3 - 7/2*exp(x):
17 exacty(1)
18 7
19 13 - - exp(1)
20 2
21 evalf(%)
22 3.486013602
23 #The absolute error:
24 evalf(abs(exacty(1) - y2))
25 0.033300634
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5.3. Runge-Kutta Methods

Note: What we are going to do is to solve the initial value problem (IVP):{
y′ = f(x, y),

y(x0) = y0.
(IVP) (5.27)

• The Taylor-series methods of the preceding section have the draw-
back of requiring the computation of derivatives of f(x, y).

– It is a tedious and time-consuming procedure for most cases,
– which makes the Taylor methods seldom used in practice.

Definition 5.17. Runge-Kutta methods

• have high-order local truncation error of the Taylor methods,
• but eliminate the need to compute the derivatives of f(x, y).

That is, the Runge-Kutta methods are formulated, incorporating a
weighted average of the slope, as follows:

yn+1 = yn + h (w1K1 + w2K2 + · · ·+ wmKm) , (5.28)

where

(a) wj ≥ 0 and w1 + w2 + · · ·+ wm = 1

(b) Kj are recursive evaluations of the slope f(x, y)

(c) Need to determine wj and other parameters to satisfy

w1K1 + w2K2 + · · ·+ wmKm ≈ Tm(xn, yn) +O(hm) (5.29)

That is, Runge-Kutta methods evaluate an average slope of f(x, y) on
the interval [xn, xn+1] in the same order of accuracy as the mth-order
Taylor method.
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5.3.1. Second-order Runge-Kutta method

Formulation:
yn+1 = yn + h (w1K1 + w2K2) (5.30)

where
K1 = f(xn, yn)

K2 = f(xn + αh, yn + βhK1)

Requirement: Determine w1, w2, α, β such that

w1K1 +w2K2 = T2(xn, yn)+O(h2) = f(xn, yn)+
h

2
f ′(xn, yn)+O(h2). (5.31)

Derivation: For the left-hand side of (5.30), the Taylor series reads

y(x+ h) = y(x) + h y′(x) +
h2

2
y′′(x) +O(h3).

Since y′ = f and y′′ = fx + fyy
′ = fx + fyf ,

y(x+ h) = y(x) + h f +
h2

2
(fx + fyf) +O(h3). (5.32)

On the other hand, the right-side of (5.30) can be reformulated as

y + h(w1K1 + w2K2)

= y + w1h f(x, y) + w2h f(x+ αh, y + βhK1)

= y + w1h f + w2h (f + αh fx + βh fyf) +O(h3),

which reads

y+ h(w1K1 +w2K2) = y+ (w1 +w2)h f + h2(w2αfx +w2βfyf) +O(h3). (5.33)

The comparison of (5.32) and (5.33) drives the following result, for the second-
order Runge-Kutta methods.

Results:
w1 + w2 = 1, w2 α =

1

2
, w2 β =

1

2
. (5.34)
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Common Choices:

Algorithm 5.18.

I. w1 = w2 =
1

2
, α = β = 1:

Then, the algorithm (5.30) becomes

yn+1 = yn +
h

2
(K1 +K2), (5.35)

where
K1 = f(xn, yn)

K2 = f(xn + h, yn + hK1)

This algorithm is the Second-order Runge-Kutta (RK2) method,
which is also known as the Heun’s method.

II. w1 = 0, w2 = 1, α = β =
1

2
:

For the choices, the algorithm (5.30) reads

yn+1 = yn + h f
(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
(5.36)

which is also known as the Modified Euler method.

It follows from (5.32) and (5.33) that the local truncation error for the
above Runge-Kutta methods are O(h3). Thus the global error becomes

O(h2). (5.37)
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5.3.2. Fourth-order Runge-Kutta method

Formulation:

yn+1 = yn + h (w1K1 + w2K2 + w3K3 + w4K4) (5.38)

where
K1 = f(xn, yn)

K2 = f(xn + α1h, yn + β1hK1)

K3 = f(xn + α2h, yn + β2hK1 + β3hK2)

K4 = f(xn + α3h, yn + β4hK1 + β5hK2 + β6hK3)

Requirement: Determine wj, αj, βj such that

w1K1 + w2K2 + w3K3 + w4K4 = T4(xn, yn) +O(h4)

The most common choice:

Algorithm 5.19. Fourth-order Runge-Kutta method (RK4): The
most commonly used set of parameter values yields

yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 +K4) (5.39)

where
K1 = f(xn, yn)

K2 = f(xn +
1

2
h, yn +

1

2
hK1)

K3 = f(xn +
1

2
h, yn +

1

2
hK2)

K4 = f(xn + h, yn + hK3)

The local truncation error for the above RK4 can be derived as
h5

5!
y(5)(ξn), (5.40)

for some ξn ∈ [xn, xn+1]. Thus the global error reads, for some ξ ∈ [x0, T ],

(T − x0)h
4

5!
y(5)(ξ). (5.41)
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Example 5.20. Use RK4 to solve the initial-value problem

y′ = y − x3 + x+ 1, y(0) = 0.5. (5.42)

RK4.mw
1 f := proc(x,w)
2 w-x^3+x+1
3 end proc:
4 RK4 := proc(x0,xt,nt,y0,y)
5 local h,x,w,n,K1,K2,K3,K4;
6 h:=(xt-x0)/nt:
7 x:=x0: w:=y0:
8 y[0]:=w;
9 for n from 1 by 1 to nt do

10 K1:=f(x,w);
11 K2:=f(x+h/2,w+(h/2)*K1);
12 K3:=f(x+h/2,w+(h/2)*K2);
13 x:=x+h;
14 K4:=f(x,w+h*K3);
15 w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
16 y[n]:=w;
17 end do
18 end proc:
19

20 x0 := 0: xt := 3: nt := 48: y0 := 0.5:
21 yRK4 := Array(0..nt);
22 RK4(x0,xt,nt,y0,yRK4):
23

24 exacty := x -> 4 + 5*x + 3*x^2 + x^3 - 7/2*exp(x):
25 h := (xt - x0)/nt:
26 maxerr := 0:
27 for n from 0 by 1 to nt do
28 maxerr:=max(maxerr,abs(exacty(n*h)-yRK4[n]));
29 end do:
30 evalf[16](maxerr)
31 0.00000184873274
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Convergence Test for RK4, with (5.42):

h Max-error Error-ratio

1/4 4.61 · 10−4

1/8 2.93 · 10−5 4.61 · 10−4

2.93 · 10−5
= 15.73378840

1/16 1.85 · 10−6 2.93 · 10−5

1.85 · 10−6
= 15.83783784

1/32 1.01 · 10−7 1.85 · 10−6

1.01 · 10−7
= 18.31683168

Thus, the global truncation error of RK4 is in O(h4).

5.3.3. Adaptive methods

Remark 5.21.

• Accuracy of numerical methods can be improved by decreasing the
step size.

• Decreasing the step size ≈ Increasing the computational cost

• There may be subintervals where a relatively large step size suffices
and other subintervals where a small step is necessary to keep the
truncation error within a desired limit.

• An adaptive method is a numerical method which uses a variable
step size.

• Example: Runge-Kutta-Fehlberg method (RKF45), which uses
RK5 to estimate local truncation error of RK4.
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5.4. One-Step Methods: Accuracy Comparison

For an accuracy comparison among the one-step methods presented in the
previous sections, consider the motion of the spring-mass system:

y′′(t) +
κ

m
y =

F0

m
cos(µt),

y(0) = c0, y′(0) = 0,
(5.43)

where m is the mass attached at the end of a spring of the spring constant
κ, the term F0 cos(µt) is a periodic driving force of frequency µ, and c0 is the
initial displacement from the equilibrium position.

• It is not difficult to find the analytic solution of (5.43):

y(t) = A cos(ωt) +
F0

m(ω2 − µ2)
cos(µt), (5.44)

where ω =
√
κ/m is the angular frequency and the coefficient A is

determined corresponding to c0.
• Let y1 = y and y2 = −y′1/ω. Then, we can reformulate (5.43) as

y′1 = −ωy2, y0(0) = c0,

y′2 = ωy1 −
F0

mω
cos(µt), y2(0) = 0.

(5.45)

We will deal with details of High-Order Equations & Systems of Dif-
ferential Equations in § 5.6 on page 201.

• The motion is periodic only if µ/ω is a rational number. We choose

m = 1, F0 = 40, A = 1, ω = 4π, µ = 2π. (⇒ c0 ≈ 1.33774) (5.46)

Thus the fundamental period of the motion

T =
2πq

ω
=

2πp

µ
= 1.

See Figure 5.3 for the trajectory of the mass satisfying (5.45)-(5.46).
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Figure 5.3: The trajectory of the mass satisfying (5.45)-(5.46).

Accuracy comparison

Table 5.1: The `2-error at t = 1 for various time step sizes.

1/h Euler RK2 RK4
100 1.19 3.31E-2 2.61E-5
200 4.83E-1 (1.3) 8.27E-3 (2.0) 1.63E-6 (4.0)
400 2.18E-1 (1.1) 2.07E-3 (2.0) 1.02E-7 (4.0)
800 1.04E-1 (1.1) 5.17E-4 (2.0) 6.38E-9 (4.0)

• Table 5.1 presents the `2-error at t = 1 for various time step sizes h,
defined as

|yhNt
− y(1)| =

([
yh1,Nt

− y1(1)
]2

+
[
yh2,Nt

− y2(1)
]2)1/2

, (5.47)

where yhNt
denotes the computed solution at the Nt-th time step with

h = 1/Nt.
• The numbers in parenthesis indicate the order of convergence α,

defined as
α :=

ln(E(2h)/E(h))

ln 2
, (5.48)

where E(h) and E(2h) denote the errors obtained with the grid spacing
to be h and 2h, respectively.
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• As one can see from the table, the one-step methods exhibit the ex-
pected accuracy.

• RK4 shows a much better accuracy than the lower-order methods, which
explains its popularity.

Definition 5.22. (Order of Convergence): Let’s assume that the
algorithm under consideration produces error in O(hα). Then, we may
write

E(h) = C hα, (5.49)

where h is the grid size. When the grid size is ph, the error will become

E(ph) = C (ph)α. (5.50)

It follows from (5.49) and (5.50) that

E(ph)

E(h)
=
C (ph)α

C hα
= pα. (5.51)

By taking a logarithm, one can solve the above equation for the order
of convergence α:

α =
ln(E(ph)/E(h))

ln p
. (5.52)

When p = 2, the above becomes (5.48).
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5.5. Multi-step Methods

The problem: The first-order initial value problem (IVP){
y′ = f(x, y),

y(x0) = y0.
(IVP) (5.53)

Numerical Methods:

• Single-step/Starting methods: Euler’s method, Modified Euler’s,
Runge-Kutta methods

• Multi-step/Continuing methods: Adams-Bashforth-Moulton

Definition 5.23. An m-step method, m ≥ 2, for solving the IVP, is a
difference equation for finding the approximation yn+1 at x = xn+1, given
by

yn+1 = a1yn + a2yn−1 + · · ·+ amyn+1−m

+h[b0f(xn+1, yn+1) + b1f(xn, yn) + · · ·+ bmf(xn+1−m, yn+1−m)].
(5.54)

The m-step method is said to be{
explicit or open, if b0 = 0

implicit or closed, if b0 6= 0
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Algorithm 5.24. (Fourth-order multi-step methods):
Let y′i = f(xi, yi).

• Adams-Bashforth method (explicit)

yn+1 = yn +
h

24
(55y′n − 59y′n−1 + 37y′n−2 − 9y′n−3) (5.55)

• Adams-Moulton method (implicit)

yn+1 = yn +
h

24
(9y′n+1 + 19y′n − 5y′n−1 + y′n−2) (5.56)

• Adams-Bashforth-Moulton method (predictor-corrector)

y∗n+1 = yn +
h

24
(55y′n − 59y′n−1 + 37y′n−2 − 9y′n−3)

yn+1 = yn +
h

24
(9y′

∗
n+1 + 19y′n − 5y′n−1 + y′n−2)

(5.57)

where y′∗n+1 = f(xn+1, y
∗
n+1)

Remark 5.25.

• y1, y2, y3 can be computed by RK4.
• Multi-step methods may save evaluations of f(x, y) such that in each

step, they require only one or two new evaluations of f(x, y) to fulfill
the step.

• RK methods are accurate enough and easy to implement, so that
multi-step methods are rarely applied in practice.

• ABM shows a strong stability for special cases, occasionally but not
often [4].
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ABM.mw
1 ## Maple code: Adams-Bashforth-Moulton (ABM) Method
2 ## Model Problem: y'= y- x^3 + x + 1, y(0) = 0.5, 0 <= x <= 3
3

4 f := proc(x,w)
5 w-x^3+x+1
6 end proc:
7 RK4 := proc(x0,xt,nt,y0,y)
8 local h,x,w,n,K1,K2,K3,K4;
9 h:=(xt-x0)/nt:

10 x:=x0: w:=y0:
11 y[0]:=w;
12 for n from 1 by 1 to nt do
13 K1:=f(x,w);
14 K2:=f(x+h/2,w+(h/2)*K1);
15 K3:=f(x+h/2,w+(h/2)*K2);
16 x:=x+h;
17 K4:=f(x,w+h*K3);
18 w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
19 y[n]:=w;
20 end do
21 end proc:
22

23 ABM:= proc(x0,xt,nt,y0,y)
24 local h,x,w,n,ystar;
25 h:=(xt-x0)/nt:
26 ### Initialization with RK4
27 RK4(x0,x0+3*h,3,y0,y);
28 w:=y[3];
29 ### Now, ABM steps
30 for n from 4 by 1 to nt do
31 x:=x0+n*h;
32 ystar:=w +(h/24)*(55*f(x-h,y[n-1])-59*f(x-2*h,y[n-2])
33 +37*f(x-3*h,y[n-3])-9*f(x-4*h,y[n-4]));
34 w:=w +(h/24)*(9*f(x,ystar)+19*f(x-h,y[n-1])
35 -5*f(x-2*h,y[n-2])+f(x-3*h,y[n-3]));
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36 y[n]:=w;
37 end do;
38 end proc:
39

40 x0 := 0: xt := 3: nt := 48: y0 := 0.5:
41 yABM := Array(0..nt);
42 ABM(x0,xt,nt,y0,yABM):
43

44 exacty := x -> 4 + 5*x + 3*x^2 + x^3 - 7/2*exp(x):
45 h := (xt - x0)/nt:
46 maxerr := 0:
47 for n from 0 by 1 to nt do
48 maxerr:=max(maxerr,abs(exacty(n*h)-yABM[n]));
49 end do:
50 evalf[16](maxerr)
51 0.00005294884316

Note: The maximum error for RK4 = 1.85 · 10−6.
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5.6. High-Order Equations & Systems of Differ-
ential Equations

The problem: 2nd-order initial value problem (IVP){
y′′ = f(x, y, y′), x ∈ [x0, T ]

y(x0) = y0, y′(x0) = u0,
(5.58)

An equivalent problem: Let u = y′. Then,

u′ = y′′ = f(x, y, y′) = f(x, y, u)

Thus, the above 2nd-order IVP can be equivalently written as the follow-
ing system of first-order DEs:{

y′ = u, y(x0) = y0,

u′ = f(x, y, u), u(x0) = u0,
x ∈ [x0, T ]. (5.59)

The right-side of the DEs involves no derivatives.

Remark 5.26. The system (5.59) can be solved by one of the numerical
methods (we have studied), after modifying it for vector functions.

• Let

Y =

[
y

u

]
, F (x, Y ) =

[
u

f(x, y, u)

]
, Y0 :=

[
y0

u0

]
.

• Then (5.59) reads

Y ′ = F (x, Y ), Y (x0) = Y0. (5.60)
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Example 5.27. Write the following DEs as a system of first-order differ-
ential equations.

(a)

{
y′′ + xy′ + y = 0,

y(0) = 1, y′(0) = 2.
(b)

{
x′′ − x′ + 2y′′ = et,

−2x+ y′′ + 2y = 3t2.

Hint : For (b), you should first rewrite the first equation as x′′ = F (t, x, x′) and introduce x′ = u

and y′ = v.

Solution.
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RK4SYS.mw
1 ## Ex) IVP of 2 equations:
2 ## x' = 2x+4y, x(0)=-1
3 ## y' = -x+6y, y(0)= 6, 0 <= t <= 1
4

5 ef := proc(t,w,f)
6 f(1):=2*w(1)+4*w(2);
7 f(2):=-w(1)+6*w(2);
8 end proc:
9

10 RK4SYS := proc(t0,tt,nt,m,x0,x)
11 local h,t,w,n,j,K1,K2,K3,K4;
12 #### initial setting
13 w:=Vector(m):
14 K1:=Vector(m):
15 K2:=Vector(m):
16 K3:=Vector(m):
17 K4:=Vector(m):
18 h:=(tt-t0)/nt:
19 t:=t0;
20 w:=x0;
21 for j from 1 by 1 to m do
22 x[0,j]:=x0(j);
23 end do;
24 #### RK4 marching
25 for n from 1 by 1 to nt do
26 ef(t,w,K1);
27 ef(t+h/2,w+(h/2)*K1,K2);
28 ef(t+h/2,w+(h/2)*K2,K3);
29 ef(t+h,w+h*K3,K4);
30 w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
31 for j from 1 by 1 to m do
32 x[n,j]:=w(j);
33 end do
34 end do
35 end proc:
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36

37 m := 2:
38 x0 := Vector(m):
39

40 t0 := 0: tt := 1.: nt := 40:
41 x0(1) := -1:
42 x0(2) := 6:
43

44 xRK4 := Array(0..nt, 1..m):
45 RK4SYS(t0,tt,nt,m,x0,xRK4):
46

47 # Compute the analytic solution
48 #--------------------------------
49 ODE := diff(x(t),t)=2*x(t)+4*y(t), diff(y(t),t)=-x(t)+6*y(t):
50 ivs := x(0) = -1, y(0) = 6;
51 dsolve([ODE, ivs]);
52 / 1 \
53 { x(t) = exp(4 t) (-1 + 26 t), y(t) = - exp(4 t) (24 + 52 t) }
54 \ 4 /
55 ex := t -> exp(4*t)*(-1 + 26*t):
56 ey := t -> 1/4*exp(4*t)*(24 + 52*t):
57

58 # Check error
59 #--------------------------------
60 h := (tt - t0)/nt:
61 printf(" n x(n) y(n) error(x) error(y)\n");
62 printf(" -----------------------------------------------\n");
63 for n from 0 by 2 to nt do
64 printf(" \t %5d %10.3f %10.3f %-10.3g %-10.3g\n",
65 n, xRK4[n,1], xRK4[n,2], abs(xRK4[n,1]-ex(n*h)),
66 abs(xRK4[n,2]-ey(n*h)) );
67 end do;
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Result
1 n x(n) y(n) error(x) error(y)
2 -----------------------------------------------------
3 0 -1.000 6.000 0 0
4 2 0.366 8.122 6.04e-06 4.24e-06
5 4 2.387 10.890 1.54e-05 1.07e-05
6 6 5.284 14.486 2.92e-05 2.01e-05
7 8 9.347 19.140 4.94e-05 3.35e-05
8 10 14.950 25.144 7.81e-05 5.26e-05
9 12 22.577 32.869 0.000118 7.91e-05

10 14 32.847 42.782 0.000174 0.000115
11 16 46.558 55.474 0.000251 0.000165
12 18 64.731 71.688 0.000356 0.000232
13 20 88.668 92.363 0.000498 0.000323
14 22 120.032 118.678 0.000689 0.000443
15 24 160.937 152.119 0.000944 0.000604
16 26 214.072 194.550 0.00128 0.000817
17 28 282.846 248.313 0.00174 0.0011
18 30 371.580 316.346 0.00233 0.00147
19 32 485.741 402.332 0.00312 0.00195
20 34 632.238 510.885 0.00414 0.00258
21 36 819.795 647.785 0.00549 0.0034
22 38 1059.411 820.262 0.00725 0.00447
23 40 1364.944 1037.359 0.00954 0.00586
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RK4SYSTEM.mw
1 ## Ex) y''-2*y'+2*y = exp(2*x)*sin(x), 0 <= x <= 1,
2 ## y(0) = -0.4, y'(0) = -0.6
3 Digits := 20:
4 RK4SYSTEM := proc(a,b,nt,X,F,x0,xn)
5 local h,hh,t,m,n,j,w,K1,K2,K3,K4;
6 #### initial setting
7 with(LinearAlgebra):
8 m := Dimension(Vector(F));
9 w :=Vector(m);

10 K1:=Vector(m);
11 K2:=Vector(m);
12 K3:=Vector(m);
13 K4:=Vector(m);
14 h:=(b-a)/nt; hh:=h/2;
15 t :=a;
16 w:=x0;
17 for j from 1 by 1 to m do
18 xn[0,j]:=x0[j];
19 end do;
20 #### RK4 marching
21 for n from 1 by 1 to nt do
22 K1:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i], i = 1..m)]));
23 K2:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K1[i], i = 1..m)]));
24 K3:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K2[i], i = 1..m)]));
25 t:=t+h;
26 K4:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i]+h*K3[i], i = 1..m)]));
27 w:=w+(h/6)*(K1+2*K2+2*K3+K4);
28 for j from 1 by 1 to m do
29 xn[n,j]:=evalf(w[j]);
30 end do
31 end do
32 end proc:
33

34 # Call RK4SYSTEM.mw
35 #--------------------------------
36 with(LinearAlgebra):
37 m := 2:
38 F := [yp, exp(2*x)*sin(x) - 2*y + 2*yp]:
39 X := [x, y, yp]:
40 X0 := <-0.4, -0.6>:
41 a := 0: b := 1: nt := 10:
42 Xn := Array(0..nt, 1..m):
43 RK4SYSTEM(a, b, nt, X, F, X0, Xn):
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44

45 # Compute the analytic solution
46 #--------------------------------
47 DE := diff(y(x), x, x) - 2*diff(y(x), x) + 2*y(x) = exp(2*x)*sin(x):
48 IC := y(0) = -0.4, D(y)(0) = -0.6:
49 dsolve({DE, IC}, y(x))
50 1
51 y(x) = - exp(2 x) (sin(x) - 2 cos(x))
52 5
53 ey := x -> 1/5*exp(2*x)*(sin(x) - 2*cos(x))
54 diff(ey(x), x)
55 2 1
56 - exp(2 x) (sin(x) - 2 cos(x)) + - exp(2 x) (2 sin(x) + cos(x))
57 5 5
58 eyp:=x->2/5*exp(2*x)*(sin(x)-2*cos(x))+1/5*exp(2*x)*(2*sin(x) + cos(x)):
59

60 # Check error
61 #--------------------------------
62 printf(" n y_n y(x_n) y'_n y'(x_n) err(y) err(y')\n");
63 printf("--------------------------------------------------------\n");
64 for n from 0 to nt do
65 xp := h*n + a;
66 printf(" %2d %12.8f %12.8f %12.8f %12.8f %.3g %.3g\n",
67 n, Xn[n, 1], ey(xp), Xn[n, 2], eyp(xp),
68 abs(Xn[n, 1] - ey(xp)), abs(Xn[n, 2] - eyp(xp)));
69 end do:

Result
1 n y_n y(x_n) y'_n y'(x_n) err(y) err(y')
2 ---------------------------------------------------------------------------------------
3 0 -0.40000000 -0.40000000 -0.60000000 -0.60000000 0 0
4 1 -0.46173334 -0.46173297 -0.63163124 -0.63163105 3.72e-07 1.91e-07
5 2 -0.52555988 -0.52555905 -0.64014895 -0.64014866 8.36e-07 2.84e-07
6 3 -0.58860144 -0.58860005 -0.61366381 -0.61366361 1.39e-06 1.99e-07
7 4 -0.64661231 -0.64661028 -0.53658203 -0.53658220 2.02e-06 1.68e-07
8 5 -0.69356666 -0.69356395 -0.38873810 -0.38873905 2.71e-06 9.58e-07
9 6 -0.72115190 -0.72114849 -0.14438087 -0.14438322 3.41e-06 2.35e-06

10 7 -0.71815295 -0.71814890 0.22899702 0.22899243 4.06e-06 4.59e-06
11 8 -0.66971133 -0.66970677 0.77199180 0.77198383 4.55e-06 7.97e-06
12 9 -0.55644290 -0.55643814 1.53478148 1.53476862 4.77e-06 1.29e-05
13 10 -0.35339886 -0.35339436 2.57876634 2.57874662 4.50e-06 1.97e-05
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5.7. Implicit Methods and Implicit Differential
Equations

5.7.1. Revisit of the Euler Method

The problem: The first-order initial value problem (IVP){
y′ = f(x, y),

y(x0) = y0.
(IVP) (5.61)

The Euler method yn+1 = yn + hf(xn, yn) can be rewritten as

yn+1 − yn
h

= f(xn, yn), (Forward Euler) (5.62)

in which the left side is a forward approximation of y′(xn). The
formula (5.62) is called the forward Euler method for the IVP (5.61).

Definition 5.28. The backward Euler method for the IVP (5.61) is
defined as

yn+1 − yn
h

= f(xn+1, yn+1), (Backward Euler) (5.63)

in which the left side is a backward approximation of y′(xn+1).

Remark 5.29. The Euler Methods

• The forward Euler method (5.62) is an explicit method.
• The backward Euler method (5.63) is an implicit method, which re-

quires to solve the following equation for yn+1:

yn+1 = yn + h f(xn+1, yn+1). (5.64)

Claim 5.30. Let f satisfy a Lipschitz condition in y with a Lipschitz
constant L. Then the fixed-point iteration applied for (5.64) converges
when h < 1/L.
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Example 5.31. Apply the Euler methods to solve the following IVP

y′ + 2y = 2− e−4x, y(0) = 1, 0 ≤ x ≤ 1, (5.65)

whose theoretical solution is y(x) = 1 + 1
2(e−4x − e−2x).

Euler.py
1 #!/usr/bin/python3
2

3 import numpy as np
4 from numpy.linalg import norm
5

6 def f(x,y): return -2*y -np.exp(-4*x)+2
7

8 def exact_y(x):
9 return 1+0.5*(np.exp(-4*x)-np.exp(-2*x))

10

11 #-------------------------------------------
12 def forward_Euler(x0,T,Nt,y0):
13 x=x0; h =(T-x0)/Nt;
14 y = np.zeros([Nt+1,]); y[0]=y0;
15 for n in range(Nt):
16 y[n+1] = y[n]+h*f(x,y[n])
17 x += h;
18 return y
19

20 #-------------------------------------------
21 def fixed_point(x,p,yn,h,tol):
22 pp=p; err=10.; it0=0
23 while(err>tol):
24 p = yn+h*f(x,p)
25 err = abs(p-pp);
26 pp=p; it0+=1
27 return p,it0
28

29 #-------------------------------------------
30 def backward_Euler(x0,T,Nt,y0,tol):
31 x=x0; h =(T-x0)/Nt;
32 y = np.zeros([Nt+1,]); y[0]=y0; it=0;
33 for n in range(Nt):
34 x += h;
35 p,it0 = fixed_point(x,y[n],y[n],h,tol)
36 y[n+1] = p; it += it0
37 return y,it
38
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39 #-------------------------------------------
40 def Crank_Nicolson(x0,T,Nt,y0,tol):
41 x=x0; h =(T-x0)/Nt;
42 y = np.zeros([Nt+1,]); y[0]=y0; it=0;
43 for n in range(Nt):
44 fn = f(x,y[n])
45 x += h;
46 #fixed-point iteration: included
47 p = y[n]; pp=p; err=10.
48 while(err>tol):
49 p = y[n]+(h/2)*(f(x,p) + fn);
50 err = abs(p-pp);
51 pp=p; it += 1
52 y[n+1] = p
53 return y,it
54

55 #===========================================
56 if __name__ == "__main__":
57 x0=0.0; T=1; y0=1.0; Nt = 40
58 h = (T-x0)/Nt;
59 tol1 = h/5
60 tol2 = h**2/5
61

62 X = np.linspace(x0,T,Nt+1)
63 Y = exact_y(X.T)
64

65 yf = forward_Euler(x0,T,Nt,y0)
66 print('forward_Euler: max-error = %g' %(norm(Y-yf,np.inf)))
67

68 yb,it = backward_Euler(x0,T,Nt,y0,tol1)
69 print('backward_Euler: max-error = %g' %(norm(Y-yb,np.inf)))
70 print(' average fixed-point iter = %g' %(it/Nt))
71

72 yc,it = Crank_Nicolson(x0,T,Nt,y0,tol2)
73 print('Crank_Nicolson: max-error = %g' %(norm(Y-yc,np.inf)))
74 print(' average fixed-point iter = %g' %(it/Nt))

Output
1 [Fri Jun.23] Euler.py
2 forward_Euler: max-error = 0.0085829
3 backward_Euler: max-error = 0.00787605
4 average fixed-point iter = 1.225
5 Crank_Nicolson: max-error = 0.000168574
6 average fixed-point iter = 2.225
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Algorithm 5.32. The Crank-Nicolson method For the IVP (5.61),
the Crank-Nicolson (CN) method is formulated as

yn+1 − yn
h

=
f(xn, yn) + f(xn+1, yn+1)

2
, (CN) (5.66)

of which the global truncation error is O(h2):

f(xn, yn) + f(xn+1, yn+1)

2
= f(xn+1/2, yn+1/2) +O(h2).

Note: Equation (5.66) can be rewritten as

yn+1 = yn +
h

2

(
fn + f(xn+1, yn+1)

)
, fn = f(xn, yn). (5.67)

• Equation (5.67) is implemented in Euler.py.
• The CN method is also called the Trapezoid method.
• When f(xn+1, yn+1) is evaluated by using a predicted value:

f(xn+1, yn+1)→ f(xn+1, y
∗
n+1), y

∗
n+1 = yn + hf(xn, yn),

the resulting algorithm becomes the Heun’s method (RK2).

Remark 5.33. Implicit Methods
The disadvantage to using implicit methods is the cost to solve (5.64)
or (5.67). However, advantages include that

• they are usually more numerically stable, and
• a larger step size h can be used, in particular for the numerical

solution of stiff equations.
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5.7.2. Implicit Differential Equations

Definition 5.34. An equation of the type

F (x, y, y′) = 0, y(x0) = y0, (5.68)

where F is continuous, is called the first-order implicit ordinary dif-
ferential equation (IODE-1).

• Under a suitable assumption on F , (5.68) can be reduced to

y′ = f(x, y, y′), y(x0) = y0. (5.69)

Algorithm 5.35. The third-order Runge-Kutta method (RK3) for
solving (5.69) is defined as

yn+1 = yn +
h

6

(
K1 + 4K2 +K3), where

K1 = f(xn, yn, K1)

K2 = f(xn + h/2, yn + (h/2)K1, K2)

K3 = f(xn+1, yn − hK1 + 2hK2, K3)

(5.70)

Note: The terms Ki, i = 1, 2, 3, are defined implicitly.

• They can be estimated by applying an iterative method, e.g., the
fixed-point iteration.

• Each estimation of Ki is of the form d = f(x, y, d).

– It can be initialized by the last K value.
– When n = 0, K1 = y′(x0) must be initialized appropriately.

• The iteration may stop with a reasonable stopping tolerance:

tol = O(hα), α = 3. (5.71)
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Self-study 5.36. Consider the problem

y′ =
1

10

(
cos(x2y′)− cos(ey)

)
+

1

x
, 1 ≤ x ≤ 3,

y(1) = 0.
(5.72)

The exact solution is y(x) = ln x. Apply the RK3 and the fixed-point iteration
to solve the problem, with Nt = 20, 40, 80 (h = 0.1, 0.05, 0.025).

Hint : You may use some portions/ideas in Euler.py, implemented in Example 5.31, p. 209.

For example, you may start with

IODE1.py
1 #!/usr/bin/python3
2

3 import numpy as np
4 from numpy.linalg import norm
5

6 def f(x,y,d): return (np.cos(x**2*d)-np.cos(np.exp(y)))/10+1/x
7 def exact_y(x): return np.log(x)
8

9 #-------------------------------------------
10 def fixed_pointF3(x,y,d,tol):
11 err=1.; pd=d;
12 while(err>tol):
13 d = f(x,y,d)
14 err = abs(d-pd); pd=d
15 return d
16

17 #-------------------------------------------
18 # Here, implement "a function for the RK3"
19 # that uses fixed_pointF3

Ans: Set tol = h3/5 and for the fixed-point iteration, y′(x0) is initialized by 1.

Max.Error= [1.55e-05, 3.38e-06, 9.60e-08], for h = [0.1, 0.05, 0.025].
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Exercises for Chapter 5

5.1. Show that the initial-value problem

x′(t) = tan(x), x(0) = 0

has a unique solution in the interval |t| ≤ π/4. Can you find the solution, by guessing?

5.2. C Use Taylor method of order m to approximate the solution of the following
initial-value problems.

(a) y′ = ex−y, 0 ≤ x ≤ 1; y(0) = 1, with h = 0.25 and m = 2.
(b) y′ = ex−y, 0 ≤ x ≤ 1; y(0) = 1, with h = 0.5 and m = 3.

(c) y′ =
sinx− 2xy

x2
1 ≤ x ≤ 2; y(1) = 2, with h = 0.5 and m = 4.

5.3. (Do not use computer programming for this problem.) Consider the initial-value prob-
lem: {

y′ = 1 + (x− y)2, 2 ≤ x ≤ 3,

y(2) = 1,
(5.73)

of which the actual solution is y(x) = x+ 1/(1−x). Use h = 1/2 and a calculator to get
the approximate solution at x = 3 by applying

(a) Euler’s method
(b) RK2
(c) Modified Euler method
(d) RK4

Then, compare their results with the actual value y(3) = 2.5.
Ans:

Table 5.2: Comparisons

Method y2 Error
Euler 2.625 0.125

RK2 2.48155 0.018448

Modified Euler 2.45506 0.044936

RK4 2.49996 0.00004

5.4. C Now, solve the problem in the preceding exercise, (5.73), by implementing

(a) RK4
(b) Adams-Bashforth-Moulton method

Use h = 0.05 and compare the accuracy.
Ans: Error: (RK4, ABM) = (1.0616× 10−7, 6.9225× 10−6)
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5.5. C Consider the following system of first-order differential equations:
u′1 = u2 − u3 + t, u1(0) = 1,

u′2 = 3t2, u2(0) = 1, (0 ≤ t ≤ 1)

u′3 = u2 + e−t, u3(0) = −1,

(5.74)

The actual solution is

u1(t) = −t5/20 + t4/4 + t+ 2− e−t

u2(t) = t3 + 1

u3(t) = t4/4 + t− e−t

Use RK4SYSTEM to approximate the solution with h = 0.2, 0.1, 0.05, and compare
the errors to see if you can conclude that the algorithm is a fourth-order method for
systems of differential equations.
Ans:

Table 5.3: Comparison Results

Step-size E-Time (sec) Error (×10−4)

0.2 0.0002 0.3219

0.1 0.0005 0.0266

0.05 0.0013 0.0023

5.6. Verify (5.16).

Hint : Use 1 lim
x→0+

(1 + x)1/x = e and 2 the limit is obtained from an increasing sequence,

i.e., (1 + x)1/x ↗ e as x↘ 0.

5.7. Prove Claim 5.30, page 208.
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CHAPTER 6
Gauss Elimination and Its Variants

One of the most frequently occurring problems in all areas of scientific en-
deavor is that of solving a system of n linear equations in n unknowns. The
main subject of this chapter is to study the use of Gauss elimination to solve
such systems. We will see that there are many ways to organize this funda-
mental algorithm.
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6.1. Systems of Linear Equations

Note: Consider a system of n linear equations in n unknowns
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... ...

an1x1 + an2x2 + · · ·+ annxn = bn

(6.1)

Given the coefficients aij and the source bi, we wish to find [x1, x2, · · · , xn]
which satisfy the equations.

• Since it is tedious to write (6.1) again and again, we generally prefer
to write it as a single matrix equation

Ax = b, (6.2)

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...
an1 an2 · · · ann

 , x =


x1

x2
...
xn

 , and b =


b1

b2
...
bn

 .

Solvers for Linear Systems :

• Direct algebraic solvers

– LU , LLT , LDLT , QR, SV D, SuperLU, · · · (factorization)
– Harder to optimize and parallelize
– Numerically robust, but higher algorithmic complexity

• Iterative algebraic solvers

– Stationary and nonstationary methods
(Jacobi, Gauss-Seidel, SOR, SSOR; CG, MINRES, GMRES, BiCG, QMR, · · · )

– Easier to optimize and parallelize
– Low algorithmic complexity, but may not converge
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6.1.1. Nonsingular matrices

Definition 6.1. (Definition 1.38) An n× n matrix A is said to be in-
vertible (nonsingular) if there is an n× n matrix B such that AB =
In = BA, where In is the identity matrix.

Note: In this case, B is the unique inverse of A denoted by A−1.
(Thus AA−1 = In = A−1A.)

Theorem 6.2. (Invertible Matrix Theorem; Theorem 1.43) Let A
be an n× n matrix. Then the following are equivalent.

a. A is an invertible matrix.
b. A is row equivalent to the n× n identity matrix.
c. A has n pivot positions.
d. The columns of A are linearly independent.
e. The equation Ax = 0 has only the trivial solution x = 0.
f. The equation Ax = b has unique solution for each b ∈ Rn.
g. The linear transformation x 7→ Ax is one-to-one.
h. The linear transformation x 7→ Ax maps Rn onto Rn.
i. There is a matrix C ∈ Rn×n such that CA = I

j. There is a matrix D ∈ Rn×n such that AD = I

k. AT is invertible and (AT )−1 = (A−1)T .
l. The number 0 is not an eigenvalue of A.

m. detA 6= 0.

Example 6.3. Let A ∈ Rn×n and eigenvalues of A be λi, i = 1, 2, · · · , n.
Show that

det (A) =
n∏
i=1

λi. (6.3)

Thus we conclude that A is singular if and only if 0 is an eigenvalue of A.

Hint : Consider the characteristic polynomial of A, φ(λ) = det (A− λI), and φ(0). See Remark 1.52.
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6.1.2. Numerical Solutions of Differential Equations

Consider the following differential equation:

(a) −uxx + cu = f, x ∈ (ax, bx),

(b) −ux + βu = g, x = ax,

(c) ux + βu = g, x = bx.

(6.4)

where
c ≥ 0 and β ≥ 0 (c+ β > 0).

Numerical Discretization :

• Select nx equally spaced grid points on the interval [ax, bx]:

xi = ax + ihx, i = 0, 1, · · · , nx, hx =
bx − ax
nx

.

• Let ui = u(xi), for i = 0, 1, · · · , nx.
• It follows from the Taylor series that

−uxx(xi) =
−ui−1 + 2ui − ui+1

h2
x

+
uxxxx(xi)

12
h2
x + · · · .

Thus the central second-order finite difference (FD) scheme for uxx at
xi reads

−uxx(xi) ≈
−ui−1 + 2ui − ui+1

h2
x

. (6.5)

See also (4.14).

• Apply the FD scheme for (6.4.a) to have

−ui−1 + (2 + h2
xc)ui − ui+1 = h2

xfi, i = 0, 1, · · · , nx. (6.6)

• However, we will meet ghost grid values at the end points. For example,
at the point ax = x0, the formula becomes

−u−1 + (2 + h2
xc)u0 − u1 = h2

xf0. (6.7)

Here the value u−1 is not defined and we call it a ghost grid value.
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• Now, let’s replace the ghost grid value u−1 by using the boundary con-
dition (6.4.b). The central FD scheme for ux at x0 can be formulated as

ux(x0) ≈
u1 − u−1

2hx
, Trunc.Err = −uxxx(x0)

6
h2
x + · · · . (6.8)

Thus the equation (6.4.b), −ux + βu = g, can be approximated (at x0)

u−1 + 2hxβu0 − u1 = 2hxg0. (6.9)

• Hence it follows from (6.7) and (6.9) that

(2 + h2
xc+ 2hxβ)u0 − 2u1 = h2

xf0 + 2hxg0. (6.10)

The same can be considered for the algebraic equation at the point xn.

Scheme 6.4. The problem (6.4) is reduced to finding the solution u
satisfying

Au = b, (6.11)

where A ∈ R(nx+1)×(nx+1),

A =


2 + h2

xc+ 2hxβ −2

−1 2 + h2
xc −1

. . . . . . . . .

−1 2 + h2
xc −1

−2 2 + h2
xc+ 2hxβ

 ,

and

b =


h2
xf0

h2
xf1
...

h2
xfnx−1

h2
xfnx

+


2hxg0

0
...
0

2hxgnx

 .

Definition 6.5. Such a technique of removing ghost grid values is called
outer bordering.
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Dirichlet Boundary Condition :

Scheme 6.6. When the boundary values of the DE are known
(Dirichlet boundary condition), the algebraic system does not have
to include rows corresponding to the nodal points.

• However, it is more reusable if the algebraic system incorporates rows
for all nodal points.

• For example, consider

(a) −uxx + cu = f, x ∈ (ax, bx),

(b) −ux + βu = g, x = ax,

(c) u = ud, x = bx.

(6.12)

• Then, the corresponding algebraic system can be formulated as

A′ u = b′, (6.13)

where A′ ∈ R(nx+1)×(nx+1),

A′ =


2 + h2

xc+ 2hxβ −2

−1 2 + h2
xc −1

. . . . . . . . .

−1 2 + h2
xc −1

0 1

 ,

and

b′ =


h2
xf0

h2
xf1
...

h2
xfnx−1

ud

+


2hxg0

0
...
0

0

 .
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6.2. Triangular Systems

Definition 6.7.

(a) A matrix L = (`ij) ∈ Rn×n is lower triangular if

`ij = 0 whenever i < j.

(b) A matrix U = (uij) ∈ Rn×n is upper triangular if

uij = 0 whenever i > j.

Theorem 6.8. Let G be a triangular matrix. Then G is nonsingular
if and only if gii 6= 0 for i = 1, · · · , n.

Lower-triangular systems
Consider the n× n system

Ly = b, (6.14)

where L is a nonsingular, lower-triangular matrix (`ii 6= 0). It is easy to see
how to solve this system if we write it in detail:

`11 y1 = b1

`21 y1 + `22 y2 = b2

`31 y1 + `32 y2 + `33 y3 = b3
... ...

`n1 y1 + `n2 y2 + `n3 y3 + · · ·+ `nn yn = bn

(6.15)

The first equation involves only the unknown y1, which can be found as

y1 = b1/`11. (6.16)

With y1 just obtained, we can determine y2 from the second equation:

y2 = (b2 − `21 y1)/`22. (6.17)

Now with y2 known, we can solve the third equation for y3, and so on.
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Algorithm 6.9. In general, once we have y1, y2, · · · , yi−1, we can solve
for yi using the ith equation:

yi = (bi − `i1 y1 − `i2 y2 − · · · − `i,i−1 yi−1)/`ii

=
1

`ii

(
bi −

i−1∑
j=1

`ij yj

) (6.18)

Matlab-code 6.10. (Forward Substitution/Elimination):

for i=1:n
for j=1:i-1

b(i) = b(i)-L(i,j)*b(j)
end
if L(i,i)==0, error(’L: singular!’); end
b(i) = b(i)/L(i,i)

end

(6.19)

The result is y.

Computational complexity: For each i, the forward substitution re-
quires 2(i− 1) + 1 flops. Thus the total number of flops becomes

n∑
i=1

{2(i− 1) + 1} =
n∑
i=1

{2i− 1} = n(n+ 1)− n = n2. (6.20)
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Upper-triangular systems
Consider the system

U x = y, (6.21)

where U = (uij) ∈ Rn×n is nonsingular, upper-triangular. Writing it out in
detail, we get

u11 x1 + u12 x2 + · · ·+ u1,n−1 xn−1 + u1,n xn = y1

u22 x2 + · · ·+ u2,n−1 xn−1 + u2,n xn = y2
... =

...
un−1,n−1 xn−1 + un−1,n xn = yn−1

un,n xn = yn

(6.22)

It is clear that we should solve the system from bottom to top.

Matlab-code 6.11. (Back Substitution):

for i=n:-1:1
if(U(i,i)==0), error(’U: singular!’); end
x(i)=b(i)/U(i,i);
b(1:i-1)=b(1:i-1)-U(1:i-1,i)*x(i);

end

(6.23)

Computational complexity: n2 +O(n) flops.
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6.3. Gauss Elimination
— a very basic algorithm for solving Ax = b

The algorithms developed here produce (in the absence of rounding errors)
the unique solution of Ax = b, whenever A ∈ Rn×n is nonsingular.

Strategy 6.12. (Gauss elimination):

• First, transform the system Ax = b to an equivalent system Ux = y,
where U is upper-triangular;

• then Further transform the system Ux = y to get x.
– It is convenient to represent Ax = b by an augmented matrix [A|b];

each equation in Ax = b corresponds to a row of the augmented
matrix.

– Transformation of the system: By means of three elementary
row operations, applied on the augmented matrix.

Definition 6.13. Elementary row operations (EROs).

Replacement: Ri ← Ri + αRj (i 6= j)

Interchange: Ri ↔ Rj

Scaling: Ri ← βRi (β 6= 0)

(6.24)

Proposition 6.14.

(a) If [Â | b̂] is obtained from [A |b] by elementary row operations
(EROs), then systems [A |b] and [Â | b̂] represent the same solution.

(b) Suppose Â is obtained from A by EROs. Then Â is nonsingular if
and only if A is.

(c) Each ERO corresponds to left-multiple of an elementary matrix.
(d) Each elementary matrix is nonsingular.
(e) The elementary matrices corresponding to “Replacement" and “Scal-

ing" operations are lower triangular.
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6.3.1. The LU Factorization/Decomposition

The LU factorization is motivated by the fairly common industrial and
business problem of solving a sequence of equations, all with the same
coefficient matrix:

Ax = b1, Ax = b2, · · · , Ax = bp. (6.25)

Definition 6.15. Let A ∈ Rm×n. The LU factorization of A
is A = LU , where L ∈ Rm×m is a unit lower triangular matrix
and U ∈ Rm×n is an echelon form of A (upper triangular matrix):

Remark 6.16. Let Ax = b be to be solved. Then Ax = LU x = b and it
can be solved as {

Ly = b,

Ux = y,
(6.26)

each algebraic equation can be solved effectively, via substitutions.

Algorithm 6.17. (An LU Factorization Algorithm) The derivation
introduces an LU factorization: Let A ∈ Rm×n. Then

A = ImA

= ImE
−1
1 E1A

= ImE
−1
1 E−1

2 E2E1A = (E2E1)
−1E2E1A

=
...

= ImE
−1
1 E−1

2 · · ·E−1
p Ep · · ·E2E1A︸ ︷︷ ︸

an echelon form

= (Ep · · ·E1)
−1︸ ︷︷ ︸

L

Ep · · ·E1A︸ ︷︷ ︸
U

,

(6.27)

where Ei are elementary matrics for “replacement”.
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Example 6.18. Find the LU factorization of

A =

 4 3 −5

−4 −5 7

8 8 −7

.

Solution.

Ans: A = LU =

 1 0 0

−1 1 0

2 −1 1


4 3 −5

0 −2 2

0 0 5

.

Theorem 6.19. (LU Decomposition Theorem) The following are
equivalent.

1. All leading principal submatrices of A are nonsingular. (The jth
leading principal submatrix is A(1 : j, 1 : j).)

2. There exists a unique unit lower triangular L and nonsingular
upper-triangular U such that A = LU .

Proof. (2) ⇒ (1): A = LU may also be written[
A11 A12

A21 A22

]
=

[
L11 0

L21 L22

][
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
,(6.28)

where A11 is a j × j leading principal submatrix. Thus

det (A11) = det (L11U11) = 1 · det (U11) =

j∏
k=1

(U11)kk 6= 0.

Here we have used the assumption that U is nonsingular and so is U11.

(1) ⇒ (2): It can be proved by induction on n.
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Example 6.20. Find the LU factorization of A =

 3 −1 1

9 1 2

−6 5 −5

.

Solution. (Practical Implementation):

A =

 3 −1 1

9 1 2

−6 5 −5

 R2←R2−3R1−−−−−−−→
R3←R3+2R1

 3 −1 1
3 4 −1

-2 3 −3


R3←R3− 3

4R2−−−−−−−→

 3 −1 1
3 4 −1

-2 3
4 −9

4



L =

 1 0 0

3 1 0

−2 3
4 1

 , U =

 3 −1 1

0 4 −1

0 0 −9
4

 .
* It is easy to verify that A = LU .

Example 6.21. Find the LU factorization of A =


2 −1

6 5

−10 3

12 −2

.

Solution.
2 −1

6 5

−10 3

12 −2

 R2←R2−3R1−−−−−−−→
R3←R3+5R1
R4←R4−6R1


2 −1

3 8
−5 −2

6 4

 R3←R3+1
4R2−−−−−−−→

R4←R4−1
2R2


2 −1

3 8
−5 −1

4

6 1
2



L =


1 0 0 0

3 1 0 0

−5 −1
4 1 0

6 1
2 0 1


4×4

, U =


2 −1

0 8

0 0

0 0


4×2

.

Note: U has the same size as A, i.e„ A ∈ R4×2, while L is a square matrix
and is a unit lower triangular matrix.
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Remark 6.22. For an n × n dense matrix A (with most entries
nonzero) with n moderately large.

• Computing an LU factorization of A takes about 2n3/3 flops† (∼ row
reducing [A b]), while finding A−1 requires about 2n3 flops.

• Solving Ly = b and Ux = y requires about 2n2 flops, because any n×n
triangular system can be solved in about n2 flops.

• Multiplying b by A−1 also requires about 2n2 flops, but the result may
not as accurate as that obtained from L and U (due to round-off errors
in computing A−1 & A−1b).

If A is sparse (with mostly zero entries), then L and U may be sparse,
too. On the other hand, A−1 is likely to be dense.

• In this case, a solution of Ax = b with LU factorization is much faster
than using A−1.

† A flop is a floating point operation by +, −, × or ÷.

Solving Linear Systems by LU Factorization

• The LU factorization can be applied for general m× n matrices:

A =


1 0 0 0

∗ 1 0 0

∗ ∗ 1 0

∗ ∗ ∗ 1


︸ ︷︷ ︸

L


� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 � ∗
0 0 0 0 0


︸ ︷︷ ︸

U

(6.29)

• Let A ∈ Rn×n be nonsingular. If A = LU , where L is a unit lower-
triangular matrix and U is an upper-triangular matrix, then

Ax = b⇐⇒ (LU)x = L(Ux) = b⇐⇒

{
Ly = b

Ux = y
(6.30)

In the following couple of examples, LU is given.
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Example 6.23. Let A =

 1 4 −2

2 5 −3

−3 −18 16

, b =

−12

−14

64

;

A = LU
∆
=

 1 0 0

2 1 0

−3 2 1


 1 4 −2

0 −3 1

0 0 8

 .
Use the LU factorization of A to solve Ax = b.

Solution. From (6.30), we know there are two steps to perform:

(1) Solve Ly = b for y;
(2) Solve Ux = y for x.

(1) Solve Ly = b for y by row reduction

[L
... b] =

 1 0 0
... −12

2 1 0
... −14

−3 2 1
... 64

→ · · · →
 1 0 0

... −12

0 1 0
... 10

0 0 1
... 8

 = [I
...y]. (6.31)

(2) Solve Ux = y for x by row reduction

[U
... y] =

 1 4 −2
... −12

0 −3 1
... 10

0 0 8
... 8

→ · · · →
 1 0 0

... 2

0 1 0
... −3

0 0 1
... 1

 = [I
...x]. (6.32)

Thus, x = [2,−3, 1]T .
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Example 6.24. Let A =


5 4 −2 −3

15 13 2 −10

−5 −1 28 3

10 10 8 −8

 , b =


−10

−29

30

−22

;

A = LU
∆
=


1 0 0 0

3 1 0 0

−1 3 1 0

2 2 −2 1




5 4 −2 −3

0 1 8 −1

0 0 2 3

0 0 0 6

 .
Use the LU factorization of A to solve Ax = b.

Solution.

(1) Solve Ly = b for y:

[L
... b] =


1 0 0 0

... −10

3 1 0 0
... −29

−1 3 1 0
... 30

2 2 −2 1
... −22

→ · · · →


1 0 0 0
... −10

0 1 0 0
... 1

0 0 1 0
... 17

0 0 0 1
... 30

 = [I
...y].

(2) Solve Ux = y for x:

[U
... y] =


5 4 −2 −3

... −10

0 1 8 −1
... 1

0 0 2 3
... 17

0 0 0 6
... 30

→ · · · →


1 0 0 0
... 3

0 1 0 0
... −2

0 0 1 0
... 1

0 0 0 1
... 5

 = [I
...x].

Thus, x = [3,−2, 1, 5]T .
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6.3.2. Gauss Elimination with Pivoting

Definition 6.25. A permutation matrix is a matrix that has exactly
one 1 in each row and in each column, all other entries being zero.

Self-study 6.26. Show that if P is permutation matrix, then P TP =

PP T = I. Thus P is nonsingular and

P−1 = P T .

Solution.

Lemma 6.27. Let P and Q be n× n permutation matrices and A ∈
Rn× n. Then

(a) PA is A with its rows permuted
AP is A with its columns permuted.

(b) det (P ) = ±1.
(c) PQ is also a permutation matrix.

Example 6.28. Let A ∈ Rn×n, and let Â be a matrix obtained from scram-
bling the rows of A. Show that there is a unique permutation matrix P ∈
Rn×n such that Â = PA.

Hint: Consider the row indices in the scrambled matrix Â, say {k1, k2, · · · , kn}.
(This means that for example, the first row of Â is the same as the k1-th row
of A.) Use the index set to define a permutation matrix P .

Proof. (Self-study)
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Theorem 6.29. Gauss elimination with partial pivoting, applied
to A ∈ Rn×n, produces a unit lower-triangular matrix L with |`ij| ≤ 1, an
upper-triangular matrix U , and a permutation matrix P such that

Â = PA = LU (6.33)

or, equivalently,
A = P TLU (6.34)

Note: If A is singular, then so is U .

Algorithm 6.30. Solving Ax = b using Gauss elimination with partial
pivoting:

1. Factorize A into A = P TLU , where
P = permutation matrix,
L = unit lower triangular matrix

(i.e., with ones on the diagonal),
U = nonsingular upper-triangular matrix.

2. Solve P TLUx = b

(a) LUx = Pb (permuting b)
(b) Ux = L−1(Pb) (forward substitution)
(c) x = U−1(L−1Pb) (back substitution)

In practice:

Ax = b ⇐⇒ P T (LU)x = b

⇐⇒ L(Ux) = Pb

}
⇐⇒

{
Ly = Pb

Ux = y
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Theorem 6.31. If A is nonsingular, then there exist permutations
P1 and P2, a unit lower triangular matrix L, and a nonsingular upper-
triangular matrix U such that

P1AP2 = LU.

Only one of P1 and P2 is necessary.

Remark 6.32. P1A reorders the rows of A, AP2 reorders the columns,
and P1AP2 reorders both. Consider

P ′1AP
′
2 =

[
a11 A12

A21 A22

]
=

[
1 0

L21 I

][
u11 U12

0 Ã22

]

=

[
u11 U12

L21u11 L21U12 + Ã22

]
(6.35)

• We can choose P ′2 = I and P ′1 so that a11 is the largest entry in absolute
value in its column, which implies L21 = A21

a11
has entries bounded by 1

in modulus.
• More generally, at step k of Gaussian elimination, where we are com-

puting the kth column of L, we reorder the rows so that the largest
entry in the column is on the pivot. This is called Gaussian elimina-
tion with partial pivoting, or GEPP for short. GEPP guarantees
that all entries of L are bounded by one in modulus.

Remark 6.33. We can choose P1 and P2 so that a11 in (6.35) is the
largest entry in modulus in the whole matrix. More generally, at step k
of Gaussian elimination, we reorder the rows and columns so that the
largest entry in the matrix is on the pivot. This is called Gaussian
elimination with complete pivoting, or GECP for short.
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Example 6.34. Find the LU factorization of A =

 3 −1 1

9 1 2

−6 5 −5

, which is

considered in Example 6.20.

Solution. (Without pivoting)

A =

 3 −1 1

9 1 2

−6 5 −5

 R2←R2−3R1−−−−−−−→
R3←R3+2R1

 3 −1 1
3 4 −1

-2 3 −3


R3←R3− 3

4R2−−−−−−−→

 3 −1 1
3 4 −1

-2 3
4 −9

4



L =

 1 0 0

3 1 0

−2 3
4 1

 , U =

 3 −1 1

0 4 −1

0 0 −9
4

 .
(With partial pivoting)

A =

 3 −1 1

9 1 2

−6 5 −5

 R1↔R2−−−−→

 9 1 2

3 −1 1

−6 5 −5


R2←R2− 1

3R1−−−−−−−→
R3←R3+ 2

3R1

 9 1 2
1
3 −4

3
1
3

−2
3

17
3 −11

3

 R2↔R3−−−−→

 9 1 2

−2
3

17
3 −11

3
1
3 −4

3
1
3


R3←R3+ 4

17R2−−−−−−−−→

 9 1 2

−2
3

17
3 −11

3
1
3 − 4

17 − 9
17

 , I
R1↔R2−−−−→ E

R2↔R3−−−−→ P

PA = LU

P =

0 1 0

0 0 1

1 0 0

 , L =

 1 0 0

−2
3 1 0
1
3 −

4
17 1

 , U =


9 1 2

0 17
3 −11

3

0 0 − 9
17
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6.3.3. The Computation of A−1

Algorithm 6.35. (The computation of A−1):

• The program to solve Ax = b can be used to calculate the inverse of a
matrix. Letting X = A−1, we have

AX = I. (6.36)

• This equation can be written in partitioned form:

A[x1 x2 · · · xn] = [e1 e2 · · · en], (6.37)

where x1, x2, · · · , xn and e1, e2, · · · , en are columns of X and I, respec-
tively.

• Thus AX = I is equivalent to the n equations

Axi = ei, i = 1, 2, · · · , n. (6.38)

Solving these n systems by Gauss elimination with partial pivoting,
we obtain A−1.

Computational complexity

• A naive flop count:

LU -factorization of A:
2

3
n3 +O(n2)

Solve for n equations in (6.38): n · 2n2 = 2n3

Total cost:
8

3
n3 +O(n2)

• A modification: The forward-substitution phase requires the solu-
tion of

Lyi = ei, i = 1, 2, · · · , n. (6.39)

Some operations can be saved by exploiting the leading zeros in ei.
(For each i, the portion of L to be accessed is triangular.) With these
savings, one can conclude that A−1 can be computed in 2n3 + O(n2)
flops.
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Exercises for Chapter 6

6.1. Solve the equation Ax = b by using the LU factorization.

A =

 4 3 −5

−4 −5 7

8 6 −8

 and b =

 2

−4

6

.
(Do not use computer programming for this problem.)

Ans: x =

1/4

2

1

.

6.2. Let L = [`ij] and M = [mij] be lower-triangular matrices.

(a) Prove that LM is lower triangular.
(b) Prove that the entries of the main diagonal of LM are

`11m11, `22m22, · · · , `nnmnn

Thus the product of two unit lower-triangular matrices is unit lower triangular.

6.3. C Consider the system Ax = b, where

A =


1 −2 −1 3

1 −2 0 1

−3 −2 1 7

0 −2 8 5

 and b =


−12

−5

−14

−7

 .
(a) Perform LU decomposition with partial pivoting for A to show P , L, and U .
(b) Solve the system.

(You may use any built-in functions for this problem.)

6.4. C Consider the finite difference method on uniform meshes to solve

(a) −uxx + u = (π2 + 1) cos(πx), x ∈ (0, 1),

(b) u(0) = 1 and ux(1) = 0.
(6.40)

(a) Implement a function to construct algebraic systems in the full matrix form, for
general nx ≥ 1.

(b) Use a direct method (e.g., A\b) to find approximate solutions for nx = 25, 50, 100.
(c) The actual solution for (6.40) is u(x) = cos(πx). Measure the maximum errors for

the approximate solutions.

(This problem is optional for undergraduate students; you will get an extra credit
when you solve it.)



CHAPTER 7
Iterative Algebraic Solvers

This chapter is concerned with iterative algebraic solvers.

For A ∈ Rn×n, b ∈ Rn, we will learn iterative methods for an approximate
solution of

Ax = b. (7.1)

Iterative methods we will consider can be formulated as

xk = xk−1 +G(b− Axk−1), (7.2)

where b − Axk−1 = rk−1 is the (k − 1)st residual and G is an operator
which can be either a scalar or a matrix.

Maple built-in command:
with(NumericalAnalysis);
IterativeApproximate(A, b, opts);
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7.1. Norms of Vectors and Matrices

7.1.1. Vectors

Definition 7.1. Let u = [u1, u2, · · · , un]T and v = [v1, v2, · · · , vn]T are
vectors in Rn. Then, the inner product (or dot product) of u and v is
given by

u•v = uTv = [u1 u2 · · · un]


v1

v2
...
vn


= u1 v1 + u2 v2 + · · ·+ un vn =

n∑
k=1

ukvk.

(7.3)

Definition 7.2. The length (Euclidean norm) of v is nonnegative
scalar ‖v‖ defined by

‖v‖ =
√
v•v =

√
v2

1 + v2
2 + · · ·+ v2

n and ‖v‖2 = v•v. (7.4)

Definition 7.3. For u,v ∈ Rn, the distance between u and v is

dist(u,v) = ‖u− v‖, (7.5)

the length of the vector u− v.

Definition 7.4. Two vectors u and v in Rn are orthogonal if u•v = 0.

Theorem 7.5. Pythagorean Theorem: Two vectors u and v are or-
thogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2. (7.6)
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Note: The inner product can be defined as

u•v = ‖u‖ ‖v‖ cos θ, (7.7)

where θ is the angle between u and v.

Example 7.6. Let u =

 1

2

−2

 and v =

 0

0

−4

. Use (7.7) to find the angle

between u and v.

Solution.

7.1.2. Vector and matrix norms

Definition 7.7. A norm (or, vector norm) on Rn is a function that
assigns to each x ∈ Rn a nonnegative real number ‖x‖ such that the
following three properties are satisfied: for all x, y ∈ Rn and λ ∈ R,

‖x‖ > 0 if x 6= 0 (positive definiteness)
‖λx‖ = |λ| ‖x‖ (homogeneity)
‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

(7.8)

Example 7.8. The most vector common norms are the p-norms

‖x‖p =
(∑

i

|xi|p
)1/p

, 1 ≤ p <∞, (7.9)

and the infinity-norm or maximum-norm

‖x‖∞ = max
i
|xi|. (7.10)
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Note: Two of frequently used p-norms are

‖x‖1 =
∑
i

|xi|, ‖x‖2 =
(∑

i

|xi|2
)1/2

(7.11)

The `2-norm is also called the Euclidean norm, often denoted by ‖ · ‖.

Example 7.9. One may consider the infinity-norm as the limit of p-norms,
as p→∞.

Solution.

Theorem 7.10. (Cauchy-Schwarz Inequality).

|x · y| =

∣∣∣∣∣
n∑
i=1

xiy1

∣∣∣∣∣ ≤ (
n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

= ‖x‖ ‖y‖. (7.12)

Theorem 7.11. The sequence of vectors {x(k)} converges to x in Rn with
respect to the `∞-norm if and only if

lim
k→∞

x
(k)
i = xi, for all i = 1, 2, · · · , n.

Example 7.12. x(k) =
(

1, 2 +
1

k
,

3

k2
, e−k sin k

)T
→ (1, 2, 0, 0)T with respect

to the `∞-norm.

Solution.

Theorem 7.13. (Equivalence between the `2-norm and the `∞-
norm). For each x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞. (7.13)
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7.1.3. Matrix norms

Definition 7.14. A matrix norm on m× n matrices is a vector norm
on the mn-dimensional space, satisfying

‖A‖ ≥ 0, and ‖A‖ = 0 ⇔ A = 0 (positive definiteness)
‖λA‖ = |λ| ‖A‖ (homogeneity)
‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

(7.14)

Example 7.15. ‖A‖F ≡
(∑

i,j

|aij|2
)1/2

is called the Frobenius norm.

Definition 7.16. Once a vector norm || · || has been specified, the in-
duced matrix norm is defined by

‖A‖ = max
x6=0

‖Ax‖
‖x‖

. (7.15)

It is also called an operator norm or subordinate norm.

Theorem 7.17.

a. For all operator norms and the Frobenius norm,

‖Ax‖ ≤ ‖A‖ ‖x‖, ‖AB‖ ≤ ‖A‖ ‖B‖. (7.16)

b. ‖A‖1 ≡ max
x 6=0

‖Ax‖1

‖x‖1
= max

j

∑
i

|aij| (max of vertical sums)

c. ‖A‖∞ ≡ max
x 6=0

‖Ax‖∞
‖x‖∞

= max
i

∑
j

|aij| (max of horizontal sums)

d. ‖A‖2 ≡ max
x 6=0

‖Ax‖2

‖x‖2
=
√
λmax(ATA),

where λmax denotes the largest eigenvalue.
e. ‖A‖2 = ‖AT‖2.
f. ‖A‖2 = max

i
|λi(A)|, when ATA = AAT (normal matrix).
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Definition 7.18. Let A ∈ Rn× n. Then

κ(A) ≡ ‖A‖ ‖A−1‖

is called the condition number of A, associated to the matrix norm.

Example 7.19. Let A =

 1 2 −1

0 3 −1

1 −2 1

. Then, we have

A−1 =
1

2

 1 0 1

−1 2 1

−3 4 3

 and ATA =

 2 0 0

0 17 −7

0 −7 3

 .
a. Find ‖A‖1, ‖A‖∞, and ‖A‖2.

b. Compute the `1-condition number κ1(A).

Solution.

Theorem 7.20. (Neumann Series Theorem). If A ∈ Rn×n and
‖A‖ < 1 for any subordinate matrix norm, then I − A is invertible and

(I − A)−1 =
∞∑
k=0

Ak. (7.17)
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7.2. Eigenvectors and Eigenvalues

Definition 7.21. Let A be an n× n matrix. An eigenvector of A is a
nonzero vector x such that

Ax = λx (7.18)

for some scalar λ. In this case, a scalar λ is an eigenvalue and x is the
corresponding eigenvector.

Definition 7.22. The scalar equation

det (A− λI) = 0 (7.19)

is called the characteristic equation of A; the polynomial p(λ) =
det (A− λI) is called the characteristic polynomial of A. The solu-
tions of det (A− λI) = 0 are the eigenvalues of A.

Claim 7.23. λ is an eigenvalue of A if and only if det (A− λI) = 0.

Example 7.24. Find eigenvalues and eigenvectors of A =

[
1 6

5 2

]
.

Solution.
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Example 7.25. Find the eigenvalues and eigenvectors for the matrix

A :=

2 0 0

1 1 2

1 −1 4


Solution.

Maple

with(LinearAlgebra): Eigenvectors =

2

2

3

,
−2 1 0

0 1 1

1 0 1


p := CharacteristicPolynomial(A, lambda); factor(p);

−12 + λ3 − 7λ2 + 16λ (7.20)

Now, let us find them by using pencils.
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Remark 7.26. Let A be an n× n matrix. Then the characteristic equa-
tion of A is of the form

p(λ) = det (A− λI) = (−1)n (λn + cn−1λ
n−1 + · · ·+ c1λ+ c0)

= (−1)n
n∏
i=1

(λ− λi),
(7.21)

where some of eigenvalues λi can be complex-valued numbers. Thus

detA = p(0) = (−1)n
n∏
i=1

(0− λi) =
n∏
i=1

λi. (7.22)

That is, det A is the product of all eigenvalues of A.

7.2.1. Spectral radius

Definition 7.27. The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, (7.23)

where λ is an eigenvalue of A.

Theorem 7.28. If A ∈ Rn×n, then

(a) ‖A‖2 =
√
ρ(ATA)

(b) ρ(A) ≤ ‖A‖, or any natural matrix norm || · ||.

Proof. The proof of part (a) requires more advanced matrix algebra. For
part (b), let λ be an eigenvalue of A with its corresponding eigenvector x

with ||x|| = 1. Then

|λ| = |λ| ||x|| = ||λx|| = ||Ax|| ≤ ||A|| ||x|| = ||A||. (7.24)

Thus, the assertion follows.
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7.2.2. Convergent matrices

Definition 7.29. A matrix A ∈ Rn×n is convergent if

lim
k→∞

(Ak)ij = 0, for each 1 ≤ i, j ≤ n. (7.25)

Example 7.30. Is A :=

[
1/2 0

1/4 1/2

]
convergent?

Solution.

A2 =

[
1/4 0

1/4 1/4

]
A3 =

[
1/8 0

3/16 1/8

]
A4 =

[
1/16 0

1/8 1/16

]
· · ·

In general,

Ak =

 1

2k
0

k

2k+1

1

2k

→ 0.

Thus the matrix A is convergent.

Theorem 7.31. The following statements are equivalent.

(a) A is convergent.
(b) limn→∞ ||An|| = 0 for some natural matrix norm.
(c) limn→∞ ||An|| = 0 for all natural matrix norms.
(d) ρ(A) < 1.
(e) limn→∞A

nx = 0 for all x ∈ Rn.
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7.2.3. Invertible matrices

Definition 7.32. An n× n matrix A is said to be invertible (nonsin-
gular) if there is an n× n matrix B such that

AB = In = BA,

where In is the identity matrix. The matrix B is called an inverse of A.

Note: We may prove that such a matrix B is unique. Thus B is the
unique inverse of A denoted by A−1.

Definition 7.33. Let A = (aij) ∈ Rm×n. The transpose of A is AT =
(aji). The matrix is symmetric if A = AT .

Note: (AB)T = BTAT .

Theorem 7.34.

1. A square matrix can possess at most one right inverse.
2. If A and B are square matrices such that AB = I, then BA = I.
3. Let A and B be invertible square matrices. Then,

(AB)−1 = B−1A−1.

Proof. Let’s prove Part 2 only. Let C = BA− I +B. Then,

AC = ABA− A+ AB = A− A+ I = I.

By the uniqueness of the right inverse (Part 1), we can conclude B = C,
which implies BA− I = 0.
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Theorem 7.35. (Invertible Matrix Theorem) Let A be an n× n ma-
trix. Then the following are equivalent.

a. A is an invertible matrix.
b. A is row equivalent to the n× n identity matrix.
c. A has n pivot positions.
d. The columns of A are linearly independent.
e. The equation Ax = 0 has only the trivial solution x = 0.
f. The equation Ax = b has unique solution for each b ∈ Rn.
g. The linear transformation x 7→ Ax is one-to-one.
h. The linear transformation x 7→ Ax maps Rn onto Rn.
i. There is a matrix C ∈ Rn×n such that CA = I

j. There is a matrix D ∈ Rn×n such that AD = I

k. AT is invertible and (AT )−1 = (A−1)T .
l. The number 0 is not an eigenvalue of A.

m. detA 6= 0.
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7.3. Iterative Algebraic Solvers

7.3.1. Basic concepts for iterative solvers

We consider iterative methods in a more general mathematical setting.
A general type of iterative process for solving the algebraic system

Ax = b, A ∈ Rn×n (7.26)

can be described as follows.

• Split the matrix A as
A = M −N, (7.27)

where M is an invertible matrix.
• Then, the system (7.26) can be expressed equivalently as

Mx = Nx + b. (7.28)

• Associated with the splitting is an iterative method

Mxk = Nxk−1 + b ⇒ xk = M−1Nxk−1 +M−1b (7.29)

for a given initialization x0, k ≥ 1.
• Since N = M − A, (7.29) can be rewritten as

xk = (I −M−1A)xk−1 +M−1b

or
xk = xk−1 +M−1(b− Axk−1)

(7.30)

Here, the matrix I −M−1A (= M−1N) is called the iteration ma-
trix.
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We shall say that the iterative method in (7.30) is convergent if it con-
verges for any initial vector x0. A sequence of vectors {x1,x2, · · · } will be
computed from (7.30), and our objective is to choose M so that these two
conditions are met:

1. The sequence {xk} is easily computed. (Of course, M must be invertible.)

2. The sequence {xk} converges rapidly to the solution.

Both conditions can be satisfied if 1 M is easy to invert and 2 M−1

approximates A−1 well.

Convergence: Recall (7.30):

xk = (I −M−1A)xk−1 +M−1b (k ≥ 1).

If the sequence {xk} converges, say to a vector x, then it follows from
(7.30) that

x = (I −M−1A)x +M−1b (7.31)

Thus, by letting ek = x− xk, we have

ek = (I −M−1A)ek−1 (k ≥ 1), (7.32)

which implies
||ek|| ≤ ||I −M−1A|| ||ek−1||

≤ ||I −M−1A||2 ||ek−2||
≤ · · · ≤ ||I −M−1A||k ||e0||

(7.33)

Thus, it can be concluded as in the following theorem.

Theorem 7.36. (Sufficient condition for convergence).
If ||I −M−1A|| = ||M−1N || < 1 for some induced matrix norm, then the
sequence produced by (7.30) converges to the solution of Ax = b for any
initial vector x0.
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Note: Let δ = ||I −M−1A||.

• (Choice of M) When

M−1A ≈ I, or equivalently M−1 ≈ A−1,

the quantity δ will become smaller and therefore the iteration con-
verges faster.

• (Stopping criterion) If δ = ||I−M−1A|| < 1, then it is safe to halt
the iterative process when ||xk − xk−1|| is small. Indeed, since

ek = (I −M−1A)ek−1 = (I −M−1A)(ek + xk − xk−1),

we can obtain
||ek|| ≤ δ(||ek||+ ||xk − xk−1||)

which implies

||ek|| ≤ δ

1− δ
||xk − xk−1||. (7.34)

Theorem 7.37. The iteration (7.30) converges if and only if

ρ(I −M−1A) = ρ(M−1N) < 1. (7.35)

Note: An iterative algorithm converges if and only if its iteration matrix
is convergent. See Theorem (7.31), p.248, for details of matrix conver-
gence.
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7.3.2. Richardson method: the simplest iteration

The iterative method is called the Richardson method if M is simply
chosen to be the identity matrix:

M = I and N = I − A.

In this case, the second equation in (7.30) reads

xk = xk−1 + (b− Axk−1). (7.36)

Figure 7.1: A maple implementation for the Richardson method.

Results of Richardson
1 A := 1/6*Matrix([[6, 3, 2], [2, 6, 3], [3, 2, 6]]):
2 b := 1/6*Vector([11, 11, 11]):
3 x := Vector([0, 0, 0]):
4 Richardson(3, A, b, x, 10)
5 k=, 1, [1.833333333, 1.833333333, 1.833333333]
6 k=, 2, [0.3055555556, 0.3055555556, 0.3055555556]
7 k=, 3, [1.578703704, 1.578703704, 1.578703704]
8 k=, 4, [0.5177469136, 0.5177469136, 0.5177469136]
9 k=, 5, [1.401877572, 1.401877572, 1.401877572]

10 k=, 6, [0.6651020233, 0.6651020233, 0.6651020233]
11 k=, 7, [1.279081647, 1.279081647, 1.279081647]
12 k=, 8, [0.7674319606, 0.7674319606, 0.7674319606]
13 k=, 9, [1.193806699, 1.193806699, 1.193806699]
14 k=, 10, [0.8384944171, 0.8384944171, 0.8384944171]
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Eigenvalues of the iteration matrix
1 with(LinearAlgebra): Id := Matrix(3, shape = identity):
2 evalf(Eigenvalues(Id - A));
3 [ -0.8333333333 ]
4 [0.4166666667 - 0.1443375673 I]
5 [0.4166666667 + 0.1443375673 I]

Note: Eigenvalues of A must be

1.833333333

0.5833333333 + i 0.1443375673

0.5833333333− i 0.1443375673

.

Thus all eigenvalues λ of A are in the open disk {z ∈ C : |z − 1| < 1},
which is a sufficient and necessary condition for the convergence of the
Richardson method.

Generalization of the Richardson method

Consider
Ax = b, (7.37)

where some eigenvalues of A are not in {z ∈ C : |z − 1| < 1}.

• First, scale (7.37) with a constant η:

ηAx = ηb, (7.38)

where all the eigenvalues of ηA are in the open disk.
• Then, apply the Richardson method to (7.38):

with M = I and N = I − ηA, the iteration reads

xk = xk−1 + (ηb− ηAxk−1)

= xk−1 + η(b− Axk−1).
(7.39)

Thus the Richardson method converges by choosing an appropriate
scaling factor η.

Self-study 7.38. Let A ∈ Rn×n be a definite matrix. Prove that the gen-
eralized Richardson method is convergent for the solution of Ax = b.

Solution.
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7.4. Relaxation Methods

Definition 7.39. A matrix splitting is an expression which represents
a given matrix as a sum or difference of matrices: A = M −N .

Relaxation methods: We first express A = (aij) ∈ Rn×n as the matrix
sum:

A = D − E − F, (7.40)

where

D =


a11 0 · · · 0

0 a22
. . . ...

... . . . . . . 0

0 · · · 0 ann

 −E =


0 0 · · · 0

a21 0 . . . ...
... . . . . . . 0

an1 · · · an,n−1 0



−F =


0 a12 · · · a1n

0 0 . . . ...
... . . . . . . an−1,n

0 · · · 0 0


Then, relaxation methods can be formulated by selecting M and N for
the matrix splitting. Examples are:

Table 7.1: Common relaxation methods.

M N

Jacobi method D E + F

Gauss-Seidel method D − E F

SOR method
1

ω
D − E, ω ∈ (0, 2)

1− ω
ω

D + F

Here, SOR stands for successive over relaxation.



7.4. Relaxation Methods 257

Jacobi Method
The Jacobi method is formulated with M = D and N = E + F :

Dxk = (E + F )xk−1 + b. (7.41)

The i-th component of (7.41) reads

aiix
k
i = bi +

i−1∑
j=1

(−aijxk−1
j ) +

n∑
j=i+1

(−aijxk−1
j ), (7.42)

or, equivalently,

xki =
1

aii

(
bi −

i−1∑
j=1

aijx
k−1
j −

n∑
j=i+1

aijx
k−1
j

)
(7.43)

Example 7.40. Let A :=

 2 −1 0

−1 2 −1

0 −1 2

 and b :=

1

0

5

. Use the Jacobi

method to find xk, k = 1, 2, 3, beginning from x0 =

1

1

1

.

Solution.
Manual checking in Maple

1 x0 := Vector([1,1,1]):
2 x1 := Vector(3): x2 := Vector(3): x3 := Vector(3):
3

4 x1[1] := (-A[1, 2]*x0[2] - A[1, 3]*x0[3] + b[1])/A[1, 1];
5 x1[2] := (-A[2, 1]*x0[1] - A[2, 3]*x0[3] + b[2])/A[2, 2];
6 x1[3] := (-A[3, 1]*x0[1] - A[3, 2]*x0[2] + b[3])/A[3, 3];
7 x1^%T
8 [1, 1, 3]
9

10 x2[1] := (-A[1, 2]*x1[2] - A[1, 3]*x1[3] + b[1])/A[1, 1];
11 x2[2] := (-A[2, 1]*x1[1] - A[2, 3]*x1[3] + b[2])/A[2, 2];
12 x2[3] := (-A[3, 1]*x1[1] - A[3, 2]*x1[2] + b[3])/A[3, 3];
13 x2^%T
14 [1, 2, 3]
15

16 x3[1] := (-A[1, 2]*x2[2] - A[1, 3]*x2[3] + b[1])/A[1, 1];
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17 x3[2] := (-A[2, 1]*x2[1] - A[2, 3]*x2[3] + b[2])/A[2, 2];
18 x3[3] := (-A[3, 1]*x2[1] - A[3, 2]*x2[2] + b[3])/A[3, 3];
19 x3^%T
20 [3 7]
21 [-, 2, -]
22 [2 2]

Note: The true solution is [2, 3, 4]T .

Jacobi: Maple implementation

Figure 7.2: Maple implementation for the Jacobi method.

Results of Jacobi
1 Jacobi(3, A, b, x0, tol, 10)
2 k=, 1, [1., 1., 3.]
3 k=, 2, [1., 2., 3.]
4 k=, 3, [1.500000000, 2., 3.500000000]
5 k=, 4, [1.500000000, 2.500000000, 3.500000000]
6 k=, 5, [1.750000000, 2.500000000, 3.750000000]
7 k=, 6, [1.750000000, 2.750000000, 3.750000000]
8 k=, 7, [1.875000000, 2.750000000, 3.875000000]
9 k=, 8, [1.875000000, 2.875000000, 3.875000000]

10 k=, 9, [1.937500000, 2.875000000, 3.937500000]
11 k=, 10, [1.937500000, 2.937500000, 3.937500000]

Jacobi: the `∞-error = 0.0625
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Gauss-Seidel Method
The Gauss-Seidel method is formulated with M = D − E and N = F :

(D − E)xk = Fxk−1 + b. (7.44)

Note that (7.44) can be equivalently written as

Dxk = b + Exk + Fxk−1. (7.45)

The i-th component of (7.45) reads

aiix
k
i = bi +

i−1∑
j=1

(−aijxkj ) +
n∑

j=i+1

(−aijxk−1
j ), (7.46)

or, equivalently,

xki =
1

aii

(
bi −

i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k−1
j

)
(7.47)

The difference is that the SOR method utilizes updated values.

Gauss-Seidel (GS): Maple implementation

Figure 7.3: Maple implementation for the Gauss-Seidel method.
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Results of GaussSeidel
1 GaussSeidel(3, A, b, x0, tol, 10)
2 k=, 1, [1., 1., 3.]
3 k=, 2, [1., 2., 3.500000000]
4 k=, 3, [1.500000000, 2.500000000, 3.750000000]
5 k=, 4, [1.750000000, 2.750000000, 3.875000000]
6 k=, 5, [1.875000000, 2.875000000, 3.937500000]
7 k=, 6, [1.937500000, 2.937500000, 3.968750000]
8 k=, 7, [1.968750000, 2.968750000, 3.984375000]
9 k=, 8, [1.984375000, 2.984375000, 3.992187500]

10 k=, 9, [1.992187500, 2.992187500, 3.996093750]
11 k=, 10, [1.996093750, 2.996093750, 3.998046875]

Gauss-Seidel: the `∞-error ≈ 0.0039 = 3.9E-3.

Note: By comparison with the result of the Jacobi method, we may con-
clude that Gauss-Seidel method is twice faster than the Jacobi method.
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Successive Over Relaxation (SOR) Method

The successive over relaxation (SOR) is formulated withM =
1

ω
D−E

and N =
1− ω
ω

D + F :

(D − ωE)xk =
(
(1− ω)D + ωF

)
xk−1 + ωb. (7.48)

Note that (7.48) can be equivalently written as
Dxk = (1− ω)Dxk−1 + ω(b + Exk + Fxk−1). (7.49)

The i-th component of (7.49) reads

aiix
k
i = (1− ω)aiix

k−1
i + ω

(
bi +

i−1∑
j=1

(−aijxkj ) +
n∑

j=i+1

(−aijxk−1
j )

)
, (7.50)

or, equivalently,

xkGS,i =
1

aii

(
bi −

i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k−1
j

)
xki = (1− ω)xk−1

i + ωxkGS,i

(7.51)

Note that when ω = 1, the SOR becomes the Gauss-Seidel method.

SOR: Maple implementation

Figure 7.4: Maple implementation for the SOR method.



262 Chapter 7. Iterative Algebraic Solvers

Results of SOR
1 SOR(3, A, b, x0, 1.2, tol, 10)
2 k=, 1, [1.0, 1.000000000, 3.400000000]
3 k=, 2, [1.000000000, 2.440000000, 3.784000000]
4 k=, 3, [1.864000000, 2.900800000, 3.983680000]
5 k=, 4, [1.967680000, 2.990656000, 3.997657600]
6 k=, 5, [2.000857600, 3.000977920, 4.001055232]
7 k=, 6, [2.000415232, 3.000686694, 4.000200970]
8 k=, 7, [2.000328970, 3.000180625, 4.000068180]
9 k=, 8, [2.000042580, 3.000030331, 4.000004563]

10 k=, 9, [2.000009683, 3.000002482, 4.000000576]
11 k=, 10, [1.999999552, 2.999999581, 3.999999633]

SOR: the `∞-error ≈ 0.00000045 = 4.5E-7.

Note: The SOR with ω = 1.2:

• It is much faster than the Jacobi and GS methods.
• Question: How can we find the optimal parameter ω̂?

We will see it soon.

Convergence Theory

Theorem 7.41. For and x0 ∈ Rn, the sequence defined by

xk = T xk−1 + c (7.52)

converges to the unique solution of x = T x + c if and only if ρ(T ) < 1. In
this case, the iterates satisfy

||x− xk|| ≤ ||T ||k ||x− x0||. (7.53)

For example:

Relaxation method T (Iteration matrix)
Jacobi method TJ = D−1(E + F )

Gauss-Seidel method TGS = (D − E)−1F

SOR method TSOR = (D − ωE)−1
[
(1− ω)D + ωF

]
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Theorem 7.42. (Stein and Rosenberg, 1948) [22]. One and only one
of the following mutually exclusive relations is valid:

1. ρ(TJ) = ρ(TGS) = 0

2. 0 < ρ(TGS) < ρ(TJ) < 1

3. ρ(TJ) = ρ(TGS) = 1

4. 1 < ρ(TJ) < ρ(TGS)

Theorem 7.43. Let A be symmetric. Then,

ρ(TSOR) < 1 ⇐⇒ A is is positive definite and 0 < ω < 2. (7.54)

Parameter 7.44. (Optimal ω for the SOR). For algebraic systems
of good properties, it is theoretically known that the convergence of the
SOR can be optimized when

ω̂ =
2

1 +
√

1− ρ(TJ)2
. (7.55)

However, in many cases you can find a better ω for a given algebraic
system.

Note: Let 0 < ρ(TJ) < 1. Then the theoretically optimal SOR parameter

1 < ω̂ < 2,

ω̂ ≈ 1 +
1

4
ρ(TJ)2 +

1

8
ρ(TJ)4.

(7.56)

Remark 7.45.

• When ω > 1, the blending of the SOR, the second equation in (7.51),
is an extrapolation. It is how the algorithm is named.

• On the other hand, when ω < 1, the algorithm is also called the
successive under relaxation (SUR).
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7.5. Graph Theory: Estimation of the Spectral
Radius

Definition 7.46. A permutation matrix is a square matrix in which
each row and each column has one entry of unity, all others zero.

7.5.1. Irreducible matrices

Definition 7.47. For n ≥ 2, an n × n complex-valued matrix A is re-
ducible if there is a permutation matrix P such that

PAP T =

[
A11 A12

0 A22

]
,

where A11 and A22 are respectively r× r and (n− r)× (n− r) submatrices,
0 < r < n. If no such permutation matrix exists, then A is irreducible.

The geometrical interpretation of the concept of the irreducibility by means
of graph theory is useful.

Geometrical interpretation of irreducibility

Directed graph

• Given A = [aij] ∈ Cn×n, consider n
distinct points

P1, P2, · · · , Pn
in the plane, which we will call
nodes or nodal points.

• For any nonzero entry aij of A, we

connect Pi to Pj by a path
−→
PiPj,

directed from the node Pi to the
node Pj; a nonzero aii is joined to
itself by a directed loop, as shown
in Figure 7.5.

• In this way, every n × n matrix
A can be associated with a di-
rected graph G(A).

Figure 7.5: The directed paths for nonzero
aii and aij.
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Example 7.48. For example, the matrix

A =

 2 −1 0

−1 2 −1

0 −1 2

 (7.57)

has a directed graph shown in Figure 7.6.

Figure 7.6: The directed graph G(A) for A in (7.57).

Definition 7.49. A directed graph is strongly connected if, for any
ordered pair of nodes (Pi, Pj), there is a directed path of a finite length

−→
PiPk1,

−→
Pk1Pk2, · · · ,

−→
Pkr−1Pkr=j,

connecting from Pi to Pj.

The theorems to be presented in this subsection can be found in (Varga,
2000) [25] along with their proofs.

Theorem 7.50. An n× n complex-valued matrix A is irreducible if and
only if its directed graph G(A) is strongly connected.
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7.5.2. Eigenvalue locus theorem

For A = [aij] ∈ Cn×n, let
Λi :=

n∑
j = 1
j 6= i

|aij| (7.58)

Theorem 7.51. (Eigenvalue locus theorem) Let A = [aij] be an irre-
ducible n× n complex matrix. Then,

1. (Gerschgorin, 1931) [7]: All eigenvalues of A lie in the union of
the disks in the complex plane

|z − aii| ≤ Λi, 1 ≤ i ≤ n. (7.59)

2. (Taussky, 1948) [23]: In addition, assume that λ, an eigenvalue of
A, is a boundary point of the union of the disks |z − aii| ≤ Λi. Then,
all the n circles |z − aii| = Λi must pass through the point λ, i.e.,
|λ− aii| = Λi for all 1 ≤ i ≤ n.

Example 7.52. Consider an algebraic system Ax = b, with

A =

 2 −1 0

−1 2 −1

0 −1 2

 . (7.60)

Estimate spectral radii of iteration matrices, for the Jacobi, the Gauss-
Seidel, and the SOR.

Solution. Jacobi:
Jacobi

1 M := Matrix([[2, 0, 0], [0, 2, 0], [0, 0, 2]]):
2 N := M - A:
3 TJ := M^-1 N
4 [ 0 1/2 0 ]
5 TJ := [1/2 0 1/2]
6 [ 0 1/2 0 ]

Λ1 = 1/2, Λ2 = 1, and Λ3 = 1/2. Thus |λi − 0| = |λi| < 1, for i = 1, 2, 3.
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1 with(LinearAlgebra):
2 Eigenvalues(TJ)^%T
3 [0 1/sqrt(2) -1/sqrt(2)]

Thus, ρ(TJ) = 1/
√

2 ≈ 0.7071067810.

Gauss-Seidel:
Gauss-Seidel

1 M := Matrix([[2, 0, 0], [-1, 2, 0], [0, -1, 2]]):
2 N := M - A:
3 TGS := M^-1 N
4 [0 1/2 0 ]
5 TGS := [0 1/4 1/2]
6 [0 1/8 1/2]

Λ1 = 1/2, Λ2 = 1/2, and Λ3 = 1/8:

λi ∈
{
|z − 0| < 1

2

}
∪
{
|z − 1

4
| < 1

2

}
∪
{
|z − 1

2
| < 1

8

}
Thus −1

2
< <(λi) <

3

4
and therefore ρ(TGS) <

3

4
.

1 Eigenvalues(TGS)^%T
2 [0 0 1/2]

Thus, ρ(TGS) = 0.5, which is exactly the square of ρ(TJ).
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SOR

Λ1 = 3/5, Λ2 = 18/25, and Λ3 = 21/125.

Thus −4

5
< <(λi) <

22

25
and therefore ρ(TSOR) <

22

25
.

Positiveness

Definition 7.53. An n × n complex-valued matrix A = [aij] is diago-
nally dominant if

|aii| ≥ Λi :=
n∑

j = 1
j 6= i

|aij|, (7.61)

for all 1 ≤ i ≤ n. An n× n matrix A is irreducibly diagonally dominant if
A is irreducible and diagonally dominant, with strict inequality holding
in (7.61) for at least one i.
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Theorem 7.54. Let A be an n × n strictly or irreducibly diagonally
dominant complex-valued matrix. Then, A is nonsingular. If all the di-
agonal entries of A are in addition positive real, then the real parts of all
eigenvalues of A are positive.

Corollary 7.55. A Hermitian matrix satisfying the conditions in Theo-
rem 7.54 is positive definite.

7.5.3. Regular splitting and M-matrices

Definition 7.56. For n× n real matrices, A, M , and N , A = M −N is a
regular splitting of A if M is nonsingular with M−1 ≥ 0, and N ≥ 0.

Theorem 7.57. If A = M − N is a regular splitting of A and A−1 ≥ 0,
then

ρ(M−1N) =
ρ(A−1N)

1 + ρ(A−1N)
< 1. (7.62)

Thus, the matrix M−1N is convergent and the iterative method (7.29)
converges for any initial value x0.

Definition 7.58. An n× n real matrix A = [aij] with aij ≤ 0 for all i 6= j

is an M-matrix if A is nonsingular and A−1 ≥ 0.

Theorem 7.59. Let A = (aij) be an n × n M -matrix. If M is any n × n
matrix obtained by setting certain off-diagonal entries of A to zero, then
A = M −N is a regular splitting of A and ρ(M−1N) < 1.

Theorem 7.60. Let A be an n × n real matrix with A−1 > 0, and A =
M1 −N1 = M2 −N2 be two regular splittings of A. If N2 ≥ N1 ≥ 0, where
neither N2 −N1 nor N1 is null, then

1 > ρ(M−1
2 N2) > ρ(M−1

1 N1) > 0. (7.63)
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7.6. Krylov Subspace Methods

Definition 7.61. A matrix A = (aij) ∈ Rn×n is said to be positive
definite if

xTAx =
n∑

i,j=1

xiaijxj > 0, ∀x ∈ Rn, x 6= 0. (7.64)

For solving a linear system
Ax = b, (7.65)

whereA is symmetric positive definite, Krylov subspace methods update
the iterates as follows.

Given an initial guess x0 ∈ Rn, find successive approximations xk ∈ Rn of
the form

xk+1 = xk + αkpk, k = 0, 1, · · · , (7.66)

where pk is the search direction and αk > 0 is the step length.

• Different methods differ in the choice of the search direction and the
step length.

• In this section, we consider the gradient descent method the con-
jugate gradient (CG) method, and preconditioned CG method.

• For other Krylov subspace methods, see e.g. [1, 15].

Remark 7.62. The algebraic system (7.65) admits a unique solution
x ∈ Rn, which is equivalently characterized by

x = arg min
η∈Rn

f(η), f(η) =
1

2
η · Aη − b · η. (7.67)
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7.6.1. Gradient descent (GD) method

The gradient descent method is also known as the steepest descent
method or the Richardson’s method.

Derivation of the GD method
• We denote the gradient and Hessian of f by f ′ and f ′′, respectively:

f ′(η) = Aη − b, f ′′(η) = A. (7.68)

• Given xk+1 as in (7.66), we have by Taylor’s formula

f(xk+1) = f(xk + αkpk)

= f(xk) + αkf
′(xk) · pk +

α2
k

2
pk · f ′′(ξ)pk,

(7.69)

for some ξ.
• Since f ′′(η) (= A) is bounded,

f(xk+1) = f(xk) + αkf
′(xk) · pk +O(α2

k), as αk → 0.

• The goal is to find pk and αk such that

f(xk+1) < f(xk), (7.70)

which can be achieved if

f ′(xk) · pk < 0 (7.71)

and either γk is sufficiently small or f ′′(ξ) is nonnegative.
• Choice: When f ′(xk) 6= 0, (7.71) holds, if we choose:

pk = −f ′(xk) = b− Axk =: rk (7.72)

That is, the search direction is the negative gradient, the steepest
descent direction.
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Optimal step length: We may determine αk such that

f(xk + αkpk) = min
α
f(xk + αpk), (7.73)

in which case αk is said to be optimal.

If αk is optimal, then

0 =
d

dα
f(xk + αpk)

∣∣∣∣
α=αk

= f ′(xk + αkpk) · pk

= (A(xk + αkpk)− b) · pk
= (Axk − b) · pk + αkpk · Apk.

(7.74)

So,
αk =

rk · pk
pk · Apk

. (7.75)

Theorem 7.63. (Convergence of the GD method): The GD method
converges, satisfying

‖x− xk ‖2 ≤
(

1− 1

κ(A)

)k
‖x− x0 ‖2. (7.76)

Thus, the number of iterations required to reduce the error by a factor of
ε is in the order of the condition number of A:

k ≥ κ(A) log
1

ε
. (7.77)

7.6.2. Conjugate gradient (CG) method

In this method the search directions pk are conjugate, i.e.,

pi · Apj = 0, i 6= j, (7.78)

and the step length αk is chosen to be optimal.
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Algorithm 7.64. (CG Algorithm, V.1)

Select x0, ε;

r0 = b− Ax0, p0 = r0;

Do k = 0, 1, · · ·
αk = rk · pk/pk · Apk; (CG1)
xk+1 = xk + αkpk; (CG2)
rk+1 = rk − αkApk; (CG3)
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;

βk = −rk+1 · Apk/pk · Apk; (CG4)
pk+1 = rk+1 + βkpk; (CG5)

End Do

(7.79)

Remark 7.65. (CG Algorithm, V.1)

• In practice, qk = Apk is computed only once, and saved.
• rk = b− Axk, by definition. So,

rk+1 = b− Axk+1 = b− A(xk + αkpk)

= b− Axk − αkApk = rk − αkApk. (CG3)

• αk in (CG1) is optimal as shown in (7.75). Also it satisfies rk+1·pk = 0.
You may easily verify it using rk+1 in (CG3).

• βk in (CG4) is determined such that pk+1 · Apk = 0. Verify it using
pk+1 in (CG5).

Theorem 7.66. For m = 0, 1, · · · ,

span{p0, · · · ,pm} = span{r0, · · · , rm}
= span{r0, Ar0, · · · , Amr0}.

(7.80)

Theorem 7.67. The search directions and the residuals satisfy the or-
thogonality,

pi · Apj = 0; ri · rj = 0, i 6= j. (7.81)
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Theorem 7.68. For some m ≤ n, we have Axm = b and

‖x− xk ‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x− x0 ‖A. (7.82)

So the required iteration number to reduce the error by a factor of ε is

k ≥ 1

2

√
κ(A) log

2

ε
. (7.83)

Proofs of the above theorems can be found in e.g. [13].

Simplification of the CG method : Using the properties and identities
involved in the method, one can derive a more popular form of the CG
method.

Algorithm 7.69. (CG Algorithm, V.2)

Select x0, ε;

r0 = b− Ax0, p0 = r0;

Compute ρ0 = r0 · r0;

Do k = 0, 1, · · ·
αk = ρk/pk · Apk;
xk+1 = xk + αkpk;

rk+1 = rk − αkApk;
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;

ρk+1 = rk+1 · rk+1;

βk = ρk+1/ρk;

pk+1 = rk+1 + βkpk;

End Do

(7.84)

Note:
rk · pk = rk · (rk + βk−1pk−1) = rk · rk,

βk = −rk+1 · Apk/pk · Apk = −rk+1 · Apk
αk
ρk

= rk+1 · (rk+1 − rk)/ρk = ρk+1/ρk.

(7.85)
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Example 7.70. (Revisit to Example 7.40)

Let A :=

 2 −1 0

−1 2 −1

0 −1 2

 and b :=

1

0

5

. Use the CG method to find xk,

k = 1, 2, 3, beginning from x0 =

1

1

1

.

Solution.

Remark 7.71.

• For the example, the CG converged completely in three iterations.
• The CG method was originally developed as a direct solver.
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7.6.3. Preconditioned CG method

• The condition number of A, κ(A), is the critical factor for the conver-
gence of the CG method.

• If we can find a matrix M such that
M ≈ A

and it is easy to invert, we may try to apply the CG algorithm to the
following system

M−1Ax = M−1b. (7.86)

• Since
κ(M−1A)� κ(A) (7.87)

(hopefully, κ(M−1A) ≈ 1), the CG algorithm will converge much faster.

In practice, we do not have to multiply M−1 to the original algebraic system
and the algorithm can be implemented as

Algorithm 7.72. (Preconditioned CG)

Select x0, ε;

r0 = b− Ax0, Mz0 = r0;

p0 = z0, compute ρ0 = z∗0r0;

Do k = 0, 1, · · ·
αk = ρk/p

∗
kApk;

xk+1 = xk + αkpk;

rk+1 = rk − αkApk;
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;

Mzk+1 = rk+1;

ρk+1 = z∗k+1rk+1;

βk = ρk+1/ρk;

pk+1 = zk+1 + βkpk;

End Do

(7.88)

Here the superscript * indicates the transpose complex-conjugate; it is the
transpose for real-valued systems.
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7.7. Generalized Minimum Residuals – GMRES

Note: GMRES was developed in 1986 by Saad and Schultz [21].

• The GMRES can be used for linear systems Ax = b, with arbitrary
nonsingular square matrices A ∈ Rn×n,

– while application of the classical iterative solvers was limited to
either diagonally dominant or positive definite matrices.

• The essential ingredient in this general solver is Arnoldi iteration.

7.7.1. Arnoldi Iteration

Note: The Arnoldi iteration method will be applicable to both linear
systems and eigenvalue problems.

• Thus we are interested in re-examining similarity transformations
of the form

A = QHQT , (7.89)

where H is an upper Hessenberg matrix.
• For the similarity transformation, we will use a modified Gram-

Schmidt process.

– It is less stable than the Householder reflectors.
– However, it has the advantage that we can get columns of Q, one

at a time.

Derivation of Arnoldi Iteration

• We start with the similarity transformation: for Q,H ∈ Rn×n,

A = QHQT .

• Clearly, this is equivalent to

AQ = QH,
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which in detail is

A[q1,q2, · · · ,qk,qk+1, · · · ,qn] = [q1,q2, · · · ,qk,qk+1, · · · ,qn]×

×



h11 h12 · · · · · · h1n

h21 h22 · · · · · · h2n

0 h32 h33 · · · · · · h3n
... 0 h43 h44 · · · h4n
... . . . . . . . . . ...
0 · · · · · · 0 hn−1,n hnn


.

(7.90)

• Next, we consider only part of this system. For k < n, let

Qk = [q1,q2, · · · ,qk]
Qk+1 = [q1,q2, · · · ,qk,qk+1]

H̃k =



h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32 h33 · · · · · · h3k

0 h43 h44 · · · h4k
... . . . . . . . . . ...

0 hk−1,k hkk
0 · · · · · · 0 hk+1,k


(7.91)

and then take
AQk = Qk+1H̃k (∈ Rn×k). (7.92)

• If we compare the kth columns on both sides, then we get

Aqk = h1kq1 + h2kq2 + · · ·+ hkkqk + hk+1,kqk+1, (7.93)

which can be rewritten for qk+1:

qk+1 =
Aqk −

∑k
j=1 hjkqj

hk+1,k
, (7.94)

which is a modified Gram-Schmidt process.

• It follows from (7.93) that

hjk = qTj Aqk. (7.95)
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Since ||qk+1|| = 1, we must have

hk+1,k =
∥∥Aqk − k∑

j=1

hjkqj
∥∥. (7.96)

The recursive computation of the columns of Q, given as in (7.94), is
known as the Arnoldi iteration.

Example 7.73. The first step of the Arnoldi iteration proceeds as follows.

• Start with an arbitrary normalized vector q1. Then, according to (7.94),

q2 =
Aq1 − h11q1

h21
. (7.97)

• Since it requires qT2 q1 = 0, orthogonality of the columns of Q, we get

0 = qT1Aq1 − h11q
T
1 q1 = qT1Aq1 − h11,

and therefore h11 is a Rayleigh quotient:

h11 = qT1Aq1. (7.98)

• Now, we set
h21 = ||Aq1 − h11q1||, (7.99)

which finalizes q2.

Algorithm 7.74. Arnoldi iteration

0. Let b be an arbitrary initial nonzero vector
1. q1 = b/||b||
2. For k = 1, 2, 3, · · ·

(a) v = Aqk

(b) For j = 1 : k

hjk = qTj v
v = v − hjkqj

(c) hk+1,k = ||v||
(d) qk+1 = v/hk+1,k
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7.7.2. Derivation of the GMRES Method

Key Idea 7.75. The main idea of the GMRES is to solve a least-
squares problem at each step of the iteration. At step k:

We find the kth iterate xk ∈ Kk which minimizes the residual

xk = arg min
x∈Kk

||Ax− b||, (7.100)

where Kk is the kth-order Krylov subspace:

Kk = Span{b, Ab, · · · , Ak−1b} (7.101)

Note: In order to solve the least-squares problem (7.100):

• We may start with the Krylov matrix

Kk
def
== {b, Ab, · · · , Ak−1b} ∈ Rn×k. (7.102)

• Then the desired solution xk ∈ Kk can be expressed as

xk = Kkc, for some c ∈ Rk, (7.103)

and therefore the least-squares problem reads

min
c∈Rk
||AKkc− b||. (7.104)

• The problem (7.104) can be solved using the QR-factorization of the
matrix AKk ∈ Rn×k.

However this is both unstable and too expensive.
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• We consider an orthonormal basis for the Krylov subspace Kk:

{q1, q2, · · · , qk} (7.105)

the columns of the matrix Qk used in the Arnoldi iteration.
• With the new basis, the kth iterate xk ∈ Kk can be written as

xk = Qky, for some y ∈ Rk. (7.106)

Then the residual minimization problem (7.100) becomes

min
y∈Rk
||AQky − b||. (7.107)

• Now, we utilize the partial similarity transform of the Arnoldi iter-
ation (7.92):

AQk = Qk+1H̃k, H̃k ∈ R(k+1)×k. (7.108)

• Then, the least-squares problem (7.107) reads

min
y∈Rk

∥∥H̃ky −QT
k+1b

∥∥, (7.109)

which is equivalent to

min
y∈Rk

∥∥H̃ky − ||b||e1

∥∥. (7.110)

Note: This is much simpler; it will permit a more efficient solution.
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Example 7.76. Prove that QT
k+1b = ||b||e1.

Proof. The vector QT
k+1b is given by

QT
k+1b =


qT1 b

qT2 b
...

qTk+1b

, (7.111)

and, in detail, the Krylov subspaces are

K1 = Span{b},
K1 = Span{b, Ab},

...
(7.112)

Since the columns qj of Qk form an orthonormal basis for Kk,

q1 =
b

||b||
, and qTj b = 0 for j > 1. (7.113)

It follows from (7.111) and (7.113) that

QT
k+1b = ||b||e1, (7.114)

which completes the proof.

The GMRES method is summarized as follows.

Algorithm 7.77. GMRES

1. Let q1 = b/||b||
2. For k = 1, 2, 3, · · ·

(a) Perform Step k of the Arnoldi iteration
(i.e., compute new entries for H̃k and Qk)

(b) Find y that minimizes
∥∥H̃ky − ||b||e1

∥∥
(e.g., with QR-factorization)

(c) Set xk = Qky
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Exercises for Chapter 7

7.1. (a) Verify that the function || · ||1, defined on Rn by

||x||1 =
n∑
i=1

|xi|

is a norm on Rn.
(b) Prove that ||x||2 ≤ ||x||1 for all x ∈ Rn.

7.2. Let A =

2 1 −2

0 3 −1

4 5 1

. Find ||A||1, ||A||2, and ||A||∞.

7.3. Let A =

 2 −1 0

−1 2 −1

0 −1 2

.

(a) Use Gerschgorin-Taussky theorem to find a range of eigenvalues of A.
(b) Is A nonsingular?

7.4. C When the boundary-value problem{
−uxx = −2, 0 < x < 4

ux(0) = 0, u(4) = 16
(7.115)

is discretized by the second-order finite difference method with h = 1, the algebraic
system reads Ax = b, where

A =


2 −2 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

, b =


−2

−2

−2

14

 (7.116)

and the exact solution is x = [0, 1, 4, 9]T .

(a) Is A irreducibly diagonally dominant?
(b) Perform 10 iterations of the Jacobi and Gauss-Seidel methods, starting from

x0 = [0, 0, 0, 0]T .
(c) Try to find the best ω with which the SOR method converges fastest during the

first 10 iterations.
(d) Find the spectral radii of the iteration matrices of the Jacobi, the Gauss-Seidel,

and the SOR.

7.5. C Symmetrize the algebraic system (7.116) and

(a) Apply the CG method to solve it.
(b) Download a public-domain code for GMRES to solve the algebraic system; com-

pare its performance with that of the CG method.
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8.1. Orthogonality and the Gram-Schmidt Pro-
cess

8.1.1. Orthogonal projections

Definition 8.1. Given a nonzero vector u ∈ Rn and y ∈ Rn, let

y = ŷ + z, ŷ //u and z ⊥ u. (8.1)

Then
ŷ = αu =

y•u
u•u

u, z = y − ŷ. (8.2)

The vector ŷ is called the orthogonal projection of y onto u, and z is
called the component of y orthogonal to u. Let L = Span{u}. Then we
denote

ŷ =
y•u
u•u

u = projLy, (8.3)

which is called the orthogonal projection of y onto L.

We will expand this orthogonal projection for a subspace.

Theorem 8.2. (The Orthogonal Decomposition Theorem) Let W
be a subspace of Rn. Then each y ∈ Rn can be written uniquely in the
form

y = ŷ + z, (8.4)

where ŷ ∈ W and z ∈ W⊥. In fact, if {u1, u2, · · · , up} is an orthogonal
basis for W , then

ŷ = projW y =
y•u1

u1•u1
u1 +

y•u2

u2•u2
u2 + · · ·+ y•up

up•up
up,

z = y − ŷ.
(8.5)
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Figure 8.1: Orthogonal projection of y onto W .

Remark 8.3. (Properties of Orthogonal Decomposition)
Let y = ŷ + z, where ŷ ∈ W and z ∈ W⊥. Then

1. ŷ is called the orthogonal projection of y onto W (= projW y)

2. ŷ is the closest point to y in W .
(in the sense ‖y − ŷ ‖2 ≤ ‖y − v ‖2, for all v ∈ W )

3. ŷ is called the best approximation to y by elements of W .

4. If y ∈ W , then projW y = y.

Proof. 2. For an arbitrary v ∈ W , y−v = (y−ŷ)+(ŷ−v), where (ŷ−v) ∈ W .
Thus, by the Pythagorean theorem,

‖y − v ‖2
2 = ‖y − ŷ ‖2

2 + ‖ ŷ − v ‖2
2,

which implies that ‖y − v ‖2 ≥ ‖y − ŷ ‖2.

Note: The orthogonal projection can be viewed as a matrix transfor-
mation; see Exercise 8.1, p.310.
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8.1.2. The Gram-Schmidt process

Note: The Gram-Schmidt process is an algorithm to produce an or-
thogonal or orthonormal basis for any nonzero subspace of Rn.

Example 8.4. Let W = Span{x1,x2}, where x1 =

3

6

0

 and x2 =

1

2

2

. Find

an orthogonal basis for W .
Main idea: Orthogonal projection{

x1

x2

}
⇒

{
x1

x2 = αx1 + v2
⇒

{
v1 = x1

v2 = x2 − proj{x1}x2

where x1•v2 = 0. Then W = Span{x1,x2} = Span{v1,v2}.

Solution. α =
x2•x1

x1•x1
=

15

45
=

1

3
.

⇒ v2 = x2 −
1

3
x1 =

1

2

2

− 1

3

3

6

0

 =

0

0

2



Figure 8.2: Construction of an orthogonal
basis {v1,v2}.
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Theorem 8.5. (The Gram-Schmidt Process) Given a basis
{x1, x2, · · · , xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2•v1

v1•v1
v1

v3 = x3 −
x3•v1

v1•v1
v1 −

x3•v2

v2•v2
v2

...

vp = xp −
xp•v1

v1•v1
v1 −

xp•v2

v2•v2
v2 − · · · −

xp•vp−1

vp−1•vp−1
vp−1

(8.6)

Then {v1, v2, · · · , vp} is an orthogonal basis for W . In addition,

Span{x1, x2, · · · , xk} = Span{v1, v2, · · · , vk}, for 1 ≤ k ≤ p. (8.7)

Remark 8.6. For the result of the Gram-Schmidt process, define

uk =
vk
‖vk‖

, for 1 ≤ k ≤ p. (8.8)

Then {u1, u2, · · · , up} is an orthonormal basis for W . In practice, it is
often implemented with the normalized Gram-Schmidt process.

Self-study 8.7. Find an orthonormal basis forW = Span{x1,x2,x3}, where

x1 =


1

0

−1

1

, x2 =


−2

2

1

0

, and x3 =


0

1

−1

1

.
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8.2. Least-Squares Approximation

Definition 8.8. For a given dataset {(xi, yi)}, let a continuous function
p(x) be constructed.

(a) p is an interpolation if it passes (interpolates) all the data points.
(b) p is an approximation if it approximates (represents) the data

points.

Dataset
1 with(LinearAlgebra): with(CurveFitting):
2 n := 100: roll := rand(-n..n):
3 m := 10: xy := Matrix(m, 2):
4 for i to m do
5 xy[i, 1] := i;
6 xy[i, 2] := i + roll()/n;
7 end do:
8 plot(xy,color=red, style=point, symbol=solidbox, symbolsize=20);
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Note: Interpolation may be too oscillatory to be useful; furthermore, it
may not be defined.

8.2.1. The least-squares (LS) problem

Note: Let A is an m× n matrix. Then Ax = b may have no solution,
particularly when m > n. In real-world,

• m � n, where m represents the number of data points and n denotes
the dimension of the points

• Need to find a best solution for Ax ≈ b

Definition 8.9. Let A ∈ Rm×n, m ≥ n, and b ∈ Rm. The least-squares
problem is to find x̂ ∈ Rn which minimizes ‖Ax− b‖2:

x̂ = arg min
x
‖Ax− b‖2,

or, equivalently,
x̂ = arg min

x
‖Ax− b‖2

2,

(8.9)

where x̂ called a least-squares solution of Ax = b.
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Remark 8.10.

• For all x ∈ Rn, Ax will necessarily be in Col A, a subspace of Rm.
So we seek an x that makes Ax the closest point in Col A to b.

• Let b̂ = projColAb. Then Ax = b̂ has a solution and there is an
x̂ ∈ Rn such that

Ax̂ = b̂. (8.10)

• x̂ is an LS solution of Ax = b.
• The quantity ‖b− b̂‖ = ‖b−Ax̂‖ is called the least-squares error.

That is,
‖b− Ax̂‖ ≤ ‖b− Ax‖, for all x ∈ Rn, (8.11)

where ‖ · ‖ = ‖ · ‖2.

Figure 8.3: The LS solution x̂ is in Rn.

Remark 8.11. If A ∈ Rn× n is invertible, then Ax = b has a unique
solution x̂ and therefore

‖b− Ax̂‖ = 0. (8.12)
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8.2.2. Normal equations

Theorem 8.12. The set of LS solutions of Ax = b coincides with the
nonempty set of solutions of the normal equations

ATAx = ATb. (8.13)

Proof. Suppose x̂ satisfies Ax̂ = b̂

⇒ b− b̂ = b− Ax̂ ⊥ ColA
⇒ aj•(b− Ax̂) = 0 for all columns aj
⇒ aj

T (b− Ax̂) = 0 for all columns aj (Note that ajT is a row of AT )
⇒ AT (b− Ax̂) = 0

⇒ ATAx̂ = ATb

Remark 8.13. Theorem 8.12 implies that LS solutions of Ax = b are
solutions of the normal equations ATAx̂ = ATb.

• When ATA is not invertible, the normal equations have either no
solution or infinitely many solutions.

• So, data acquisition is important, to make it invertible.

Theorem 8.14. (Method of normal equations) Let A ∈ Rm×n, m ≥ n.
The following statements are logically equivalent:

a. The equation Ax = b has a unique LS solution for each b ∈ Rm.
b. The columns of A are linearly independent.
c. The matrix ATA is invertible.

When these statements are true, the unique LS solution x̂ is given by

x̂ = (ATA)−1ATb. (8.14)
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Example 8.15. Describe all least squares solutions of the equationAx = b,
given

A =


1 1 0

1 1 0

1 0 1

1 0 1

 and b =


1

3

8

2

.

Solution.

Method of Calculus
Let J (x) = ‖Ax− b‖2 = (Ax− b)T (Ax− b) and x̂ a minimizer of J (x).

• Then we must have

∇xJ (x̂) =
∂J (x)

∂x

∣∣∣
x=x̂

= 0. (8.15)

• Let’s compute the gradient of J .

∂J (x)

∂x
=

∂
(
(Ax− b)T (Ax− b)

)
∂x

=
∂(xTATAx− 2xTATb + bTb)

∂x

= 2ATAx− 2ATb.

(8.16)

• By setting the last term to zero, we obtain normal equations.
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8.3. Regression Analysis

Definition 8.16. Regression analysis is a set of statistical methods
used for the estimation of relationships between a dependent variable
and one or more independent variables.

8.3.1. Regression line

Figure 8.4: A regression line.

Definition 8.17. Suppose a set of experimental data points are given
as

(x1, y1), (x2, y2), · · · , (xm, ym)

such that the graph is close to a line. We determine a line

y = β0 + β1x (8.17)

that is as close as possible to the given points. This line is called the
least-squares line; it is also called the regression line of y on x and
β0, β1 are called regression coefficients.
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Calculation of Least-Squares Lines
Consider a least-squares (LS) model of the form y = β0 + β1x, for a given
data set {(xi, yi) | i = 1, 2, · · · ,m}.

• Then
Predicted y-value Observed y-value

β0 + β1x1 = y1

β0 + β1x2 = y2
... ...

β0 + β1xm = ym

(8.18)

• It can be equivalently written as
Xβ = y, (8.19)

where

X =


1 x1

1 x2
... ...
1 xm

, β =

[
β0

β1

]
, y =


y1

y2
...
ym

.
Here we call X the design matrix, β the parameter vector, and y
the observation vector.

• Thus the LS solution can be determined by solving the normal equa-
tions:

XTXβ = XTy, (8.20)

provided that XTX is invertible.
• The normal equations for the regression line read[

m Σxi
Σxi Σx2

i

]
β =

[
Σyi

Σxiyi

]
. (8.21)
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Remark 8.18. (Pointwise construction of the normal equations)
The normal equations for the regression line in (8.21) can be rewritten
as

m∑
i=1

[
1 xi
xi x2

i

]
β =

m∑
i=1

[
yi
xiyi

]
. (8.22)

• The pointwise construction of the normal equation is convenient when
either points are first to be searched or weights are applied depending
on the point location.

• The idea is applicable for other regression models as well.

Self-study 8.19. Find the equation y = β0 + β1x of least-squares line that
best fits the given points:

(−1, 0), (0, 1), (1, 2), (2, 4)

Solution.
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8.3.2. Least-squares fitting of other curves

Remark 8.20. Consider a regression model of the form

y = β0 + β1x+ β2x
2,

for a given data set {(xi, yi) | i = 1, 2, · · · ,m}. Then

Predicted y-value Observed y-value

β0 + β1x1 + β2x
2
1 = y1

β0 + β1x2 + β2x
2
2 = y2

... ...
β0 + β1xm + β2x

2
m = ym

(8.23)

It can be equivalently written as
Xβ = y, (8.24)

where

X =


1 x1 x2

1

1 x2 x2
2

... ... ...
1 xm x2

m

, β =

β0

β1

β2

, y =


y1

y2
...
ym

.
Now, it can be solved through normal equations:

XTXβ =

 Σ1 Σxi Σx2
i

Σxi Σx2
i Σx3

i

Σx2
i Σx3

i Σx4
i

β =

 Σyi
Σxiyi
Σx2

iyi

 = XTy (8.25)

Self-study 8.21. Find an LS curve of the form y = β0 +β1x+β2x
2 that best

fits the given points:
(0, 1), (1, 1), (1, 2), (2, 3).

Solution.

Ans: y = 1 + 0.5x2
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8.3.3. Nonlinear regression: Linearization

Strategy 8.22. For nonlinear models, a change of variables can be
applied to get a linear model.

Model Change of Variables Linearization

y = A+
B

x
x̃ =

1

x
, ỹ = y ⇒ ỹ = A+Bx̃

y =
1

A+Bx
x̃ = x, ỹ =

1

y
⇒ ỹ = A+Bx̃

y = CeDx x̃ = x, ỹ = ln y ⇒ ỹ = lnC +Dx̃

y =
1

A+B lnx
x̃ = lnx, ỹ =

1

y
⇒ ỹ = A+Bx̃

(8.26)

The above table contains just a few examples of linearization; for other
nonlinear models, use your imagination and creativity.

Example 8.23. Find the best fitting curve of the form y = cedx for the data

0.1 1.9940

0.2 2.0087

0.3 1.8770

0.4 3.5783

0.5 3.9203

0.6 4.7617

0.7 6.7246

0.8 7.1491

0.9 9.5777

1.0 11.5625



Solution. Applying the natural log function (ln) to y = cedx gives

ln y = ln c+ dx. (8.27)

Using the change of variables

Y = ln y, a0 = ln c, a1 = d, X = x,
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the equation (8.27) reads
Y = a0 + a1X, (8.28)

for which one can apply the linear LS procedure.
Linearized regression

1 # The transformed data
2 xlny := Matrix(m, 2):
3 for i to m do
4 xlny[i, 1] := xy[i, 1];
5 xlny[i, 2] := ln(xy[i, 2]);
6 end do:
7

8 # The linear LS
9 L := CurveFitting[LeastSquares](xlny, x, curve = b*x + a);

10 0.295704647799999 + 2.1530740654363654 x
11

12 # Back to the original parameters
13 c := exp(0.295704647799999) = 1.344073123
14 d := 2.15307406543637:
15

16 # The desired nonlinear model
17 c*exp(d*x);
18 1.344073123 exp(2.15307406543637 x)
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8.4. Scene Analysis with Noisy Data: RANSAC

Note: Scene analysis is concerned with the interpretation of acquired
data in terms of a set of predefined models. It consists of 2 subproblems:

1. finding the best model (classification problem)

2. computing the best parameter values (parameter estimation problem)

• Traditional parameter estimation techniques, such as least-
squares (LS), optimize the model to all of the presented data.

– Those techniques are simple averaging methods, based on the
smoothing assumption: There will always be good data points
enough to smooth out any gross deviation.

• However, in many interesting parameter estimation problems, the
smoothing assumption does not hold; that is, the data set may
involve gross errors such as noise.

– Thus, in order to obtain more reliable model parameters, there
must be internal mechanisms to determine which points are
matching to the model (inliers) and which points are false
matches (outliers).

8.4.1. Weighted least-squares

Definition 8.24. When certain data points are more important or more
reliable than the others, one may try to compute the coefficient vector
with larger weights on more reliable data points. The weighted least-
squares method is an LS method which involves a weight. The weight
is often given as a diagonal matrix

W = diag(w1, w2, · · · , wm). (8.29)

The weight matrix W can be decided either manually or automatically.
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Algorithm 8.25. (Weighted Least-Squares)

• Given data {(xi, yi)}, 1 ≤ i ≤ m, the best-fitting curve can be found
by solving an over-determined algebraic system (8.19):

Xβ = y. (8.30)

• When a weight matrix is applied, the above system can be written
as

WXβ = Wy. (8.31)

• Thus its weighted normal equations read

XTWXβ = XTWy. (8.32)

Example 8.26. Given data, find the LS line with and without a weight.
When a weight is applied, weigh the first and the last data point by 1/4.

xy :=

[
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

5.89 1.92 2.59 4.41 4.49 6.22 7.74 7.07 9.05 5.7

]T

Solution.
Weighted-LS

1 LS := CurveFitting[LeastSquares](xy, x);
2 2.7639999999999967 + 0.49890909090909125 x
3 WLS := CurveFitting[LeastSquares](xy, x,
4 weight = [1/4,1,1,1,1,1,1,1,1,1/4]);
5 1.0466694879390623 + 0.8019424460431653 x
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8.4.2. RANdom SAmple Consensus (RANSAC)

The random sample consensus (RANSAC) is one of the most powerful
tools for the reconstruction of ground structures from point cloud obser-
vations in many applications. The algorithm utilizes iterative search
techniques for a set of inliers to find a proper model for given data.

Algorithm 8.27. (RANSAC) (Fischler-Bolles, 1981) [6]

Input: Measurement set X = {xi}, the error tolerance τe, the stopping
threshold η, and the maximum number of iterations N .

1. Select randomly a minimum point set S, required to determine a
hypothesis.

2. Generate a hypothesis p = g(S).
3. Compute the hypothesis consensus set, fitting within the error tol-

erance τe:
C = inlier(X,p, τe)

4. If |C| ≥ η|X|, then re-estimate a hypothesis p = g(C) and stop.
5. Otherwise, repeat steps 1–4 (maximum of N times).

Example 8.28. Let’s set a hypothesis for a regression line.

1. Minimum point set S: a set of two points, (x1, y1) and (x2, y2).

2. Hypothesis p: y = a+ bx (⇒ a+ bx− y = 0)

y = b(x− x1) + y1 = a+ bx ⇐ b =
y2 − y1

x2 − x1
, a = y1 − bx1.

3. Consensus set C:

C =
{

(xi, yi) ∈X | d =
|a+ bxi − yi|√

b2 + 1
≤ τe

}
(8.33)
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Note: In practice:

• Step 2: A hypothesis p is the set of model parameters, rather than
the model itself.

• Step 3: The consensus set can be represented more conveniently
using an index array. That is,

ID(i) =

{
1 if xi ∈ C
0 if xi 6∈ C

(8.34)

Remark 8.29. The “inlier” function in Step 3 collects points whose
distance from the model, f(p), is not larger than τe. Thus, the function
can be interpreted as an automatic weighting mechanism. Indeed,
for each point xi,

dist(f(p),xi)

{
≤ τe, then wi = 1

> τe, then wi = 0
(8.35)

Then the re-estimation in Step 4, p = g(C), can be seen as an pa-
rameter estimation p = g(X) with the corresponding weight matrix
W = {w1, w2, · · · , wm}.

Remark 8.30.

• The above basic RANSAC algorithm is an iterative search method
for a set of inliers which may produce presumably accurate model
parameters.

• It is simple to implement and efficient. However, it is problematic
and often erroneous.

• The main disadvantage of RANSAC is that RANSAC is unrepeat-
able; it may yield different results in each run so that none of the
results can be optimal.
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(Nin = 200, Nout = 50) (Nin = 1200, Nout = 300)

Figure 8.5: The RANSAC for linear-type synthetic datasets.

Table 8.1: The RANSAC: model fitting y = a0 + a1x. The algorithm runs 1000 times for
each dataset to find the standard deviation of the error: σ(a0 − â0) and σ(a1 − â1).

Data σ(a0 − â0) σ(a1 − â1) E-time (sec)
1 0.1156 0.0421 0.0156
2 0.1101 0.0391 0.0147

The RANSAC is neither repeatable nor optimal.
In order to overcome the drawbacks, various variants have been stud-
ied in the literature. Nonetheless, it remains a prevailing algorithm for
finding inliers. For variants, see e.g.,

• Maximum Likelihood Estimation Sample Consensus (MLESAC) [24]
• Progressive Sample Consensus (PROSAC) [2]
• Recursive RANSAC (R-RANSAC) [17]
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8.5. Padé Rational Function Approximation

The Class of Algebraic Polynomials
Advantages:

• There are a sufficient number of polynomials to approximate
any continuous function on a closed interval to within an arbitrary
tolerance.

• Polynomials are easy to evaluate.
• Their derivatives and integrals exist and are easily determined.

Disadvantage:

• Tendency for oscillation, which often causes the error bound to
significantly exceed the average approximation error.

Definition 8.31. A rational function r of degree N has the form

r(x) =
p(x)

q(x)
, (8.36)

where p(x) and q(x) are polynomials whose degrees sum to N .

Padé Approximation :

Definition 8.32. Padé rational function of degree N = n + m, ap-
proximating f(x), has the form

f(x) ≈ Rn,m(x) =
p(x)

q(x)
=

p0 + p1x+ · · ·+ pnx
n

1 + q1x+ · · ·+ qmxm
(8.37)
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Determination of the constants {p0, p1, · · · , pn, q1, · · · , qm}

We will find them to satisfy(dkf
dxk
− dkRn,m

dxk

)
(0) = 0, for k = 0, 1, · · · , N. (8.38)

• Let f have the Maclaurin series expansion

f(x) =
∞∑
i=0

aix
i. (8.39)

• Then, for q0 = 1,

f(x)−Rn,m(x) =

( ∞∑
i=0

aix
i
)( m∑

i=0

qix
i
)
−
( n∑

i=0

pix
i
)

q(x)
. (8.40)

• Our objective is to determine the constants {p0, p1, · · · , pn, q1, · · · , qm}
such that (8.38) is satisfied, which is equivalent to (f −Rn,m) having a
zero of multiplicity N + 1 at x = 0.

• As a consequence, we choose the constants so that the numerator on
the right side of (8.40),( ∞∑

i=0

aix
i
)( m∑

i=0

qix
i
)
−
( n∑

i=0

pix
i
)
, (8.41)

has no terms of degree ≤ N .
• In order to simplify the notation, we define

qm+1 = qm+2 = · · · = qN = 0,

pn+1 = pn+2 = · · · = pN = 0.

• Then the coefficient of xk in (8.41) can be expresses as

k∑
i=0

aiqk−i − pk, k = 0, 1, · · · , N. (8.42)
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Summary 8.33. (Padé approximation) Let f have the Maclaurin

series expansion f(x) =
∞∑
i=0

aix
i. Then the rational function for Padé

approximation, Rn,m, results from the solution of N + 1 linear equations

k∑
i=0

aiqk−i = pk, k = 0, 1, · · · , N. (8.43)

Example 8.34. Find the Padé approximation to e−x of degree 5 with n = 3

and m = 2.

Solution.
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Use of built-in command
1 T := taylor(exp(-x), x = 0, 6):
2 convert(T, ratpoly, 3, 2)
3 3 3 2 1 3
4 1 - - x + -- x - -- x
5 5 20 60
6 -----------------------
7 2 1 2
8 1 + - x + -- x
9 5 20
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Exercises for Chapter 8

8.1. Let {u1, u2, · · · , up} be an orthonormal basis for a subspaceW of Rn, that is, uTi uj =
δij. Let U = [u1 u2 · · · up] ∈ Rn×p. Prove that

projwy = UUTy, for all y ∈ Rn. (8.44)

(Thus the orthogonal projection can be viewed as a matrix transformation.)

8.2. C Let A =


−10 13 7 −11

2 1 −5 3

−6 3 13 −3

16 −16 −2 5

2 1 −5 −7

. Use the Gram-Schmidt process to produce an

orthogonal basis for the column space of A.
Ans: v4 = (0, 5, 0, 0,−5)

8.3. C Given data

xi 0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 2.

yi 1.88 2.13 1.76 2.78 3.23 3.82 6.13 7.22 6.66 9.07

(a) Plot the data (scattered point plot)
(b) Decide what curve fits the data best.
(c) Implement an LS code to find the curve.
(d) Plot the curve superposed over the point plot.

8.4. C Implement a code for the RANSAC, Algorithm 8.27, and use the data in Exam-
ple 8.26, p.302, to find a best-fitting regression line. Set τe = 1 and η|X| = 8.

8.5. C Determine Pad’e approximation of degree 6 for f(x) = sinx, and compare the re-
sults at xi = 0.2i, i = 0, 1, · · · , 5, with f(x) and with its sixth Maclaurin polynomial

convert(taylor(sin(x), x = 0, 7), polynom) = x− 1

6
x3 +

1

120
x5

(a) with n = 2, m = 4

(b) with n = 3, m = 3

(c) with n = 4, m = 2

(You should not use any built-in functions which produce the results immediately.)
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9.1. The Power Method

The power method is an eigenvalue algorithm:
Given a matrix A ∈ Rn×n, the algorithm will produce a number λ, which
is the greatest (in absolute value) eigenvalue of A, and a nonzero vector
v, which is a corresponding eigenvector of λ (Av = λv).

Assumption. To apply the power method, we assume that A ∈ Rn×n has

• n eigenvalues {λ1, λ2, · · · , λn},
• n associated eigenvectors {v1, v2, · · · , vn}, which are linearly in-

dependent, and
• precisely one eigenvalue that is largest in magnitude, λ1:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (9.1)

The power method approximates the largest eigenvalue λ1 and its asso-
ciated eigenvector v1.

9.1.1. Power iteration

• Since eigenvectors {v1, v2, · · · , vn} are linearly independent, any vector
x ∈ Rn can be expressed as

x =
n∑
j=1

βjvj, (9.2)

for some constants {β1, β2, · · · , βn}.

• Multiplying both sides of (9.2) by A and A2 gives

Ax = A
( n∑
j=1

βjvj

)
=

n∑
j=1

βjAvj =
n∑
j=1

βjλjvj,

A2x = A
( n∑
j=1

βjλjvj

)
=

n∑
j=1

βjλ
2
jvj.

(9.3)
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• In general,

Akx =
n∑
j=1

βjλ
k
jvj, k = 1, 2, · · · , (9.4)

which gives

Akx = λk1

n∑
j=1

βj

(λj
λ1

)k
vj, k = 1, 2, · · · , (9.5)

• Since |λ1| > |λj|, 2 ≤ j ≤ n, we have lim
k→∞
|λj/λ1|k = 0, and

lim
k→∞

Akx = lim
k→∞

λk1 β1v1. (9.6)

Remark 9.1. The sequence in (9.6) converges to 0 if |λ1| < 1 and di-
verges if |λ1| > 1, provided that β1 6= 0.

• The entries of Akx will grow with k if |λ1| > 1 and will go to 0 if |λ1| < 1.
• In either case, it is hard to decide the largest eigenvalue λ1 and its

associated eigenvector v1.
• To take care of that possibility, we scale Akx in an appropriate manner

to ensure that the limit in (9.6) is finite and nonzero.

Algorithm 9.2. (The Power Iteration) Given x 6= 0:

initialization : x0 = x/||x||∞
for k = 1, 2, · · ·

yk = Axk−1; µk = ||yk||∞
xk = yk/µk

end for

(9.7)
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Properties
• First of all,

||xk||∞ = 1, for all k ≥ 0.

• It follows from (9.6) that for k sufficiently large,

xk =
( k∏
j=1

µj

)−1

Akx0 ≈
( k∏
j=1

µj

)−1

λk1β1v1,

xk+1 =
( k+1∏
j=1

µj

)−1

Ak+1x0 ≈
( k+1∏
j=1

µj

)−1

λk+1
1 β1v1.

(9.8)

• Note that ||xk||∞ = ||xk+1||∞ = 1. Comparison of the above two equa-
tions reads ∣∣∣ λ1

µk+1

∣∣∣ ≈ 1. (9.9)

Claim 9.3. Let {xk, µk} be sequences produced by the power method.
Then,

xk → v1, µk → |λ1|, as k →∞. (9.10)

More precisely, the power method converges as

µk = |λ1|+O(|λ2/λ1|k). (9.11)

Note: We have assumed that A has n linearly independent eigenvectors,
which equivalently implies that A is diagonalizable. Thus, the Diago-
nalization Theorem says that A can be written as

A = PDP−1 (9.12)

where, for Avk = λkvk, k = 1, 2, · · · , n,

P = [v1 v2 · · · vn],

D = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

.
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Example 9.4. The matrix A =

 4 −1 1

−1 3 −2

1 −2 3

 has eigenvalues and eigen-

vectors as follows

LinearAlgebra[Eigenvectors](A) =

6

3

1

,
 1 −2 0

−1 −1 1

1 1 1


Verify that the sequences produced by the power method converge to the
largest eigenvalue and its associated eigenvector.

Solution.

Results
1 k=, 1, muk=, 4., [1., -0.2500, 0.2500], 2.
2 k=, 2, muk=, 4.500000, [1., -0.5000, 0.5000], 1.500
3 k=, 3, muk=, 5., [1., -0.7000, 0.7000], 1.
4 k=, 4, muk=, 5.4000000, [1., -0.8333, 0.8333], 0.6000
5 k=, 5, muk=, 5.6666667, [1., -0.9118, 0.9118], 0.3333
6 k=, 6, muk=, 5.8235294, [1., -0.9545, 0.9545], 0.1765
7 k=, 7, muk=, 5.9090909, [1., -0.9769, 0.9769], 0.09091
8 k=, 8, muk=, 5.9538462, [1., -0.9884, 0.9884], 0.04615
9 k=, 9, muk=, 5.9767442, [1., -0.9942, 0.9942], 0.02326

10 k=, 10, muk=, 5.9883268, [1., -0.9971, 0.9971], 0.01167

Notice that |6− µk+1| ≈
1

2
|6− µk|, for which |λ2/λ1| =

1

2
.
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9.1.2. Symmetric Power Method

Theorem 9.5. (The Spectral Theorem) Suppose A ∈ Rn×n is sym-
metric. Then

(a) A has n eigenvectors v1, v2, · · · , vn such that {v1, v2, · · · , vn} is an
orthonormal basis for Rn.

(b) Every eigenvalue λ of A is a real number.
(c) Eigenvectors corresponding to distinct eigenvalues are necessarily

orthogonal.
(d) There exists a diagonal matrix D ∈ Rn×n and an orthogonal ma-

trix U ∈ Rn×n such that

A = UDUT . (9.13)

The diagonal entries of D are the eigenvalues of A and the columns
of U are the corresponding eigenvectors.

Note that (a) implies (d).

When A ∈ Rn×n is symmetric, the power method can exploit it to converge
faster.

Algorithm 9.6. (Symmetric Power Method) Suppose A ∈ Rn×n is
symmetric. Given x 6= 0:

initialization : x0 = x/||x||2
for k = 1, 2, · · ·

yk = Axk−1; µk = yk•xk−1

xk = yk/||yk||2
end for

(9.14)

Claim 9.7. The symmetric power method converges as

µk = λ1 +O(|λ2/λ1|2k), (9.15)

which converges twice faster than the basic power method.
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Example 9.8. The matrix A is as in Example 9.4: A =

 4 −1 1

−1 3 −2

1 −2 3

.

Find the largest eigenvalue using the symmetric power method.

Solution.

Results
1 k=, 1, muk=, 4., [0.9427, -0.2357, 0.2357], 2.
2 k=, 2, muk=, 5., [0.8163, -0.4082, 0.4082], 1.
3 k=, 3, muk=, 5.6666667, [0.7105, -0.4974, 0.4974], 0.3333
4 k=, 4, muk=, 5.9090909, [0.6471, -0.5393, 0.5393], 0.09091
5 k=, 5, muk=, 5.9767442, [0.6127, -0.5587, 0.5587], 0.02326
6 k=, 6, muk=, 5.9941520, [0.5950, -0.5679, 0.5679], 0.005848
7 k=, 7, muk=, 5.9985359, [0.5863, -0.5728, 0.5728], 0.001464
8 k=, 8, muk=, 5.9996338, [0.5819, -0.5751, 0.5751], 0.0003662
9 k=, 9, muk=, 5.9999084, [0.5792, -0.5760, 0.5760], 0.00009155

10 k=, 10, muk=, 5.9999771, [0.5781, -0.5764, 0.5764], 0.00002289

Notice that |6− µk+1| ≈
1

4
|6− µk|, for which |λ2/λ1| =

1

2
.
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Accuracy Analysis
Let µ be a real number that approximates an eigenvalue of a symmetric
matrix A and x an associated eigenvector. Then Ax − µx is approximately
the zero vector. The following theorem shows a relation between the norm
of the vector and the accuracy of µ to the eigenvalue.

Theorem 9.9. Suppose A ∈ Rn×n is symmetric, having eigenvalues
λ1, λ2, · · · , λn. Then, for ‖x‖2 = 1 and µ ∈ R,

min
1≤i≤n

|λi − µ| ≤ ||Ax− µx||2. (9.16)

Proof. Let {λ1, λ2, · · · , λn} form an orthonormal set of eigenvectors of A
associated with the eigenvalues λ1, λ2, · · · , λn. Then there is a unique set
of constants {c1, c2, · · · , cn} such that

x =
n∑
i=1

civi,

where
n∑
i=1

c2
i = ‖x‖2

2 = 1. Thus,

||Ax− µx||22 =
∥∥∥ n∑
i=1

ci(Avi − µvi)
∥∥∥2

2
=
∥∥∥ n∑
i=1

ci(λi − µ)vi

∥∥∥2

2

=
n∑
i=1

c2
i (λi − µ)2

≥ min
1≤i≤n

|λi − µ|2
n∑
i=1

c2
i = min

1≤i≤n
|λi − µ|2,

(9.17)

which completes the proof.

Note: The above theorem implies that the approximated eigenvalue rep-
resents one of the eigenvalues of A, with accuracy that is in the same
order as the stopping tolerance.
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9.1.3. Inverse Power Method

Some applications require to find an eigenvalue of near a prescribed value
q. The inverse power method is a variant of the Power method to solve
such a problem.

• We begin with the eigenvalues and eigenvectors of (A− qI)−1. Let

Avi = λivi, i = 1, 2, · · · , n. (9.18)

• Then it is easy to see that

(A− qI)vi = (λi − q)vi. (9.19)

Thus, we obtain
(A− qI)−1vi =

1

λi − q
vi. (9.20)

• That is, when q 6∈ {λ1, λ2, · · · , λn}, the eigenvalues of (A− qI)−1 are

1

λ1 − q
,

1

λ2 − q
, · · · , 1

λn − q
, (9.21)

with the same eigenvectors {v1, v2, · · · , vn} of A.

Algorithm 9.10. (Inverse Power Method) Applying the power
method to (A− qI)−1 gives the inverse power method. Given x 6= 0:

set : x0 = x

for k = 1, 2, · · ·
yk = (A− qI)−1xk−1; µk = ||yk||∞
xk = yk/µk
λ = 1/µk + q

end for

(9.22)
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Example 9.11. The matrix A is as in Example 9.4: A =

 4 −1 1

−1 3 −2

1 −2 3

.

Find the the eigenvalue of A nearest to q = 5/2, using the inverse power
method.

Solution.

Inverse Power Method
1 k=, 1, muk=, 3.2000000, [1., 0.4000, -0.4000], 0.20000000
2 k=, 2, muk=, 3.0303030, [1., 0.4848, -0.4848], 0.030303030
3 k=, 3, muk=, 3.0043668, [1., 0.4978, -0.4978], 0.0043668122
4 k=, 4, muk=, 3.0006246, [1., 0.4997, -0.4997], 0.00062460962
5 k=, 5, muk=, 3.0000892, [1., 0.5000, -0.5000], 0.000089245872
6 k=, 6, muk=, 3.0000127, [1., 0.5000, -0.5000], 0.000012749735
7 k=, 7, muk=, 3.0000018, [1., 0.5000, -0.5000], 0.0000018213974
8 k=, 8, muk=, 3.0000003, [1., 0.5000, -0.5000], 2.6019977 10^-7
9 k=, 9, muk=, 3.0000000, [1., 0.5000, -0.5000], 3.7171398 10^-8

10 k=, 10, muk=, 3.0000000, [1., 0.5000, -0.5000], 5.3101998 10^-9
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Symmetric Inverse Power method

Inverse Power Method
1 k=, 1, muk=, 3.2000000, [0.8704, 0.3482, -0.3482], 0.2000000000
2 k=, 2, muk=, 3.0043668, [0.8245, 0.3997, -0.3997], 0.004366812227
3 k=, 3, muk=, 3.0000892, [0.8178, 0.4071, -0.4071], 0.00008924587238
4 k=, 4, muk=, 3.0000018, [0.8164, 0.4080, -0.4080], 0.000001821397413
5 k=, 5, muk=, 3.0000000, [0.8167, 0.4083, -0.4083], 3.717139787 10^-8
6 k=, 6, muk=, 3.0000000, [0.8159, 0.4080, -0.4080], 7.585999658 10^-10
7 k=, 7, muk=, 3.0000000, [0.8166, 0.4084, -0.4084], 1.548163196 10^-10
8 k=, 8, muk=, 3.0000000, [0.8167, 0.4082, -0.4082], 3.159516726 10^-13
9 k=, 9, muk=, 3.0000000, [0.8166, 0.4083, -0.4083], 6.447993319 10^-15

10 k=, 10, muk=, 3.0000000, [0.8171, 0.4084, -0.4084], 1.315917004 10^-16

The symmetric inverse power method converges twice faster than the
basic inverse power method.
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9.2. QR Factorization

Note: Power methods are not in general suitable for calculating all the
eigenvalues of a matrix because of the growth of round-off error. In this
section, we will consider the so-called QR factorization. The method
can be utilized to find all the eigenvalues simultaneously. However,
it is useful for a wide range of applications. Thus here we will derive the
QR algorithm for general purpose.

Theorem 9.12. (QR Factorization Theorem) For A ∈ Rm×n, we can
factor it as

A = QR,

where Q is an m× n matrix whose columns are orthonormal and R is an
n× n upper triangular matrix. If A is of full rank, the factorization is
unique with R having positive main diagonal entries.

Corollary 9.13. LetA ∈ Rn×n. Then there exist an orthogonal matrix
Q and an upper triangular matrix R such that A = QR.

Corollary 9.14. Let A ∈ Rn×n be nonsingular. Then there exist
unique Q, R ∈ Rn×n such that Q is orthogonal, R is upper triangular
with positive main diagonal entries, and A = QR.

Computation of the QR factorization
There have been several methods for the computation of the QR factor-
ization, such as by means of{

Gram-Schmidt process
Householder reflectors

The Gram-Schmidt process is considered earlier in Section 8.1.2, p. 288.
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9.2.1. QR factorization by the Gram-Schmidt process

Theorem 9.15. (The Gram-Schmidt process – Revisit of Theorem 8.5) Given
a basis {x1, x2, · · · , xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2•v1

v1•v1

v1

v3 = x3 −
x3•v1

v1•v1

v1 −
x3•v2

v2•v2

v2

...

vp = xp −
xp•v1

v1•v1

v1 −
xp•v2

v2•v2

v2 − · · · −
xp•vp−1

vp−1•vp−1
vp−1

(9.23)

Then {v1, v2, · · · , vp} is an orthogonal basis for W . In addition,

Span{x1, x2, · · · , xk} = Span{v1, v2, · · · , vk}, for 1 ≤ k ≤ p. (9.24)

Algorithm 9.16. (QR Factorization by the Gram-Schmidt Process)
Let A = [x1 x2 · · · xn] have full rank. From the Gram-Schmidt process, obtain an
orthonormal basis {u1, u2, · · · , un}. Then

x1 = (u1•x1)u1

x2 = (u1•x2)u1 + (u2•x2)u2

x3 = (u1•x3)u1 + (u2•x3)u2 + (u3•x3)u3

...
xn =

∑n
j=1(uj•xn)uj,

(9.25)

which is a rephrase (with normalization) of (9.23). Thus

A = [x1 x2 · · · xn] = QR (9.26)

implies that

Q = [u1 u2 · · · un],

R =


u1•x1 u1•x2 u1•x3 · · · u1•xn

0 u2•x2 u2•x3 · · · u2•xn
0 0 u3•x3 · · · u3•xn
...

...
... . . . ...

0 0 0 · · · un•xn

 = QTA.
(9.27)

In practice, the coefficients rij = ui•xj, i < j, can be saved during the Gram-Schmidt
process.



324 Chapter 9. Eigenvalues and Matrix Decomposition

Example 9.17. Find the QR factorization for A =

[
4 −1

3 2

]
.

Solution. Using the Gram-Schmidt process,
v1 = x1 =

[
4

3

]

v2 = x2 −
x2•v1

v1•v1
v1 =

[
−1

2

]
− 2

25

[
4

3

]
=

1

25

[
−33

44

]
and 

u1 = v1/||v1|| =

[
0.8

0.6

]

u2 = v2/||v2|| =

[
−0.6

0.8

] (9.28)

Thus,

Q = [u1, u2] =

[
0.8 −0.6

0.6 0.8

]
(9.29)

Now, you can get R = QTA.
Ans: Q =

[
0.8 −0.6

0.6 0.8

]
R =

[
5 0.4

0 2.2

]

Note: The determinant of the orthogonal matrix has a value of ±1.
Thus det (A) = ±det (R).
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Example 9.18. Find the QR factorization for A =


3 1 3

1 6 4

6 7 8

3 3 7

.

QR factorization
1 with(LinearAlgebra):
2 A := Matrix([[3, 1, 3], [1, 6, 4], [6, 7, 8], [3, 3, 7]]):
3 a[1] := Column(A, 1): v[1] := a[1]: u[1] := v[1]/norm(v[1], 2):
4

5 n:=3:
6 for k from 2 to n do
7 a[k] := Column(A, k);
8 v[k] := a[k] - add((a[k].u[j]) u[j], j = 1..k-1);
9 u[k] := v[k]/norm(v[k],2);

10 end do:
11

12 R := Matrix(n):
13 for i to n do
14 for j from i to n do R[i,j] := u[i].a[j]; end do;
15 end do:
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9.2.2. Householder reflectors

Let’s revisit the orthogonal projection, Definition 8.1:

Definition 9.19. For a nonzero vector b ∈ Rn and a ∈ Rn, the orthogo-
nal projection of a onto b is defined as

projba =
a•b
b•b

b. (9.30)

In the figure,

• projba = a1

• ||a1|| = ||a|| cos θ

• a = a1 +a2 is called an orthog-
onal decomposition of a.

Householder reflection (or, Householder transformation, Elementary re-
flector) is a transformation that takes a vector and reflects it about some
plane or a hyperplane.

• Let u be a unit vector which is orthogonal to the hyperplane. Then,
the reflection of a point x about this hyperplane is given as

x− 2 projux = x− 2(x•u)u. (9.31)

(In the above figure, you may think Span{b} is a hyperplane; x = a and u = a2/||a2||.)

• Note that

x− 2(x•u)u = x− 2u(uTx) = (I − 2uuT )x. (9.32)

Definition 9.20. The matrix

Q := I − 2uuT (9.33)

is called a Householder matrix or a Householder reflector.
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Theorem 9.21. (Theorems on Reflectors)

I. Let u ∈ Rn, with ||u|| = 1, and define P ∈ Rn×n by P = uuT . Then

(a) Pu = u

(b) Pv = 0 if u•v = 0

(c) P 2 = P

(d) P T = P

II. Let u ∈ Rn, with ||u|| = 1, and define Q ∈ Rn×n by Q = I − 2uuT .
Then

(a) Qu = −u
(b) Qv = v if u•v = 0

(c) Q = QT (Q is symmetric)
(d) QT = Q−1 (Q is orthogonal)
(e) Q−1 = Q (Q is an involution)

III. Let x, y ∈ Rn with x 6= y and ||x|| = ||y||. Then there is a unique
reflector Q such that Qx = y.
(We will prove it by constructing such a reflector Q, in Algorithm 9.24 below.)

Corollary 9.22. Let u ∈ Rn be a nonzero vector. Define Q ∈ Rn×n by

Q = I − γ uuT , γ = 2/||u||2. (9.34)

Then

(a) Qu = −u
(b) Qv = v if u•v = 0

Clearly, Q satisfies all other properties in Theorem 9.21.II.
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Corollary 9.23. Let x ∈ Rn be a nonzero vector. Then there is a reflec-
tor Q such that

Qx = Q


x1

x2
...
xn

 =


∗
0
...
0

 (9.35)

Proof. Let y = [−τ, 0, · · · , 0]T with τ = ±||x||. By choosing the sign ap-
propriately, we can guarantee that x 6= y. Clearly ||x|| = ||y||. Thus, the
corollary follows from Theorem 9.21.III.

Algorithm 9.24. (Construction of the Reflector)

Q : x 7→ y = [−τ, 0, · · · , 0]T , where τ = ±||x||. (9.36)

• Let
u = x− y = [x1 + τ, x2, · · · , xn]T , (9.37)

where the sign of τ is such that x1 + τ 6= 0.
• Define

Q = I − γ uuT , γ =
2

||u||2
. (9.38)

Check if Qx = y

• Rewrite x as
x =

1

2
(x− y) +

1

2
(x + y). (9.39)

• By Corollary 9.22 (a),

Q(x− y) = Qu = −u = −x + y. (9.40)

• Since (x − y)•(x + y) = ||x||2 − ||y||2 = 0, it follows from Corol-
lary 9.22 (b) that

Q(x + y) = x + y. (9.41)

• Thus, Qx = y holds.
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Example 9.25. Let x = [2, 2, −1]T and y = [∗, 0, 0]T .

Find Q = I − γ uuT : x 7→ y , where u = x− y and γ = 2/||u||2.
Solution.

• Let τ = ||x||. Then τ = 3.

• y =

−3

0

0

 and u = x− y =

 2

2

−1

−
−3

0

0

 =

 5

2

−1

.

• Q = I − 2

||u||2
uuT = I − 2

30

 25 10 −5

10 4 −2

−5 −2 1

 =
1

15

−10 −10 5

−10 11 2

5 2 14



• Qx =

−3

0

0


What if we set τ = −3?

• Then, y =

3

0

0

 and u = x− y =

 2

2

−1

−
3

0

0

 =

−1

2

−1

.

• Q = I − 2

||u||2
uuT = I − 2

6

 1 −2 1

−2 4 −2

1 −2 1

 =
1

3

 2 2 −1

2 −1 2

−1 2 2



• Qx =

3

0

0


Note: For each y, Q is symmetric, orthogonal, and an involution matrix.
In addition, it is unique for each choice of y.
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9.2.3. QR factorization by Householder reflectors

We will construct a QR factorization algorithm using Householder reflectors
for A ∈ Rn×n, for simplicity. Consider Corollary 9.13, p. 322:

Corollary 9.26. (Revisit of Corollary 9.13) Let A ∈ Rn×n. Then
there exist an orthogonal matrix Q and an upper triangular matrix
R such that A = QR.

Proof. The proof is by induction on n.

• When n = 1. Then A = [a11].
Let Q = [1] and R = [a11] to get A = QR.

• Let A ∈ Rn×n for n ≥ 2.

(a) Assume that QR factorization exists for (n− 1)× (n− 1) matrices.
(b) Let Q1 be a reflector that creates zeros in the first column of A, a1:

Q1a1 = Q1


a11

a21
...
an1

 =


−τ1

0
...
0

, where τ1 = ±||a1||. (9.42)

(c) Thus,

QT
1A = Q1A =


−τ â12 · · · â1n

0
... Â2

0

 (9.43)

where, by the induction hypothesis, Â2 ∈ R(n−1)×(n−1) has a QR decom-
position

Â2 = Q̂2R̂2.

(d) Define Q2 ∈ Rn×n by

Q2 =


1 0 · · · 0

0
... Q̂2

0

. (9.44)



9.2. QR Factorization 331

(e) Then Q2 is obviously orthogonal and, from (9.43) and (9.44), we have

QT
2Q

T
1A =


1 0 · · · 0

0
... Q̂2

0



−τ â12 · · · â1n

0
... Â2

0

 =


−τ â12 · · · â1n

0
... R̂2

0

.
(9.45)

(f) The last matrix is upper triangular; let us call it R. Let Q = Q1Q2.
Then A = QR, clearly.

It completes the proof.

Remark 9.27.

1. For Q = I − γ uuT : x 7→ y = [−τ, 0, · · · , 0]T , since any multiple of
u = x− y will generate the same reflector, you may scale u so that its
first entry is 1. That is,

u =
x− y

x1 + τ
=


1

x2/(x1 + τ)
...

xn/(x1 + τ)

. (9.46)

In this case, the first entry of u does not need to be saved. Further-
more

||u||2 =
(x1 + τ)2 + x2

2 + · · ·+ x2
n

(x1 + τ)2
=
τ 2 + 2τx1 + ||x||2

(x1 + τ)2
.

Since τ 2 = ||x||2,

||u||2 =
2τ 2 + 2τx1

(x1 + τ)2
=

2τ(τ + x1)

(x1 + τ)2
=

2τ

x1 + τ
, (9.47)

and therefore

γ =
2

||u||2
=
x1 + τ

τ
. (9.48)
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2. The the proof of Corollary 9.26 suggests an algorithm for the construc-
tion of Q and R.

Q1 = I − γ1u1u
T
1 , where u1 =


1

a21/(a11 + τ1)
...

an1/(a11 + τ1)

, (9.49)

and

Q2 =


1 0 · · · 0

0
... I − γ2u2u

T
2

0

, (9.50)

where u2 is determined from Â2. In general,

Qk =


Ik−1 0 · · · 0

0
... I − γkukuTk
0

. (9.51)

Then, if Q = Q1Q2 · · ·Qn−1, then QTA = R is an upper triangular
matrix.

3. We do not need form Q1, Q2, · · · , Qn explicitly. For example, for

Q1 = I − γ1u1u
T
1 ,

we store only −τ1, γ1, u1. (The construction of Q1 costs O(n) flops.)
Then, for each ak (or columns of A), k = 2, 3, · · · , n,

QT
1 ak = Q1ak = (I − γ1u1u

T
1 )ak = ak − γ1(u

T
1 ak)u1, (9.52)

where the last term requires about 4n flops.
4. The flop count for QT

1A:

cost(QT
1A) ≈ 4n2. (9.53)
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Algorithm 9.28. (The QR Factorization by Reflectors)
Let A ∈ Rn×n.

for k = 1 : (n− 1)

(a) Determine Qk = I − γkukuTk such that
Qk[âkk, âk+1,k, · · · , ânk]T = [−τk, 0, · · · , 0]T

(b) Store uk over A[k : n, k]

(c) Save A[k, k] = −τk
(d) Transform A[k : n, k + 1 : n]← QkA[k : n, k + 1 : n]

(e) Save G[k] = γk

end for
G[n] = A[n, n]

(9.54)

Note: (The QR Factorization by Reflectors)

• The output (Q and R) is saved over A.
• Recall that the flop count for k = 1 is about 4n2. For k = 2, it is about

4(n − 1)2; for k = 2, it is about 4(n − 2)2; and so on. Thus the total
flop count for QR Decomposition by Reflectors reads

4n2 + 4(n− 1)2 + · · · ≈ O
(4

3
n3
)
, (9.55)

which is twice that of an LU-factorization.
• Although each of Qk is symmetric and an involution,

Q = Q1Q2 · · ·Qn−1

may not be symmetric nor an involution matrix. However, it is still
orthogonal.

• The matrix A is singular if at least one entry of G (particularly, G[n])
is zero.
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Example 9.29. Use reflectors to get QR decomposition of A =

3 1 3

1 6 4

6 7 8

.

Solution. Consider a program showing details.
Q1

1 m := 3: n := 3:
2 a[1] := Column(A, 1): tau[1] := norm(a[1], 2):
3 if a[1][1] < 0 then tau[1] := -tau[1]; end if:
4

5 u[1] := a[1]: scale := a[1][1] + tau[1]:
6 u[1][1] := 1:
7 for i from 2 to m do
8 u[1][i] := u[1][i]/scale;
9 end do:

10 g[1] := scale/tau[1]:

Result:
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Q2

1 A2 := Q1A[2..m, 2..n]:
2 a[2] := Column(A2, 1): tau[2] := norm(a[2], 2):
3 if evalf(a[2][1]) < 0 then tau[2] := -tau[2]; end if:
4

5 u[2] := a[2]: scale := a[2][1] + tau[2]:
6 u[2][1] := 1:
7 for i from 2 to m - 1 do
8 u[2][i] := u[2][i]/scale;
9 end do:

10 g[2] := scale/tau[2]:
11

12 Q2sub := Matrix(m-1, shape=identity) - g[2]* u[2].u[2]^%T:
13

14 Q2 := Matrix(m): Q2[1, 1] := 1:
15 for i from 2 to m do
16 for j from 2 to m do Q2[i,j] := Q2sub[i-1, j-1]; end do:
17 end do:

Result:
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Check:

Use the build-in command :

See Exercise 9.2 for transforming the QR decomposition for all diagonal
entries of R are nonnetative.
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9.2.4. The QR method for finding eigenvalues

Algorithm 9.30. (QR Algorithm) Let A ∈ Rn×n.

set A0 = A and U0 = I

for k = 1, 2, · · · do
(a) Ak−1 = QkRk; % QR factorization
(b) Ak = RkQk;

(c) Uk = Uk−1Qk; % Update transformation matrix
end for
set T := A∞ and U := U∞

(9.56)

Claim 9.31.

• Algorithm 9.30 produces an upper triangular matrix T , with its diag-
onals being eigenvalues of A, and an orthogonal matrix U such that

A = UTUT , (9.57)

which is called the Schur decomposition of A.
• If A is symmetric, then T becomes a diagonal matrix of eigenvalues

of A and U is the collection of corresponding eigenvectors.

Remark 9.32. It follows from (a) and (b) of Algorithm 9.30 that

Ak = RkQk = QT
kAk−1Qk, (9.58)

and therefore

Ak = RkQk = QT
kAk−1Qk = QT

kQ
T
k−1Ak−2Qk−1Qk = · · ·

= QT
kQ

T
k−1 · · ·QT

1 A0 Q1Q2 · · ·Qk︸ ︷︷ ︸
Uk

(9.59)

The above converges to
T = UTAU (9.60)
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Example 9.33. Let A =

3 1 3

1 6 4

6 7 8

 and B =

 4 −1 1

−1 3 −2

1 −2 3

. Apply the QR

algorithm, Algorithm 9.30, to find their Schur decompositions.

Solution.
qr_algorithm.m

1 function [T,U,iter] = qr_algorithm(A)
2 % It produces the Schur decomposition: A = U*T*U^T
3 % T: upper triangular, with diagonals being eigenvalues of A
4 % U: orthogonal
5 % Once A is symmetric,
6 % T becomes diagonal && U contains eigenvectors of A
7

8 T = A; U = eye(size(A));
9

10 % for stopping
11 D0 = diag(T); change = 1;
12 tol = 10^-15; iter=0;
13

14 %%-----------------
15 while change>tol
16 [Q,R] = qr(T);
17 T = R*Q;
18 U = U*Q;
19

20 % for stopping
21 iter= iter+1;
22 D=diag(T); change=norm(D-D0); D0=D;
23 end
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We may call it as
call_qr_algorithm.m

1 A =[3 1 3; 1 6 4; 6 7 8];
2 [T1,U1,iter1] = qr_algorithm(A)
3 U1*T1*U1'
4 [V1,D1] = eig(A) % built-in
5

6 B =[4 -1 1; -1 3 -2; 1 -2 3];
7 [T2,U2,iter2] = qr_algorithm(B)
8 U2*T2*U2'
9 [V2,D2] = eig(B) % built-in

A
1 T1 =
2 13.8343 1.0429 -4.0732
3 0.0000 3.3996 0.5668
4 0.0000 -0.0000 -0.2339
5 U1 =
6 0.2759 -0.5783 -0.7677
7 0.4648 0.7794 -0.4201
8 0.8414 -0.2409 0.4838
9 iter1 =

10 26
11 ans =
12 3.0000 1.0000 3.0000
13 1.0000 6.0000 4.0000
14 6.0000 7.0000 8.0000
15

16 %---- [V1,D1] = eig(A)
17 V1 =
18 -0.2759 -0.5630 0.6029
19 -0.4648 -0.3805 -0.7293
20 -0.8414 0.7337 0.3234
21 D1 =
22 13.8343 0 0
23 0 -0.2339 0
24 0 0 3.3996

B
1 T2 =
2 6.0000 -0.0000 0.0000
3 -0.0000 3.0000 -0.0000
4 0.0000 -0.0000 1.0000
5 U2 =
6 0.5774 0.8165 -0.0000
7 -0.5774 0.4082 0.7071
8 0.5774 -0.4082 0.7071
9 iter2 =

10 28
11 ans =
12 4.0000 -1.0000 1.0000
13 -1.0000 3.0000 -2.0000
14 1.0000 -2.0000 3.0000
15

16 %---- [V2,D2] = eig(B)
17 V2 =
18 -0.0000 0.8165 0.5774
19 0.7071 0.4082 -0.5774
20 0.7071 -0.4082 0.5774
21 D2 =
22 1.0000 0 0
23 0 3.0000 0
24 0 0 6.0000

Note: QR decomposition can also be used for solving LS problems, when
the system matrix has full rank; see Exercise 9.9.
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9.3. Singular Value Decomposition

Here we will deal with the SVD in detail.

Theorem 9.34. (SVD Theorem). Let A ∈ Rm×n with m ≥ n. Then we
can write

A = U ΣV T , (9.61)

where U ∈ Rm×n and satisfies UTU = I, V ∈ Rn×n and satisfies V TV = I,
and Σ = diag(σ1, σ2, · · · , σn), where

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Remark 9.35. The matrices are illustrated pictorially as A

 =

 U


 Σ


 V T

 , (9.62)

where

U : m× n orthogonal (the left singular vectors of A.)
Σ : n× n diagonal (the singular values of A.)
V : n× n orthogonal (the right singular vectors of A.)

• For some r ≤ n, the singular values may satisfy

σ1 ≥ σ2 ≥ · · · ≥ σr︸ ︷︷ ︸
nonzero singular values

> σr+1 = · · · = σn = 0. (9.63)

In this case, rank (A) = r.
• If m < n, the SVD is defined by considering AT .
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Proof. (of Theorem 9.34) Use induction on m and n: we assume that the SV D
exists for (m − 1) × (n − 1) matrices, and prove it for m × n. We assume A 6= 0; otherwise
we can take Σ = 0 and let U and V be arbitrary orthogonal matrices.

• The basic step occurs when n = 1 (m ≥ n). We let A = UΣV T with U = A/||A||2, Σ = ||A||2,
V = 1.

• For the induction step, choose v so that

||v||2 = 1 and ||A||2 = ||Av||2 > 0.

• Let u =
Av

||Av||2
, which is a unit vector. Choose Ũ , Ṽ such that

U = [u Ũ ] ∈ Rm×n and V = [v Ṽ ] ∈ Rn×n

are orthogonal.
• Now, we write

UTAV =

[
uT

ŨT

]
· A · [v Ṽ ] =

[
uTAv uTAṼ

ŨTAv ŨTAṼ

]

Since

uTAv =
(Av)T (Av)

||Av||2
=
||Av||22
||Av||2

= ||Av||2 = ||A||2 ≡ σ,

ŨTAv = ŨTu||Av||2 = 0,

we have

UTAV =

[
σ 0

0 U1Σ1V
T
1

]
=

[
1 0

0 U1

] [
σ 0

0 Σ1

] [
1 0

0 V1

]T
,

or equivalently

A =

(
U

[
1 0

0 U1

])[
σ 0

0 Σ1

](
V

[
1 0

0 V1

])T
. (9.64)

Equation (9.64) is our desired decomposition.
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9.3.1. Interpretation of the SVD

Algebraic interpretation of the SVD

Let rank (A) = r. let the SVD of A be A = U ΣV T , with

U = [u1 u2 · · · un],

Σ = diag(σ1, σ2, · · · , σn),
V = [v1 v2 · · · vn],

and σr be the smallest positive singular value. Since

A = U ΣV T ⇐⇒ AV = UΣV TV = UΣ,

we have

AV = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn]

= [u1 · · · ur · · · un]


σ1

. . .
σr

. . .
0


= [σ1u1 · · · σrur 0 · · · 0].

(9.65)

Therefore,

A = U ΣV T ⇔

{
Avj = σjuj, j = 1, 2, · · · , r
Avj = 0, j = r + 1, · · · , n

(9.66)

Similarly, starting from AT = V ΣUT ,

AT = V ΣUT ⇔

{
ATuj = σjvj, j = 1, 2, · · · , r
ATuj = 0, j = r + 1, · · · , n

(9.67)
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Summary 9.36. It follows from (9.66) and (9.67) that

• (vj, σ
2
j ), j = 1, 2, · · · , r, are eigenvector-eigenvalue pairs of ATA.

ATAvj = AT (σjuj) = σ2
jvj, j = 1, 2, · · · , r. (9.68)

So, the singular values play the role of eigenvalues.

• Similarly, we have

AAT uj = A(σjvj) = σ2
juj, j = 1, 2, · · · , r. (9.69)

• Equation (9.68) gives how to find the singular values {σj} and the
right singular vectors V , while (9.66) shows a way to compute the
left singular vectors U .

• (Dyadic decomposition) The matrix A ∈ Rm×n can be expressed as

A =
n∑
j=1

σjujv
T
j . (9.70)

When rank (A) = r ≤ n,

A =
r∑
j=1

σjujv
T
j . (9.71)

This property has been utilized for various approximations and ap-
plications, e.g., by dropping singular vectors corresponding to small
singular values.
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Geometric interpretation of the SVD

The matrix A maps an orthonormal basis

B1 = {v1,v2, · · · ,vn}

of Rn onto a new “scaled” orthogonal basis

B2 = {σ1u1, σ2u2, · · · , σrur}

for a subspace of Rm:

B1 = {v1,v2, · · · ,vn}
A−→ B2 = {σ1u1, σ2u2, · · · , σrur} (9.72)

Consider a unit sphere Sn−1 in Rn:

Sn−1 =
{
x
∣∣∣ n∑
j=1

x2
j = 1

}
.

Then, ∀x ∈ Sn−1,

x = x1v1 + x2v2 + · · ·+ xnvn

Ax = σ1x1u1 + σ2x2u2 + · · ·+ σrxrur

= y1u1 + y2u2 + · · ·+ yrur, (yj = σjxj)

(9.73)

So, we have

yj = σjxj ⇐⇒ xj =
yj
σj

n∑
j=1

x2
j = 1 (sphere) ⇐⇒

r∑
j=1

y2
j

σ2
j

= α ≤ 1 (ellipsoid)
(9.74)
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Example 9.37. We build the set A(Sn−1) by multiplying one factor of A =

UΣV T at a time. Assume for simplicity that A ∈ R2×2 and nonsingular. Let

A =

[
3 −2

−1 2

]
= UΣV T

=

[
−0.8649 0.5019

0.5019 0.8649

][
4.1306 0

0 0.9684

][
−0.7497 0.6618

0.6618 0.7497

]

Then, for x ∈ S1,
Ax = UΣV Tx = U

(
Σ(V Tx)

)

In general,

• V T : Sn−1 → Sn−1 (rotation in Rn)

• Σ : ej 7→ σjej (scaling from Sn−1 to Rn)

• U : Rn → Rm (rotation)
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9.3.2. Properties of the SVD

Theorem 9.38. Let A ∈ Rm×n with m ≤ n. Let A = UΣV T be the SVD
of A, with

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Then, 

rank (A) = r

Null(A) = Span{vr+1, · · · ,vn}
Range(A) = Span{u1, · · · ,ur}

A =
r∑
i=1

σiuiv
T
i

(9.75)

and 
||A||2 = σ1 (See Exercise 9.3.)
||A||2F = σ2

1 + · · ·+ σ2
r (See Exercise 9.4.)

min
x 6=0

||Ax||2
||x||2

= σn (m ≥ n)

(9.76)

Theorem 9.39. Let A ∈ Rm×n with rank (A) = r > 0. Let A = UΣV T be
the SVD of A, with singular values

σ1 ≥ · · · ≥ σr > 0.

Define, for k = 1, · · · , r − 1,

Ak =
k∑
j=1

σjujv
T
j (sum of rank-1 matrices). (9.77)

Then, rank (Ak) = k and

||A− Ak||2 = min{||A−B||2
∣∣ rank (B) ≤ k} = σk+1,

||A− Ak||2F = min{||A−B||2F
∣∣ rank (B) ≤ k} = σ2

k+1 + · · ·+ σ2
r .

(9.78)

That is, of all matrices of rank ≤ k, Ak is closest to A.
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Note: The matrix Ak in (9.77) can be written as

Ak =
k∑
j=1

σjujv
T
j = U ΣkV

T , (9.79)

where Σk = diag(σ1, · · · , σk, 0, · · · , 0).

9.3.3. Computation of the SVD

For A ∈ Rm×n, the procedure is as follows.

1. Form ATA, the covariance matrix of A.

2. Find the eigen-decomposition of ATA by orthogonalization process,
i.e., Λ = diag(λ1, · · · , λn),

ATA = V ΛV T , (9.80)

where V = [v1 · · · vn] is orthogonal, i.e., V TV = I.

3. Sort the eigenvalues according to their magnitude and let

σj =
√
λj, j = 1, 2, · · · , n. (9.81)

4. Form the U matrix as follows (rank (A) = k),

uj =
1

σj
Avj, j = 1, 2, · · · , k. (9.82)

Note:

• Note that uj are eigenvectors of AAT , as shown in (9.69). The alterna-
tive computation of {uj} in (9.82) is more efficient.

• If necessary, pick up the remaining columns of U so it becomes orthog-
onal. These additional columns must be in Null(AAT ).
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Example 9.40. Find the SV D for A =

 1 2

−2 1

3 2

.

Solution.

1. ATA =

[
14 6

6 9

]
.

2. Solving det (ATA− λI) = 0 gives the eigenvalues of ATA

λ1 = 18 and λ2 = 5,

of which corresponding eigenvectors are

ṽ1 =

[
3

2

]
, ṽ2 =

[
−2

3

]
. =⇒ V =

[
3√
13
− 2√

13

2√
13

3√
13

]

3. σ1 =
√
λ1 =

√
18 = 3

√
2, σ2 =

√
λ2 =

√
5. So

Σ =

[√
18 0

0
√

5

]

4. u1 = 1
σ1
Av1 = 1√

18
A

[
3√
13
2√
13

]
= 1√

18
1√
13

 7

−4

13

 =


7√
234

− 4√
234
13√
234



u2 = 1
σ2
Av2 = 1√

5
A

[
−2√
13
3√
13

]
= 1√

5
1√
13

 4

7

0

 =


4√
65
7√
65

0

 .

5. A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0


[√

18 0

0
√

5

][
3√
13

2√
13

− 2√
13

3√
13

]
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Computer implementation [8, 9]

Figure 9.1: A two-phase procedure for the SVD: A = UΣV T .

Algorithm 9.41. (Golub and Reinsch, 1970) [9]. Let A ∈ Rm×n.

• Phase 1: It constructs two finite sequences of Householder
transformations to find an upper bidiagonal matrix:

Pn · · ·P1 AQ1 · · ·Qn−2 = B (9.83)

• Phase 2: It is to iteratively diagonalize B using the QR algo-
rithm.

Golub-Reinsch SVD algorithm
• It is extremely stable.
• Computational complexity:

– Computation of U , V , and Σ: 4m2n+ 8mn2 + 9n3.
– Computation of V and Σ: 4mn2 + 8n3.

• Phases 1 & 2 take O(mn2) and O(n2) flops, respectively.
(when Phase 2 is done with O(n) iterations)

• Python: U,S,V = numpy.linalg.svd(A)

• Matlab/Maple: [U,S,V] = svd(A)

• Mathematica: {U,S,V} = SingularValueDecomposition[A]
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Numerical rank
In the absence of round-off errors and uncertainties in the data, the SVD
reveals the rank of the matrix. Unfortunately the presence of errors makes
rank determination problematic. For example, consider

A =


1/3 1/3 2/3

2/3 2/3 4/3

1/3 2/3 3/3

2/5 2/5 4/5

3/5 1/5 4/5

 (9.84)

• Obviously A is of rank 2, as its third column is the sum of the first two.
• Matlab “svd" (with IEEE double precision) produces

σ1 = 2.5987, σ2 = 0.3682, and σ3 = 8.6614× 10−17.

• What is the rank of A, 2 or 3? What if σ3 is in O(10−13)?
• For this reason we must introduce a threshold T . Then we say that A

has numerical rank r if A has r singular values larger than T , that
is,

σ1 ≥ σ2 ≥ · · · ≥ σr > T ≥ σr+1 ≥ · · · (9.85)

In Matlab
• Matlab has a “rank" command, which computes the numerical rank

of the matrix with a default threshold

T = 2 max{m,n} ε ||A||2 (9.86)

where ε is the unit round-off error.
• In Matlab, the unit round-off error can be found from the parameter

“eps"
eps = 2−52 = 2.2204× 10−16.

• For the matrix A in (9.84),

T = 2 · 5 · eps · 2.5987 = 5.7702× 10−15

and therefore rank(A)=2.

See Exercise 9.5.
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9.3.4. Application of the SVD for LS problems

Recall: (Definition 8.9, p. 291): Let A ∈ Rm×n, m ≥ n, and b ∈ Rm. The
least-squares problem is to find x̂ ∈ Rn which minimizes ‖Ax− b‖2:

x̂ = arg min
x
‖Ax− b‖2,

or, equivalently,
x̂ = arg min

x
‖Ax− b‖2

2,

(9.87)

where x̂ called a least-squares solution of Ax = b.

Note: When ATA is invertible, the equation Ax = b has a unique LS
solution for each b ∈ Rm (Theorem 8.14). It can be solved by the method
of normal equations; the unique LS solution x̂ is given by

x̂ = (ATA)−1ATb. (9.88)

Definition 9.42. (ATA)−1AT is called the pseudoinverse of A. Let
A = UΣV T be the SVD of A. Then

(ATA)−1AT = V Σ−1UT def
== A+. (9.89)

Example 9.43. Find the pseudoinverse of A =

 1 2

−2 1

3 2

.

Solution. From Example 9.40, we have

A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0

[√18 0

0
√

5

][
3√
13

2√
13

− 2√
13

3√
13

]

Thus,

A+ = V Σ−1UT =

[
3√
13
− 2√

13
2√
13

3√
13

][
1√
18

0

0 1√
5

][
7√
234
− 4√

234
13√
234

4√
65

7√
65

0

]

=

[
− 1

30 −
4
15

1
6

11
45

13
45

1
9

]
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Solving LS Problems by the SVD

Let A ∈ Rm×n, m > n, with rank (A) = k ≤ n.

• Suppose that the SVD of A is given, that is,

A = UΣV T .

• Since U and V are `2-norm preserving, we have

||Ax− b|| = ||UΣV Tx− b|| = ||ΣV Tx− UTb||. (9.90)

• Define z = V Tx and c = UTb. Then

||Ax− b|| =
( k∑

i=1

(σizi − ci)2 +
n∑

i=k+1

c2
i

)1/2

. (9.91)

• Thus the norm is minimized when z is chosen with

zi =

{
ci/σi, when i ≤ k,

arbitrary, otherwise.
(9.92)

• After determining z, one can find the solution as

x̂ = V z. (9.93)

Then the least-squares error reads

min
x
||Ax− b|| =

( n∑
i=k+1

c2
i

)1/2

(9.94)
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Strategy 9.44. When z is obtained as in (9.92), it is better to choose
zero for the “arbitrary” part:

z = [c1/σ1, c2/σ2, · · · , ck/σk, 0, · · · , 0]T . (9.95)

In this case, z can be written as

z = Σ+
k c = Σ+

k U
Tb, (9.96)

where
Σ+
k = [1/σ1, 1/σ2, · · · , 1/σk, 0, · · · , 0]T . (9.97)

Thus the corresponding LS solution reads

x̂ = V z = V Σ+
k U

Tb. (9.98)

Note that x̂ involves no components of the null space of A;
x̂ is unique in this sense.

Remark 9.45.

• When rank (A) = k = n: It is easy to see that

V Σ+
k U

T = V Σ−1UT , (9.99)

which is the pseudoinverse of A.
• When rank (A) = k < n: ATA not invertible. However,

A+
k := V Σ+

k U
T (9.100)

plays the role of the pseudoinverse of A. Thus we will call it the k-th
pseudoinverse of A.

Note: For some LS applications, although rank (A) = n, the k-th pseu-
doinverse A+

k , with a small k < n, may give more reliable solutions.
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9.4. Principal Component Analysis

• Principal component analysis (PCA) (a.k.a. orthogonal linear
transformation) was invented in 1901 by K. Pearson [19], as an ana-
logue of the principal axis theorem in mechanics; it was later indepen-
dently developed and named by H. Hotelling in the 1930s [11, 12].

• The PCA is a statistical procedure that uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables called the principal com-
ponents.

• The orthogonal axes of the new subspace can be interpreted as the
directions of maximum variance given the constraint that the new
feature axes are orthogonal to each other:

Figure 9.2: Principal components.

• The PCA directions are highly sensitive to data scaling. Thus we
may need to standardize the entries of data matrix (features) prior to
the PCA, particularly when the features were measured on dif-
ferent scales and we want to assign equal importance to all features.
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9.4.1. Computation of principal components

• Consider a data matrix X ∈ RN×d:
– each of the N rows represents a different data point,
– each of the d columns gives a particular kind of feature, and
– each column has zero empirical mean (e.g., after standardization).

• Our goal is to find an orthogonal weight matrix W ∈ Rd×d such that

Z = XW, (9.101)

where Z ∈ RN×d is call the score matrix. Columns of Z represent
principal components of X.

First weight vector w1: the first column of W :
In order to maximize variance of z1, the first weight vector w1 should satisfy

w1 = arg max
‖w‖=1

‖z1‖2 = arg max
‖w‖=1

‖Xw‖2

= arg max
‖w‖=1

wTXTXw = arg max
w 6=0

wTXTXw

wTw
,

(9.102)

where the quantity to be maximized can be recognized as a Rayleigh quo-
tient.

Theorem 9.46. For a positive semidefinite matrix (such as XTX),
the maximum of the Rayleigh quotient is the same as the largest eigen-
value of the matrix, which occurs when w is the corresponding eigenvec-
tor, i.e.,

w1 = arg max
w 6=0

wTXTXw

wTw
=

v1

‖v1‖
, (XTX)v1 = λ1v1, (9.103)

where λ1 is the largest eigenvalue of XTX ∈ Rd×d.
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Further weight vectors wk :

The k-th weight vector can be found by 1 subtracting the first (k − 1)
principal components from X:

X̂k := X −
k−1∑
i=1

Xwiw
T
i , (9.104)

and then 2 finding the weight vector which extracts the maximum vari-
ance from this new data matrix

wk = arg max
‖w‖=1

‖X̂kw‖2. (9.105)

Thus wk is an eigenvector of X̂k

T
X̂k and therefore an eigenvector of XTX.

Summary 9.47. The transformation matrix W is the stack of eigenvec-
tors of XTX, i.e.,

W = [w1|w2| · · · |wd], (XTX)wj = λj wj, wT
i wj = δij, (9.106)

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

With W found, a data vector x is transformed to a d-dimensional row
vector of principal components

z = xW, (9.107)

of which components zj, j = 1, 2, · · · , d, are decorrelated.
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Remark 9.48. The principal components transformation is closely re-
lated with the SVD of X:

X = U ΣV T , (9.108)

where
U : n× d orthogonal (the left singular vectors of X.)
Σ : d× d diagonal (the singular values of X.)
V : d× d orthogonal (the right singular vectors of X.)

• The matrix Σ explicitly reads
Σ = diag(σ1, σ2, · · · , σd), (9.109)

where σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0.
• In terms of this factorization, the matrix XTX reads

XTX = (U ΣV T )TU ΣV T = V ΣUTU ΣV T = V Σ2V T . (9.110)

• Comparing with the eigenvector factorization of XTX, we have
– the right singular vectors V ∼= the eigenvectors of XTX ⇒ V ∼= W

– the square of singular values of X are equal to the eigenvalues of XTX

⇒ σ2
j = λj, j = 1, 2, · · · , d.

Claim 9.49. While the weight matrix W ∈ Rd×d is the collection of
eigenvectors of XTX, the score matrix Z ∈ RN×d is the stack of eigenvec-
tors of XXT , scaled by the square-root of eigenvalues:

Z = [
√
λ1 u1|

√
λ2 u2| · · · |

√
λd ud], (XXT )uj = λj uj, uTi uj = δij. (9.111)

See (9.114).
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9.4.2. Dimensionality reduction: Data compression

The transformation Z = XW maps a data vector x(i) ∈ Rd to a new
space of d variables which are now uncorrelated. However, not all the
principal components need to be kept.
Keeping only the first k principal components, produced by using only
the first k eigenvectors of XTX (k � d), gives the truncated transforma-
tion:

Zk = XWk : x(i) ∈ Rd 7→ z(i) ∈ Rk, (9.112)

where Zk ∈ RN×k and Wk ∈ Rd×k. Let
Xk := ZkW

T
k . (9.113)

Quesitons. How can we choose k ? &
Is the difference ‖X −Xk‖ (that we truncated) small ?

Analysis using the SVD

• Let X = U ΣV T . Then the score matrix Z reads

Z = XW = U ΣV TW = U Σ, (9.114)

and therefore each column of Z is given by one of the left singular vectors
of X multiplied by the corresponding singular value. This form is also the
polar decomposition of Z. See (9.111).

• As with the eigen-decomposition, the SVD, the truncated score matrix
Zk ∈ RN×k can be obtained by considering only the first k largest singular
values and their singular vectors:

Zk = XWk = U ΣV TWk = U Σk, (9.115)

where
Σk := diag(σ1, · · · , σk, 0, · · · , 0). (9.116)

• Now, using (9.115), the truncated data matrix reads

Xk = ZkW
T
k = U ΣkW

T
k = U ΣkW

T = U ΣkV
T . (9.117)
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Claim 9.50. It follows from (9.108) and (9.117) that

‖X −Xk‖ = ‖U ΣV T − U ΣkV
T‖

= ‖U(Σ− Σk)V
T‖

= ‖Σ− Σk‖ = σk+1,

(9.118)

where ‖ · ‖ is the induced matrix L2-norm.

Remark 9.51. Efficient algorithms exist to calculate the SVD of X
without having to form the matrix XTX; see § 9.3.3. Computing the
SVD is now the standard way to carry out the PCA [10, 26].
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Exercises for Chapter 9

9.1. Prove (c) in Theorem 9.5. Hint : Let Avi = λivi, i = 1, 2, and λ1 6= λ2. Consider vT1Av2

and vT2Av1.

9.2. Let A = QR be a QR factorization of A. Suppose a single diagonal entry of R, rjj, is
negative. Suggest a strategy to transform the QR factorization so that all diagonal
entries of R are nonnegative. Hint : Let Nj be a perturbation of I where the (j, j)-th
entry is −1. Then N2

j = I.

9.3. Let A ∈ Rm×n. Prove that ||A||2 = σ1, the largest singular value of A. Hint: Use the
following

||Av1||2
||v1||2

=
σ1||u1||2
||v1||2

= σ1 =⇒ ||A||2 ≥ σ1

and arguments around Equations (9.73) and (9.74) for the opposite directional in-
equality.

9.4. Recall that the Frobenius matrix norm is defined by

||A||F =
( m∑
i=1

n∑
j=1

|aij|2
)1/2

, A ∈ Rm×n.

Show that ||A||F = (σ2
1 + · · ·+ σ2

k)
1/2, where σj are nonzero singular values of A. Hint:

You may use the norm-preserving property of orthogonal matrices. That is, if U is
orthogonal, then ||UB||2 = ||B||2 and ||UB||F = ||B||F .

9.5. C Use Matlab to generate a random matrix A ∈ R8×6 with rank 4. For example,

A = randn(8,4);
A(:,5:6) = A(:,1:2)+A(:,3:4);
[Q,R] = qr(randn(6));
A = A*Q;

(a) Print out A on your computer screen. Can you tell by looking if it has (numerical)
rank 4?

(b) Use Matlab’s “svd" command to obtain the singular values of A. How many are
“large?" How many are “tiny?" (You may use the command “format short e" to get
a more accurate view of the singular values.)

(c) Use Matlab’s “rank" command to confirm that the numerical rank is 4.
(d) Use the “rank" command with a small enough threshold that it returns the value

6. (Type “help rank" for information about how to do this.)

(Continued on the next page)
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9.6. C Let A =


2 −1 0 0

−1 2 0 −1

0 0 4 −2

0 −1 −2 4

. Use indicated methods to approximate eigenvalues

and their associated eigenvectors of A within to 10−12 accuracy.

(a) The power method, the largest eigenvalue.
(b) The inverse power method, the smallest eigenvalue.
(c) The inverse power method, an eigenvalue near q = 3.
(d) Repeat the above with their symmetric versions.

9.7. Find a reflector that maps the vector x = [−4, 1, 2,−2]T to a vector of the form y =
[−τ, 0, 0, 0]T . Write Q in two ways: (a) in the form of I − γuuT and (b) as a completely
assembled matrix.

9.8. Let A =

 2 −1 0

−1 2 −1

0 −1 2

. Find QR decompositions for by using

(a) the Gram-Schmidt process
(b) Householder reflectors.

(You have to show your solutions step-by-step in detail.)

9.9. C This problem revisits Exercise 8.3, p. 310. Consider the same data

xi 0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 2.

yi 1.88 2.13 1.76 2.78 3.23 3.82 6.13 7.22 6.66 9.07

(a) Plot the data (scattered point plot) and decide which curve fits the data best.
(b) Construct an algebraic system of the form Xβ = y, where X ∈ Rm×n, n < m = 10.
(c) Use the LS code (you have implemented for Exercise 8.3) to find the curve.
(d) Use QR decomposition to find β̂ and the curve.

(You do not have to implement a code for QR or the SVD.)
Clue: Let X = QR. Then Xβ = y can be written as Rβ = QTy.

(e) Use the SVD to find β̂ and the curve.
(f) Plot the curves superposed over the point plot, and compre them. Are they the

same?

9.10. Left signular vectors uj of A are eigenvectors of AAT , as shown in (9.69). However, it
can be alternatively and more effeciently computed as in (9.82):

uj =
1

σj
Avj, j = 1, 2, · · · , k.

Prove uTi uj = δij.
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CHAPTER 10
Machine Learning

In This Chapter: You will see key ideas in machine learning (ML).

Topics Applications/Properties
Machine Learning

What is it?
Binary Classifiers Simplest neural networks

Perceptron, Adaline
Logistic Regression

Support Vector Machine Maximizes the margin
Linear SVM Method of Lagrange multipliers
Nonlinear SVM Kernel trick
Sequential Minimal Optimization

Neural Networks
MNIST data
Stochastic Gradient Descent

Deep Learning
Convolutional Neural Networks

Contents of Chapter 10
10.1.What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

10.2.Binary Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

10.3.Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

10.4.Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

10.5.Deep Learning: Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 405

Exercises for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

363



364 Chapter 10. Machine Learning

10.1. What is Machine Learning?

Definition 10.1. Machine learning (ML)

• ML algorithms are algorithms that can learn from data (input)
and produce functions/models (output).

• Machine learning is the science of getting machines to act, without
functions/models being explicitly programmed to do so.

Example 10.2. There are three different types of ML:

• Supervised learning: e.g., classification, regression

– Labeled data
– Direct feedback
– Preduct outcome/future

• Unsupervised learning: e.g., clustering

– No labels
– No feedback
– Find hidden structure in data

• Reinforcement learning: e.g., chess engine

– Decision process
– Reward system
– Learn series of actions

Note: The most popular type is supervised learning.
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10.1.1. Supervised learning

Assumption. Given a data set {(xi, yi)}, where yi are labels,
there exists a relation f : X → Y .

Supervised learning:{
Given : A training data {(xi, yi) | i = 1, · · · , N}
Find : f̂ : X → Y , a good approximation to f

(10.1)

Figure 10.1: Supervised learning and prediction.

Figure 10.2: Classification and regression.
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Why is ML not Always Simple?

Major Issues in ML

1. Overfitting: Fitting training data too tightly

• Difficulties: Accuracy drops significantly for test data
• Remedies:

– More training data (often, impossible)
– Early stopping; feature selection
– Regularization; ensembling (multiple classifiers)

2. Curse of Dimensionality: The feature space becomes increas-
ingly sparse for an increasing number of dimensions (of a fixed-
size training dataset)

• Difficulties: Larger error, more computation time;
Data points appear equidistant from all the others

• Remedies
– More training data (often, impossible)
– Dimensionality reduction (e.g., Feature selection, PCA)
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3. Multiple Local Minima Problem
Training often invovles minimizing an objective function.

• Difficulties: Larger error, unrepeatable
• Remedies

– Gaussian sailing; regularization
– Careful access to the data (e.g., mini-batch)

4. Interpretability:
Although ML has come very far, researchers still don’t know exactly
how some algorithms (deep nets) work.

• If we don’t know how training nets actually work, how do we make
any real progress?

5. One-Shot Learning:
We still haven’t been able to achieve one-shot learning. Traditional
gradient-based networks need a huge amount of data, and are
often in the form of extensive iterative training.

• Instead, we should find a way to enable neural networks to learn,
using just a few examples.
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10.1.2. Unsupervised learning

Note:

• In supervised learning, we know the right answer beforehand
when we train our model, and in reinforcement learning, we de-
fine a measure of reward for particular actions by the agent.

• In unsupervised learning, however, we are dealing with unla-
beled data or data of unknown structure. Using unsupervised learn-
ing techniques, we are able to explore the structure of our data
to extract meaningful information, without the guidance of a known
outcome variable or reward function.

• Clustering is an exploratory data analysis technique that allows
us to organize a pile of information into meaningful subgroups
(clusters) without having any prior knowledge of their group mem-
berships.

Figure 10.3: Clustering.
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10.2. Binary Classifiers

A binary classifier is a function which can decide whether or not an
input vector belongs to some specific class (e.g., spam/ham).

• Binary classification often refers to those classification tasks that
have two class labels. (two-class classification)

• It is a type of linear classifier, i.e. a classification algorithm that
makes its predictions based on a linear predictor function.

• Linear classifiers are artificial neurons.

Examples: Perceptron [20], Adaline, Logistic Regression, Support Vec-
tor Machine [3]

Remark 10.3. Neurons are interconnected nerve cells, involved in the
processing and transmitting of chemical and electrical signals. Such a
nerve cell can be described as a simple logic gate with binary outputs;

• multiple signals arrive at the dendrites,
• they are integrated into the cell body,
• and if the accumulated signal exceeds a certain threshold, an output

signal is generated that will be passed on by the axon.

Figure 10.4: A schematic description of a neuron.
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Definition 10.4. Let {(x(i), y(i))} be labeled data, with x(i) ∈ Rd and
y(i) ∈ {0, 1}. A binary classifier finds a hyperplane in Rd that sepa-
rates data points X = {x(i)} to two classes; see Figure 10.2, p. 365.

Observation 10.5. Let’s consider the following to interpret binary clas-
sifiers in a unified manner.

• The labels (0 and 1) are chosen for simplicity.
• A hyperplane can be formulated by a normal vector w ∈ Rd and a

shift (bias) b:
z = wTx + b. (10.2)

In ML, z is called the net input.

– The net input can go very high in magnitude for some x.
– It is a weighted sum (linear combination) of input features x.

• Activation function: In order (a) to keep the net input re-
stricted to a certain limit as per our requirement and, more im-
portantly, (b) to add nonlinearity to the network; we apply an
activation function φ(z).

• To learn w and b, you may formulate a cost function to minimize,
as the Sum of Squared Errors (SSE):

J (w) =
1

2

∑
i

(
y(i) − φ(wTx(i))

)2

. (10.3)

However, in order to get them more effectively, we must formulate
the cost function more meaningfully.

Thus, an important task in ML is on the choice of effective

• activation functions and
• cost functions.
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Activation functions:

Perceptron : φ(z) =

{
1, if z ≥ θ

0, otherwise
Adaline : φ(z) = z

Logistic Regression : φ(z) = σ(z) :=
1

1 + e−z

(10.4)

where “Adaline” stands for ADAptive LInear NEuron. The activation
function σ(z) called the standard logistic sigmoid function or simply
the sigmoid function.

Remark 10.6. (The standard logistic sigmoid function)

σ(x) =
1

1 + e−x
=

ex

1 + ex
(10.5)

• The standard logistic function is the solution of the simple first-
order non-linear ordinary differential equation

d

dx
y = y(1− y), y(0) =

1

2
. (10.6)

• It can be verified easily as

σ′(x) =
ex(1 + ex)− ex · ex

(1 + ex)2
=

ex

(1 + ex)2
= σ(x)(1− σ(x)). (10.7)

• σ′ is even: σ′(−x) = σ′(x).
• Rotational symmetry about (0, 1/2):

σ(x) + σ(−x) =
1

1 + e−x
+

1

1 + ex
=

2 + ex + e−x

2 + ex + e−x
≡ 1. (10.8)

•
´
σ(x) dx =

´
ex

1+ex dx = ln(1 + ex), which is known as the softplus
function in artificial neural networks. It is a smooth approximation
of the the rectifier (an activation function) defined as

f(x) = x+ = max(x, 0). (10.9)
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Figure 10.5: Popular activation functions: (left) The standard logistic sigmoid function
and (right) the rectifier and softplus function.

10.2.1. Adaline

Algorithm 10.7. Adaline Learning:
From data {(x(i), y(i))}, learn the weights w and bias b, with

• Activation function: φ(z) = z (i.e., identity activation)
• Cost function: the SSE

J (w, b) =
1

2

∑
i

(
y(i) − φ(z(i))

)2

. (10.10)

where z(i) = wTx(i) + b and φ = I, the identity.

The dominant algorithm for the minimization of the cost function is the the
Gradient Descent Method.

Algorithm 10.8. The Gradient Descent Method uses −∇J for the
search direction (update direction):

w = w + ∆w = w − η∇wJ (w, b),

b = b+ ∆b = b− η∇bJ (w, b),
(10.11)

where η > 0 is the step length (learning rate).
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Computation of∇J for Adaline :
The partial derivatives of the cost function J w.r.to wj and b read

∂J (w, b)

∂wj
= −

∑
i

(
y(i) − φ(z(i))

)
x

(i)
j ,

∂J (w, b)

∂b
= −

∑
i

(
y(i) − φ(z(i))

)
.

(10.12)

Thus, with φ = I,

∆w = −η∇wJ (w, b) = η
∑
i

(
y(i) − φ(z(i))

)
x(i),

∆b = −η∇bJ (w, b) = η
∑
i

(
y(i) − φ(z(i))

)
.

(10.13)

Hyperparameters
Definition 10.9. In ML, a hyperparameter is a parameter whose
value is set before the learning process begins. Thus it is an algorithmic
parameter. Examples are

• The learning rate (η)
• The number of maximum epochs/iterations (n_iter)

Figure 10.6: Well-chosen learning rate vs. a large learning rate

Note: There are effective searching schemes to set the learning rate η
automatically.
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10.2.2. Logistic Regression

Algorithm 10.10. Logistic Regression Learning:
From data {(x(i), y(i))}, learn the weights w and bias b, with

• Activation function: φ(z) = σ(z), the logistic sigmoid function
• Cost function: The likelihood is maximized.

Based on the log-likelihood, we define the logistic cost function to
be minimized:
J (w, b) =

∑
i

[
−y(i) ln

(
φ(z(i))

)
− (1− y(i)) ln

(
1− φ(z(i))

)]
, (10.14)

where z(i) = wTx(i) + b.

Computation of∇J for Logistic Regression :

Let’s start by calculating the partial derivative of the logistic cost function
with respect to the j–th weight, wj:

∂J (w, b)

∂wj
=
∑
i

[
−y(i) 1

φ(z(i))
+ (1− y(i))

1

1− φ(z(i))

]
∂φ(z(i))

∂wj
, (10.15)

where, using z(i) = wTx(i) and (10.7),

∂φ(z(i))

∂wj
= φ′(z(i))

∂z(i)

∂wj
= φ(z(i))

(
1− φ(z(i))

)
x

(i)
j .

Thus, if follows from the above and (10.15) that

∂J (w, b)

∂wj
=
∑
i

[
−y(i)

(
1− φ(z(i))

)
+ (1− y(i))φ(z(i))

]
x

(i)
j

= −
∑
i

[
y(i) − φ(z(i))

]
x

(i)
j

and therefore
∇wJ (w) = −

∑
i

[
y(i) − φ(z(i))

]
x(i). (10.16)

Similarly, one can get

∇bJ (w) = −
∑
i

[
y(i) − φ(z(i))

]
. (10.17)
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Algorithm 10.11. Gradient descent learning for Logistic Regression is
formulated as

w := w + ∆w, b := b+ ∆b, (10.18)

where η > 0 is the step length (learning rate) and

∆w = −η∇wJ (w, b) = η
∑
i

[
y(i) − φ(z(i))

]
x(i),

∆b = −η∇bJ (w, b) = η
∑
i

[
y(i) − φ(z(i))

]
.

(10.19)

Note: The above gradient descent rule for Logistic Regression is of the
same form as that of Adaline; see (10.13) on p. 373. Only the difference
is the activation function φ.
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10.3. Support Vector Machine

Observation 10.12. ML algorithms such as Perceptron, Adaline, and
Logistic Regression would stop the iteration, when the linear sepera-
tor becomes one of hyperplanes (lines) shown in the left of Figure 10.7.

Figure 10.7: (left) Converged linear separators and (right) the one that maximizes the
margin.

10.3.1. Linear SVM

• Support Vector Machine (SVM), developed in 1995 by Cortes-
Vapnik [3], can be considered as an extension of the Percep-
tron/Adaline, which maximizes the margin.

• The rationale behind having decision boundaries with large margins
is that they tend to have a lower generalization error, whereas
models with small margins are more prone to overfitting.

Computation of the Optimal Hyperplane :

• To find an optimal hyperplane that maximizes the margin, let’s begin
with considering the positive and negative hyperplanes that are paral-
lel to the decision boundary:

w0 + wTx+ = 1,

w0 + wTx− = −1.
(10.20)

where w = [w1, w2, · · · , wd]T .
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• If we subtract those two linear equations from each other, then we have

w · (x+ − x−) = 2

and therefore
w

‖w‖
· (x+ − x−) =

2

‖w‖
. (10.21)

• Note w = [w1, w2, · · · , wd]T is a normal vector to the decision boundaries
(hyperplanes); the left side of (10.21) is the distance between the positive
and negative hyperplanes.

• Maximizing the distance (margin) is equivalent to minimizing its recip-
rocal 1

2‖w‖, or minimizing 1
2‖w‖

2.

Problem 10.13. The linear SVM is formulated as

min
w,w0

1

2
‖w‖2, subject to[
w0 + wTx(i) ≥ 1 if y(i) = 1,

w0 + wTx(i) ≤ −1 if y(i) = −1.

(10.22)

Remark 10.14. The constraints in Problem 10.13 can be written as

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i. (10.23)

• The beauty of the linear SVM is that if the data is linearly separable,
there is a unique global minimum value.

• An ideal SVM analysis should produce a hyperplane that completely
separates the vectors (cases) into two non-overlapping classes.

• However, perfect separation may not be possible, in practice.

Note: Constrained optimization problems such as (10.22) are typically
solved using the method of Lagrange multipliers.
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10.3.2. The method of Lagrange multipliers

In this subsection, we briefly consider Lagrange’s method to solve the
problem of the form

min /max
x

f(x) subj.to g(x) = c. (10.24)

Figure 10.8: The method of Lagrange multipliers in R2: ∇f //∇g, at optimum.

Strategy 10.15. (Method of Lagrange multipliers). For the maxi-
mum and minimum values of f(x) subject to g(x) = c,
(a) Find x and λ such that

∇f(x) = λ∇g(x) and g(x) = c.

(b) Evaluate f at all these points, to find the maximum and minimum.

Self-study 10.16. Use the method of Lagrange multipliers to find the
extreme values of f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.

Hint : ∇f = λ∇g =⇒
[
2x

4y

]
= λ

[
2x

2y

]
. Therefore,


2x = 2xλ 1
4y = 2y λ 2
x2 + y2 = 1 3

From 1 , x = 0 or λ = 1.

Ans: min: f(±1, 0) = 1; max: f(0,±1) = 2
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Lagrange multipliers – Dual variables

Figure 10.9: minx x
2 subj.to x ≥ 1.

For simplicity, consider

minx x
2 subj.to x ≥ 1. (10.25)

Rewriting the constraint

x− 1 ≥ 0,

introduce Lagrangian (objective):
L(x, α) = x2 − α (x− 1). (10.26)

Now, consider

minx maxα L(x, α) subj.to α ≥ 0.

(10.27)

Claim 10.17. The minimization problem (10.25) is equivalent to the
max-min problem (10.27).

Proof. 1 Let x > 1. ⇒ maxα≥0{−α(x− 1)} = 0 and α∗ = 0. Thus,

L(x, α) = x2. (original objective)

2 Let x = 1. ⇒ maxα≥0{−α(x− 1)} = 0 and α is arbitrary. Thus, again,

L(x, α) = x2. (original objective)

3 Let x < 1. ⇒ maxα≥0{−α(x − 1)} = ∞. However, minx won’t make this
happen! (minx is fighting maxα) That is, when x < 1, the objective L(x, α)

becomes huge as α grows; then, minx will push x↗ 1 or increase it to become
x ≥ 1. In other words, minx forces maxα to behave, so constraints will
be satisfied.

Now, the goal is to solve (10.27). In the following, we will define the
dual problem of (10.27), which is equivalent to the primal problem.
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Recall: The min-max problem in (10.27), which is equivalent to the
(original) primal problem:

min
x

max
α
L(x, α) subj.to α ≥ 0, (Primal) (10.28)

where
L(x, α) = x2 − α (x− 1).

Definition 10.18. The dual problem of (10.28) is formulated by swap-
ping minx and maxα as follows:

max
α

min
x
L(x, α) subj.to α ≥ 0, (Dual) (10.29)

The term minxL(x, α) is called the Lagrange dual function and the
Lagrange multiplier α is also called the dual variable.

How to solve it. For the Lagrange dual function minxL(x, α), the minimum
occurs where the gradient is equal to zero.

d

dx
L(x, α) = 2x− α = 0 ⇒ x =

α

2
. (10.30)

Plugging this to L(x, α), we have

L(x, α) =
(α

2

)2

− α
(α

2
− 1
)

= α− α2

4
.

We can rewrite the dual problem (10.29) as

max
α≥0

[
α− α2

4

]
. (Dual) (10.31)

⇒ the maximum is 1 when α∗ = 2 (for the dual problem).
Plugging α = α∗ into (10.30) to get x∗ = 1. Or, using the Lagrangian objec-
tive, we have

L(x, α) = x2 − 2(x− 1) = (x− 1)2 + 1. (10.32)

⇒ the minimum is 1 when x∗ = 1 (for the primal problem).
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10.3.3. Solution of the linear SVM

Recall: The linear SVM formulated in Problem 10.13:

min
w,w0

1

2
‖w‖2, subj.to

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i.
(Primal) (10.33)

To solve the problem, let’s begin with its Lagrangian:

L([w, w0],α) =
1

2
‖w‖2 −

N∑
i=1

αi[y
(i)(w0 + wTx(i))− 1], (10.34)

where α = [α1, α2, · · · , αN ]T , the dual variable (Lagrange multipliers).

Definition 10.19. In optimization, the Karush-Kuhn-Tucker (KKT)
conditions [14, 16] are first derivative tests (a.k.a. first-order nec-
essary conditions) for a solution in nonlinear programming to be opti-
mized, provided that some regularity conditions are satisfied.

Note: Allowing inequality constraints, the KKT approach to nonlinear
programming generalizes the method of Lagrange multipliers, which al-
lows only equality constraints.
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Writing the KKT conditions, starting with Lagrangian stationarity, where
we need to find the first-order derivatives w.r.t. w and w0:

∇wL([w, w0],α) = w −
N∑
i=1

αiy
(i)x(i) = 0 ⇒ w =

N∑
i=1

αiy
(i)x(i),

∂

∂w0
L([w, w0],α) = −

N∑
i=1

αiy
(i) = 0 ⇒

N∑
i=1

αiy
(i) = 0,

αi ≥ 0, (dual feasibility)

αi [y
(i)(w0 + wTx(i))− 1] = 0, (complementary slackness)

y(i)(w0 + wTx(i))− 1 ≥ 0. (primal feasibility)
(10.35)

Using the KKT conditions (10.35), we can simplify the Lagrangian:

L([w, w0],α) =
1

2
‖w‖2 −

N∑
i=1

αiy
(i)w0 −

N∑
i=1

αiy
(i)wTx(i) +

N∑
i=1

αi

=
1

2
‖w‖2 − 0−wTw +

N∑
i=1

αi

= −1

2
‖w‖2 +

N∑
i=1

αi.

(10.36)

Again using the first KKT condition, we can rewrite the first term.

−1

2
‖w‖2 = −1

2

( N∑
i=1

αiy
(i)x(i)

)
·
( N∑
j=1

αjy
(j)x(j)

)
= −1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j).

(10.37)

Plugging (10.37) into the (simplified) Lagrangian (10.36), we see that the
Lagrangian now depends on α only.
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Problem 10.20. The dual problem of (10.33) is formulated as

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

αi ≥ 0, ∀ i,∑N
i=1 αiy

(i) = 0.

(10.38)

Remark 10.21. (Solving the dual problem).

• We can solve the dual problem (10.38), by using either a generic
quadratic programming solver or the Sequential Minimal Opti-
mization (SMO), which we will discuss in § 10.3.6, p. 394.

• For now, assume that we solved it to have α∗ = [α∗1, · · · , α∗n]T .
• Then we can plug it into the first KKT condition to get

w∗ =
N∑
i=1

α∗i y
(i)x(i). (10.39)

• We still need to get w∗0.

Remark 10.22. The objective function L(α) in (10.38) is a linear com-
bination of the dot products of data samples {x(i) · x(j)}, which will be
used when we generalize the SVM for nonlinear decision boundaries;
see § 10.3.5.
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Support vectors
Assume momentarily that we have w∗0. Consider the complementary slack-
ness KKT condition along with the primal and dual feasibility conditions:

α∗i [y(i)(w∗0 + w∗Tx(i))− 1] = 0

⇒


α∗i > 0⇒ y(i)(w∗0 + w∗Tx(i)) = 1

α∗i < 0 (can’t happen)

y(i)(w∗0 + wTx(i))− 1 > 0⇒ α∗i = 0

y(i)(w∗0 + wTx(i))− 1 < 0 (can’t happen).

(10.40)

We define the optimal (scaled) scoring function:

f ∗(x(i)) = w∗0 + w∗Tx(i). (10.41)

Then {
α∗i > 0 ⇒ y(i)f ∗(x(i)) = scaled margin = 1,

y(i)f ∗(x(i)) > 1 ⇒ α∗i = 0.
(10.42)

Definition 10.23. The examples in the first category, for which the
scaled margin is 1 and the constraints are active, are called support
vectors. They are the closest to the decision boundary.

Finding the optimal value of w0

To get w∗0, use the primal feasibility condition:

y(i)(w∗0 + w∗Tx(i)) ≥ 1 and min
i
y(i)(w∗0 + w∗Tx(i)) = 1.

If you take a positive support vector (y(i) = 1), then

w∗0 = 1− min
i:y(i)=1

w∗Tx(i). (10.43)

Here, you’d better refer to Summary of SVM in Algorithm 10.26, p. 389.
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10.3.4. The inseparable case: soft-margin classification

When the dataset is inseparable, there would be no separating hyperplane;
there is no feasible solution to the linear SVM.

Figure 10.10: Slack variable: ξi.

Let’s fix our SVM so it can accommodate the inseparable case.

• The new formulation involves the slack variable; it allows some
instances to fall off the margin, but penalize them.

• So we are allowed to make mistakes now, but we pay a price.

Note: The motivation for introducing the slack variable ξ was that the
linear constraints need to be relaxed for nonlinearly separable data to
allow the convergence of the optimization in the presence of misclassi-
fications, under appropriate cost penalization. Such strategy of SVM is
called the soft-margin classification.
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Recall: The linear SVM formulated in Problem 10.13:

min
w,w0

1

2
‖w‖2, subj.to

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i.
(Primal) (10.44)

Let’s change it to this new primal problem:

Problem 10.24. (Soft-margin classification). The SVM with the
slack variable is formulated as

min
w,w0,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi subj.to[
y(i)(w0 + wTx(i)) ≥ 1− ξi,
ξi ≥ 0.

(Primal) (10.45)

Via the variable C, we can then con-
trol the penalty for misclassification.
Large values of C correspond to
large error penalties, whereas we
are less strict about misclassification
errors if we choose smaller values
for C. We can then use the C pa-
rameter to control the width of the
margin and therefore tune the bias-

variance trade-off, as illustrated
in the following figure:

Figure 10.11: Bias-variance trade-off, via C.

The constraints allow some slack of size ξi, but we pay a price for it in the
objective. That is,

if y(i)f(x(i)) ≥ 1, then ξi = 0 and penalty is 0. Otherwise, y(i)f(x(i)) = 1−ξi
and we pay price ξi > 0

.
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Going on a bit for soft-margin classification
We rewrite the penalty another way:

ξi =

{
0, if y(i)f(x(i)) ≥ 1

1− y(i)f(x(i)), otherwise

}
= [1− y(i)f(x(i))]+

Thus the objective function for soft-margin classification becomes

min
w,w0,ξ

1

2
‖w‖2 + C

N∑
i=1

[1− y(i)f(x(i))]+. (10.46)

The Dual for soft-margin classification
Form the Lagrangian of (10.45):

L([w, w0], ξ,α, r) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑
i=1

riξi

−
N∑
i=1

αi[y
(i)(w0 + wTx(i))− 1 + ξi],

(10.47)

where αi’s and ri’s are Lagrange multipliers (constrained to be ≥ 0). After
some work, the dual turns out to be

Problem 10.25. The dual problem of (10.44) is formulated as

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(10.48)

So the only difference from the original problem’s Lagrangian (10.38) is that
0 ≤ αi was changed to 0 ≤ αi ≤ C. Neat!

See § 10.3.6, p. 394, for the solution of (10.48), using the SMO algorithm.
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Algebraic expression for the dual problem :

Let

Z =


y(1)x(1)

y(2)x(2)

...
y(N)x(N)

 ∈ RN×m, 1 =


1

1
...
1

 ∈ RN .

Then dual problem (10.48) can be written as

max
0≤α≤C

[
α · 1− 1

2
αTZZTα

]
subj.to α · y = 0. (10.49)

Note:
• G = ZZT ∈ RN×N is called the Gram matrix. That is,

Gij = y(i)y(j) x(i) · x(j). (10.50)

• The optimization problem in (10.48) or (10.49) is a typical form of
quadratic programming (QP) problems.

• The dual problem (10.49) admits a unique solution.
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Algorithm 10.26. (Summary of SVM)
• Training

– Compute Gram matrix: Gij = y(i)y(j) x(i) · x(j)

– Solve for α∗ (QP or the SMO in § 10.3.6)

– Compute the weights: w∗ =
∑N

i=1 α
∗
i y

(i)x(i) (10.39)

– Compute the intercept: w∗0 = 1−mini:y(i)=1 w
∗Tx(i) (10.43)

• Classification (for a new sample x)
– Compute ki = x · x(i) for support vectors x(i)

– Compute f(x) = w∗0 +
∑

i αiy
(i)ki (:= w∗0 + w∗Tx) (10.22)

– Test sign(f(x)).

Why are SVMs popular in ML?

• Margins
– to reduce overfitting
– to enhance classification accuracy

• Feature expansion
– mapping to a higher-dimension
– to classify inseparable datasets

• Kernel trick
– to avoid writing out high-dimensional feature vectors
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10.3.5. Nonlinear SVM and kernel trick

Note: A reason why SVMs enjoy high popularity among machine learn-
ing practitioners is that it can be easily kernelized to solve nonlinear
classification problems incorporating linearly inseparable data. The
basic idea behind kernel methods is to create nonlinear combinations
of the original features to project them onto a higher-dimensional space
via a mapping φ where it becomes linearly separable.

For example, for the inseparable data set in Figure 10.12, we define

φ(x1, x2) = (z1, z2, z2) = (x1, x2, x
2
1 + x2

2).

Figure 10.12: Inseparable dataset, feature expansion, and kernel SVM.

To solve a nonlinear problem using an SVM, we would a transform the
training data onto a higher-dimensional feature space via a mapping φ and
b train a linear SVM model to classify the data in this new feature space.
Then, we can c use the same mapping function φ to transform new, unseen
data to classify it using the linear SVM model.
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Kernel trick

Recall: the dual problem to the soft-margin SVM given in (10.48):

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(10.51)

Observation 10.27. The objective is a linear combination of dot prod-
ucts {x(i) · x(j)}. Thus,

• If the kernel SVM transforms the data samples through φ, the dot
product x(i) · x(j) in the objective must be replaced by φ(x(i)) · φ(x(j)).

• The dot product φ(x(i)) · φ(x(j)) is performed in a higher-dimension,
which may be costly.

Definition 10.28. In order to save the expensive step of explicit
computation of this dot product (in a higher-dimension), we define a
so-called kernel function:

K(x(i),x(j)) ≈ φ(x(i)) · φ(x(j)). (10.52)

One of the most widely used kernels is the Radial Basis Function
(RBF) kernel or simply called the Gaussian kernel:

K(x(i),x(j)) = exp
(
− ‖x

(i) − x(j)‖2

2σ2

)
= exp

(
−γ‖x(i) − x(j)‖2

)
, (10.53)

where γ = 1/(2σ2). Occasionally, the parameter γ plays an important
role in controlling overfitting.

Note: Roughly speaking, the term kernel can be interpreted as a
similarity function between a pair of samples. The minus sign inverts
the distance measure into a similarity score, and, due to the exponential
term, the resulting similarity score will fall into a range between 1 (for
exactly similar samples) and 0 (for very dissimilar samples).

This is the big picture behind the kernel trick.
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(Kernel SVM algorithm): It can be summarized as in Algorithm 10.26,
p. 389; only the difference is that dot products x(i) · x(j) and x · x(i) are
replaced by K(x(i),x(j)) and K(x,x(i)), respectively.

Common kernels

• Polynomial of degree exactly k (e.g. k = 2):
K(x(i),x(j)) = (x(i) · x(j))k (10.54)

• Polynomial of degree up to k: for some c > 0,
K(x(i),x(j)) = (c+ x(i) · x(j))k (10.55)

• Sigmoid:
K(x(i),x(j)) = tanh(ax(i) · x(j) + b) (10.56)

• Gaussian RBF:

K(x(i),x(j)) = exp
(
− ‖x

(i) − x(j)‖2

2σ2

)
(10.57)

• And many others: Fisher kernel, graph kernel, string kernel, ...
very active area of research!

Example 10.29. (Quadratic kernels). K(x, z) = (c+ x · z)2

(c+ x · z)2 =
(
c+

m∑
j=1

xjzj

)(
c+

m∑
`=1

x`z`

)
= c2 + 2c

m∑
j=1

xjzj +
m∑
j=1

m∑
`=1

xjzjx`z`

= c2 +
m∑
j=1

(
√

2cxj)(
√

2czj) +
m∑

j,`=1

(xjx`)(zjz`).

(10.58)

So, the corresponding feature expansion is given by
φ([x1, · · · , xm]) = [x2

1, x1x2, · · · , xmxm−1, x
2
m,
√

2cx1, · · · ,
√

2cxm, c], (10.59)

which is in Rm2+m+1. Q: How is this feature expansion meaningful?

Although not expressible by φ(x) ·φ(z) [ever, or in finite dimensions], the
kernel K(x, z) must be formulated meaningfully!
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Summary: Linear classifiers & their variants

• Perceptrons are a simple, popular way to learn a classifier
• They suffer from inefficient use of data, overfitting, and lack of ex-

pressiveness

• SVMs can fix these problems using 1 margins and
2 feature expansion (mapping to a higher-dimension)

• In order to make feature expansion computationally feasible,
we need the 3 kernel trick, which avoids writing out high-
dimensional feature vectors

• SVMs are popular classifiers because they usually achieve good error
rates and can handle unusual types of data
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10.3.6. Solving the dual problem with SMO

SMO (Sequential Minimal Optimization) is a type of coordinate ascent
algorithm, but adapted to SVM so that the solution always stays within the
feasible region.

Recall: The dual problem of the slack variable primal, formulated in
(10.48):

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(10.60)

Quesiton. Start with (10.60). Let’s say you want to hold α2, · · · , αN
fixed and take a coordinate step in the first direction. That is, change α1

to maximize the objective in (10.60). Can we make any progress? Can
we get a better feasible solution by doing this?

Turns out, no. Let’s see why. Look at the constraint in (10.60),
∑N

i=1 αiy
(i) =

0. This means

α1y
(1) = −

N∑
i=2

αiy
(i) ⇒ α1 = −y(1)

N∑
i=2

αiy
(i).

So, since α2, · · · , αN are fixed, α1 is also fixed.

Thus, if we want to update any of the αi’s, we need to update at least
2 of them simultaneously to keep the solution feasible (i.e., to keep the
constraints satisfied).
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• Start with a feasible vector α.
• Let’s update α1 and α2, holding α3, · · · , αN fixed. What values of α1 and
α2 are we allowed to choose?

• The constraint is: α1y
(1) + α2y

(2) = −
N∑
i=3

αiy
(i) =: ξ.

Figure 10.13

• We are only allowed to choose α1 and α2 on the line; when we pick α2,
we get α1 automatically from

α1 =
1

y(1)
(ξ − α2y

(2)) = y(1) (ξ − α2y
(2)). (10.61)

• (Optimization for α2): The other constraints in (10.60) says 0 ≤
α1, α2 ≤ C. Thus, α2 needs to be within [L,H] on the figure (∵ α1 ∈
[0, C]). To do the coordinate ascent step, we will optimize the objective
over α2, keeping it within [L,H]. Using (10.61), (10.60) becomes

max
α2∈[L,H]

[
y(1) (ξ − α2y

(2)) + α2 +
N∑
i=3

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
,

(10.62)
of which the objective is quadratic in α2. This means we can just set
its derivative to 0 to optimize it, and to get α2.

• Move to the next iteration of SMO.

Note: There are heuristics to choose the order of αi’s chosen to update.
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10.4. Neural Networks

Recall: The Perceptron (or, Adaline, Logistic Regression) is the simplest
artificial neuron that makes decisions by weighting up evidence.

Figure 10.14: A simplest artificial neuron.

Complex Neural Networks

• Obviously, a simple artificial neuron is not a complete model of human
decision-making!

• However, they can be use as building blocks for more complex neural
networks.

Figure 10.15: A complex neural network.
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10.4.1. A simple network to classify handwritten digits

• The problem of recognizing handwritten digits has two components:
segmentation and classification.

=⇒
Figure 10.16: Segmentation.

• We’ll focus on algorithmic components for the classification of individ-
ual digits.

MNIST data set :

A modified subset of two data sets collected by NIST (US National Insti-
tute of Standards and Technology):
• Its first part contains 60,000 images (for training)
• The second part is 10,000 images (for test), each of which is in 28× 28

grayscale pixels

A Simple Neural Network

Figure 10.17: A sigmoid network having a single hidden layer.



398 Chapter 10. Machine Learning

What the Neural Network Will Do

• Let’s concentrate on the first output neuron, the one that is trying
to decide whether or not the input digit is a 0.

• It does this by weighing up evidence from the hidden layer of neurons.

• What are those hidden neurons doing?
• Let’s suppose for the sake of argument that the first neuron

in the hidden layer may detect whether or not an image like the
following is present

It can do this by heavily weighting input pixels which overlap with the
image, and only lightly weighting the other inputs.

• Similarly, let’s suppose that the second, third, and fourth neurons
in the hidden layer detect whether or not the following images are
present

• As you may have guessed, these four images together make up the 0
image that we saw in the line of digits shown in Figure 10.16:

• So if all four of these hidden neurons are firing, then we can conclude
that the digit is a 0.
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Learning with Gradient Descent

• Data set {(x(i),y(i))}, i = 1, 2, · · · , N
(e.g., if an image x(k) depicts a 2, then y(k) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T .)

• Cost function

C(W , B) =
1

2N

∑
i

||y(i) − a(x(i))||2, (10.63)

whereW denotes the collection of all weights in the network, B all the
biases, and a(x(i)) is the vector of outputs from the network when x(i)

is input.
• Gradient descent method[

W

B

]
←

[
W

B

]
+

[
∆W

∆B

]
, (10.64)

where [
∆W

∆B

]
= −η

[
∇WC
∇BC

]
.

Note: To compute the gradient ∇C, we need to compute the gradients
∇Cx(i) separately for each training input, x(i), and then average them:

∇C =
1

N

∑
i

∇Cx(i). (10.65)

Unfortunately, when the number of training inputs is very large, it
can take a long time, and learning thus occurs slowly. An idea called
stochastic gradient descent can be used to speed up learning.
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Stochastic Gradient Descent

The idea is to estimate the gradient ∇C by computing ∇Cx(i) for a small
sample of randomly chosen training inputs. By averaging over this
small sample, it turns out that we can quickly get a good estimate of
the true gradient ∇C; this helps speed up gradient descent, and thus
learning.

• Pick out a small number of randomly chosen training inputs (m� N):

x̃(1), x̃(2), · · · , x̃(m),

which we refer to as a mini-batch.
• Average ∇Cx̃(k) to approximate the gradient ∇C. That is,

1

m

m∑
k=1

∇Cx̃(k) ≈ ∇C def
==

1

N

∑
i

∇Cx(i). (10.66)

• For classification of handwritten digits for the MNIST data set, you
may choose: batch_size = 10.

Note: In practice, you can implement the stochastic gradient descent as
follows. For an epoch,

• Shuffle the data set
• For each m samples (selected from the beginning), update (W , B)

using the approximate gradient (10.66).
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10.4.2. Implementing a network to classify digits [18]
network.py

1 """
2 network.py (by Michael Nielsen)
3 ~~~~~~~~~~
4 A module to implement the stochastic gradient descent learning
5 algorithm for a feedforward neural network. Gradients are calculated
6 using backpropagation. """
7 #### Libraries
8 # Standard library
9 import random

10 # Third-party libraries
11 import numpy as np
12

13 class Network(object):
14 def __init__(self, sizes):
15 """The list ``sizes`` contains the number of neurons in the
16 respective layers of the network. For example, if the list
17 was [2, 3, 1] then it would be a three-layer network, with the
18 first layer containing 2 neurons, the second layer 3 neurons,
19 and the third layer 1 neuron. """
20

21 self.num_layers = len(sizes)
22 self.sizes = sizes
23 self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
24 self.weights = [np.random.randn(y, x)
25 for x, y in zip(sizes[:-1], sizes[1:])]
26

27 def feedforward(self, a):
28 """Return the output of the network if ``a`` is input."""
29 for b, w in zip(self.biases, self.weights):
30 a = sigmoid(np.dot(w, a)+b)
31 return a
32

33 def SGD(self, training_data, epochs, mini_batch_size, eta,
34 test_data=None):
35 """Train the neural network using mini-batch stochastic
36 gradient descent. The ``training_data`` is a list of tuples
37 ``(x, y)`` representing the training inputs and the desired
38 outputs. """
39

40 if test_data: n_test = len(test_data)
41 n = len(training_data)
42 for j in xrange(epochs):
43 random.shuffle(training_data)
44 mini_batches = [
45 training_data[k:k+mini_batch_size]
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46 for k in xrange(0, n, mini_batch_size)]
47 for mini_batch in mini_batches:
48 self.update_mini_batch(mini_batch, eta)
49 if test_data:
50 print "Epoch {0}: {1} / {2}".format(
51 j, self.evaluate(test_data), n_test)
52 else:
53 print "Epoch {0} complete".format(j)
54

55 def update_mini_batch(self, mini_batch, eta):
56 """Update the network's weights and biases by applying
57 gradient descent using backpropagation to a single mini batch.
58 The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
59 is the learning rate."""
60 nabla_b = [np.zeros(b.shape) for b in self.biases]
61 nabla_w = [np.zeros(w.shape) for w in self.weights]
62 for x, y in mini_batch:
63 delta_nabla_b, delta_nabla_w = self.backprop(x, y)
64 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
65 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
66 self.weights = [w-(eta/len(mini_batch))*nw
67 for w, nw in zip(self.weights, nabla_w)]
68 self.biases = [b-(eta/len(mini_batch))*nb
69 for b, nb in zip(self.biases, nabla_b)]
70

71 def backprop(self, x, y):
72 """Return a tuple ``(nabla_b, nabla_w)`` representing the
73 gradient for the cost function C_x. ``nabla_b`` and
74 ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
75 to ``self.biases`` and ``self.weights``."""
76 nabla_b = [np.zeros(b.shape) for b in self.biases]
77 nabla_w = [np.zeros(w.shape) for w in self.weights]
78 # feedforward
79 activation = x
80 activations = [x] #list to store all the activations, layer by layer
81 zs = [] # list to store all the z vectors, layer by layer
82 for b, w in zip(self.biases, self.weights):
83 z = np.dot(w, activation)+b
84 zs.append(z)
85 activation = sigmoid(z)
86 activations.append(activation)
87 # backward pass
88 delta = self.cost_derivative(activations[-1], y) * \
89 sigmoid_prime(zs[-1])
90 nabla_b[-1] = delta
91 nabla_w[-1] = np.dot(delta, activations[-2].transpose())
92
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93 for l in xrange(2, self.num_layers):
94 z = zs[-l]
95 sp = sigmoid_prime(z)
96 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
97 nabla_b[-l] = delta
98 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
99 return (nabla_b, nabla_w)

100

101 def evaluate(self, test_data):
102 test_results = [(np.argmax(self.feedforward(x)), y)
103 for (x, y) in test_data]
104 return sum(int(x == y) for (x, y) in test_results)
105

106 def cost_derivative(self, output_activations, y):
107 """Return the vector of partial derivatives \partial C_x /
108 \partial a for the output activations."""
109 return (output_activations-y)
110

111 #### Miscellaneous functions
112 def sigmoid(z):
113 return 1.0/(1.0+np.exp(-z))
114

115 def sigmoid_prime(z):
116 return sigmoid(z)*(1-sigmoid(z))

The code is executed using
Run_network.py

1 import mnist_loader
2 training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
3

4 import network
5 n_neurons = 20
6 net = network.Network([784 , n_neurons, 10])
7

8 n_epochs, batch_size, eta = 30, 10, 3.0
9 net.SGD(training_data , n_epochs, batch_size, eta, test_data = test_data)

len(training_data)=50000, len(validation_data)=10000, len(test_data)=10000
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Validation Accuracy
Validation Accuracy

1 Epoch 0: 9006 / 10000
2 Epoch 1: 9128 / 10000
3 Epoch 2: 9202 / 10000
4 Epoch 3: 9188 / 10000
5 Epoch 4: 9249 / 10000
6 ...
7 Epoch 25: 9356 / 10000
8 Epoch 26: 9388 / 10000
9 Epoch 27: 9407 / 10000

10 Epoch 28: 9410 / 10000
11 Epoch 29: 9428 / 10000

Accuracy Comparisons

• scikit-learn’s SVM classifier using the default settings: 9435/10000
• A well-tuned SVM: ≈98.5%
• Well-designed Convolutional NN (CNN):

9979/10000 (only 21 missed!)

Note: For well-designed neural networks, the performance is close
to human-equivalent, and is arguably better, since quite a few of
the MNIST images are difficult even for humans to recognize with confi-
dence, e.g.,

Figure 10.18: MNIST images difficult even for humans to recognize.

Moral of the Neural Networks

• Let all the complexity be learned, automatically, from data
• Simple algorithms can perform well for some problems:
(sophisticated algorithm) ≤ (simple learning algorithm + good training data)
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10.5. Deep Learning: Convolutional Neural Net-
works

In this section, we will consider deep neural networks; the focus is on un-
derstanding core fundamental principles behind them, and applying those
principles in the simple, easy-to-understand context of the MNIST problem.

Example 10.30. Consider neural networks for the classification of
handwritten digits, as shown in the following images:

Figure 10.19: A few images in the MNIST data set.

A neural network can be built, with three hidden layers, as follows:

Figure 10.20

• Let each hidden layers have 30 neurons:
– n_weights = 282 · 30 + 30 · 30 + 30 · 30 + 30 · 10 = 25, 620

– n_biases = 30 + 30 + 30 + 10 = 100

• Optimization is difficult
– The number of parameters to teach is huge (low efficiency)
– Multiple local minima problem (low solvability)
– Adding hidden layers is not necessarily improving accuracy

In fully-connected networks, deep neural networks have been
hardly practical, except for some special applications.
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10.5.1. Introducing convolutional networks

Remarks 10.31. The neural network exemplified in Figure 10.20 can
produce a classification accuracy better than 98%, for the MNIST
handwritten digit data set. But upon reflection, it’s strange to use
networks with fully-connected layers to classify images.
• The network architecture does not take into account the spatial

structure of the images.
• For instance, it treats input pixels which are far apart and close to-

gether, on exactly the same footing.

What if, instead of starting with a network architecture which is tabula
rasa (blank mind), we used an architecture which tries to take advan-
tage of the spatial structure? Could it be better than 99%?

Here, we will introduce convolutional neural networks (CNN),
which use a special architecture which is particularly well-adapted to
classify images.
• The architecture makes convolutional networks fast to train.
• This, in turn, helps train deep, many-layer networks.
• Today, deep CNNs or some close variants are used in most neural net-

works for image recognition.

• CNNs use three basic ideas:

(a) local receptive fields,
(b) shared weights and biases, &
(c) pooling.
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(a) Local Receptive Fields

Figure 10.21: An illustration for local receptive fields.

• In CNNs, the geometry of neurons (units) in the input layer is
exactly the same as that of images (e.g., 28× 28).
(rather than a vertical line of neurons as in fully-connected networks)

• As per usual, we’ll connect the input neurons (pixels) to a layer of
hidden neurons.

– But we will not connect fully from every input pixel to every hid-
den neuron.

– Instead, we only make connections in small, localized regions of
the input image.

– For example: Each neuron in the first hidden layer will be con-
nected to a small region of the input neurons, say, a 5 × 5 region
(Figure 10.21).

• That region in the input image is called the local receptive field for
the hidden neuron.
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• We slide the local receptive field across the entire input image.

– For each local receptive field, there is a different hidden neuron in
the first hidden layer.

Figure 10.22: Two of local receptive fields, starting from the top-left corner.
(Geometry of neurons in the first hidden layer is 24× 24.)

Note: We have seen that the local receptive field is moved by one pixel
at a time (stride_length=1).

• In fact, sometimes a different stride length is used.

– For instance, we might move the local receptive field 2 pixels to
the right (or down).

– Most software gives a hyperparameter for the user to set the stride
length.



10.5. Deep Learning: Convolutional Neural Networks 409

(b) Shared Weights and Biases

Recall that each hidden neuron has a bias and 5×5 weights connected
to its corresponding local receptive field.

• In CNNs, we use the same weights and bias for each of the 24 × 24
hidden neurons. In other words, for the (j, k)-th hidden neuron, the
output is:

σ
(
b+

4∑
p=0

4∑
q=0

wp,qaj+p,k+q

)
, (10.67)

where σ is the neural activation function (e.g., the sigmoid function),
b is the shared value for the bias, and wp,q is a 5 × 5 array of shared
weights.

– The weighting in (10.67) is just a form of convolution; we may
rewrite it as

a1 = σ(b+ w ∗ a0). (10.68)

– So the network is called a convolutional network.

• We sometimes call the map, from the input layer to the hidden layer,
a feature map.

– Suppose the weights and bias are such that the hidden neuron
can pick out a feature (e.g., a vertical edge) in a particular local
receptive field.

– That ability is also likely to be useful at other places in the image.
– And therefore it is useful to apply the same feature detector

everywhere in the image.

• We call the weights and bias defining the feature map the shared
weights and the shared bias, respectively.

• A set of the shared weights and bias defines clearly a kernel or filter.

To put it in slightly more abstract terms, CNNs are well adapted to the
translation invariance of images.a

aMove a picture of a cat a little ways, and it’s still an image of a cat.
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Remark 10.32. Multiple feature maps.
• The network structure we have considered so far can detect just a

single localized feature.

• To do more effective image recognition, we’ll need more than one
feature map.

• Thus, a complete convolutional layer consists of several different
feature maps:

Figure 10.23: A convolutional network, consisting of 3 feature maps.

Modern CNNs are often built with 10 to 50 feature maps, each associated
to a r × r local receptive field: r = 3 ∼ 9.

Figure 10.24: The 20 images corresponding to 20 different feature maps, which are
actually learned when classifying the MNIST data set (r = 5).

The number of parameters to learn

A big advantage of sharing weights and biases is that it greatly reduces
the number of parameters involved in a convolutional network.

• Convolutional networks: (5× 5 + 1) ∗ 20 = 520

• Fully-connected networks: (28× 28 + 1) ∗ 20 = 15, 700
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(c) Pooling

• CNNs also contain pooling layers, in addition to the convolutional
layers just mentioned.

• Pooling layers are usually used right after convolutional layers.
• What they do is to simplify the information in the output from the

convolutional layer.

Figure 10.25: Pooling: summarizing a region of 2×2 neurons in the convolutional layer.

From Figure 10.23: Since we have 24 × 24 neurons output from the
convolutional layer, after pooling we will have 12 × 12 neurons for each
feature map:

Figure 10.26: A convolutional network, consisting of 3 feature maps and pooling.

Types of pooling

1. max-pooling: simply outputs the maximum activation in the 2 × 2
input neurons.

2. L2-pooling: outputs the L2-average of the 2× 2 input neurons.
...
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10.5.2. CNNs, in practice

Figure 10.27: A simple CNN of three feature maps, to classify MNIST digits.

• To form a complete CNN by putting all these ideas, we need to add
some extra layers, below the convolution-pooling layers.

• Figure 10.27 shows a CNN that involves an extra layer of 10 output
neurons, for the 10 possible values for MNIST digits (’0’, ’1’, ’2’, etc.).

• The final layer of connections is a fully-connected layer. For example:
– Let filter_shape =(20, 1,5,5), poolsize =(2,2)

(20 feature maps; 1× 5× 5 kernel; 2× 2 pooling)
– Then, the number of parameters to teach:

(52 + 1) · 20 + (20 · 122) · 10 = 29, 300.
– Classification accuracy for the MNIST data set . 99%

• Add a second convolution-pooling layer:
– Its input is the output of the first convolution-pooling layer.
– Let filter_shape =(40, 20,5,5), poolsize =(2,2)
– The output of the second convolution-pooling layer: 40× 5× 5

– Then, the number of parameters to teach:
(52 + 1) · 20 + (52 + 1) · 40 + (40 · 52) · 10 = 11, 560

– Classification accuracy for the MNIST data set & 99%

• Add a fully-connected layer (up the output layer):
– Let choose 40 neurons: =⇒ 41, 960 parameters
– Classification accuracy ≈ 99.5%

• Use an ensemble of networks
– Using 5 CNNs, classification accuracy = 99.67% (33 missed!)
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Figure 10.28: The images missed by an ensemble of 5 CNNs. The label in the top right is
the correct classification, while in the bottom right is the label classified output.

Remarks 10.33. Intuitively speaking:

• (Better representation). The use of translation invariance by the
convolutional layer will reduce the number of parameters it needs to
get the same performance as the fully-connected model.

• (Convolution kernels). The filters try to detect localized features,
producing feature maps.

• (Efficiency). Pooling simplifies the information in the output from
the convolutional layer.

– That, in turn, will result in faster training for the convolutional
model, and, ultimately, will help us build deep networks using
convolutional layers.

• Fully-connected hidden layers try to collect information for more
widely formed features.
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Exercises for Chapter 10

10.1. (Designing a deep network). First, download a CNN code (including the MNIST
data set) by accessing to

https://github.com/mnielsen/neural-networks-and-deep-learning.git
or ‘git clone’ it. In the ‘src’ directory, there are 8 python source files:

conv.py mnist_average_darkness.py mnist_svm.py network2.py
expand_mnist.py mnist_loader.py network.py network3.py

(a) Save Run_network.py in Section 10.4.2 in the ‘src’ directory to run. Edit to see
how its performance changes.

CNN: On lines 16–22 in Figure 10.29 below, I put a design of a CNN model, which
involved 2 hidden layers, one for a convolution-pooling layer and the other for
a fully-connected layer. Its test accuracy becomes approximately 98.8% in 30
epochs.

(b) Set ‘GPU = False’ in network3.py, if you are NOT using a GPU.
(Default: ‘GPU = True’, set on line 50-some of network3.py)

(c) Modify Run_network3.py appropriately to design a CNN model as accurate as
possible. Can your network achieve an accuracy better than 99.5%? Hint : You
may keep using the SoftmaxLayer for the final layer. ReLU (Rectified Linear
Units) seems comparable with the sigmoid function (default) for activation. The
default p_dropout=0.0. You should add some more layers, meaningful, and tune
well all of hyperparameters: the number of feature maps for convolutional layers,
the number of fully-connected neurons, η, p_dropout, etc..

Report your experiences.

https://github.com/mnielsen/neural-networks-and-deep-learning.git
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Run_network3.py
1 """ Run_network3.py:
2 -------------------
3 A CNN model, for the MNIST data set,
4 which uses network3.py written by Michael Nielsen.
5 The source code can be downloaded from
6 https://github.com/mnielsen/neural-networks-and-deep-learning.git
7 or 'git clone' it
8 """
9 import network3

10 from network3 import Network, ReLU
11 from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
12

13 training_data, validation_data, test_data = network3.load_data_shared()
14

15 mini_batch_size = 10
16 net = Network([
17 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
18 filter_shape=(20, 1, 5, 5),
19 poolsize=(2, 2), activation_fn=ReLU),
20 FullyConnectedLayer(
21 n_in=20*12*12, n_out=100, activation_fn=ReLU, p_dropout=0.0),
22 SoftmaxLayer(n_in=100, n_out=10, p_dropout=0.5)], mini_batch_size)
23

24 n_epochs, eta = 30, 0.1
25 net.SGD(training_data, n_epochs, mini_batch_size, eta, \
26 validation_data, test_data)

Figure 10.29: Run_network3.py



416 Chapter 10. Machine Learning



CHAPTER 11
Boundary-Value Problems of One
Variable

In This Chapter:

Contents of Chapter 11
11.1.The Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

11.2.Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

11.3.Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

11.4.FDMs for Non-constant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

417



418 Chapter 11. Boundary-Value Problems of One Variable

11.1. The Shooting Method

Problem 11.1. The two-point Boundary-Value Problems (BVPs) in-
volve a second-order differential equation of the form

y′′ = f(x, y, y′), a ≤ a ≤ b

y(a) = α, y(b) = β
(11.1)

Theorem 11.2. (Existence and Uniqueness)
Let

D = {(x, y, y′) | a ≤ a ≤ b, with −∞ < y <∞, −∞ < y′ <∞}.

For the BVP of the form in (11.1), if the functions f, fy, fy′ are continuous
on D and satisfy

(i) fy(x, y, y′) > 0, for all (x, y, y′) ∈ D
(ii) there is a constant M such that

|fy′(x, y, y′)| ≤M, for all (x, y, y′) ∈ D

then the BVP has a unique solution.

Example 11.3. Show that the following BVP has a unique solution.

y′′ + e−xy + sin(y′) = 0, 1 ≤ x ≤ 2

y(1) = 0, y(2) = 0

Solution.
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Linear Boundary-Value Problems

Definition 11.4. The differential equation y′′ = f(x, y, y′) is linear if f
can be expressed as a linear combination of y and y′, that is,

y′′ = f(x, y, y′) = p(x) y′ + q(x) y + r(x), (11.2)

for some p, q, r.

Corollary 11.5. Suppose the linear BVP

y′′ = f(x, y, y′) = p(x) y′ + q(x) y + r(x), a ≤ a ≤ b

y(a) = α, y(b) = β
(11.3)

satisfies

(i) p(x), q(x), r(x) are continuous on [a, b]

(ii) q(x) > 0 on [a, b]

then the linear BVP has a unique solution.

The Linear Shooting Method

1. To approximate the unique solution to the linear BVP (11.3), we first
solve the problem twice, with two different initial conditions, obtaining
solutions y1 and y2, say,{

y1(a) = α, y′1(a) = z1

y2(a) = β, y′2(a) = z2
(11.4)

(We will choose z1 and z2 appropriately later.)

2. Then we form a linear combination of y1 and y2:

y(x) = λy1(x) + (1− λ)y2(x), (11.5)

where λ is a parameter. We can easily verify that y(a) = α.

3. Thus the remained requirement is to satisfy y(b) = β. We select λ such
that

y(b) = λy1(b) + (1− λ)y2(b) = β, (11.6)
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which reads

λ =
β − y2(b)

y1(b)− y2(b)
, (11.7)

provided that y1(b) 6= y2(b).

4. Note that z1 and z2 can be chosen arbitrarily, z1 6= z2; however, the most
common choice is z1 = 0 and z2 = 1.

Claim 11.6. If the linear BVP (11.3) has a solution , then either{
y ≡ y1, or
y1(b) 6= y2(b).

(11.8)

For the later case, the solution is a linear combination (11.5) with (11.7).

Summary 11.7. Summary of the Linear Shooting Method

1. Solve two BVPs for y1 and y2:{
y′′ = f(x, y, y′)

y(a) = α, y′(a) = 0

{
y′′ = f(x, y, y′)

y(a) = α, y′(a) = 1
(11.9)

where f(x, y, y′) = p(x) y′ + q(x) y + r(x).
2. Compute

λ =
β − y2(b)

y1(b)− y2(b)
, (11.10)

3. Get the solution of the linear BVP (11.3) as a linear combination of
y1 and y2:

y(x) = λy1(x) + (1− λ)y2(x). (11.11)
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Remark 11.8. Each of the problems in the first step can be solved by
applying an ODE solver for systems. For example, the second problem
equivalently reads as a system of differential equations:{

y′ = u, y(a) = α

u′ = p u+ q y + r, u(a) = 1
(11.12)

which can be solved efficiently by using an ODE solver. See Section 5.2,
p. 179, and Section 5.3 p. 188.

Here we state one of the most popular ODE solvers, the Fourth-order
Runge-Kutta method (RK4).

Algorithm 11.9. (RK4: Algorithm 5.19, p. 191)

yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 +K4) (11.13)

where
K1 = f(xn, yn)

K2 = f(xn +
1

2
h, yn +

1

2
hK1)

K3 = f(xn +
1

2
h, yn +

1

2
hK2)

K4 = f(xn + h, yn + hK3)

Note: The local truncation error for the above RK4 can be derived as

h5

5!
y(5)(ξn), (11.14)

for some ξn ∈ [xn, xn+1]. Thus the global error reads, for some ξ ∈ [x0, T ],

(T − x0)h
4

5!
y(5)(ξ). (11.15)
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RK4SYSTEM.mw
1 RK4SYSTEM := proc(a,b,nt,X,F,x0,xn)
2 local h,hh,t,m,n,j,w,K1,K2,K3,K4;
3 #### initial setting
4 with(LinearAlgebra):
5 m := Dimension(Vector(F));
6 w :=Vector(m);
7 K1:=Vector(m); K2:=Vector(m);
8 K3:=Vector(m); K4:=Vector(m);
9 h:=(b-a)/nt; hh:=h/2;

10 t :=a; w:=x0;
11 for j from 1 by 1 to m do
12 xn[0,j]:=x0[j];
13 end do;
14 #### RK4 marching
15 for n from 1 by 1 to nt do
16 K1:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i],i=1..m)]));
17 K2:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K1[i],i=1..m)]));
18 K3:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K2[i],i=1..m)]));
19 t:=t+h;
20 K4:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i]+h*K3[i], i=1..m)]));
21 w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
22 for j from 1 by 1 to m do
23 xn[n,j]:=evalf(w[j]);
24 end do
25 end do
26 end proc:

Example 11.10. Use the RK4SYSTEM to solve{
y′′ − 2y′ + 2y = e2x sin(x), 0 ≤ x ≤ 1

y(0) = −0.4, y′(0) = −0.6
(11.16)

Solution. The IVP (11.16) reads{
y′ = u, y(0) = −0.4

u′ = 2u− 2y + e2x sin(x), u(0) = −0.6
(11.17)
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Run
1 m := 2:
2 F := [yp, exp(2*x)*sin(x) -2*y +2*yp]:
3 X := [x, y, yp]:
4 X0 := <-0.4, -0.6>:
5 a := 0: b := 1:
6 nt := 10:
7 Xn := Array(0 .. nt, 1 .. m):
8 RK4SYSTEM(a, b, nt, X, F, X0, Xn):
9

10 DE := diff(y(x),x,x) - 2*diff(y(x),x) + 2*y(x) = exp(2*x)*sin(x);
11 IC := y(0) = -0.4, D(y)(0) = -0.6;
12

13 dsolve({DE, IC}, y(x));
14 1
15 y(x) = - (sin(x) - 2 cos(x)) exp(2 x)
16 5

Result
1 n y_n y(x_n) y'_n y'(x_n) err(y) err(y')
2 0 -0.40000 -0.40000 -0.60000 -0.60000 0 0
3 1 -0.46173 -0.46173 -0.63163 -0.63163 3.72e-07 1.91e-07
4 2 -0.52556 -0.52556 -0.64015 -0.64015 8.36e-07 2.84e-07
5 3 -0.58860 -0.58860 -0.61366 -0.61366 1.39e-06 1.99e-07
6 4 -0.64661 -0.64661 -0.53658 -0.53658 2.02e-06 1.68e-07
7 5 -0.69357 -0.69356 -0.38874 -0.38874 2.71e-06 9.58e-07
8 6 -0.72115 -0.72115 -0.14438 -0.14438 3.41e-06 2.35e-06
9 7 -0.71815 -0.71815 0.22900 0.22899 4.06e-06 4.59e-06

10 8 -0.66971 -0.66971 0.77199 0.77198 4.55e-06 7.97e-06
11 9 -0.55644 -0.55644 1.53478 1.53477 4.77e-06 1.29e-05
12 10 -0.35340 -0.35339 2.57877 2.57875 4.50e-06 1.97e-05
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Example 11.11. Use the shooting method to approximate the solution of y′′ =
2

x
y′ +

2

x2
y − 3x2, 1 ≤ x ≤ 2,

y(1) = 0, y(2) = 2.

Solution.
Maple Code

1 m := 2:
2 F := [yp, -2*yp/x + 2*y/x^2 - 3*x^2]:
3 X := [x, y, yp]:
4 a := 1: b := 2:
5 al := 0: be := 2:
6 N := 5:
7 Y := Array(0..2*N, 1..2):
8 for k to 2 do
9 nt := 2^(k-1)*N;

10 Y1 := Array(0..nt, 1..m);
11 Y2 := Array(0..nt, 1..m);
12 X0 := <al, 0>; RK4SYSTEM(a, b, nt, X, F, X0, Y1);
13 X0 := <al, 1>; RK4SYSTEM(a, b, nt, X, F, X0, Y2);
14 lam := (be - Y2[nt, 1])/(Y1[nt, 1] - Y2[nt, 1]);
15 for i from 0 to nt do
16 Y[i, k] := lam*Y1[i, 1] + (1 - lam)*Y2[i, 1];
17 end do:
18 end do:
19

20 ## The exact solution & Error analysis
21 DE := diff(y(x), x, x) = -2*diff(y(x), x)/x + 2*y(x)/x^2 - 3*x^2;
22 BC := y(1) = 0, y(2) = 2;
23 dsolve({BC, DE}, y(x));
24 52 1 4 37
25 y(x) = - ----- - - x + -- x
26 2 6 14
27 21 x

Result
1 h=1/5 error h=1/10 error
2 x=1.00 0.0000000000 0 0.0000000000 0
3 x=1.20 1.1056335076 0.000618 1.1062189010 3.3e-005
4 x=1.40 1.7958326514 0.000538 1.7963419934 2.89e-005
5 x=1.60 2.1686944799 0.000348 2.1690241106 1.87e-005
6 x=1.80 2.2431240407 0.000162 2.2432777718 8.77e-006
7 x=2.00 2.0000000000 0 2.0000000000 0
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11.2. Finite Difference Methods

Recall: A linear BVP (11.3) has the form

y′′ = p(x) y′ + q(x) y + r(x), a ≤ a ≤ b

y(a) = α, y(b) = β
(11.18)

In order to develop finite difference methods (FDM) for the solution
of the problem in more general environments, we in this section consider
differential equations of the following form{

−y′′ + p(x) y′ + q(x) y = f(x), a ≤ a ≤ b

y(a) = α, y′(b) = β
(11.19)

Recall:

Theorem 11.12. (Theorem 1.22: Taylor’s Theorem with Lagrange
Remainder): Suppose f ∈ Cn[a, b], f (n+1) exists on (a, b), and x0 ∈ [a, b].
Then, for every x ∈ [a, b],

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k +Rn(x), Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1,

(11.20)
for some ξ between x and x0.

Remark 1.25: Alternative Form of Taylor’s Theorem

Remark 11.13. Suppose f ∈ Cn[a, b], f (n+1) exists on (a, b). Then, for
every x, x+ h ∈ [a, b],

f(x+ h) =
n∑
k=0

f (k)(x)

k!
hk +Rn(h), Rn(h) =

f (n+1)(ξ)

(n+ 1)!
hn+1, (11.21)

for some ξ between x and x+ h. In detail,

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + · · ·+ f (n)(x)

n!
hn +Rn(h).

(11.22)
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Note: The FD discretization procedure consists of four steps:

1. Partitioning
2. FD approximations
3. System of difference equations
4. Assembly

11.2.1. The FD discretization procedure

Step 1: Partitioning

Let, for some n > 0,

xi = a+ ih, h =
b− a
n

, i = 0, 1, · · · , n. (11.23)

Define gi = g(xi), for g = y, p, q, f ; for example,

yi = y(xi). (11.24)

The objective with finite difference methods is to approximate {yi}ni=0, the
solution at discrete nodal points.
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Step 2: FD approximations

• Expanding y in the Taylor series about x = xi evaluated at xi+1 =
xi + h and xi−1 = xi − h, we have

(a) yi+1 = y(xi) + y′(xi)h+
y′′(xi)

2!
h2 +

y′′′(xi)

3!
h3 +

y(4)(xi)

4!
h4

+
y(5)(xi)

5!
h5 +

y(6)(xi)

6!
h6 + · · ·

(b) yi−1 = y(xi)− y′(xi)h+
y′′(xi)

2!
h2 − y′′′(xi)

3!
h3 +

y(4)(xi)

4!
h4

−y
(5)(xi)

5!
h5 +

y(6)(xi)

6!
h6 − · · ·

(11.25)

• Approximation of y′′(xi): Adding (11.25)(a) and (11.25)(b) gives

yi+1 + yi−1 = 2yi + 2
y′′(xi)

2!
h2 + 2

y(4)(xi)

4!
h4 + 2

y(6)(xi)

6!
h6 + · · · (11.26)

• Solving for y′′(xi) reads

y′′(xi) =
yi−1 − 2yi + yi+1

h2
− 2

y(4)(xi)

4!
h2 − 2

y(6)(xi)

6!
h4 − · · · (11.27)

• Approximation of y′(xi): Subtracting (11.25)(b) from (11.25)(a)
gives

yi+1 − yi−1 = 2y′(xi)h+ 2
y′′′(xi)

3!
h3 + 2

y(5)(xi)

5!
h5 + · · · (11.28)

• Solving for y′(xi) reads

y′(xi) =
yi+1 − yi−1

2h
− y′′′(xi)

3!
h2 − y(5)(xi)

5!
h4 − · · · (11.29)
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Step 3: System of Difference Equations

• Differential Equation: Using these central FD schemes for the DE

−y′′ + py′ + qy = f,

at xi results in

−yi−1 − 2yi + yi+1

h2
+ pi ·

yi+1 − yi−1

2h
+ qi · yi +K2h

2 +O(h4) = fi, (11.30)

where
K2 =

1

12

(
y(4)(xi)− 2piy

′′′(xi)
)
.

• Note that y0 = y(a) = α; (11.30) is defined only for i = 1, 2, · · · , n.
• When i = n, (11.30) reads

−yn−1 + 2yn − yn+1

h2
+pn ·

yn+1 − yn−1

2h
+qn ·yn+K2h

2 +O(h4) = fn, (11.31)

Note: The unknowns are {y1, y2, · · · , yn}; the ghost grid value
yn+1 must be eliminated appropriately and accurately.

• Boundary Condition: The boundary condition y′(b) = β can be writ-
ten as follows. Since n = xn,

yn+1 − yn−1

2h
− y′′′(b)

3!
h2 +O(h4) = β. (11.32)

The second-order FDM for the model (11.19) follows from (11.30),
(11.31), and (11.32), truncating the terms involving h2 and higher-
orders of h.

• Let vi denote the second-order approximation of yi. Then, the second-
order FDM for (11.19) reads

−vi−1 + 2vi − vi+1

h2
+pi ·

vi+1 − vi−1

2h
+ qi · vi = fi, i = 1, 2, · · · , n, (11.33)

where v0 = α and vn+1 = vn−1 + 2hβ.
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Step 4: Assembly

• Assembly is to build an algebraic system from (11.33).
• Multiplying (11.33) with h2 and simplifying the result reads

−civi−1 + (2 + h2qi)vi − divi+1 = h2fi, i = 1, 2, · · · , n, (11.34)

where
ci = 1 +

hpi
2

and di = 1− hpi
2
. (11.35)

• Using v0 = α and vn+1 = vn−1 + 2hβ, obtained from the boundary con-
ditions, we present the details of algebraic equations as follows.

(2 + h2q1)v1 − d1v2 = h2f1 + c1 · α, i = 1

−civi−1 + (2 + h2qi)vi − divi+1 = h2fi, i = 2, · · · , n− 1

−2vn−1 + (2 + h2qn)vn = h2fn + dn · 2hβ, i = n
(11.36)

• The corresponding algebraic system reads

Av = b, (11.37)

where

A =


2 + h2q1 −d1

−c2 2 + h2q2 −d2
. . . . . . . . .

−cn−1 2 + h2qn−1 −dn−1

−2 2 + h2qn

,

v =


v1

v2
...

vn−1

vn

, and b =


h2f1

h2f2
...

h2fn−1

h2fn

+


c1 · α

0
...
0

dn · 2hβ

.
(11.38)
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11.2.2. Existence and uniqueness of the FDM solution

Theorem 11.14. Suppose that p, q and f are continuous on [a, b]. If

0 ≤ q(x), ∀x ∈ [a, b], (11.39)

then the linear system (11.37) has unique solution provided that

ci, di > 0, i = 1, 2, · · · , n. (11.40)

Proof. When the two conditions are satisfied, the matrix A diagonally dom-
inant, i.e.,

aii ≥
∑
j 6=i

|aij| =: Λi, ∀ i = 1, 2, · · · , n. (11.41)

Indeed,
a11 = 2 + h2q1 ≥ 2 > d1 = Λ1,

aii = 2 + h2qi ≥ 2 = Λi, i = 2, · · · , n.
(11.42)

Since A is clearly irreducible, it is irreducibly diagonally dominant.
Thus, A is nonsingular and therefore the linear system has a unique so-
lution. Because all the diagonal entries of are in addition positive real, real
parts of eigenvalues of are all positive.

Remark 11.15. Let L = max
x∈[a,b]

|p(x)|. Then the conditions in (11.40) are

equivalent to
1

2
hL < 1. (11.43)

That is, h must be chosen small enough to satisfy the inequality.
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Example 11.16. Use the second-order FDM to approximate the solution
of

y′′ =
1

x
y′ +

3

x2
y − 4x2, x ∈ [1, 2]

y(1) = 0, y′(2) = −2,
(11.44)

with h = 1/5 and h = 1/10.

Note: The differential equation can be written as

−y′′ + 1

x
y′ +

3

x2
y = 4x2, x ∈ [1, 2]. (11.45)

Thus, q(x) = 3/x2 > 0 and L = max |p(x)| = max |1/x| = 1 and therefore
hL/2 = h/2 < 1. Its exact solution becomes

y(x) = −8/(7 ∗ x) + (68/35) ∗ x3 − (4/5) ∗ x4. (11.46)

Solution.
get_Ab_pqf.m

1 function [A,b] = get_Ab_pqf(X,p,q,f,BC,IBC)
2

3 m = size(X,1);
4

5 A=zeros(m,m); b=zeros(m,1);
6 h=X(2)-X(1); h2 = h^2; hh=h/2;
7

8 P = p(X); Q = q(X); F = f(X);
9 C = 1+hh*P; D = 1-hh*P;

10

11 %%---------------------
12 for i=1:m
13 A(i,i) = 2+h2*Q(i);
14 b(i) = h2*F(i);
15 end
16

17 for i=2:m-1,
18 A(i,i-1) = -C(i);
19 A(i,i+1) = -D(i);
20 end
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21

22 %--- left-end ---------
23 i=1;
24 if IBC(1) == 1 % Dirichlet
25 A(i,i) = 1; b(i) = BC(1);
26 else % Neumann
27 A(i,i+1) = -2;
28 b(i) = b(i) +D(i)*2*h*BC(1);
29 end
30

31 %--- right-end --------
32 i=m;
33 if IBC(2) == 1
34 A(i,i) = 1; b(i) = BC(2);
35 else
36 A(i,i-1) = -2;
37 b(i) = b(i) +D(i)*2*h*BC(2);
38 end

FDM_1D.m
1 p = @(x) 1./x;
2 q = @(x) 3./x.^2;
3 f = @(x) 4*x.^2;
4 y = @(x) -8./(7*x)+(68/35)*x.^3 -(4/5)*x.^4;
5 al = 0; be = -2;
6

7 Int=[1,2]; n0 = 5;
8

9 ngrid =5;
10 Y = cell(ngrid,1); V = cell(ngrid,1);
11 W = cell(ngrid-1,1);
12

13 %BC =[y(1),y(2)]; IBC=[1,1]; % Dirichlet-Dirichlet
14 BC =[y(1),be]; IBC=[1,2]; % Dirichlet-Neumann
15

16 %%-- Y & V
17 for i=1:ngrid
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18 n = n0*2^(i-1); X =linspace(Int(1),Int(2),n+1)';
19 P = p(X); Q = q(X); F = f(X);
20 Y{i} = y(X);
21 [A,b] = get_Ab_pqf(X,p,q,f,BC,IBC);
22 V{i}= A\b;
23 fprintf(' n = %2d; L8-Error = %.8f',n,norm(Y{i}-V{i},inf))
24 if i==1,
25 fprintf('\n');
26 else
27 W{i-1} = (4*V{i}(1:2:end)-V{i-1})/3;
28 fprintf('; Richardson = %.4g\n',norm(Y{i-1}-W{i-1},inf))
29 end
30 end

Result
1 n = 5; L8-Error = 0.10740412
2 n = 10; L8-Error = 0.02688154; Richardson = 4.068e-05
3 n = 20; L8-Error = 0.00672220; Richardson = 2.413e-06
4 n = 40; L8-Error = 0.00168066; Richardson = 1.486e-07
5 n = 80; L8-Error = 0.00042017; Richardson = 9.248e-09

Remark 11.17. The Richardson extrapolation is a numerical proce-
dure that produces a numerical solution of a higher-order accuracy,
when two numerical solutions are available from a mesh and its refined
one. See § 4.2, p. 141, for details.
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11.3. Finite Element Methods

• To describe the finite element method (FEM), we consider approx-
imating the solution to a linear two-point boundary-value problem of
the form

(D)

 −
d

dx

(
p(x)

du

dx

)
= f(x), x ∈ [0, 1],

u(0) = 0, u(1) = 0,
(11.47)

for which we assume p ∈ C1[0, 1] and there is a constant δ > 0 such
that

p(x) ≥ δ > 0, x ∈ [0, 1]. (11.48)

• The FEM is formulated with the so-called variational principle.

11.3.1. Variational formulation

DoiNg HeRe
11.3.2. Formulation of FEMs
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12.1. Parabolic PDEs in One Spatial Variable
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12.3. Elliptic PDEs in Two Dimensions



CHAPTER 13
Projects

Finally we add projects.

Contents of Projects
P.1. Applications of Richardson Extrapolation for PDEs . . . . . . . . . . . . . . . . . . . . 442

441



442 Chapter 13. Projects

P.1. Applications of Richardson Extrapolation
for PDEs

Problem P.1. The Richardson extrapolation studied in Section 4.2
is a numerical procedure that produces a numerical solution of a
higher-order accuracy, when two numerical solutions are available
from a mesh and its refined one. By applying extrapolation recursively,
the Richardson extrapolation becomes a sequence acceleration method
that improves the rate of convergence of a sequence.

• The Issue: The Richardson extrapolation can compute the solution
of a higher-order accuracy only on the course mesh.

• Various multiple coarse grid (MCG) updating strategies have
been considered in the literature [5].

• An MCG updating method can be expensive computationally.
• The extrapolated solutions often show a desired order of accuracy,

when they compared with each other. However, their error can
be larger than that of the numerical solution obtained using
the original high-order scheme.

Quesiton. Can we get higher-order solutions on finer meshes, without
using a multiple coarse grid updating method?

What to do
Implement a code for Example P.2 and Algorithm P.6; report your code
and results.

Example P.2. Consider

−u′′(x) = π2 sin(πx), x ∈ (0, 1)

u(0) = 0, u(1) = 2,
(P.1.1)

for which the exact solution is u(x) = sin(πx) + 2x.
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(a) Partition [0, 1] into n equal subintervals. That is,

h =
1

n
; xi = i · h, i = 0, 1, · · · , n.

Let uh be such that uh[i] = u(xi).

(b) Approximate −u′′(xi) by using the formula: For each i = 1, 2, · · · , n− 1,

−u′′(xi) =
−ui−1 + 2ui − ui+1

h2
+K2h

2 +K4h
4 + · · · = fi. (P.1.2)

where

Kj = 2 · u
(j+2)(xi)

(j + 2)!
, j = 2, 4, · · · . (P.1.3)

(c) Assemble the above for an algebraic system to solve:

Avh = b (P.1.4)

(d) Find vh, vh/2, and vh/4.

(e) Apply the Richardson Extrapolation and measure the errors.

Remark P.3. In Example P.2:

• Solutions of a fourth-order accuracy can be obtained on the meshes
of grid sizes h and h/2.

• Solutions of a sixth-order accuracy can be computed only on the
coarsest mesh of grid size h.

Challenge P.4. Solutions of a sixth-order accuracy on the mid mesh of
grid size h/2.
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Remark P.5. Equation (P.1.2) can be rewritten as

ui =
ui−1 + ui+1

2
+
h2

2
(fi −K2h

2)− 1

2
K4h

6 − · · · , (P.1.5)

where
K2 =

u(4)(xi)

12
and K4 =

u(6)(xi)

360
. (P.1.6)

Since u(4) = −f ′′, for example, K2 is approximated as

K2 =
u(4)(xi)

12
= − 1

12
f ′′(xi) = − 1

12

fi−1 − 2fi + fi+1

h2
+O(h2), (P.1.7)

and therefore

fi −K2h
2 =

1

12
(fi−1 + 10fi + fi+1) +O(h4), (P.1.8)

from which we have

ui =
ui−1 + ui+1

2
+
h2

24
(fi−1 + 10fi + fi+1) +O(h6). (P.1.9)
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Algorithm P.6. In order to get a sixth-order solution on the mid mesh,
we first should have meaningful fourth-order solutions on the mid and
fine meshes.

1. Let wh =
1

3
(4vh/2−vh), Richardson extrapolation on the course mesh.

2. Let w̃h/2 be its expansion on the mid mesh: w̃h/2[0 : 2 : end] = wh.
3. Then, you should determine values w̃h/2[1 : 2 : end] to complete the

expansion. Using (P.1.9), if i ∈ [1 : 2 : 2 ∗ n− 1], we have

w̃h/2(i) =
w̃h/2(i− 1) + w̃h/2(i+ 1)

2
+

(h/2)2

24
(fi−1+10fi+fi+1), (P.1.10)

where fi = f(i · (h/2)).
4. Repeat the above, starting with wh/2, to get its expansion w̃h/4.
5. Then a sixth-order solution on the mid mesh is

1

15

(
16 ∗ w̃h/4[0 : 2 : end]− w̃h/2

)
. (P.1.11)

Check the error.
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How to find the accuracy order of a numerical scheme:

• For given h, you can measure the error: that is,

||uh − vh||∞ = Eh. (P.1.12)

• If the accuracy order is α, we may write

Eh = O(hα) = C · hα, (P.1.13)

for some constant C > 0.
• If you compute the numerical solution with h/2, then you can mea-

sure the error to be Eh/2, which can be written as

Eh/2 = O
(
(h/2)α

)
= C · (h/2)α, (P.1.14)

• Dividing (P.1.13) by (P.1.14) reads

hα

(h/2)α
=

Eh

Eh/2
⇒ 2α =

Eh

Eh/2
.

• Now, applying the natural log to the equation results in

α =
ln(Eh/Eh/2)

ln 2
(P.1.15)

If you use Matlab, you may start with

get_A_b.m
1 function [A,b] = get_A_b(interval,n,f,u)
2

3 A=zeros(n+1,n+1);
4 b=zeros(n+1,1);
5 h=(interval(2)-interval(1))/n;
6 %%---------
7 for i=2:n
8 A(i,i-1) = -1;
9 A(i,i) = 2;

10 A(i,i+1) = -1;
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11 b(i) = h^2*f( interval(1)+(i-1)*h );
12 end
13

14 A(1,1)=1; A(n+1,n+1)=1;
15 b(1)=u(interval(1)); b(n+1)=u(interval(2));

Part of Richardson_extrapolation.m
1 u = @(x) sin(pi*x)+2*x;
2 f = @(x) pi^2*sin(pi*x);
3

4 interval=[0,1]; n0 = 10;
5 U = cell(3,1); V = cell(3,1);
6 W = cell(2,2); WT = cell(3,1);
7

8 %%-- U & V
9 for i=1:3

10 n = n0*2^(i-1); X =linspace(0,1,n+1)';
11 U{i} = u(X);
12 [A,b] = get_A_b(interval,n,f,u);
13 V{i}= A\b;
14 end
15

16 %%-- Richardson
17 for i=1:2
18 W{i,1} = (1/3)*(4*V{i+1}(1:2:end)-V{i});
19 end
20 W{1,2} = (1/15)*(16*W{2,1}(1:2:end)-W{1,1});
21

22 %%-- Expansion: WT{i}, i=2,3, from W{i-1,1}
23
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(n+ 1)-point difference formula, 138
`2-norm, 39, 242
`∞-norm, 242

ABM.mw, 199
absolute error, 26
activation function, 370
activation function, why?, 370
activation functions, popular, 372
Adaline, 371, 372
Adams-Bashforth method, 198
Adams-Bashforth-Moulton method, 198
Adams-Moulton method, 198
adaptive mechanism, 106
adaptive method, 193
algebraic system, 429
algorithm, 27
algorithmic parameter, 373
angle, between two vectors, 14, 241
antiderivative, 7
approximation, 290
Arnoldi iteration, 277, 279
artificial neurons, 369
assembly, 429
augmented matrix, 15
augmented system, 15
average slope, 188

back substitution, 225
backward Euler method, 208
backward-difference, 136
Bairstow’s method, 73
Bairstow, Leonard, 74
best approximation, 287
big Oh, 29, 30
binary classifier, 369, 370
binary-search method, 42
bisect.m, 47

bisection method, 42
Bonnet’s recursion formula, 165
boundary-value problem, 283
boundary-value problems, 418

cardinal functions, 90
Cauchy-Schwarz Inequality, 242
central point, 139
CG method, 272
change of variables, 169, 170, 299
characteristic equation, 21, 245
characteristic polynomial, 21, 245
Chebyshev, 97
Chebyshev polynomials, 97, 164
clamped cubic spline, 123, 132
classification problem, 301
closed formula, 171
closed Newton-Cotes formulas, 155
closest point, 287
clustering, 368
CNN, 404, 406
coefficients, 67
cofactor, 20
cofactor expansion, 20
complementary slackness, 382
composite error, 150
composite Simpson’s rule, 154
composite Simpson’s three-eights rule,

155
Composite Trapezoid rule, 157
composite trapezoid rule, 149
computation of A−1, 237
condition number, 25, 244
conditionally stable, 27
conjugate, 272
conjugate gradient method, 272
continuity, 2
continuous, 2
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contractive mapping, 54
convergence of Newton’s method, 58
convergence of oeder α, 28
convergent, 252
convergent matrix, 248
convolution, 409
convolutional network, 409
convolutional neural networks, 406
correction term, 56
cost function, 370
covariance matrix, 347
Crank-Nicolson method, 211
cubic spline, 120
curse of dimensionality, 366

data compression, 358
data matrix, 355
deep learning, 405
deep neural networks, 405
definite matrix, 255
deflation, 77
dense matrix, 230
derivative, 3
design matrix, 296
determinant, 19, 20, 324
diagonal dominance, 268
diagonalizable, 314
Diagonalization Theorem, 314
difference formula, (n+ 1)-point, 138
difference formula, five-point, 138
difference formula, three-point, 138
difference formula, two-point, 136
differentiable, 3
differentiation, 3
dimensionality reduction, 358
direct algebraic solver, 218
directed graph, 264
Dirichlet boundary condition, 222
discretization, FD, 426
distance, 13, 240
divided difference, the kth, 102
divided difference, the first, 102
divided difference, the second, 102
divided difference, the zeroth, 102
divided differences, 87, 101

dot product, 13, 240
dual feasibility, 382
dual problem, 380, 383, 387, 391, 394
dual variable, 380
dyadic decomposition, 343

eigenvalue, 21, 245
eigenvalue locus theorem, 266
eigenvector, 21, 245
elementary matrix, 15, 226
elementary row operations, 15, 226
elementary Simpson’s rule, 151, 163
Euclidean norm, 13, 23, 240, 242
Euler method, 179, 180
Euler.mw, 184
Euler.py, 209
Euler_T3.mw, 187
existence and uniqueness of fixed points,

50
exponential growth of error, 27
extended Newton divided difference, 112
Extreme Value Theorem, 5

false position method, 65
FD approximation, 427
FD scheme, 220
FDM, 425
FDM_1D.m, 432
feature expansion, 393
feature map, 409, 410
FEM, 434
fine grid, 146, 172
finite difference, 220
finite difference method, 425
finite element method, 434
first divided difference, 102
first-degree spline accuracy, 116
first-order necessary conditions, 381
five-point difference formula, 138
fixed point, 49
fixed-point iteration, 51, 58, 212
Fixed-Point Theorem, 53
floating point operation, 230
flop, 230
for loop, 37
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forward elimination, 224
forward Euler method, 208
forward substitution, 224
forward-difference, 136
Fourth-order Runge-Kutta method, 191,

421
Frobenius norm, 24, 243
FTC, 7
full rank, 322
fully-connected networks, 405
function, 37
fundamental period of the motion, 194
Fundamental Theorem of Algebra, 67
Fundamental Theorem of Calculus, 7, 181

Gauss elimination, 226
Gauss elimination with partial pivoting,

234
Gauss integration), 166, 171
Gauss-integration.mw, 167
Gauss-Lobatto integration, 171
Gauss-Seidel method, 259
Gaussian elimination with complete piv-

oting, 235
Gaussian elimination with partial pivot-

ing, 235
Gaussian kernel, 391
Gaussian quadrature, 163
Gaussian-Quadrature.mw, 170
GD method, 271
GECP, 235
generalized minimum residuals, 277
generalized Richardson method, 255
Generalized Rolle’s Theorem, 6
GEPP, 235
get_A_b.m, 447
get_Ab_pqf.m, 431
ghost grid value, 220, 428
global error, 190, 191, 421
GMRES, 277, 282
Golub-Reinsch SVD algorithm, 349
gradient, 271
gradient descent method, 271, 372, 399
Gram matrix, 388

Gram-Schmidt process, 277, 278, 288,
322, 323

Gram-Schmidt process, normalized, 289
graph theory, 264
guidepoints, 128

Hermite interpolation, 110
Hermite Interpolation Theorem, 111
Hermite polynomial, 111
Hessenberg matrix, 277
Hessian, 271
Heun’s method, 190
higher-order Taylor methods, 185
Horner’s method, 68, 86
horner.m, 70
Householder matrix, 326
Householder reflector, 326
Householder reflectors, 322
Householder transformation, 349
hyperparameter, 373
hyperplane, 370

implicit ordinary differential equation,
first-order, 212

induced matrix norm, 24, 243
infinity-norm, 23, 241
initial conditions, 419
initial value problem, 176, 179, 188
inliers, 301
inner product, 13, 14, 240, 241
Intermediate Value Theorem, 3
interpolating polynomials in Newton

form, 84
interpolation, 290
Interpolation Error Theorem, 93, 137
Interpolation Error Theorem, Chebyshev

nodes, 99
interpretability, 367
interval-halving method, 42
inverse power method, 319
inverse-power.mw, 320
invertible matrix, 17, 219, 249
invertible matrix theorem, 18, 219, 250
involution, 327
IODE-1, 212



454 INDEX

IODE1.py, 213
irreducible matrix, 264
irreducibly diagonally dominant, 430
iteration, 36
iteration matrix, 251
iterative algebraic solver, 218, 239, 251
IVP, 176
IVT, 3

Jacobi method, 257
Jacobi polynomials, 164
Jacobian, 61
Jacobian matrix, 73

Karush-Kuhn-Tucker conditions, 381
Kepler’s equation, 79
kernel function, 391
kernel method, 390
kernel SVM, 390
kernel trick, 391, 393
KKT conditions, 381
knots, 115
Kronecker delta, 90
Krylov matrix, 280
Krylov subspace, 280
Krylov subspace method, 270

l2-norm, 242
l∞-norm, 242
L2-pooling, 411
Lagrange dual function, 380
Lagrange form of interpolating polyno-

mial, 90
Lagrange interpolating polynomial, 90,

147
Lagrange interpolation, 110
Lagrange multipliers, 378
Lagrange polynomial, 111, 136
Lagrangian, 381
Lagrangian (objective), 379
Laguerre polynomials, 164
leading principal submatrix, 228
learning rate, 372
least-squares (LS) problem, 290
least-squares error, 292
least-squares line, 295

least-squares problem, 291, 351
least-squares solution, 291, 351
left singular vectors, 340, 357
Legendre orthogonal polynomials, 164
Legendre polynomials, 164, 165
length, 13, 240
Leonard Bairstow, 74
limit, 2
linear approximation, 11
linear boundary-value problems, 419
linear convergence, 28
linear function, 118, 121
linear growth of error, 27
linear shooting method, 419
linear spline, 115
linear spline accuracy, 116
linear SVM, 377, 381, 386
linearization, 299
linspace, in Matlab, 35
Lipschitz condition, 176, 182
little oh, 29, 30
local receptive field, 407
local truncation error, 190, 191, 421
localization of roots, 67
logistic cost function, 374
Logistic Regression, 371, 374
lower-triangular matrix, 223
lower-triangular system, 223
LS problem, 291, 351
LU decomposition theorem, 228
LU factorization, 227
LU factorization algorithm, 227

M-matrix, 269
m-step method, 197
machine learning, 363, 364
machine learning algorithm, 364
Maclaurin series expansion, 307
maple, 4
Matlab, 33
matrix norm, 24, 243
matrix splitting, 256
matrix transformation, 310
max-pooling, 411
maximum-norm, 23, 241
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MCG, 442
Mean Value Theorem, 4, 10
Mean Value Theorem on Integral, 8
mesh points, 179
method of false position, 65
method of Lagrange multipliers, 377, 378
method of normal equations, 293, 351
method of undetermined coefficients, 162,

164, 166
mini-batch, 400
MLESAC, 305
MNIST data, 397
Modified Euler method, 190
multi-step methods, 197
multiple coarse grid, 442
multiple local minima problem, 367
MVT, 4, 53
mysum.m, 37

natural cubic spline, 122, 125, 132
natural cubic splines, optimality theorem,

125
nested multiplication, 68, 86, 87
net input, 370
network.py, 401
Neumann Series Theorem, 244
neuron, 369
Neville’s Method, 106
Newton form of interpolating polynomi-

als, 84
Newton form of the Hermite polynomial,

111
Newton’s Divided Difference Formula,

103
Newton’s method, 56
Newton-Cotes formula, 147
Newton-Raphson method, 56
newton_horner.m, 71
NewtonRaphsonSYS.mw, 62
nodal point, 264
nodes, 115
nonlinear regression, 299
nonlinear SVM, 390
nonsingular matrix, 17, 219, 249
norm, 13, 23, 240, 241

normal equations, 293, 298
normal matrix, 24, 243
NR.mw, 59
numerical differentiation, 136
numerical discretization, 220
numerical integration, 147
numerical rank, 350

objects, 33
observation vector, 296
Octave, 33
one-shot learning, 367
open formula, 171
operator norm, 24, 243
optimal ω for SOR, 263
optimal step length, 272
order of convergence, 195, 196
orthogonal, 14, 240
orthogonal basis, 288, 289, 323
orthogonal decomposition, 326
orthogonal decomposition theorem, 286
orthogonal linear transformation, 354
orthogonal matrix, 316, 322, 330
orthogonal polynomials, 165
orthogonal projection, 286, 287, 326
orthonormal basis, 281, 288, 289, 310
outer bordering, 221
outliers, 301
overfitting, 366

p-norms, 23, 241
Padé approximation, 306, 308
Padé rational function, 306
parameter estimation problem, 301
parameter vector, 296
parametric curves, 126
partition, 115
partitioning, 426
PCA, 354
PCG, 276
Perceptron, 371
permutation matrix, 233, 264
piecewise cubic Hermite interpolating

polynomial, 132
piecewise cubic Hermite polynomial, 127,

128



456 INDEX

plot, in Matlab, 34
polar decomposition, 358
Polynomial Interpolation Error Theorem,

93, 104, 131
Polynomial Interpolation Theorem, 83
polynomial of degree n, 67, 72
pooling, 411
pooling layers, 411
positive definite, 270
positive semidefinite matrix, 355
power iteration, 312
power method, 312
power-method.mw, 315
preconditioned CG method, 276
primal feasibility, 382
principal component analysis, 354
principal components, 355
programming, 33
PROSAC, 305
pseudocode, 27
pseudoinverse, 351, 353
pseudoinverse, the k-th, 353
Pythagorean Theorem, 14, 240
Pythagorean theorem, 287

QR algorithm, 337, 349
QR decomposition, 361
QR factorization, 322
QR factorization by Gram-Schmidt pro-

cess, 323
QR factorization by reflectors, 333
QR Factorization Theorem, 322
qr_algorithm.m, 338
quadratic convergence, 28
quadratic programming, 388
quadratic spline, 117, 132
quotient, 72

R-RANSAC, 305
radial basis function, 391
random sample consensus, 303
RANSAC, 303
rational function, 306
Rayleigh quotient, 279, 355
rectified linear units, 414

rectifier, 371
recurrence relation, 74
recursive Trapezoid rule, 157, 158
reduced echelon form, 15
reducible matrix, 264
regression analysis, 295
regression coefficients, 295
regression line, 295
regular splitting, 269
relative error, 26
relaxation methods, 256
ReLU, 414
remainder, 72
Remainder Theorem, 68
repetition, 33, 36
reusability, 37
reusable, 33
Richardson extrapolation, 141, 142, 159,

433, 442
Richardson method, 254
Richardson’s method, 271
Richardson_extrapolation.m, 447
Riemann integral, 7
right singular vectors, 340, 357
RK2, 189, 190
RK3, 212
RK4, 191, 421
RK4.mw, 192
RK4SYS.mw, 203
RK4SYSTEM.mw, 206, 422
RKF45, 193
Rolle’s Theorem, 3, 6
Romberg algorithm, 159
Romberg integration, 157, 159
rotational symmetry, 371
Run_network.py, 403
Run_network3.py, 415
Runge’s phenomenon, 114
Runge-Kutta method, third-order, 212
Runge-Kutta methods, 188
Runge-Kutta-Fehlberg method, 193

scaling factor, 255
scene analysis, 301
Schur decomposition, 337
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score matrix, 355
search direction, 270, 372
secant method, 63
second divided difference, 102
second-derivative midpoint formula, 139
second-order FDM, 428
Second-order Runge-Kutta method, 189,

190
Sequential Minimal Optimization, 383
sequential minimal optimization, 394
shared bias, 409
shared weights, 409
sigmoid function, 371
significant digits, 26
similarity function, 391
Simpson’s rule, 151
Simpson’s three-eights rule, 155
singular value decomposition, 340
singular values, 340, 357
skew-symmetric, 39
slack variable, 385
SMO, 383, 394
smoothing assumption, 301
soft-margin classification, 385
SoftmaxLayer, 414
softplus function, 371
SOR, 256, 261
SOR, optimal ω, 263
sparse matrix, 230
spectral radius , 247
Spectral Theorem, 316
spline of degree k, 115
spring-mass system, 194
square root, 59
SSE, 370
stable, 27
standard logistic sigmoid function, 371
steepest descent method, 271
step length, 270, 372, 375
step-by-step methods, 178
stochastic gradient descent, 400
stopping criterion, 46
stride length, 408
strongly connected, 265
submatrix, 20

subordinate norm, 24, 243
successive over relaxation, 256, 261
successive under relaxation, 263
Sum of Squared Errors, 370
summary of SVM, 389
super-convergence, 59
superlinear convergence, 28
supervised learning, 365
Support Vector Machine, 376
support vectors, 384
SUR, 263
SVD, 357, 361
SVD theorem, 340
SVD, algebraic interpretation, 342
SVD, geometric interpretation, 344
SVM, 376
SVM summary, 389
SVM, nonlinear, 390
symmetric, 249
symmetric inverse power method, 321
symmetric positive definite, 270
symmetric-inverse-power.mw, 321
symmetric-power-method.mw, 317
synthetic division, 68
systems of nonlinear equations, 60

tangent line, 57
tangent plane approximation, 11
Taylor method of order m, 185, 214
Taylor series, 139, 146, 179, 220, 427
Taylor’s series formula, 141
Taylor’s Theorem, 9, 153
Taylor’s Theorem for Two Variables, 11
Taylor’s Theorem with Integral Remain-

der, 10
Taylor’s Theorem with Lagrange Remain-

der, 9, 94, 425
Taylor’s Theorem, Alternative Form of, 11,

425
Taylor-series methods, 179
three-point difference formula, 138
three-point endpoint formulas, 138
three-point midpoint formula, 138
three-point midpoint formulas, 141
three-term recurrence relation, 165
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training data, 365
translation invariance, 409, 413
transpose, 249
trapezoid method, 211
Trapezoid quadrature, 157
trapezoid rule, 148
triangular systems, 223
truncated score matrix, 358
two-point difference formula, 136

unique inverse, 17, 219, 249
unit lower triangular matrix, 227
unit lower-triangular matrix, 230
unit round-off error, 350
unit vector, 326
unstable, 27
unsupervised learning, 368
update direction, 372
upper bidiagonal matrix, 349
upper Hessenberg matrix, 277
upper triangular matrix, 322, 330

upper-triangular matrix, 223, 230
upper-triangular system, 225

variational principle, 434
vector norm, 23, 241
volume scaling factor, 19

Weierstrass approximation theorem, 82,
114

weight matrix, 301
weighted least-squares method, 301
Weighted Mean Value Theorem on Inte-

gral, 8, 148, 153
weighted normal equations, 302
weighted sum, 147
WMVT, 8

x-intercept, 57

zero-over-zero, 112
zeroth divided difference, 102


	Title
	Prologue
	Table of Contents
	1 Mathematical Preliminaries
	1.1. Review of Calculus
	1.2. Review of Linear Algebra
	1.3. Computer Arithmetic and Convergence
	1.4. Programming with Matlab/Octave
	Exercises for Chapter 1

	2 Solutions of Nonlinear Equations
	2.1. The Bisection Method
	2.2. Fixed-Point Iteration
	2.3. Newton's Method and Its Variants
	2.4. Zeros of Polynomials
	Exercises for Chapter 2

	3 Interpolation and Polynomial Approximation
	3.1. Polynomial Interpolation
	3.2. Divided Differences
	3.3. Data Approximation and Neville's Method
	3.4. Hermite Interpolation
	3.5. Spline Interpolation
	3.6. Parametric Curves
	Exercises for Chapter 3

	4 Numerical Differentiation and Integration
	4.1. Numerical Differentiation
	4.2. Richardson Extrapolation
	4.3. Numerical Integration
	4.4. Romberg Integration
	4.5. Gaussian Quadrature
	Exercises for Chapter 4

	5 Numerical Solution of Ordinary Differential Equations
	5.1. Elementary Theory of Initial-Value Problems
	5.2. Taylor-Series Methods
	5.3. Runge-Kutta Methods
	5.4. One-Step Methods: Accuracy Comparison
	5.5. Multi-step Methods
	5.6. High-Order Equations & Systems of Differential Equations
	5.7. Implicit Methods and Implicit Differential Equations
	Exercises for Chapter 5

	6 Gauss Elimination and Its Variants
	6.1. Systems of Linear Equations
	6.2. Triangular Systems
	6.3. Gauss Elimination
	Exercises for Chapter 6

	7 Iterative Algebraic Solvers
	7.1. Norms of Vectors and Matrices
	7.2. Eigenvectors and Eigenvalues
	7.3. Iterative Algebraic Solvers
	7.4. Relaxation Methods
	7.5. Graph Theory: Estimation of the Spectral Radius
	7.6. Krylov Subspace Methods
	7.7. Generalized Minimum Residuals – GMRES
	Exercises for Chapter 7

	8 Approximation Theory
	8.1. Orthogonality and the Gram-Schmidt Process
	8.2. Least-Squares Approximation
	8.3. Regression Analysis
	8.4. Scene Analysis with Noisy Data: RANSAC
	8.5. Padé Rational Function Approximation
	Exercises for Chapter 8

	9 Eigenvalues and Matrix Decomposition
	9.1. The Power Method
	9.2. QR Factorization
	9.3. Singular Value Decomposition
	9.4. Principal Component Analysis
	Exercises for Chapter 9

	10 Machine Learning
	10.1. What is Machine Learning?
	10.2. Binary Classifiers
	10.3. Support Vector Machine
	10.4. Neural Networks
	10.5. Deep Learning: Convolutional Neural Networks
	Exercises for Chapter 10

	11 Boundary-Value Problems of One Variable
	11.1. The Shooting Method
	11.2. Finite Difference Methods
	11.3. Finite Element Methods
	11.4. FDMs for Non-constant Diffusion

	12 Numerical Solutions to Partial Differential Equations
	12.1. Parabolic PDEs in One Spatial Variable
	12.2. Parabolic PDEs in Two Spatial Variables
	12.3. Elliptic PDEs in Two Dimensions

	13 Projects
	P.1. Applications of Richardson Extrapolation for PDEs

	Bibliography
	Index

