Numerical Analysis and Applications

Lectures on YouTube:
https://www.youtube.com/@mathtalent

Seongjai Kim

Department of Mathematics and Statistics
Mississippi State University
Mississippi State, MS 39762 USA
Email: skim@math.msstate.edu

Updated: July 4, 2023

Seongjai Kim, Professor of Mathematics, Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762 USA. Email: skim@math.msstate.edu.

Prologue

Currently the lecture note is not fully grown up; other useful techniques and interesting examples would be soon incorporated.
Some questions show answers which are thankfully computed by Mr. Sungwook Yang, a graduate student in Aerospace Engineering, Mississippi State University.

Note: You can use any of my lecture notes as textbooks or references.

- Please just let me know what you are using.
- Any questions, suggestions, comments will be deeply appreciated. Thank you.

Contents

Title ii
Prologue iii
Table of Contents \mathbf{x}
1 Mathematical Preliminaries 1
1.1. Review of Calculus 2
1.1.1. Continuity and differentiation 2
1.1.2. Integration 7
1.1.3. Taylor's Theorem 9
1.2. Review of Linear Algebra 13
1.2.1. Vector Equations 13
1.2.2. Invertible (nonsingular) matrices 17
1.2.3. Determinants 19
1.2.4. Eigenvectors and eigenvalues 21
1.2.5. Vector and matrix norms 23
1.3. Computer Arithmetic and Convergence 26
1.3.1. Computational algorithms 27
1.3.2. Big \mathcal{O} and little o notation 29
1.4. Programming with Matlab/Octave 33
Exercises for Chapter 1 38
2 Solutions of Nonlinear Equations 41
2.1. The Bisection Method 42
2.1.1. Implementation of the bisection method 42
2.1.2. Error analysis for the bisection method 45
2.2. Fixed-Point Iteration 49
2.2.1. Existence and uniqueness of fixed points 50
2.2.2. Fixed-point iteration 51
2.3. Newton's Method and Its Variants 56
2.3.1. The Newton's method 56
2.3.2. Systems of nonlinear equations 60
2.3.3. The secant method 63
2.3.4. The method of false position 65
2.4. Zeros of Polynomials 67
2.4.1. Horner's method 68
2.4.2. Complex zeros: Finding quadratic factors 72
2.4.3. Bairstow's method 73
Exercises for Chapter 2 78
3 Interpolation and Polynomial Approximation 81
3.1. Polynomial Interpolation 82
3.1.1. Newton Form of the Interpolating Polynomials 84
3.1.2. Lagrange Form of Interpolating Polynomials 90
3.1.3. Polynomial interpolation error 93
3.1.4. Chebyshev polynomials 97
3.2. Divided Differences 101
3.3. Data Approximation and Neville's Method 106
3.4. Hermite Interpolation 110
3.5. Spline Interpolation 114
3.5.1. Runge's phenomenon 114
3.5.2. Linear splines 115
3.5.3. Quadratic (Second Degree) Splines 117
3.5.4. Cubic splines 120
3.6. Parametric Curves 126
Exercises for Chapter 3 131
4 Numerical Differentiation and Integration 135
4.1. Numerical Differentiation 136
4.2. Richardson Extrapolation 141
4.3. Numerical Integration 147
4.3.1. The Trapezoid Rule 148
4.3.2. Simpson's Rule 151
4.3.3. Simpson's Three-Eights Rule 155
4.4. Romberg Integration 157
4.4.1. Recursive Trapezoid Rule 157
4.4.2. The Romberg Algorithm 159
4.5. Gaussian Quadrature 162
4.5.1. The Method of Undetermined Coefficients 162
4.5.2. Legendre Polynomials: Gauss and Gauss-Lobatto Integration 165
Exercises for Chapter 4 172
5 Numerical Solution of Ordinary Differential Equations 175
5.1. Elementary Theory of Initial-Value Problems 176
5.2. Taylor-Series Methods 179
5.2.1. The Euler Method 179
5.2.2. Higher-order Taylor Methods 185
5.3. Runge-Kutta Methods 188
5.3.1. Second-order Runge-Kutta method 189
5.3.2. Fourth-order Runge-Kutta method 191
5.3.3. Adaptive methods 193
5.4. One-Step Methods: Accuracy Comparison 194
5.5. Multi-step Methods 197
5.6. High-Order Equations \& Systems of Differential Equations 201
5.7. Implicit Methods and Implicit Differential Equations 208
5.7.1. Revisit of the Euler Method 208
5.7.2. Implicit Differential Equations 212
Exercises for Chapter 5 214
6 Gauss Elimination and Its Variants 217
6.1. Systems of Linear Equations 218
6.1.1. Nonsingular matrices 219
6.1.2. Numerical Solutions of Differential Equations 220
6.2. Triangular Systems 223
6.3. Gauss Elimination 226
6.3.1. The $L U$ Factorization/Decomposition 227
6.3.2. Gauss Elimination with Pivoting 233
6.3.3. The Computation of A^{-1} 237
Exercises for Chapter 6 238
7 Iterative Algebraic Solvers 239
7.1. Norms of Vectors and Matrices 240
7.1.1. Vectors 240
7.1.2. Vector and matrix norms 241
7.1.3. Matrix norms 243
7.2. Eigenvectors and Eigenvalues 245
7.2.1. Spectral radius 247
7.2.2. Convergent matrices 248
7.2.3. Invertible matrices 249
7.3. Iterative Algebraic Solvers 251
7.3.1. Basic concepts for iterative solvers 251
7.3.2. Richardson method: the simplest iteration 254
7.4. Relaxation Methods 256
7.5. Graph Theory: Estimation of the Spectral Radius 264
7.5.1. Irreducible matrices 264
7.5.2. Eigenvalue locus theorem 266
7.5.3. Regular splitting and M-matrices 269
7.6. Krylov Subspace Methods 270
7.6.1. Gradient descent (GD) method 271
7.6.2. Conjugate gradient (CG) method 272
7.6.3. Preconditioned CG method 276
7.7. Generalized Minimum Residuals - GMRES 277
7.7.1. Arnoldi Iteration 277
7.7.2. Derivation of the GMRES Method 280
Exercises for Chapter 7 283
8 Approximation Theory 285
8.1. Orthogonality and the Gram-Schmidt Process 286
8.1.1. Orthogonal projections 286
8.1.2. The Gram-Schmidt process 288
8.2. Least-Squares Approximation 290
8.2.1. The least-squares (LS) problem 291
8.2.2. Normal equations 293
8.3. Regression Analysis 295
8.3.1. Regression line 295
8.3.2. Least-squares fitting of other curves 298
8.3.3. Nonlinear regression: Linearization 299
8.4. Scene Analysis with Noisy Data: RANSAC 301
8.4.1. Weighted least-squares 301
8.4.2. RANdom SAmple Consensus (RANSAC) 303
8.5. Padé Rational Function Approximation 306
Exercises for Chapter 8 310
9 Eigenvalues and Matrix Decomposition 311
9.1. The Power Method 312
9.1.1. Power iteration 312
9.1.2. Symmetric Power Method 316
9.1.3. Inverse Power Method 319
9.2. QR Factorization 322
9.2.1. QR factorization by the Gram-Schmidt process 323
9.2.2. Householder reflectors 326
9.2.3. QR factorization by Householder reflectors 330
9.2.4. The QR method for finding eigenvalues 337
9.3. Singular Value Decomposition 340
9.3.1. Interpretation of the SVD 342
9.3.2. Properties of the SVD 346
9.3.3. Computation of the SVD 347
9.3.4. Application of the SVD for LS problems 351
9.4. Principal Component Analysis 354
9.4.1. Computation of principal components 355
9.4.2. Dimensionality reduction: Data compression 358
Exercises for Chapter 9 360
10 Machine Learning 363
10.1.What is Machine Learning? 364
10.1.1. Supervised learning 365
10.1.2. Unsupervised learning 368
10.2.Binary Classifiers 369
10.2.1. Adaline 372
10.2.2. Logistic Regression 374
10.3.Support Vector Machine 376
10.3.1. Linear SVM 376
10.3.2. The method of Lagrange multipliers 378
10.3.3. Solution of the linear SVM 381
10.3.4. The inseparable case: soft-margin classification 385
10.3.5. Nonlinear SVM and kernel trick 390
10.3.6. Solving the dual problem with SMO 394
10.4.Neural Networks 396
10.4.1. A simple network to classify handwritten digits 397
10.4.2. Implementing a network to classify digits [18] 401
10.5.Deep Learning: Convolutional Neural Networks 405
10.5.1. Introducing convolutional networks 406
10.5.2. CNNs, in practice 412
Exercises for Chapter 10 414
11 Boundary-Value Problems of One Variable 417
11.1.The Shooting Method 418
11.2.Finite Difference Methods 425
11.2.1. The FD discretization procedure 426
11.2.2. Existence and uniqueness of the FDM solution 430
11.3.Finite Element Methods 434
11.3.1. Variational formulation 434
11.3.2. Formulation of FEMs 434
11.4.FDMs for Non-constant Diffusion 435
12 Numerical Solutions to Partial Differential Equations 437
12.1.Parabolic PDEs in One Spatial Variable 438
12.2.Parabolic PDEs in Two Spatial Variables 439
12.3.Elliptic PDEs in Two Dimensions 440
13 Projects 441
P.1. Applications of Richardson Extrapolation for PDEs 442
Bibliography 449
Index 451

Chapter 1
 Mathematical Preliminaries

In this chapter, after briefly reviewing calculus and linear algebra, we study about computer arithmetic and convergence. The last section of the chapter presents a brief introduction on programming with Matlab/Octave.

Contents of Chapter 1

1.1. Review of Calculus . 2
1.2. Review of Linear Algebra . 13
1.3. Computer Arithmetic and Convergence . 26
1.4. Programming with Matlab/Octave . 33

Exercises for Chapter 1. 38

1.1. Review of Calculus

1.1.1. Continuity and differentiation

Continuity
Definition 1.1. A function f is continuous at x_{0} if

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \tag{1.1}
\end{equation*}
$$

In other words, if for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \text { for all } x \text { such that }\left|x-x_{0}\right|<\delta . \tag{1.2}
\end{equation*}
$$

Example 1.2. Examples and Discontinuities

Solution.

Ans: Jump discontinuity, infinite discontinuity, and removable discontinuity
Definition 1.3. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real numbers. This sequence has the limit x (converges to x), if for every $\varepsilon>0$ there exists a positive integer N_{ε} such that $\left|x_{n}-x\right|<\varepsilon$ whenever $n>N_{\varepsilon}$. The notation

$$
\lim _{n \rightarrow \infty} x_{n}=x \quad \text { or } \quad x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.
Theorem 1.4. If f is a function defined on a set X of real numbers and $x \in X$, then the following are equivalent:

- f is continuous at x
- If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence in X converging to x, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)
$$

Differentiation

Definition 1.5. Let f be a function defined on an open interval containing x_{0}. The function is differentiable at x_{0}, if

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right):=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{1.3}
\end{equation*}
$$

exists. The number $f^{\prime}\left(x_{0}\right)$ is called the derivative of f at x_{0}.

Important theorems for continuous/differentiable functions

Theorem 1.6. If the function f is differentiable at x_{0}, then f is continuous at x_{0}.

Note: The converse is not true.
Example 1.7. Consider $f(x)=|x|$.

Solution.

Theorem 1.8. (Intermediate Value Theorem; IVT): Suppose $f \in$ $C[a, b]$ and K is a number between $f(a)$ and $f(b)$. Then, there exists a number $c \in(a, b)$ for which $f(c)=K$.

Example 1.9. Show that $x^{5}-2 x^{3}+3 x^{2}=1$ has a solution in the interval $[0,1]$.
Solution. Define $f(x)=x^{5}-2 x^{3}+3 x^{2}-1$. Then check values $f(0)$ and $f(1)$ for the IVT.

Theorem 1.10. (Rolle's Theorem): Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If $f(a)=f(b)$, then there exists a number $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Mean Value Theorem (MVT)

Theorem 1.11. Suppose $f \in C[a, b]$ and f is differentiable on (a, b). Then there exists a number $c \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \tag{1.4}
\end{equation*}
$$

which can be equivalently written as

$$
\begin{equation*}
f(b)=f(a)+f^{\prime}(c)(b-a) . \tag{1.5}
\end{equation*}
$$

Example 1.12. Let $f(x)=x+\sin x$ be defined on [0,2]. Find c which assigns the average slope.

```
Solution, using Maple.
\(a:=0\) :
\(b:=2\) :
\(f:=x \rightarrow x+\sin (x):\)
\(A S:=\frac{f(b)-f(a)}{b-a}=1+\frac{1}{2} \sin (2)\)
\(\operatorname{evalf}(\%)=1.454648713\)
\(E Q N:=f(x)=\frac{f(b)-f(a)}{b-a}\)
        \(1+\cos (x)=1+\frac{1}{2} \sin (2)\)
\(c:=\operatorname{solve}(E Q N, x)\)
\[
\begin{equation*}
\arccos \left(\frac{1}{2} \sin (2)\right) \tag{7.2}
\end{equation*}
\]
\(\operatorname{evalf}(\%)=1.098818559\)
with(plots) :
\(x x:=\operatorname{Vector}(3): x x(1):=a: x x(2):=c: x x(3):=b:\)
\(y y:=\operatorname{Vector}(3): y y(1):=f(a): y y(2):=f(c): y y(3):=f(b):\)
\(p p:=\operatorname{plot}(x x, y y\), style \(=\) point, symbol \(=\) solidbox, symbolsize \(=15\), color \(=\) red \():\)
\(L:=x \rightarrow f(c) \cdot(x-c)+f(c):\)
\(M:=x \rightarrow A S \cdot(x-a)+f(a):\)
\(p f:=\operatorname{plot}([f(x), L(x), M(x)], x=a . . b\), thickness \(=[2,1,1]\), linestyle \(=[\) solid, solid,
longdash], color = black, legend \(=[\) " \(\mathrm{f}(\mathrm{x})\) ", "L(x)", "Average slope"], legendstyle \(=[\) font
\(=[\) "HELVETICA", 10], location \(=\) right \(]\) ) :
display ( \(\{p f, p p\}\) )
```

Figure 1.1: A maple implementation.

Figure 1.2: The resulting figure, from the implementation in Figure 1.1.

Theorem 1.13. (Extreme Value Theorem): If $f \in C[a, b]$, then there exist $c_{1}, c_{2} \in[a, b]$ for $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$ for all $x \in[a, b]$. In addition, if f is differentiable on (a, b), then the numbers c_{1} and c_{2} occur either at the endpoints of $[a, b]$ or where f^{\prime} is zero.

Example 1.14. Find the absolute minimum and absolute maximum values of $f(x)=5 * \cos (2 * x)-2 * x * \sin (2 * x)$ on the interval [1, 2].

```
a := 1: b := 2:
f := x -> 5*cos(2*x) - 2*x*sin(2*x):
fa := f(a);
    = 5 cos(2) - 2 sin(2)
fb := f(b);
    = 5 cos(4) - 4 sin(4)
#Now, find the derivative of "f"
fp := x -> diff(f(x), x):
fp(x);
    = -12 sin(2 x) - 4 x cos(2 x)
fsolve(fp(x), x, a..b);
    1.358229874
fc := f(%);
    -5.675301338
Maximum := evalf(max(fa, fb, fc));
    = -0.241008123
Minimum := evalf(min(fa, fb, fc));
    = -5.675301338
```

```
with(plots);
plot([f(x), fp(x)], x = a..b, thickness = [2, 2],
    linestyle = [solid, dash], color = black,
    legend = ["f(x)", "f'(x)"],
    legendstyle = [font = ["HELVETICA", 10], location = right]);
```


Figure 1.3: The figure from the Maple-code.

The following theorem can be derived by applying Rolle's Theorem successively to f, f^{\prime}, \cdots and finally to $f^{(n-1)}$.

Theorem 1.15. (Generalized Rolle's Theorem): Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If $f(x)=0$ at the $(n+1)$ distinct points $a \leq x_{0}<x_{1}<\cdots<x_{n} \leq b$, then there exists a number $c \in\left(x_{0}, x_{n}\right)$ such that $f^{(n)}(c)=0$.

1.1.2. Integration

Definition 1.16. The Riemann integral of a function f on the interval $[a, b]$ is the following limit, provided it exists:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}, \tag{1.6}
\end{equation*}
$$

where $a=x_{0}<x_{1}<\cdots<x_{n}=b$, with $\Delta x_{i}=x_{i}-x_{i-1}$ and x_{i}^{*} arbitrarily chosen in the subinterval $\left[x_{i-1}, x_{i}\right]$.

Note: Continuous functions are Riemann integrable, which allows us to choose, for computational convenience, the points x_{i} to be equally spaced in $[a, b]$ and choose $x_{i}^{*}=x_{i}$, where $x_{i}=a+i \Delta x, \Delta x=\frac{b-a}{n}$. In this case,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \tag{1.7}
\end{equation*}
$$

Theorem 1.17. (Fundamental Theorem of Calculus; FTC): Let f be continuous on $[a, b]$. Then,

Part I: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.
Part II: $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is an antiderivative of f, i.e. $F^{\prime}=f$.

Example 1.18. Use The Fundamental Theorem of Calculus to find $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{\sin 2 x} \sqrt{t^{3}+4} d t$

Solution.

Weighted Mean Value Theorem on Integral (WMVT)

Theorem 1.19. Suppose $f \in C[a, b]$, the Riemann integral of g exists on $[a, b]$, and $\boldsymbol{g}(\boldsymbol{x})$ does not change sign on $[a, b]$. Then, there exists a number $c \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x \tag{1.8}
\end{equation*}
$$

Example 1.20. Prove or disprove.

1. There exists a number $\xi \in(-\pi, \pi)$ such that

$$
\int_{-\pi}^{\pi} \ln (6 x+30) \sin x d x=\ln (6 \xi+30) \int_{-\pi}^{\pi} \sin x d x
$$

2. There exists a number $\xi \in\left(x_{0}, x_{1}\right), x_{0}<x_{1}$, such that

$$
\int_{x_{0}}^{x_{1}} \sin ^{2} x\left(x-x_{0}\right)\left(x-x_{1}\right) d x=\sin ^{2} \xi \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) d x
$$

Solution.

Remark 1.21. When $g(x) \equiv 1$, the WMVT becomes the usual Mean Value Theorem on Integral, which gives the average value of $f \in$ $C[a, b]$ over the interval $[a, b]$:

$$
\begin{equation*}
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.9}
\end{equation*}
$$

1.1.3. Taylor's Theorem

Theorem 1.22. (Taylor's Theorem with Lagrange Remainder):

Suppose $f \in C^{n}[a, b]$, $f^{(n+1)}$ exists on (a, b), and $x_{0} \in[a, b]$. Then, for every $x \in[a, b]$,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{R}_{n}(x) \tag{1.10}
\end{equation*}
$$

where, for some ξ between x and x_{0},

$$
\mathcal{R}_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Example 1.23. Let $f(x)=\cos (x)$ and $x_{0}=0$. Determine the second and third Taylor polynomials for f about x_{0}.

```
f := x -> cos(x):
fp := x -> -sin(x):
fpp := x -> -cos(x):
fp3 := x -> sin(x):
fp4 := x -> cos(x):
p2 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2!:
p2(x);
    = 1 - 1/2 x^2
R2 := fp3(xi)*x^3/3!;
    = 1/6 sin(xi) x^3
p3 := x -> f(0) + fp(0)*x/1! + fpp(0)*x^2/2! + fp3(0)*x^3/3!:
p3(x);
    = 1-1/2 x^2
R3 := fp4(xi)*x^4/4!;
    = 1/24 cos(xi) x^4
# On the other hand, you can find the Taylor polynomials easily
# using built-in functions in Maple:
s3 := taylor(f(x), x = 0, 4);
    = 1-1/2 x^2 + O(x^4)
convert(s3, polynom);
    = 1 - 1/2 x^2
```

```
plot([f(x), p3(x)], x = -2 .. 2, thickness = [2, 2],
    linestyle = [solid, dash], color = black,
    legend = ["f(x)", "p3(x)"],
    legendstyle = [font = ["HELVETICA", 10], location = right])
```


Figure 1.4: $f(x)=\cos x$ and its third Taylor polynomial $P_{3}(x)$.

Note: When $n=0, x=b$, and $x_{0}=a$, the Taylor's Theorem reads

$$
\begin{equation*}
f(b)=f(a)+\mathcal{R}_{0}(b)=f(a)+f^{\prime}(\xi) \cdot(b-a) \tag{1.11}
\end{equation*}
$$

which is the Mean Value Theorem.

Theorem 1.24. (Taylor's Theorem with Integral Remainder):

 Suppose $f \in C^{n}[a, b]$ and $x_{0} \in[a, b]$. Then, for every $x \in[a, b]$,$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{E}_{n}(x) \tag{1.12}
\end{equation*}
$$

where

$$
\mathcal{E}_{n}(x)=\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t) \cdot(x-t)^{n} d t
$$

Alternative Form of Taylor's Theorem

Remark 1.25. Suppose $f \in C^{n}[a, b], f^{(n+1)}$ exists on (a, b). Then, for every $x, x+h \in[a, b]$,

$$
\begin{equation*}
f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+\mathcal{R}_{n}(h) \tag{1.13}
\end{equation*}
$$

where, for some ξ between x and $x+h$,

$$
\mathcal{R}_{n}(h)=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}
$$

In detail,

$$
\begin{equation*}
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots+\frac{f^{(n)}(x)}{n!} h^{n}+\mathcal{R}_{n}(h) . \tag{1.14}
\end{equation*}
$$

Theorem 1.26. (Taylor's Theorem for Two Variables): Let $f \in$ $C^{(n+1)}([a, b] \times[c, d])$. If (x, y) and $(x+h, y+k)$ are points in $[a, b] \times[c, d] \subset \mathbb{R}^{2}$, then

$$
\begin{equation*}
f(x+h, y+k)=\sum_{i=0}^{n} \frac{1}{i!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{i} f(x, y)+\mathcal{R}_{n}(h, k) \tag{1.15}
\end{equation*}
$$

where

$$
\mathcal{R}_{n}(h, k)=\frac{1}{(n+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n+1} f(x+\theta h, y+\theta k),
$$

in which $\theta \in[0,1]$.
Note: For $n=1$, the Taylor's theorem for two variables reads

$$
\begin{equation*}
f(x+h, y+k)=f(x, y)+h f_{x}(x, y)+k f_{y}(x, y)+\mathcal{R}_{1}(h, k) \tag{1.16}
\end{equation*}
$$

where

$$
\mathcal{R}_{1}(h, k)=\mathcal{O}\left(h^{2}+k^{2}\right) .
$$

Equation (1.16), as a linear approximation or tangent plane approximation, will be used for various applications.

Example 1.27. Find the tangent plane approximation of

$$
f(x, y)=\frac{2 x+3}{4 y+1} \text { at }(0,0)
$$

```
\(\mathrm{f}:=(2 * \mathrm{x}+3) /(4 * \mathrm{y}+1):\)
f0 := eval (\%, \(\{x=0, y=0\})\);
    = 3
fx := diff(f, x);
    \(=2 /(4 * y+1)\)
fx0 := eval(\%, \(\{x=0, y=0\})\);
    \(=2\)
fy := \(\operatorname{diff}(f, y)\);
    \(=4 *(2 * x+3) /(4 * y+1)^{\wedge} 2\)
fy0 := eval(\%, \(\{x=0, y=0\})\);
    \(=-12\)
\# Thus the tangent plane approximation \(\$ \mathrm{~L}(\mathrm{x}, \mathrm{y}) \$\) at \(\$(0,0) \$\) is
    \(\mathrm{L}(\mathrm{x}, \mathrm{y})=3+2 * \mathrm{x}-12 * \mathrm{y}\)
```


1.2. Review of Linear Algebra

1.2.1. Vector Equations

Vectors

Definition 1.28. Let $\mathbf{u}=\left[u_{1}, u_{2}, \cdots, u_{n}\right]^{T}$ and $\mathbf{v}=\left[v_{1}, v_{2}, \cdots, v_{n}\right]^{T}$ are vectors in \mathbb{R}^{n}. Then, the inner product (or dot product) of u and v is given by

$$
\begin{align*}
\mathbf{u} \bullet \mathbf{v} & =\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \tag{1.17}\\
& =u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\sum_{k=1}^{n} u_{k} v_{k}
\end{align*}
$$

Definition 1.29. The length (Euclidean norm) of v is nonnegative scalar $\|\mathrm{v}\|$ defined by

$$
\begin{equation*}
\|\mathbf{v}\|=\sqrt{\mathbf{v}^{\bullet} \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \quad \text { and } \quad\|\mathbf{v}\|^{2}=\mathbf{v}^{\bullet} \mathbf{v} \tag{1.18}
\end{equation*}
$$

Definition 1.30. For $u, v \in \mathbb{R}^{n}$, the distance between u and v is

$$
\begin{equation*}
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| \tag{1.19}
\end{equation*}
$$

the length of the vector $\mathbf{u}-\mathbf{v}$.
Example 1.31. Let $\mathbf{u}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}3 \\ 2 \\ -4\end{array}\right]$. Find $\mathbf{u} \bullet \mathbf{v},\|\mathbf{u}\|$, and $\operatorname{dist}(\mathbf{u}, \mathbf{v})$.

Solution.

Definition 1.32. Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal if $\mathbf{u}^{\bullet} \mathbf{v}=0$.

Theorem 1.33. Pythagorean Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} \tag{1.20}
\end{equation*}
$$

Note: The inner product can be defined as

$$
\begin{equation*}
\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \tag{1.21}
\end{equation*}
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.
Example 1.34. Let $\mathbf{u}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 / 2 \\ \sqrt{3} / 2\end{array}\right]$. Use (1.21) to find the angle between \mathbf{u} and \mathbf{v}.

Solution.

System of Linear Equations

Linear systems of m equations of n unknowns can be expressed as the algebraic system:

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1.22}
\end{equation*}
$$

where $\mathbf{b} \in \mathbb{R}^{m}$ is the source (input), $\mathrm{x} \in \mathbb{R}^{n}$ is the solution (output), and

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n} .
$$

The above algebraic system can be solved by the elementary row operations applied to the augmented matrix, augmented system:

$$
\left[\begin{array}{lll}
A & \mathbf{b}
\end{array}\right]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{1.23}\\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

and by transforming it to the reduced echelon form.

Tools 1.35. Three Elementary Row Operations (ERO):

- Replacement: Replace one row by the sum of itself and a multiple of another row

$$
R_{i} \leftarrow R_{i}+k \cdot R_{j}, \quad j \neq i
$$

- Interchange: Interchange two rows

$$
R_{i} \leftrightarrow R_{j}, \quad j \neq i
$$

- Scaling: Multiply all entries in a row by a nonzero constant

$$
R_{i} \leftarrow k \cdot R_{i}, \quad k \neq 0
$$

Every elementary row operation can be expressed as a matrix to be leftmultiplied. Such a matrix is called an elementary matrix.

Example 1.36. Solve the following system of linear equations, using the 3 EROs. Then, determine if the system is consistent.

$$
\begin{aligned}
4 x_{2}+2 x_{3} & =6 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
4 x_{1}-8 x_{2}+12 x_{3} & =8
\end{aligned}
$$

Solution.

Example 1.37. Find the parabola $y=a_{0}+a_{1} x+a_{2} x^{2}$ that passes through $(1,1),(2,2)$, and $(3,5)$.

Solution.

1.2.2. Invertible (nonsingular) matrices

Definition 1.38. An $n \times n$ matrix A is said to be invertible (nonsingular) if there is an $n \times n$ matrix B such that $A B=I_{n}=B A$, where I_{n} is the identity matrix.

Note: In this case, B is the unique inverse of A denoted by A^{-1}.
(Thus $A A^{-1}=I_{n}=A^{-1} A$.)
Theorem 1.39. (Inverse of an $n \times n$ matrix, $n \geq 2$) An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n} and in this case any sequence of elementary row operations that reduces A into I_{n} will also reduce I_{n} to A^{-1}.

Algorithm 1.40. Algorithm to find A^{-1} :

1) Row reduce the augmented matrix $\left[A: I_{n}\right]$
2) If A is row equivalent to I_{n}, then $\left[A: I_{n}\right]$ is row equivalent to $\left[I_{n}\right.$: $\left.A^{-1}\right]$. Otherwise A does not have any inverse.
Example 1.41. Find the inverse of $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

Solution.

Theorem 1.42.

a. (Inverse of a 2×2 matrix) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \tag{1.24}\\
-c & a
\end{array}\right]
$$

b. If A is an invertible matrix, then A^{-1} is also invertible; $\left(A^{-1}\right)^{-1}=A$.
c. If A and B are $n \times n$ invertible matrices then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
d. If A is invertible, then A^{T} is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
e. If A is an $n \times n$ invertible matrix, then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathrm{x}=\mathrm{b}$ has a unique solution $\mathrm{x}=A^{-1} \mathbf{b}$.

Theorem 1.43. (Invertible Matrix Theorem) Let A be an $n \times n$ matrix. Then the following are equivalent.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The columns of A are linearly independent.
e. The equation $A \mathrm{x}=0$ has only the trivial solution $\mathrm{x}=0$.
f. The equation $A \mathrm{x}=\mathrm{b}$ has unique solution for each $\mathrm{b} \in \mathbb{R}^{n}$.
g. The linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ is one-to-one.
h. The linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
i. There is a matrix $C \in \mathbb{R}^{n \times n}$ such that $C A=I$
j. There is a matrix $D \in \mathbb{R}^{n \times n}$ such that $A D=I$
k. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
l. The number 0 is not an eigenvalue of A.
m. $\operatorname{det} A \neq 0$.

1.2.3. Determinants

Definition 1.44. Let A be an $n \times n$ square matrix. Then determinant is a scalar value denoted by $\operatorname{det} A$ or $|A|$.

1) Let $A=[a] \in \mathbb{R}^{1 \times 1}$. Then $\operatorname{det} A=a$.
2) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then $\operatorname{det} A=a d-b c$.

Example 1.45. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$. Consider a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathrm{x})=A \mathrm{x}$.
a. Find the determinant of A.
b. Determine the image of a rectangle $R=[0,2] \times[0,1]$ under T.
c. Find the area of the image.
d. Figure out how $\operatorname{det} A$, the area of the rectangle (=2), and the area of the image are related.

Solution.

Ans: c. 12
Note: The determinant can be viewed as the volume scaling factor.

Definition 1.46. Let $A_{i j}$ be the submatrix of A obtained by deleting row i and column j of A. Then the (i, j)-cofactor of $A=\left[a_{i j}\right]$ is the scalar $C_{i j}$, given by

$$
\begin{equation*}
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} . \tag{1.25}
\end{equation*}
$$

Definition 1.47. For $n \geq 2$, the determinant of an $n \times n$ matrix $A=$ $\left[a_{i j}\right]$ is given by the following formulas:

1. The cofactor expansion across the first row:

$$
\begin{equation*}
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \tag{1.26}
\end{equation*}
$$

2. The cofactor expansion across the row i :

$$
\begin{equation*}
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \tag{1.27}
\end{equation*}
$$

3. The cofactor expansion down the column j :

$$
\begin{equation*}
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \tag{1.28}
\end{equation*}
$$

Example 1.48. Find the determinant of $A=\left[\begin{array}{rrr}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$, by expanding across the first row and down column 3 .

Solution.

1.2.4. Eigenvectors and eigenvalues

Definition 1.49. Let A be an $n \times n$ matrix. An eigenvector of A is a nonzero vector x such that $A \mathrm{x}=\lambda \mathrm{x}$ for some scalar λ. In this case, a scalar λ is an eigenvalue and x is the corresponding eigenvector.

Definition 1.50. The scalar equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A; the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of A. The solutions of $\operatorname{det}(A-\lambda I)=0$ are the eigenvalues of A.

Example 1.51. Find the characteristic polynomial and all eigenvalues of $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 6 & 0 & 5 \\ 0 & 0 & 2\end{array}\right]$

Solution.

Remark 1.52. Let A be an $n \times n$ matrix. Then the characteristic equation of A is of the form

$$
\begin{align*}
p(\lambda)=\operatorname{det}(A-\lambda I) & =(-1)^{n}\left(\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}\right) \\
& =(-1)^{n} \prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right) \tag{1.29}
\end{align*}
$$

where some of eigenvalues λ_{i} can be complex-valued numbers. Thus

$$
\begin{equation*}
\operatorname{det} A=p(0)=(-1)^{n} \prod_{i=1}^{n}\left(0-\lambda_{i}\right)=\prod_{i=1}^{n} \lambda_{i} . \tag{1.30}
\end{equation*}
$$

That is, $\operatorname{det} A$ is the product of all eigenvalues of A.

Theorem 1.53. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}$ of $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}\right\}$ is linearly independent.

Proof.

- Assume that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}\right\}$ is linearly dependent.
- One of the vectors in the set is a linear combination of the preceding vectors.
- $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is linearly independent; \mathbf{v}_{p+1} is a linear combination of the preceding vectors.
- Then, there exist scalars $c_{1}, c_{2}, \cdots, c_{p}$ such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{v}_{p+1} \tag{1.31}
\end{equation*}
$$

- Multiplying both sides of (1.31) by A, we obtain

$$
c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+\cdots+c_{p} A \mathbf{v}_{p}=A \mathbf{v}_{p+1}
$$

and therefore, using the fact $A \mathbf{v}_{\mathbf{k}}=\lambda_{k} \mathbf{v}_{\mathbf{k}}$:

$$
\begin{equation*}
c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{p}=\lambda_{p+1} \mathbf{v}_{p+1} \tag{1.32}
\end{equation*}
$$

- Multiplying both sides of (1.31) by λ_{p+1} and subtracting the result from (1.32), we have

$$
\begin{equation*}
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{2}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{p}=\mathbf{0} \tag{1.33}
\end{equation*}
$$

- Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is linearly independent,

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right)=0, \quad c_{2}\left(\lambda_{2}-\lambda_{p+1}\right)=0, \cdots, \quad c_{p}\left(\lambda_{p}-\lambda_{p+1}\right)=0 .
$$

- Since $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}$ are distinct,

$$
c_{1}=c_{2}=\cdots=c_{p}=0 \Rightarrow \mathbf{v}_{p+1}=\mathbf{0}
$$

which is a contradiction.

1.2.5. Vector and matrix norms

Definition 1.54. A norm (or, vector norm) on \mathbb{R}^{n} is a function that assigns to each $\mathrm{x} \in \mathbb{R}^{n}$ a nonnegative real number $\|\mathrm{x}\|$ such that the following three properties are satisfied: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$,

$$
\begin{array}{ll}
\|\mathbf{x}\|>0 \text { if } \mathbf{x} \neq 0 & \text { (positive definiteness) } \\
\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\| & \text { (homogeneity) } \tag{1.34}\\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Example 1.55. The most common norms are

$$
\begin{equation*}
\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{1.35}
\end{equation*}
$$

which we call the p-norms, and

$$
\begin{equation*}
\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|, \tag{1.36}
\end{equation*}
$$

which is called the infinity-norm or maximum-norm.
Note: Two of frequently used p-norms are

$$
\begin{equation*}
\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|, \quad\|\mathbf{x}\|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / 2} \tag{1.37}
\end{equation*}
$$

The 2-norm is also called the Euclidean norm, often denoted by $\|\cdot\|$.
Example 1.56. One may consider the infinity-norm as the limit of p norms, as $p \rightarrow \infty$.

Solution.

Definition 1.57. A matrix norm on $m \times n$ matrices is a vector norm on the $m n$-dimensional space, satisfying

$$
\begin{array}{ll}
\|A\| \geq 0, \text { and }\|A\|=0 \Leftrightarrow A=0 & \text { (positive definiteness) } \\
\|\lambda A\|=|\lambda|\|A\| & \text { (homogeneity) } \tag{1.38}\\
\|A+B\| \leq\|A\|+\|B\| & \text { (triangle inequality) }
\end{array}
$$

Example 1.58. $\|A\|_{F} \equiv\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}$ is called the Frobenius norm.
Definition 1.59. Once a vector norm $\|\cdot\|$ has been specified, the induced matrix norm is defined by

$$
\begin{equation*}
\|A\|=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} . \tag{1.39}
\end{equation*}
$$

It is also called an operator norm or subordinate norm.

Theorem 1.60.

a. For all operator norms and the Frobenius norm,

$$
\begin{equation*}
\|A x\| \leq\|A\|\|x\|, \quad\|A B\| \leq\|A\|\|B\| . \tag{1.40}
\end{equation*}
$$

b. $\|A\|_{1} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}}=\max _{j} \sum_{i}\left|a_{i j}\right|$
c. $\|A\|_{\infty} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}=\max _{i} \sum_{j}\left|a_{i j}\right|$
d. $\|A\|_{2} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$,
where $\lambda_{\text {max }}$ denotes the largest eigenvalue.
e. $\|A\|_{2}=\left\|A^{T}\right\|_{2}$.
f. $\|A\|_{2}=\max _{i}\left|\lambda_{i}(A)\right|$, when $A^{T} A=A A^{T}$ (normal matrix).

Definition 1.61. Let $A \in \mathbb{R}^{n \times n}$. Then

$$
\kappa(A) \equiv\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A, associated to the matrix norm.
Example 1.62. Let $A=\left[\begin{array}{rrr}1 & 2 & -2 \\ 0 & 4 & 1 \\ 1 & -2 & 2\end{array}\right]$. Then, we have

$$
A^{-1}=\frac{1}{20}\left[\begin{array}{rrr}
10 & 0 & 10 \\
1 & 4 & -1 \\
-4 & 4 & 4
\end{array}\right] \text { and } A^{T} A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 24 & -4 \\
0 & -4 & 9
\end{array}\right]
$$

a. Find $\|A\|_{1},\|A\|_{\infty}$, and $\|A\|_{2}$.
b. Compute the ℓ^{1}-condition number $\kappa_{1}(A)$.

Solution.

1.3. Computer Arithmetic and Convergence

Errors in Machine Numbers and Computational Results

- Numbers are saved with an approximation by either rounding or chopping.
- integer: in 4 bites (32 bits)
- float: in 4 bites
- double: in 8 bites (64 bits)
- Computations can be carried out only for finite sizes of data points.

```
                                    Maple-code
    = Pi
evalf(Pi);
    = 3.141592654
evalf[8](Pi);
    = 3.1415927
evalf [16] (Pi);
    = 3.141592653589793
evalf(Pi)*(evalf[8](Pi) - evalf[16](Pi));
    = 1.445132621*E-07
#On the other hand,
Pi*(Pi - Pi);
    = 0
```

Definition 1.63. Suppose that p^{*} is an approximation to p. Then

- The absolute error is $\left|p-p^{*}\right|$, and
- the relative error is $\frac{\left|p-p^{*}\right|}{|p|}$, provided that $p \neq 0$.

Definition 1.64. The number p^{*} is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$
\frac{\left|p-p^{*}\right|}{|p|} \leq 5 \times 10^{-t}
$$

1.3.1. Computational algorithms

Definition 1.65. An algorithm is a procedure that describes, in an unambiguous manner, a finite sequence of steps to be carried out in a specific order.

Algorithms consist of various steps for inputs, outputs, and functional operations, which can be described effectively by a so-called pseudocode.

Definition 1.66. An algorithm is called stable, if small changes in the initial data produce correspondingly small changes in the final results. Otherwise, it is called unstable. Some algorithms are stable only for certain choices of data/parameters, and are called conditionally stable.

Notation 1.67. (Growth rates of the error): Suppose that $E_{0}>0$ denotes an error introduced at some stage in the computation and E_{n} represents the magnitude of the error after n subsequent operations.

- If $E_{n}=C \times n E_{0}$, where C is a constant independent of n, then the growth of error is said to be linear, for which the algorithm is stable.
- If $E_{n}=C^{n} E_{0}$, for some $C>1$, then the growth of error is exponential, which turns out unstable.

Rates (Orders) of Convergence

Definition 1.68. Let $\left\{x_{n}\right\}$ be a sequence of real numbers tending to a limit x^{*}.

- The rate of convergence is at least linear if there are a constant $c_{1}<1$ and an integer N such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq c_{1}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N . \tag{1.41}
\end{equation*}
$$

- We say that the rate of convergence is at least superlinear if there exist a sequence ε_{n} tending to 0 and an integer N such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq \varepsilon_{n}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N . \tag{1.42}
\end{equation*}
$$

- The rate of convergence is at least quadratic if there exist a constant C (not necessarily less than 1) and an integer N such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq C\left|x_{n}-x^{*}\right|^{2}, \quad \forall n \geq N \tag{1.43}
\end{equation*}
$$

- In general, we say that the rate of convergence is of α at least if there exist a constant C (not necessarily less than 1 for $\alpha>1$) and an integer N such that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq C\left|x_{n}-x^{*}\right|^{\alpha}, \quad \forall n \geq N \tag{1.44}
\end{equation*}
$$

Example 1.69. Consider a sequence defined recursively as

$$
\begin{equation*}
x_{1}=2, \quad x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} \tag{1.45}
\end{equation*}
$$

(a) Find the limit of the sequence; (b) show that the convergence is quadratic.

Hint: You may first prove that $x_{n}>\sqrt{2}$ for all $n \geq 1\left(\odot x_{n+1}^{2}-2>0\right)$. Then you can see that $x_{n+1}<x_{n}\left(\odot x_{n}-x_{n+1}=x_{n}\left(\frac{1}{2}-\frac{1}{x_{n}^{2}}\right)>0\right)$.

Solution.

1.3.2. Big \mathcal{O} and little o notation

Definition 1.70.

- A sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is said to be in \mathcal{O} (big Oh) of $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ if a positive number K exists for which

$$
\begin{equation*}
\left|\alpha_{n}\right| \leq K\left|\beta_{n}\right|, \text { for large } n\left(\text { or equivalently, } \frac{\left|\alpha_{n}\right|}{\left|\beta_{n}\right|} \leq K\right) \tag{1.46}
\end{equation*}
$$

In this case, we say " α_{n} is in $\mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$ " and denote $\alpha_{n} \in \mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$ or $\alpha_{n}=$ $\mathcal{O}\left(\boldsymbol{\beta}_{n}\right)$.

- A sequence $\left\{\alpha_{n}\right\}$ is said to be in \boldsymbol{o} (little oh) of $\left\{\beta_{n}\right\}$ if there exists a sequence ε_{n} tending to 0 such that

$$
\begin{equation*}
\left|\alpha_{n}\right| \leq \varepsilon_{n}\left|\beta_{n}\right|, \text { for large } n\left(\text { or equivalently, } \lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}\right|}{\left|\beta_{n}\right|}=0\right) \tag{1.47}
\end{equation*}
$$

In this case, we say " α_{n} is in $\boldsymbol{o}\left(\boldsymbol{\beta}_{n}\right)$ " and denote $\alpha_{n} \in \boldsymbol{o}\left(\boldsymbol{\beta}_{n}\right)$ or $\alpha_{n}=$ $o\left(\boldsymbol{\beta}_{n}\right)$.
Example 1.71. Show that $\alpha_{n}=\frac{n+1}{n^{2}}=\mathcal{O}\left(\frac{1}{n}\right)$ and

$$
f(n)=\frac{n+3}{n^{3}+20 n^{2}} \in \mathcal{O}\left(n^{-2}\right) \cap o\left(n^{-1}\right)
$$

Solution.

Definition 1.72. Suppose $\lim _{h \rightarrow 0} G(h)=0$. A quantity $F(h)$ is said to be in
\mathcal{O} (big Oh) of $G(h)$ if a positive number K exists for which

$$
\begin{equation*}
\frac{|F(h)|}{|G(h)|} \leq K, \text { for } h \text { sufficiently small. } \tag{1.48}
\end{equation*}
$$

In this case, we say $F(h)$ is in $\mathcal{O}(G(h))$, and denote $F(h) \in \mathcal{O}(G(h))$. Little oh of $\boldsymbol{G}(\boldsymbol{h})$ can be defined the same way as for sequences.

Example 1.73. Taylor's series expansion for $\cos (x)$ is given as

$$
\begin{aligned}
\cos (x) & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots \\
& =1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots
\end{aligned}
$$

If you use a computer algebra software (e.g. Maple), you will obtain

$$
\operatorname{tay} \operatorname{lor}(\cos (\mathrm{x}), \mathrm{x}=0,4)=1-\frac{1}{2!} x^{2}+\mathcal{O}\left(x^{4}\right)
$$

which implies that

Indeed,

$$
\begin{equation*}
\underbrace{\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots}_{=: F(x)}=\mathcal{O}\left(\mathbf{x}^{4}\right) \tag{1.49}
\end{equation*}
$$

$$
\begin{equation*}
\frac{|F(x)|}{\left|x^{4}\right|}=\left|\frac{1}{24}-\frac{1}{720} x^{2}+\cdots\right| \leq \frac{1}{24}, \text { for sufficiently small } x \tag{1.50}
\end{equation*}
$$

Thus $F(x) \in \mathcal{O}\left(x^{4}\right)$.
Example 1.74. Choose the correct assertions (in each, $n \rightarrow \infty$)
a. $\left(n^{2}+1\right) / n^{3} \in o(1 / n)$
b. $(n+1) / \sqrt{n} \in o(1)$
c. $1 / \ln n \in \mathcal{O}(1 / n)$
d. $1 /(n \ln n) \in o(1 / n)$
e. $e^{n} / n^{5} \in \mathcal{O}(1 / n)$

Example 1.75. Determine the best integer value of k in the following equation

$$
\arctan (x)=x+\mathcal{O}\left(x^{k}\right), \quad \text { as } x \rightarrow 0
$$

Solution.

Ans: $k=3$.
Self-study 1.76. Let $f(h)=\frac{1}{h}\left(1+h-e^{h}\right)$. What are the limit and the rate of convergence of $f(h)$ as $h \rightarrow 0$?
Solution.

Self-study 1.77. Show that these assertions are not true.
a. $e^{x}-1=\mathcal{O}\left(x^{2}\right)$, as $x \rightarrow 0$
b. $x=\mathcal{O}\left(\tan ^{-1} x\right)$, as $x \rightarrow 0$
c. $\sin x \cos x=o(x)$, as $x \rightarrow 0$

Solution.

Example 1.78. Let $\left\{a_{n}\right\} \rightarrow 0$ and $\lambda>1$. Show that

$$
\sum_{k=0}^{n} a_{k} \lambda^{k}=o\left(\lambda^{n}\right), \quad \text { as } n \rightarrow \infty
$$

Hint: $\frac{\left|\sum_{k=0}^{n} a_{k} \lambda^{k}\right|}{\left|\lambda^{n}\right|}=\left|a_{n}+a_{n-1} \lambda^{-1}+\cdots+a_{0} \lambda^{-n}\right|=: \varepsilon_{n}$. Then, we have to show $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. For this, you can first observe $\varepsilon_{n+1}=a_{n+1}+\frac{1}{\lambda} \varepsilon_{n}$, which implies that ε_{n} is bounded and converges to ε. Now, can you see $\varepsilon=0$?

Solution.

1.4. Programming with Matlab/Octave

Note: In computer programming, important things are

- How to deal with objects (variables, arrays, functions)
- How to deal with repetition effectively
- How to make the program reusable

Vectors and matrices

The most basic thing you will need to do is to enter vectors and matrices. You would enter commands to Matlab or Octave at a prompt that looks like >>.

- Rows are separated by semicolons (;) or Enter.
- Entries in a row are separated by commas (,) or space Space.

For example,

Vectors and Matrices \qquad

```
>>u=[1;2;3] % column vector
```

$\mathrm{u}=$
1
2
3
$\gg v=[4 ; 5 ; 6]$;
$\gg \mathrm{u}+2^{*} \mathrm{v}$
ans $=$
9
12
15
$\gg w=[5,6,7,8] \quad \%$ row vector
$\mathrm{w}=$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
$\gg A=[21 ; 12] ; \quad \%$ matrix
$\gg B=[-2,5$
$1,2]$
$B=$
-2 5
12
$\gg \mathrm{C}=\mathrm{A} * \mathrm{~B}$ \% matrix multiplication
$\mathrm{C}=$
-3 12
$0 \quad 9$

You can save the commands in a file to run and get the same results.

```
tutorial1_vectors.m
```

```
u = [1; 2; 3]
v = [4; 5; 6];
u + 2*v
W}=[5,6,7,8
A = [2 1; 1 2];
B = [-2, 5
    1, 2]
C = A*B
```


Solving equations

Let $A=\left[\begin{array}{rrr}1 & -4 & 2 \\ 0 & 3 & 5 \\ 2 & 8 & -4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}3 \\ -7 \\ -3\end{array}\right]$. Then $A \mathbf{x}=\mathbf{b}$ can be numerically solved by implementing a code as follows.

Graphics with Matlab

In Matlab, the most popular graphic command is plot, which creates a 2D line plot of the data in Y versus the corresponding values in X. A general syntax for the command is
plot(X1,Y1,LineSpec1, . . , Xn, Yn, LineSpecn)

```
tutorial3_plot.m
close all
%% a curve
X1 = linspace(0,2*pi,10); % n=10
Y1 = cos(X1);
%% another curve
X2=linspace(0,2*pi,20); Y2=sin(X2);
%% plot together
plot(X1,Y1,'-or',X2,Y2,'--b','linewidth',3);
legend({'y=cos(x)', 'y=sin(x)'},'location','best', ...
    'FontSize',16,'textcolor','blue')
print -dpng 'fig_cos_sin.png'
```


Figure 1.5: fig_cos_sin.png: plot of $y=\cos x$ and $y=\sin x$.

Above tutorial3_plot.m is a typical M-file for figuring with plot.

- Line 1: It closes all figures currently open.
- Lines 3, 4, 7, and 10 (comments): When the percent sign (\%) appears, the rest of the line will be ignored by Matlab.
- Lines 4 and 8: The command linspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$) returns a row vector of n evenly spaced points between $x 1$ and $x 2$.
- Line 11: Its result is a figure shown in Figure 1.5.
- Line 14: it saves the figure into a png format, named fig_cos_sin.png.

Repetition: iteration loops

Note: In scientific computation, one of most frequently occurring events is repetition. Each repetition of the process is also called an iteration. It is the act of repeating a process, to generate a (possibly unbounded) sequence of outcomes, with the aim of approaching a desired goal, target or result. Thus,

- iteration must start with an initialization (starting point) and
- perform a step-by-step marching in which the results of one iteration are used as the starting point for the next iteration.

In the context of mathematics or computer science, iteration (along with the related technique of recursion) is a very basic building block in programming. Matlab provides various types of loops: while loops, for loops, and nested loops.

while loop

The syntax of a while loop in Matlab is as follows.

```
while <expression>
    <statements>
end
```

An expression is true when the result is nonempty and contains all nonzero elements, logical or real numeric; otherwise the expression is false. Here is an example for the while loop.

```
n1=11; n2=20;
sum=n1;
while n1<n2
    n1 = n1+1; sum = sum+n1;
end
fprintf('while loop: sum=%d\n',sum);
```

When the code above is executed, the result will be:

```
while loop: sum=155
```


for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times. The syntax of a for loop in Matlab is as following:

```
for index = values
    <program statements>
end
```

Here is an example for the for loop.

```
n1=11; n2=20;
sum=0;
for i=n1:n2
    sum = sum+i;
end
fprintf('for loop: sum=%d\n',sum);
```

When the code above is executed, the result will be:

```
for loop: sum=155
```


Functions: Enhancing reusability

Program scripts can be saved to reuse later conveniently. For example, the script for the summation of integers from n1 to n 2 can be saved as a form of function.
mysum.m

```
function s = mysum(n1,n2)
% sum of integers from n1 to n2
s=0;
for i=n1:n2
    s = s+i;
end
```

Now, you can call it with e.g. mysum $(11,20)$.
Then the result reads ans $=155$.

Exercises for Chapter 1

1.1. Prove that the following equations have at least one solution in the given intervals.
(a) $x-(\ln x)^{3}=0, \quad[5,7]$
(b) $(x-1)^{2}-2 \sin (\pi x / 2)=0, \quad[0,2]$
(c) $x-3-x^{2} e^{-x}=0, \quad[2,4]$
(d) $5 x \cos (\pi x)-2 x^{2}+3=0, \quad[0,2]$

Ans: (d) $f(0)=3, f(2)=5$, and $f(1)=-4$.
1.2. C ${ }^{1}$ Let $f(x)=5 x \cos (3 x)-(x-1)^{2}$ and $x_{0}=0$.
(a) Find the third Taylor polynomial of f about $x=x_{0}, p_{3}(x)$, and use it to approximate $f(0.2)$.
(b) Use the Taylor's Theorem (Theorem 1.22) to find an upper bound for the error $\left|f(x)-p_{3}(x)\right|$ at $x=0.2$. Compare it with the actual error.
(c) Find the fifth Taylor polynomial of f about $x=x_{0}, p_{5}(x)$, and use it to approximate $f(0.2)$.
(d) Use the Taylor's Theorem to find an upper bound for the error $\left|f(x)-p_{5}(x)\right|$ at $x=0.2$. Compare it with the actual error.
Ans: (b) $\left|f(0.2)-p_{3}(0.2)\right|=|0.1853356149096783-0.18|=0.005335614909678 . \quad \mathcal{R}_{3}(0.2)=$ $\frac{f^{(4)}(\xi)}{4!}(0.2)^{4}=\frac{9}{250} \sin (3 \xi)+\frac{27}{1000} \xi \cos (3 \xi)$. Now, try to estimate the upper bound of $\max \left|\mathcal{R}_{3}\right|$.
1.3. For the fair (x_{n}, α_{n}), is it true that $x_{n}=\mathcal{O}\left(\alpha_{n}\right)$ as $n \rightarrow \infty$?
(a) $x_{n}=3 n^{2}-n^{4}+1 ; \quad \alpha_{n}=3 n^{2}$
(b) $x_{n}=n-\frac{1}{\sqrt{n}}+1 ; \quad \alpha_{n}=\sqrt{n}$
(c) $x_{n}=\sqrt{n-10} ; \quad \alpha_{n}=1$
(d) $x_{n}=-n^{2}+1 ; \quad \alpha_{n}=n^{3}$

Ans: (d)
1.4. Let a sequence x_{n} be defined recursively by $x_{n+1}=g\left(x_{n}\right)$, where g is continuously differentiable. Suppose that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$ and $g^{\prime}\left(x^{*}\right)=0$. Show that

$$
\begin{equation*}
x_{n+2}-x_{n+1}=o\left(x_{n+1}-x_{n}\right) . \tag{1.51}
\end{equation*}
$$

Hint: Begin with

$$
\left|\frac{x_{n+2}-x_{n+1}}{x_{n+1}-x_{n}}\right|=\left|\frac{g\left(x_{n+1}\right)-g\left(x_{n}\right)}{x_{n+1}-x_{n}}\right|,
$$

[^0]and use the Mean Value Theorem (on page 4) and the fact that is continuously differentiable, to show that the quotient converges to zero as $n \rightarrow \infty$.
1.5. A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be skew-symmetric if $A^{T}=-A$. Prove that if A is skew-symmetric, then $\mathrm{x}^{T} A \mathrm{x}=0$ for all $\mathrm{x} \in \mathbb{R}^{n}$.
Hint: The quantity $\mathbf{x}^{T} A \mathbf{x}$ is scalar so that $\left(\mathbf{x}^{T} A \mathbf{x}\right)^{T}=\mathbf{x}^{T} A \mathbf{x}$.
1.6. Suppose that A, B, and C are square matrices and that $A B C$ is invertible. Show that each of A, B, and C is invertible.
1.7. Find the determinant and eigenvalues of the following matrices, if it exists. Compare the determinant with the product of eigenvalues, i.e. check if (1.30) is true.

(a) $P=\left[\begin{array}{ll}2 & 3 \\ 7 & 6\end{array}\right]$
(c) $R=\left[\begin{array}{rrr}6 & 0 & 5 \\ 0 & 4 & 0 \\ 1 & -5 & 2\end{array}\right]$
(b) $Q=\left[\begin{array}{rr}1 & 2 \\ -3 & 1 \\ 0 & 1\end{array}\right]$
(d) $S=\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 7\end{array}\right]$
1.8. Show that the ℓ^{2}-norm $\|\mathrm{x}\|_{2}$, defined as

$$
\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

satisfies the three conditions in (1.34), page 23.
Hint: For the last condition, you may begin with

$$
\|\mathbf{x}+\mathbf{y}\|_{2}^{2}=(\mathbf{x}+\mathbf{y}) \bullet(\mathbf{x}+\mathbf{y})=\|\mathbf{x}\|_{2}^{2}+2 \mathrm{x}^{\bullet} \mathbf{y}+\|\mathbf{y}\|_{2}^{2} .
$$

Now, compare this with $\left(\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}\right)^{2}$.
1.9. Show that $\|\mathrm{x}\|_{\infty} \leq\|\mathrm{x}\|_{2} \leq\|\mathrm{x}\|_{1}$ for all $\mathrm{x} \in \mathbb{R}^{n}$.

Сhapter 2
 Solutions of Nonlinear Equations

Through the chapter, the objective is to find solutions for equations of the form

$$
\begin{equation*}
f(x)=0 . \tag{2.1}
\end{equation*}
$$

Various numerical methods will be considered for the solutions of (2.1). Although the methods will be derived for a simple form of equations, they will be applicable for various general problems.

Contents of Chapter 2

2.1. The Bisection Method . 42
2.2. Fixed-Point Iteration . 49
2.3. Newton's Method and Its Variants . 56
2.4. Zeros of Polynomials . 67

2.1. The Bisection Method

It is also called the binary-search method or interval-halving method.
Note: The objective is to find solutions for

$$
\begin{equation*}
f(x)=0 . \tag{2.2}
\end{equation*}
$$

2.1.1. Implementation of the bisection method

Assumption. For the bisection method, we assume that

1) f is continuous in $[a, b]$.
2) $f(a) \cdot f(b)<0$ (so that there must be a solution by the IVT).
3) There is a single solution in $[a, b]$.

Pseudocode 2.1. The Bisection Method:

- Given $\left[a_{1}, b_{1}\right]=[a, b], \quad p_{1}=\left(a_{1}+b_{1}\right) / 2$;
- For $n=1,2, \cdots$, itmax

$$
\begin{aligned}
& \text { if }\left(f\left(p_{n}\right)=0\right) \text { then } \\
& \quad \text { stop; } \\
& \text { elseif }\left(f\left(a_{n}\right) \cdot f\left(p_{n}\right)<0\right) \text { then } \\
& \quad a_{n+1}=a_{n} ; b_{n+1}=p_{n} ; \\
& \text { else } \\
& \quad a_{n+1}=p_{n} ; b_{n+1}=b_{n} ; \\
& \text { endif } \\
& p_{n+1}=\left(a_{n+1}+b_{n+1}\right) / 2
\end{aligned}
$$

Example 2.2. Find the solution of the equation $x^{3}+4 x^{2}-10=0$ in [1, 2].

```
with(Student[NumericalAnalysis]):
f := x -> x^3 + 4*x^2 - 10:
Bisection(f(x), x = [1,2], tolerance = 0.1,
    stoppingcriterion = absolute, output = sequence);
            [1., 2.],
            [1., 1.500000000],
            [1.250000000, 1.500000000],
            [1.250000000, 1.375000000],
            1.312500000
Bisection(f(x), x = [1, 2], tolerance = 0.1,
    stoppingcriterion = absolute, output = plot)
```


$$
\begin{aligned}
& 4 \text { iteration(s) of the bisection method } \\
& \text { applied to } f(x)=x^{3}+4 x^{2}-10 \text { with initial } \\
& \text { points } a=1 \text {. and } b=2 \text {. }
\end{aligned}
$$

Figure 2.1: The bisection method.

```
\(>\) bisection2 := proc(a0, b0, TOL, itmax)
    local \(k, a, b, p, p p, f p ;\)
    \(\mathrm{a}:=\mathrm{aO}\);
    \(\mathrm{b}:=\mathrm{b} 0\);
    \(\mathrm{p}:=(\mathrm{a}+\mathrm{b}) / 2 ; p p:=p+10 \cdot T O L\)
    \(\mathrm{fp}:=\mathrm{f}(\mathrm{p})\);
    \(\mathrm{k}:=1\);
    printf( \((\mathrm{k}=\% 2 \mathrm{~d}: \mathrm{a}=\% 9 \mathrm{f} \mathrm{b}=\% 9 \mathrm{f} \mathrm{p}=\% 9 \mathrm{f} \mathrm{f}(\mathrm{p})=\% 9 \mathrm{f} \backslash \mathrm{n} ", k, a, b, p, f p)\);
    while ( \(k \leq i\) itmax) do
        if \((\mathrm{abs}(p-p p)<T O L)\) then \(\quad\) \# stoppingcriterion \(=\) absolute
        \# if \((\operatorname{abs}((p-p p) / p)<T O L)\) then \# stoppingcriterion \(=\) relative
        \# if \((\operatorname{abs}(\mathrm{fp})<\mathrm{TOL})\) then \(\quad\) \# stoppingcriterion \(=\) function_value
            break:
        end if;
            \(p p:=p\);
            \(\mathrm{k}:=\mathrm{k}+1\);
            if \(\left.(0<f(b))^{*} f p\right)\) then
            \(\mathrm{b}:=\mathrm{p}\);
        else
            \(\mathrm{a}:=\mathrm{p}\);
            end if;
        \(\mathrm{p}:=(\mathrm{a}+\mathrm{b}) / 2\);
        \(\mathrm{fp}:=\mathrm{f}(\mathrm{p})\);
        printf( \((\mathrm{k}=\% 2 \mathrm{~d}: \mathrm{a}=\% 9 \mathrm{f} \quad \mathrm{b}=\% 9 \mathrm{f} \quad \mathrm{p}=\% 9 \mathrm{f} \mathrm{f}(\mathrm{p})=\% 9 \mathrm{f} \backslash \mathrm{n} ", k, a, b, p, f p)\);
    end do;
    print( \((\mathrm{f}(\mathrm{x})=\mathrm{=}, \mathrm{f}(\mathrm{x})\) );
    printf(" p_\%d = \%13.9f \(\backslash \mathrm{n} ", \mathrm{k}, \mathrm{p})\);
    \(\operatorname{printf}\left(" \mathrm{dp}=+-\% 10 f=(\mathrm{bO}-\mathrm{a} 0) / 2 \wedge \mathrm{k}=\% 10 \mathrm{f} \backslash \mathrm{n} ", 1 / 2^{*} \mathrm{abs}(\mathrm{b}-\mathrm{a}),(b 0-a 0) / 2^{k}\right)\);
    printf(" \(f(p)=\% 13.9 f \backslash n "\) fp);
    RETURN(p)
    end proc:
```

Figure 2.2: A Maple code for the bisection method

```
> bisection2(1, 2, 0.01, 20);
    k= 1: a= 1.000000 b= 2.000000 p= 1.500000 f(p)=2.375000
    k= 2: a= 1.000000 b= 1.500000 p=1.250000 f(p)=-1.796875
    k= 3: a= 1.250000 b= 1.500000 p=1.375000 f(p)=0.162109
    k= 4: a= 1.250000 b= 1.375000 p= 1.312500 f(p)=-0.848389
    k= 5: a= 1.312500 b= 1.375000 p= 1.343750 f(p)=-0.350983
    k= 6: a= 1.343750 b= 1.375000 p=1.359375 f(p)=-0.096409
    k= 7: a= 1.359375 b= 1.375000 p= 1.367188 f(p)=0.032356
    3 2
        "f(x)=", x + 4 x - 10
    p_7 = 1.367187500
    dp = +- 0.007812 = (b0-a0)/2^k= 0.007812
    f(p) = 0.032355785
```


2.1.2. Error analysis for the bisection method

Theorem 2.3. Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b)<0$. Then, the Bisection method generates a sequence p_{n} approximating a zero p of f with

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{b-a}{2^{n}}, \quad n \geq 1 \tag{2.3}
\end{equation*}
$$

Proof. For $n \geq 1$,

$$
\begin{equation*}
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a) \text { and } p \in\left(a_{n}, b_{n}\right) . \tag{2.4}
\end{equation*}
$$

It follows from $p_{n}=\left(a_{n}+b_{n}\right) / 2$ that

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{1}{2}\left(b_{n}-a_{n}\right)=\frac{1}{2^{n}}(b-a) \tag{2.5}
\end{equation*}
$$

which completes the proof.
Note: The right-side of (2.3) is the upper bound of the error in the n-th iteration.

Example 2.4. Determine the number of iterations necessary to solve $x^{3}+$ $4 x^{2}-10=0$ with accuracy 10^{-3} using $\left[a_{1}, b_{1}\right]=[1,2]$.
Solution. We have to find the iteration count n such that the error upperbound is not larger than 10^{-3}. That is, incorporating (2.3),

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{b-a}{2^{n}} \leq 10^{-3} \tag{2.6}
\end{equation*}
$$

Since $b-a=1$, it follows from the last inequality that $2^{n} \geq 10^{3}$, which implies that

$$
n \geq \frac{3 \ln (10)}{\ln (2)} \approx 9.965784285
$$

Remark 2.5. The zero p is unknown so that the quantity $\left|p-p_{n}\right|$ is a theoretical value; it is not useful in computation.

Note that p_{n} is the midpoint of $\left[a_{n}, b_{n}\right]$ and p_{n+1} is the midpoint of either $\left[a_{n}, p_{n}\right]$ or $\left[p_{n}, b_{n}\right]$. So,

$$
\begin{equation*}
\left|p_{n+1}-p_{n}\right|=\frac{1}{4}\left(b_{n}-a_{n}\right)=\frac{1}{2^{n+1}}(b-a) . \tag{2.7}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\left|p_{n}-p_{n-1}\right|=\frac{1}{2^{n}}(b-a), \tag{2.8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{1}{2^{n}}(b-a)=\left|p_{n}-p_{n-1}\right| . \tag{2.9}
\end{equation*}
$$

The approximate solution, carried out with the absolute difference $\mid p_{n}-$ $p_{n-1} \mid$ being used for the stopping criterion, guarantees the actual error not greater than the given tolerance.

Example 2.6. Suppose that the bisection method begins with the interval [45, 60$]$. How many steps should be taken to compute a root with a relative error not larger than 10^{-8} ?

Solution.

bisect: a Matlab code

bisect.m

```
function [c,err,fc]=bisect(f,a,b,TOL)
    %Input - f is the function input as a string 'f'
    % - a and b are the left and right endpoints
    % - TOL is the tolerance
    %Output - c is the zero
    % - err is the error estimate for c
    % - fc=f(c)
fa=feval(f,a);
fb=feval(f,b);
if fa*fb > 0,return,end
max1=1+round}((\operatorname{log}(b-a)-\operatorname{log}(TOL))/\operatorname{log}(2))
for k=1:max1
    c=(a+b)/2;
    fc=feval(f,c);
    if fc==0
        a=c; b=c;
    elseif fa*fc<0
        b=c; fb=fc;
    else
        a=c; fa=fc;
    end
    if b-a < TOL, break,end
end
c=(a+b)/2; err=(b-a)/2; fc=feval (f,c);
```

Example 2.7. You can call the above algorithm with varying function, by

```
>> f = @(x) x.^3+4*x.^2-10;
>> [c,err,fc]=bisect(f,1,2,0.005)
c =
            1.3652
err =
            0.0020
fc =
        7.2025e-005
```

Example 2.8. In the bisection method, does $\lim _{n \rightarrow \infty} \frac{\left|p-p_{n+1}\right|}{\left|p-p_{n}\right|}$ exist? Solution.

2.2. Fixed-Point Iteration

Definition 2.9. A number p is a fixed point for g, if $g(p)=p$.
Note: A point p is a fixed point of g, when the point remains unaltered under the action of g.

Example 2.10. Find fixed points of $g(x)=x^{2}-2$.

Solution.

```
                        Maple-code
g := x -> x^2 - 2:
g(p) = p;
                        2
                                    p - 2 = p
solve(g(p) = p, p);
2, -1
```


Figure 2.3: Fixed points of $g(x)=x^{2}-2$.

Remark 2.11. Given a root-finding problem $f(p)=0$, let

$$
\begin{equation*}
g(x)=x-h(x) \cdot f(x) \tag{2.10}
\end{equation*}
$$

for some $h(x)$. Then, since $g(p)=p-h(p) \cdot f(p)=p-0=p$, Equation (2.10) defines a fixed-point problem.

2.2.1. Existence and uniqueness of fixed points

Theorem 2.12. (Existence and Uniqueness).

- If $\boldsymbol{g} \in C[a, b]$ and $\boldsymbol{g}(x) \in[a, b]$ for all $x \in[a, b]$, then \boldsymbol{g} has at least one fixed point in $[a, b]$.
- If, in addition, g is differentiable in (a, b) and there exists a positive constant $K<1$ such that

$$
\begin{equation*}
\left|\mathbf{g}^{\prime}(\mathbf{x})\right| \leq \mathbf{K}<1 \text { for all } x \in(a, b) \tag{2.11}
\end{equation*}
$$

then there is a unique fixed point in $[a, b]$.

Proof.

Figure 2.4: Illustration of the existence-and-uniqueness theorem.

Example 2.13. Show that $g(x)=\left(x^{2}-2\right) / 3$ has a unique fixed point on $[-1,1]$.
Solution.

2.2.2. Fixed-point iteration

Definition 2.14. A fixed-point iteration is an iterative procedure of the form: For a given p_{0},

$$
\begin{equation*}
p_{n}=g\left(p_{n-1}\right) \quad \text { for } n \geq 1 \tag{2.12}
\end{equation*}
$$

If the sequence $\boldsymbol{p}_{\boldsymbol{n}}$ converges to \boldsymbol{p}, since g is continuous, we have

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p) .
$$

This implies that the limit p is a fixed point of g, i.e., the iteration converges to a fixed point.

Example 2.15. The equation $x^{3}+4 x^{2}-10=0$ has a unique root in $[1,2]$. There are many ways to transform the equation to the fixed-point form $x=$ $g(x)$:
(1) $x=g_{1}(x)=x-\left(x^{3}+4 x^{2}-10\right)$
(2) $x=g_{2}(x)=\frac{1}{4}\left(\frac{10}{x}-x^{2}\right)$
$\Leftarrow x^{2}+4 x-\frac{10}{x}=0$
(3) $x=g_{3}(x)=\left(\frac{10}{x}-4 x\right)^{1 / 2}$
(4) $x=g_{4}(x)=\frac{1}{2}\left(-x^{3}+10\right)^{1 / 2} \quad \Leftarrow 4 x^{2}=-x^{3}+10$
(5) $x=g_{5}(x)=\left(\frac{10}{x+4}\right)^{1 / 2} \quad \Leftarrow x^{2}(x+4)-10=0$
(6) $x=g_{6}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$

The associated fixed-point iteration may not converge for some choices of g. Let's check it.

Evaluation of $\max _{x \in[1,2]}\left|\boldsymbol{g}_{\boldsymbol{k}}^{\prime}(\boldsymbol{x})\right|$ for the fixed-point iteration

The real root of $x^{3}+4 x^{2}-10=0$ is $p=1.3652300134142$.

Maple-code

```
with(Student[NumericalAnalysis]);
g1 := x -> x - x^3 - 4*x^2 + 10:
maximize(abs(diff(g1(x), x)), x = 1..2);
27
FixedPointIteration(x-g1(x), x=1.5, tolerance=10~-3, output=sequence);
    1.5, -0.875, 6.732421875, -469.7200120, 1.027545552 10,
                24 72 216
    -1.084933871 10, , 1.277055593 10 , -2.082712916 10,
                        648 1946 5840
        9.034169425 10, -7.373347340 10, 4.008612522 10
g2 := x -> 5/2*1/x - 1/4*x^2:
maximize(abs(diff(g2(x), x)), x = 1..2);
                                    3
FixedPointIteration(x-g2(x), x=1.5, tolerance=10^-3, output=sequence);
    1.5, 1.104166667, 1.959354936, 0.3161621898, 7.882344262,
                            5
        -15.21567323, -58.04348221, -842.3045280, -1.773692325 10,
            9 19
        -7.864961160 10, -1.546440351 10
```

g3 := x -> (10/x - 4*x) $(1 / 2):$
maximize(abs(diff(g3(x), $x)$), $x=1 . .2)$;
infinity
FixedPointIteration($\mathrm{x}-\mathrm{g} 3(\mathrm{x}), \mathrm{x}=1.5$, tolerance=10~-3, output=sequence);
$1.5,0.8164965811$
g4 := x -> $1 / 2 *\left(10-x^{\wedge} 3\right)^{\wedge}(1 / 2):$
evalf(maximize(abs(diff(g4(x), x)), x = 1..2));
2.121320343
FixedPointIteration (x-g4(x), x=1.5, tolerance=10~-3, output=sequence);
$1.5,1.286953768,1.402540804,1.345458374,1.375170253$,
$1.360094192,1.367846968,1.363887004,1.365916734,1.364878217$
g5 := x $->10^{\wedge}(1 / 2) *(1 /(x+4))^{\wedge}(1 / 2):$
evalf(maximize(abs(diff(g5(x), x)), $x=1 . .2)$);
0.1414213562
FixedPointIteration(x-g5(x), x=1.5, tolerance=10~-3, output=sequence);
$1.5,1.348399725,1.367376372,1.364957015,1.365264748$

```
g6 := x -> x - (x^3 + 4*x^2 - 10)/(3*x^2 + 8*x):
maximize(diff(g6(x), x), x = 1..2);
    5
        --
        1 4
maximize(-diff(g6(x), x), x = 1.. 2);
    70
    ---
    121
```

FixedPointIteration(x-g6(x), x=1.5, tolerance=10~-3, output=sequence);
$1.5,1.373333333,1.365262015,1.365230014$

Theorem 2.16. (Fixed-Point Theorem):

Let $\boldsymbol{g} \in C[a, b]$ and $\boldsymbol{g}(\boldsymbol{x}) \in[a, b]$ for all $x \in[a, b]$. Suppose that g is differentiable in (a, b) and there is a positive constant $K<1$ such that

$$
\begin{equation*}
\left|\mathbf{g}^{\prime}(\mathbf{x})\right| \leq \mathbf{K}<1 \text { for all } x \in(a, b) \tag{2.13}
\end{equation*}
$$

Then, for any number $p_{0} \in[a, b]$, the sequence defined by

$$
\begin{equation*}
p_{n}=g\left(p_{n-1}\right), \quad n \geq 1 \tag{2.14}
\end{equation*}
$$

converges to the unique fixed point $p \in[a, b]$.

Proof.

- It follows from Theorem 2.12 that there exists a unique fixed point $p \in$ $[a, b]$, i.e., $p=g(p) \in[a, b]$.
- Since $g(x) \in[a, b]$ for all $x \in[a, b]$, we have $p_{n} \in[a, b]$ for all $n \geq 1$. It follows from the MVT that

$$
\left|p-p_{n}\right|=\left|g(p)-g\left(p_{n-1}\right)\right|=\left|g^{\prime}\left(\xi_{n}\right)\left(p-p_{n-1}\right)\right| \leq K\left|p-p_{n-1}\right|,
$$

for some $\xi_{n} \in(a, b)$. Therefore

$$
\begin{equation*}
\left|p-p_{n}\right| \leq K\left|p-p_{n-1}\right| \leq K^{2}\left|p-p_{n-2}\right| \leq \cdots \leq K^{n}\left|p-p_{0}\right|, \tag{2.15}
\end{equation*}
$$

which converges to 0 as $n \rightarrow \infty$.

Remark 2.17. The Fixed-Point Theorem deserves some remarks.

- From (2.15), we can see

$$
\begin{equation*}
\left|p-p_{n}\right| \leq K^{n} \max \left\{p_{0}-a, b-p_{0}\right\} . \tag{2.16}
\end{equation*}
$$

- For $m>n \geq 1$,

$$
\begin{aligned}
\left|p_{m}-p_{n}\right| & =\left|p_{m}-p_{m-1}+p_{m-1}-\cdots-p_{n+1}+p_{n+1}-p_{n}\right| \\
& \leq\left|p_{m}-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_{n}\right| \\
& \leq K^{m-1}\left|p_{1}-p_{0}\right|+K^{m-2}\left|p_{1}-p_{0}\right|+\cdots+K^{n}\left|p_{1}-p_{0}\right| \\
& =K^{n}\left|p_{1}-p_{0}\right|\left(1+K+K^{2}+\cdots+K^{m-1-n}\right) .
\end{aligned}
$$

(Here we have used the MVT, for the last inequality.) Thus,

$$
\left|p-p_{n}\right|=\lim _{m \rightarrow \infty}\left|p_{m}-p_{n}\right| \leq K^{n}\left|p_{1}-p_{0}\right| \sum_{i=0}^{\infty} K^{i}=\frac{K^{n}}{1-K}\left|p_{1}-p_{0}\right| .
$$

That is,

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{K^{n}}{1-K}\left|p_{1}-p_{0}\right| . \tag{2.17}
\end{equation*}
$$

- The Fixed-Point Theorem holds for any contractive mapping g defined on any closed subset $C \subset \mathbb{R}$. By a contractive mapping, we mean a function g that satisfies for some $0<K<1$,

$$
\begin{equation*}
|g(x)-g(y)| \leq K|x-y| \text { for all } x, y \in C . \tag{2.18}
\end{equation*}
$$

Note: If a contractive mapping g is differentiable, then (2.18) implies that

$$
\left|g^{\prime}(x)\right| \leq K \text { for all } x \in C
$$

Practice 2.18. In practice, p is unknown. Consider the following:

$$
\begin{aligned}
\left|p_{n+1}-p_{n}\right| & \geq\left|p_{n}-p\right|-\left|p_{n+1}-p\right| \\
& \geq\left|p_{n}-p\right|-K\left|p_{n}-p\right|=(1-K)\left|p_{n}-p\right|
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left|p-p_{n}\right| \leq \frac{1}{1-K}\left|p_{n+1}-p_{n}\right| \leq \frac{K}{1-K}\left|p_{n}-p_{n-1}\right| \tag{2.19}
\end{equation*}
$$

which is useful for stopping of the iteration.

Example 2.19. For each of the following equations, (1) determine an interval $[a, b]$ on which the fixed-point iteration will converge. (2) Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5}.
(a) $x=\frac{2-e^{x}+x^{2}}{3}$
(b) $x=\frac{5}{x^{2}}+2$

Solution. You may first try to visualize the functions.

Figure 2.5: Visualization of the functions.

$$
\text { Ans: (a): (1) }[0,1] \text {, (2) } K=1 / 3 \Rightarrow n \geq 5 \ln (10) / \ln (3) \approx 10.48
$$

Example 2.20. Prove that the sequence x_{n} defined recursively as follows is convergent.

$$
\begin{cases}x_{0} & =-15 \\ x_{n+1} & =3-\frac{1}{2}\left|x_{n}\right| \quad(n \geq 0)\end{cases}
$$

Solution. Begin with setting $g(x)=3-\frac{1}{2}|x|$; then show g is a contractive mapping on $C=\mathbb{R}$.

2.3. Newton's Method and Its Variants

2.3.1. The Newton's method

The Newton's method is also called the Newton-Raphson method.
Recall: The objective is to find a zero p of f :

$$
\begin{equation*}
f(p)=0 . \tag{2.20}
\end{equation*}
$$

Strategy 2.21. Let p_{0} be an approximation of p. We will try to find a correction term h such that $\left(p_{0}+h\right)$ is a better approximation of p than p_{0}; ideally $\left(p_{0}+h\right)=p$.

- If $f^{\prime \prime}$ exists and is continues, then by Taylor's Theorem

$$
\begin{equation*}
0=f(p)=f\left(p_{0}+h\right)=f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)+\frac{\left(p-p_{0}\right)^{2}}{2} f^{\prime \prime}(\xi) \tag{2.21}
\end{equation*}
$$

where ξ lies between p and p_{0}.

- If $\left|p-p_{0}\right|$ is small, it is reasonable to ignore the last term of (2.21) and solve for $h=p-p_{0}$:

$$
\begin{equation*}
h=p-p_{0} \approx-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} . \tag{2.22}
\end{equation*}
$$

- Define

$$
\begin{equation*}
p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} \tag{2.23}
\end{equation*}
$$

then p_{1} may be a better approximation of p than p_{0}.

- The above can be repeated.

Algorithm 2.22. (Newton's method for solving $\mathbf{f}(\mathbf{x})=0$). For p_{0} chosen close to a root p, compute $\left\{p_{n}\right\}$ repeatedly satisfying

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \quad n \geq 1 \tag{2.24}
\end{equation*}
$$

Graphical interpretation

- Let p_{0} be the initial approximation close to p. Then, the tangent line at $\left(p_{0}, f\left(p_{0}\right)\right)$ reads

$$
\begin{equation*}
L(x)=f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right)+f\left(p_{0}\right) \tag{2.25}
\end{equation*}
$$

- To find the \boldsymbol{x}-intercept of $y=L(x)$, let

$$
0=f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right)+f\left(p_{0}\right) .
$$

Solving the above equation for x becomes

$$
\begin{equation*}
x=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} \tag{2.26}
\end{equation*}
$$

of which the right-side is the same as in (2.23).

Figure 2.6: Graphical interpretation of the Newton's method.

Remark 2.23.

- The Newton's method may diverge, unless the initialization is accurate.
- The Newton's method can be interpreted as a fixed-point iteration:

$$
\begin{equation*}
p_{n}=g\left(p_{n-1}\right):=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} . \tag{2.27}
\end{equation*}
$$

- It cannot be continued if $f^{\prime}\left(p_{n-1}\right)=0$ for some n. As a matter of fact, the Newton's method is most effective when $f^{\prime}(x)$ is bounded away from zero near p.

Convergence analysis for the Newton's method: Define the error in the n-th iteration: $e_{n}=p_{n}-p$. Then

$$
\begin{equation*}
e_{n}=p_{n}-p=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}-p=\frac{e_{n-1} f^{\prime}\left(p_{n-1}\right)-f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} . \tag{2.28}
\end{equation*}
$$

On the other hand, it follows from the Taylor's Theorem that

$$
\begin{equation*}
0=f(p)=f\left(p_{n-1}-e_{n-1}\right)=f\left(p_{n-1}\right)-e_{n-1} f^{\prime}\left(p_{n-1}\right)+\frac{1}{2} e_{n-1}^{2} f^{\prime \prime}\left(\xi_{n-1}\right) \tag{2.29}
\end{equation*}
$$

for some ξ_{n-1}. Thus, from (2.28) and (2.29), we have

$$
\begin{equation*}
e_{n}=\frac{1}{2} \frac{f^{\prime \prime}\left(\xi_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} e_{n-1}^{2} \tag{2.30}
\end{equation*}
$$

Theorem 2.24. (Convergence of Newton's method): Let $f \in C^{2}[a, b]$ and $p \in(a, b)$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$. Then, there is a neighborhood of p such that if the Newton's method is started p_{0} in that neighborhood, it generates a convergent sequence p_{n} satisfying

$$
\begin{equation*}
\left|p_{n}-p\right| \leq C\left|p_{n-1}-p\right|^{2}, \tag{2.31}
\end{equation*}
$$

for a positive constant C.

Example 2.25. Apply the Newton's method to solve $f(x)=\arctan (x)=0$, with $p_{0}=\pi / 5$.

```
Newton(arctan(x), x = Pi/5, output = sequence, maxiterations = 5)
    0.6283185308, -0.1541304479, 0.0024295539, -9.562*10^(-9), 0., 0.
```

Since $p=0, e_{n}=p_{n}$ and

$$
\begin{equation*}
\left|e_{n}\right| \leq 0.67\left|e_{n-1}\right|^{3}, \tag{2.32}
\end{equation*}
$$

which is an occasional super-convergence.
Theorem 2.26. (Newton's Method for a Convex Function): Let $f \in C^{2}(\mathbb{R})$ be increasing, convex, and of a zero. Then, the zero is unique and the Newton iteration will converge to it from any starting point.

Example 2.27. Use the Newton's method to find the square root of a positive number Q.
Solution. Let $x=\sqrt{Q}$. Then x is a root of $x^{2}-Q=0$. Define $f(x)=x^{2}-Q$; set $f^{\prime}(x)=2 x$. The Newton's method reads

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}=p_{n-1}-\frac{p_{n-1}^{2}-Q}{2 p_{n-1}}=\frac{1}{2}\left(p_{n-1}+\frac{Q}{p_{n-1}}\right) . \tag{2.33}
\end{equation*}
$$

(Compare the above with (1.45), p. 28.)

```
NR := proc(Q, p0, itmax)
    local p, n;
    p := p0;
    for n to itmax do
        p := (p+Q/p)/2;
        print(n, evalf[14](p));
    end do;
end proc:
```

Q $:=16: p 0:=1:$ itmax $:=8:$
$\operatorname{NR}(Q, p 0$, itmax) $;$
$1,8.5000000000000$
$2,5.1911764705882$
$3,4.1366647225462$
$4,4.0022575247985$
$5,4.0000006366929$
$6,4.0000000000000$
$7,4.0000000000000$
$8,4.0000000000000$

$Q:=16: p 0:=-1:$ itmax $:=8:$
$\operatorname{NR}(Q, p 0, i t m a x) ;$
$1,-8.5000000000000$
$2,-5.1911764705882$
$3,-4.1366647225462$
$4,-4.0022575247985$
$5,-4.0000006366929$
$6,-4.0000000000000$
$7,-4.0000000000000$
$8,-4.0000000000000$

2.3.2. Systems of nonlinear equations

The Newton's method for systems of nonlinear equations follows the same strategy that was used for single equation.That is,
(a) we first linearize,
(b) solve for the correction vector, and
(c) update the solution,
repeating the steps as often as necessary.

An illustration:

- We begin with a pair of equations involving two variables:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \tag{2.34}\\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

- Suppose that $\left(x_{1}, x_{2}\right)$ is an approximate solution of the system. Let us compute the correction vector $\left(h_{1}, h_{2}\right)$ so that $\left(x_{1}+h_{1}, x_{2}+h_{2}\right)$ is a better approximate solution.

$$
\left\{\begin{array}{l}
0=f_{1}\left(x_{1}+h_{1}, x_{2}+h_{2}\right) \approx f_{1}\left(x_{1}, x_{2}\right)+h_{1} \frac{\partial f_{1}}{\partial x_{1}}+h_{2} \frac{\partial f_{1}}{\partial x_{2}} \tag{2.35}\\
0=f_{2}\left(x_{1}+h_{1}, x_{2}+h_{2}\right) \approx f_{2}\left(x_{1}, x_{2}\right)+h_{1} \frac{\partial f_{2}}{\partial x_{1}}+h_{2} \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right.
$$

- Define the Jacobian of $\left(f_{1}, f_{2}\right)$ at $\left(x_{1}, x_{2}\right)$:

$$
J\left(x_{1}, x_{2}\right):=\left[\begin{array}{ll}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} \tag{2.36}\\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2}
\end{array}\right]\left(x_{1}, x_{2}\right)
$$

Then, the Newton's method for two nonlinear equations in two variables reads

$$
\left[\begin{array}{l}
x_{1}^{n} \tag{2.37}\\
x_{2}^{n}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{n-1} \\
x_{2}^{n-1}
\end{array}\right]+\left[\begin{array}{l}
h_{1}^{n-1} \\
h_{2}^{n-1}
\end{array}\right],
$$

where the correction vector satisfies

$$
J\left(x_{1}^{n-1}, x_{2}^{n-1}\right)\left[\begin{array}{l}
h_{1}^{n-1} \tag{2.38}\\
h_{2}^{n-1}
\end{array}\right]=-\left[\begin{array}{l}
f_{1}\left(x_{1}^{n-1}, x_{2}^{n-1}\right) \\
f_{2}\left(x_{1}^{n-1}, x_{2}^{n-1}\right)
\end{array}\right] .
$$

Summary 2.28. In general, the system of m nonlinear equations,

$$
f_{i}\left(x_{1}, x_{2}, \cdots, x_{m}\right)=0,1 \leq i \leq m
$$

can be expressed as

$$
\begin{equation*}
F(X)=0, \tag{2.39}
\end{equation*}
$$

where $X=\left(x_{1}, x_{2}, \cdots, x_{m}\right)^{T}$ and $F=\left(f_{1}, f_{2}, \cdots, f_{m}\right)^{T}$. Then

$$
\begin{equation*}
0=F(X+H) \approx F(X)+J(X) H, \tag{2.40}
\end{equation*}
$$

where $H=\left(h_{1}, h_{2}, \cdots, h_{m}\right)^{T}$, the correction vector, and $J(X)=$ $\left[\frac{\partial f_{i}}{\partial x_{j}}\right](X)$, the Jacobian of F at X. Hence, Newton's method for m nonlinear equations in m variables is given by

$$
\begin{equation*}
X^{n}=X^{n-1}+H^{n-1} \tag{2.41}
\end{equation*}
$$

where H^{n-1} is the solution of the linear system:

$$
\begin{equation*}
J\left(X^{n-1}\right) H^{n-1}=-F\left(X^{n-1}\right) \tag{2.42}
\end{equation*}
$$

Example 2.29. Starting with $(1,1,1)^{T}$, carry out 6 iterations of the Newton's method to find a root of the nonlinear system

$$
\begin{array}{ll}
x y & =z^{2}+1 \\
x y z+y^{2} & =x^{2}+2 \\
e^{x}+z & =e^{y}+3
\end{array}
$$

Solution.

```
NewtonRaphsonSYS := proc(X, F, X0, TOL, itmax)
    local Xn, H, FX, J, i, m, n, Err;
    m := LinearAlgebra[Dimension] (Vector(X));
    Xn := Vector(m);
    H := Vector(m);
    FX := Vector(m);
    J := Matrix(m, m);
    Xn := XO;
    for n to itmax do
        FX := eval(F, [seq(X[i] = Xn[i], i = 1..m)]);
        J := evalf[15](VectorCalculus[Jacobian](F, X=convert(Xn,list)));
        H := -MatrixInverse(J).Vector(FX);
        Xn := Xn + H;
        printf(" %3d %.8f ", n, Xn[1]);
        for i from 2 to m do; printf(" %.8f ", Xn[i]); end do;
        for i to m do; printf(" %.3g ", H[i]); end do;
        printf("\n");
        if (LinearAlgebra[VectorNorm](H, 2) < TOL) then break endif:
    end do;
end proc:
```

Result
F : $=\left[x * y-z^{\wedge} 2-1, \quad x * y * z-x^{\wedge} 2+y^{\wedge} 2-2, \quad \exp (x)+z-\exp (y)-3\right]:$
$\mathrm{X}:=[\mathrm{x}, \mathrm{y}, \mathrm{z}]:$
$\mathrm{XO}:=\langle 1,1,1\rangle$:
TOL := 10~-8: itmax $:=10$:
NewtonRaphsonSYS (X, F, X0, TOL, itmax) :

| 1 | 2.18932610 | 1.59847516 | 1.39390063 | 1.19 | 0.598 | 0.394 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1.85058965 | 1.44425142 | 1.27822400 | -0.339 | -0.154 | -0.116 | |
| 3 | 1.78016120 | 1.42443598 | 1.23929244 | -0.0704 | -0.0198 | -0.0389 | |
| 4 | 1.77767471 | 1.42396093 | 1.23747382 | -0.00249 | -0.000475 | -0.00182 | |
| 5 | 1.77767192 | 1.42396060 | 1.23747112 | $-2.79 \mathrm{e}-006$ | $-3.28 \mathrm{e}-007$ | $-2.7 \mathrm{e}-006$ | |
| 6 | 1.77767192 | 1.42396060 | 1.23747112 | $-3.14 \mathrm{e}-012$ | $-4.22 \mathrm{e}-014$ | $-4.41 \mathrm{e}-012$ | |

2.3.3. The secant method

Recall: The Newton's method, defined as

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \quad n \geq 1, \tag{2.43}
\end{equation*}
$$

is a powerful technique. However it has a major drawback: the need to know the value of derivative of f at each iteration. Frequently, $f^{\prime}(x)$ is far more difficult to calculate than $f(x)$.

Algorithm 2.30. (The Secant method). To overcome the disadvantage of the Newton's method, a number of methods have been proposed. One of most popular variants is the secant method, which replaces $f^{\prime}\left(p_{n-1}\right)$ by a difference quotient:

$$
\begin{equation*}
f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}} . \tag{2.44}
\end{equation*}
$$

Thus, the resulting algorithm reads

$$
\begin{equation*}
p_{n}=p_{n-1}-f\left(p_{n-1}\right)\left[\frac{p_{n-1}-p_{n-2}}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}\right], \quad n \geq 2 . \tag{2.45}
\end{equation*}
$$

Note:

- Two initial values $\left(p_{0}, p_{1}\right)$ must be given, which however is not a drawback.
- In each iteration, it requires only one new evaluation of f.
- Convergence:

$$
\begin{equation*}
\left|e_{n}\right| \approx\left|\frac{f^{\prime \prime}(p)}{2 f^{\prime}(p)} e_{n-1} e_{n-2}\right| \approx\left|\frac{f^{\prime \prime}(p)}{2 f^{\prime}(p)}\right|^{0.62}\left|e_{n-1}\right|^{(1+\sqrt{5}) / 2} \tag{2.46}
\end{equation*}
$$

Here evalf((1+sqrt(5))/2) $=1.618033988$.
The graphical interpretation of the secant method is similar to that of Newton's method. The secant method utilizes the secant line, while Newton's method updates the iterate through the tangent line.

Graphical interpretation

with(Student[NumericalAnalysis]):
$\mathrm{f}:=\mathrm{x}$ へ 3 - 1 :
Secant (f, $x=[1.5,0.5]$, maxiterations $=3$, output $=$ sequence);
$1.5,0.5,0.7692307692,1.213510253,0.9509757891$
Secant(f, $x=[1.5,0.5]$, maxiterations $=3$, output $=$ plot);

3 iteration(s) of the secant method applied to

$$
f(x)=x^{3}-1
$$

with initial points $a=1.5$ and $b=0.5$

Figure 2.7: Graphical interpretation of the secant method.
Example 2.31. Apply one iteration of the secant method to find p_{2} if

$$
p_{0}=1, p_{1}=2, \quad f\left(p_{0}\right)=2, \quad f\left(p_{1}\right)=1.5
$$

Solution.

2.3.4. The method of false position

It generates approximations in a similar manner as the secant method; however, it includes a test to ensure that the root is always bracketed between successive iterations.

Algorithm 2.32. (Method of false position).

- Select p_{0} and p_{1} such that $f\left(p_{0}\right) \cdot f\left(p_{1}\right)<0$.
- Compute
$p_{2}=$ the x-intercept of the line joining $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
- If $\left(f\left(p_{1}\right) \cdot f\left(p_{2}\right)<0\right)$, set (p_{1} and p_{2} bracket the root)
$p_{3}=$ the x-intercept of the line joining $\left(p_{2}, f\left(p_{2}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.
else, set
$p_{3}=$ the x-intercept of the line joining $\left(p_{2}, f\left(p_{2}\right)\right)$ and $\left(p_{0}, f\left(p_{0}\right)\right)$.
endif

Graphical interpretation

with(Student [NumericalAnalysis]):
$\mathrm{f}:=\mathrm{x}$ ^3-1:
FalsePosition(f,x=[1.5,0.5], maxiterations=3, output=plot);
3 iteration(s) of the method of false position applied to

$$
f(x)=x^{3}-1
$$

with initial points $\boldsymbol{a}=1.5$ and $\boldsymbol{b}=0.5$

$-f(x)$
Figure 2.8: Graphical interpretation of the false position method.

Convergence Speed:

Find a root for $x=\cos x$, starting with $\pi / 4$ or $[0.5, \pi / 4]$.

```
                                    Comparison
with(Student[NumericalAnalysis]):
f := cos(x) - x:
N := Newton(f, x=Pi/4, tolerance=10^-8, maxiterations=10,
        output=sequence);
    0.7853981635, 0.7395361335, 0.7390851781, 0.7390851332, 0.7390851332
S := Secant(f,x=[0.5,Pi/4],tolerance=10^-8,maxiterations=10,
        output=sequence);
    0.5, 0.7853981635, 0.7363841388, 0.7390581392, 0.7390851493,
    0.7390851332, 0.7390851332
F := FalsePosition(f,x=[0.5,Pi/4],tolerance=10^-8,maxiterations=10,
        output=sequence);
    [0.5, 0.7853981635], [0.7363841388, 0.7853981635],
    [0.7390581392, 0.7853981635], [0.7390848638, 0.7853981635],
    [0.7390851305, 0.7853981635], [0.7390851332, 0.7853981635],
    [0.7390851332, 0.7853981635], [0.7390851332, 0.7853981635],
    [0.7390851332, 0.7853981635], [0.7390851332, 0.7853981635],
    [0.7390851332, 0.7853981635]
```

\# print out
n Newton Secant False Position
00.7853981635
0.50000000000 .5000000000
$10.7395361335 \quad 0.7853981635 \quad 0.7363841388$
$\begin{array}{lllll}2 & 0.7390851781 & 0.7363841388 & 0.7390581392\end{array}$
$\begin{array}{lllll}3 & \mathbf{0 . 7 3 9 0 8 5 1 3 3 2} & 0.7390581392 & 0.7390848638\end{array}$
$4 \quad 0.7390851332 \quad 0.7390851493 \quad 0.7390851305$
$5 \quad 0.7390851332 \boldsymbol{0 . 7 3 9 0 8 5 1 3 3 2} \mathbf{0 . 7 3 9 0 8 5 1 3 3 2}$
$6 \quad 0.7390851332 \quad 0.7390851332 \quad 0.7390851332$
$7 \quad 0.7390851332 \quad 0.7390851332 \quad 0.7390851332$
$8 \quad 0.7390851332 \quad 0.7390851332 \quad 0.7390851332$

2.4. Zeros of Polynomials

Definition 7 2.33. A polynomial of degree n has a form

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \tag{2.47}
\end{equation*}
$$

where $a_{n} \neq 0$ and a_{i} 's are called the coefficients of P.

Theorem 2.34. (Theorem on Polynomials).

- Fundamental Theorem of Algebra: Every nonconstant polynomial has at least one root (possibly, in the complex field).
- Complex Roots of Polynomials: A polynomial of degree n has exactly n roots in the complex plane, being agreed that each root shall be counted a number of times equal to its multiplicity. That is, there are unique (complex) constants $x_{1}, x_{2}, \cdots, x_{k}$ and unique integers $m_{1}, m_{2}, \cdots, m_{k}$ such that

$$
\begin{equation*}
P(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \cdots\left(x-x_{k}\right)^{m_{k}}, \quad \sum_{i=1}^{k} m_{i}=n . \tag{2.48}
\end{equation*}
$$

- Localization of Roots: All roots of the polynomial P lie in the open disk centered at the origin and of radius of

$$
\begin{equation*}
\rho=1+\frac{1}{\left|a_{n}\right|} \max _{0 \leq i<n}\left|a_{i}\right| . \tag{2.49}
\end{equation*}
$$

- Uniqueness of Polynomials: Let $P(x)$ and $Q(x)$ be polynomials of degree n. If $x_{1}, x_{2}, \cdots, x_{r}$, with $r>n$, are distinct numbers with $P\left(x_{i}\right)=Q\left(x_{i}\right)$, for $i=1,2, \cdots, r$, then $P(x)=Q(x)$ for all x. For example, two polynomials of degree n are the same if they agree at $(n+1)$ points.

2.4.1. Horner's method

Note: Known as nested multiplication and also as synthetic division, Horner's method can evaluate polynomials very efficiently. It requires n multiplications and n additions to evaluate an arbitrary n-th degree polynomial.

Algorithm 2.35. Let us try to evaluate $P(x)$ at $x=x_{0}$.

- Utilizing the Remainder Theorem, we can rewrite the polynomial as

$$
\begin{equation*}
P(x)=\left(x-x_{0}\right) Q(x)+r=\left(x-x_{0}\right) Q(x)+P\left(x_{0}\right), \tag{2.50}
\end{equation*}
$$

where $Q(x)$ is a polynomial of degree $n-1$, say

$$
\begin{equation*}
Q(x)=b_{n} x^{n-1}+\cdots+b_{2} x+b_{1} . \tag{2.51}
\end{equation*}
$$

- Substituting the above into (2.50), utilizing (2.47), and setting equal the coefficients of like powers of x on the two sides of the resulting equation, we have

$$
\begin{align*}
\hline b_{n} & =a_{n} \\
b_{n-1} & =a_{n-1}+x_{0} b_{n} \\
& \vdots \tag{2.52}\\
b_{1} & =a_{1}+x_{0} b_{2} \\
P\left(x_{0}\right) & =a_{0}+x_{0} b_{1}
\end{align*}
$$

- Introducing $b_{0}=P\left(x_{0}\right)$, the above can be rewritten as

$$
\begin{equation*}
b_{n+1}=0 ; \quad b_{k}=a_{k}+x_{0} b_{k+1}, \quad n \geq k \geq 0 \tag{2.53}
\end{equation*}
$$

- If the calculation of Horner's algorithm is to be carried out with pencil and paper, the following arrangement is often used (known as synthetic division):

	a_{n}	a_{n-1}	a_{n-2}	\cdots	a_{0}
x_{0}		$x_{0} b_{n}$	$x_{0} b_{n-1}$	\cdots	$x_{0} b_{1}$
	b_{n}	b_{n-1}	b_{n-2}	\cdots	$P\left(x_{0}\right)=b_{0}$

Example 2.36. Use Horner's algorithm to evaluate $P(3)$, where

$$
\begin{equation*}
P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2 . \tag{2.54}
\end{equation*}
$$

Solution. For $x_{0}=3$, we arrange the calculation as mentioned above:

3	1	-4	7	-5	-2
		3	-3	12	21
	1	-1	4	7	$19=P(3)$

Note that the 4-th degree polynomial in (2.54) is written as

$$
P(x)=(x-3)\left(x^{3}-x^{2}+4 x+7\right)+19 .
$$

Note: When the Newton's method is applied for finding an approximate zero of $P(x)$, the iteration reads

$$
\begin{equation*}
x_{n}=x_{n-1}-\frac{P\left(x_{n-1}\right)}{P^{\prime}\left(x_{n-1}\right)} . \tag{2.55}
\end{equation*}
$$

Thus both $P(x)$ and $P^{\prime}(x)$ must be evaluated in each iteration.

How to evaluate $P^{\prime}(x)$

The derivative $P^{\prime}(x)$ can be evaluated by using the Horner's method with the same efficiency.

- Recall the Remainder Theorem (2.50):

$$
P(x)=\left(x-x_{0}\right) Q(x)+r=\left(x-x_{0}\right) Q(x)+P\left(x_{0}\right) .
$$

- Differentiating (2.50) reads

$$
\begin{equation*}
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x) . \tag{2.56}
\end{equation*}
$$

- Thus

$$
\begin{equation*}
P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right) ; \tag{2.57}
\end{equation*}
$$

i.e., the evaluation of Q at x_{0} becomes the desired quantity $P^{\prime}\left(x_{0}\right)$. \square

Example 2.37. Evaluate $P^{\prime}(3)$ for $P(x)$ considered in Example 2.36, the previous example.
Solution. As in the previous example, we arrange the calculation and carry out the synthetic division one more time:

3	1	-4	7	-5	-2
3		3	-3	12	21
3	1	-1	4	7	$19=P(3)$
		3	6	30	
	1	2	10	$37=Q(3)=P^{\prime}(3)$	

Example 2.38. Implement the Horner's algorithm to evaluate $P(3)$ and $P^{\prime}(3)$, for the polynomial in (2.54): $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$.

Solution.

```
function [p,d] = horner(A,x0)
% function [px0,dpx0] = horner(A,x0)
% input: A = [a_0,a_1,...,a_n]
% output: p=P(x0), d=P'(x0)
n = size(A(:),1);
p = A(n); d=0;
for i = n-1:-1:1
    d = p + x0*d;
    p = A(i) +x0*p;
end
```

Call_horner.m

```
a = [-2 -5 7 -4 1];
x0=3;
[p,d] = horner(a,x0);
fprintf(" P(%g)=%g; P'(%g)=%g\n",x0,p,x0,d)
% Output: P(3)=19; P'(3)=37
```

Example 2.39. Let $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$, as in (2.54). Use the Newton's method and the Horner's method to implement a code and find an approximate zero of P near 3 .

Solution.

\% function $\mathrm{x}=$ newton_horner $(\mathrm{A}, \mathrm{x} 0)$
$\%$ input: $A=\left[a _0, a _1, \ldots, a _n\right] ; x 0$: initial for $P(x)=0$
\% outpue: $x: P(x)=0$
$\mathrm{x}=\mathrm{x} 0$;
for it=1:itmax
$[\mathrm{p}, \mathrm{d}]=\operatorname{horner}(\mathrm{A}, \mathrm{x})$;
$\mathrm{h}=-\mathrm{p} / \mathrm{d}$;
$\mathrm{x}=\mathrm{x}+\mathrm{h}$;
if(abs(h)<tol), break; end
end

Call_newton_horner.m

```
a = [-2 -5 7 -4 1];
x0=3;
tol = 10^-12; itmax=1000;
[x,it] = newton_horner(a,x0,tol,itmax);
fprintf(" newton_horner: x0=%g; x=%g, in %d iterations\n",x0,x,it)
% Output: newton_horner: x0=3; x=2, in 7 iterations
```


Figure 2.9: Polynomial $P(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$. Its two zeros are -0.275682 and 2 .

2.4.2. Complex zeros: Finding quadratic factors

Note: (Quadratic Factors of Real-coefficient Polynomials). As mentioned in (2.47), a polynomial of degree n has a form

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} . \tag{2.58}
\end{equation*}
$$

- Theorem on Real Quadratic Factor: If P is a polynomial whose coefficients are all real, and if z is a nonreal root of P, then \bar{z} is also a root and

$$
(x-z)(x-\bar{z})
$$

is a real quadratic factor of P.

- Polynomial Factorization: If P is a nonconstant polynomial of real coefficients, then it can be factorized as a multiple of linear and quadratic polynomials of which coefficients are all real.
- Theorem on Quotient and Remainder: If the polynomial is divided by the quadratic polynomial $\left(x^{2}-u x-v\right)$, then we can formally write the quotient and remainder as

$$
\begin{align*}
& Q(x)=b_{n} x^{n-2}+b_{n-1} x^{n-3}+\cdots+b_{3} x+b_{2} \tag{2.59}\\
& r(x)=b_{1}(x-u)+b_{0},
\end{align*}
$$

with which $P(x)=\left(x^{2}-u x-v\right) Q(x)+r(x)$. As in Algorithm 2.35, the coefficients b_{k} can be computed recursively as follows.

$$
\begin{align*}
& b_{n+1}=b_{n+2}=0 \tag{2.60}\\
& b_{k}=a_{k}+u b_{k+1}+v b_{k+2}, \quad n \geq k \geq 0 .
\end{align*}
$$

2.4.3. Bairstow's method

Bairstow's method seeks a real quadratic factor of P of the form $\left(x^{2}-u x-\right.$ v). For simplicity, all the coefficients a_{i} 's are real so that both u and v will be real.

Observation 2.40. In order for the quadratic polynomial to be a factor of P, the remainder $r(x)$ must be zero. That is, the process seeks a quadratic factor $\left(x^{2}-u x-v\right)$ of P such that

$$
\begin{equation*}
b_{0}(u, v)=0, \quad b_{1}(u, v)=0 . \tag{2.61}
\end{equation*}
$$

The quantities b_{0} and b_{1} must be functions of (u, v), which is clear from (2.59) and (2.60).

Key Idea 2.41. An outline of the process is as follows:

- Starting values are assigned to (u, v). We seek corrections $(\delta u, \delta v)$ so that

$$
\begin{equation*}
b_{0}(u+\delta u, v+\delta v)=b_{1}(u+\delta u, v+\delta v)=0 \tag{2.62}
\end{equation*}
$$

- Linearization of these equations reads

$$
\begin{align*}
& 0 \approx b_{0}(u, v)+\frac{\partial b_{0}}{\partial u} \delta u+\frac{\partial b_{0}}{\partial v} \delta v \\
& 0 \approx b_{1}(u, v)+\frac{\partial b_{1}}{\partial u} \delta u+\frac{\partial b_{1}}{\partial v} \delta v \tag{2.63}
\end{align*}
$$

- Thus, the corrections can be found by solving the linear system

$$
J\left[\begin{array}{c}
\delta u \tag{2.64}\\
\delta v
\end{array}\right]=-\left[\begin{array}{l}
b_{0}(u, v) \\
b_{1}(u, v)
\end{array}\right], \quad \text { where } J=\frac{\partial\left(b_{0}, b_{1}\right)}{\partial(u, v)} .
$$

Here J is the Jacobian matrix.

Question: How to compute the Jacobian matrix

Bairstow's method

Algorithm 2.42.

- As first appeared in the appendix of the 1920 book "Applied Aerodynamics" by Leonard Bairstow, we consider the partial derivatives

$$
\begin{equation*}
c_{k}=\frac{\partial b_{k}}{\partial u}, \quad d_{k}=\frac{\partial b_{k-1}}{\partial v} \quad(0 \leq k \leq n) . \tag{2.65}
\end{equation*}
$$

- Differentiating the recurrence relation, (2.60), results in the following pair of additional recurrences:

$$
\begin{array}{ll}
c_{k}=b_{k+1}+u c_{k+1}+v c_{k+2} & \left(c_{n+1}=c_{n+2}=0\right) \tag{2.66}\\
d_{k}=b_{k+1}+u d_{k+1}+v d_{k+2} & \left(d_{n+1}=d_{n+2}=0\right)
\end{array}
$$

Note that these recurrence relations obviously generate the same two sequences ($c_{k}=d_{k}$); we need only the first.

- The Jacobian explicitly reads

$$
J=\frac{\partial\left(b_{0}, b_{1}\right)}{\partial(u, v)}=\left[\begin{array}{ll}
c_{0} & c_{1} \tag{2.67}\\
c_{1} & c_{2}
\end{array}\right],
$$

and therefore

$$
\left[\begin{array}{l}
\delta u \tag{2.68}\\
\delta v
\end{array}\right]=-J^{-1}\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]=\frac{1}{c_{0} c_{2}-c_{1}^{2}}\left[\begin{array}{l}
b_{1} c_{1}-b_{0} c_{2} \\
b_{0} c_{1}-b_{1} c_{0}
\end{array}\right] .
$$

We summarize the above procedure as in the following code:

Bairstow: $=\boldsymbol{p r o c}(n, a, u 0, v 0$, itmax, TOL)
local u, v, b, c, j, k, DetJ, du, dv, s1, s2,
$u:=u 0$,
$v:=v 0$,
$b:=\operatorname{Array}(0 . . n)$;
$c:=\operatorname{Array}(0 . . n)$;
$b[n]:=a[n] ;$
$c[n]:=0$;
$c[n-1]:=a[n] ;$
for j to itmax do
$b[n-1]:=a[n-1]+u \cdot b[n] ;$
for k from $(n-2)$ by -1 to 0 do $b[k]:=a[k]+u \cdot b[k+1]+v \cdot b[k+2] ;$
$c[k]:=b[k+1]+u \cdot c[k+1]+v \cdot c[k+2] ;$
end do;
$\operatorname{Det} J:=c[0] \cdot c[2]-c[1] \cdot c[1] ;$
$d u:=(c[1] \cdot b[1]-c[2] \cdot b[0]) / \operatorname{Det} j$;
$d \nu:=(c[1] \cdot b[0]-c[0] \cdot b[1]) / D e t j ;$
$u:=u+d u ;$
$v:=v+d v$,
printf(" \%3d \%12.7f $\% 12.7 \mathrm{f} \% 12.4 \mathrm{~g} \% 12.4 \mathrm{~g} \backslash \mathrm{n} ", j, u, v, d u, d v)$;
if $(\max (\operatorname{abs}(d u), \operatorname{abs}(d v))<T O L)$ then break end if;

end do;

\# Post-processing
printf(" $\mathrm{Q}(\mathrm{x})=(\% \mathrm{~g}) \mathrm{x} \wedge \% \mathrm{~d} ", b[n], n-2)$;
for k from $n-3$ by -1 to 1 do
printf($\left.{ }^{\prime}+(\% \mathrm{~g}) \mathrm{x} \wedge \% \mathrm{~d} ", b[k+2], k\right)$;
end do;
printf(" + (\%g) \n", b[2]);
printf(" Remainder: \%g (x - (\%g)) + (\%g) \n", $b[1], u, b[0])$;
printf(" Quadratic Factor: $\mathrm{x} \wedge 2-(\% \mathrm{~g}) \mathrm{x}-(\% \mathrm{~g}) \backslash \mathrm{n} ", u, v)$;
$s 1:=\operatorname{evalf}(u+\operatorname{sqrt}(u \cdot u+4 v)) / 2$;
if $\left(\left(u^{2}+4 v\right)<0\right)$ then
printf(" Zeros: \%.13g +- (\%.13g) i\n", $\operatorname{Re}(s 1)$, abs($\operatorname{Im}(s 1))$);
else
$s 2:=\operatorname{evalf}(u-s q r t(u \cdot u+4 v)) / 2 ;$
printf(" Zeros: \%.13g, \%.13\n", s1, s2);
end if;
end proc:
Figure 2.10: Bairstow's method.

Run Bairstow

```
P := x -> x^4 - 4*x^3 + 7*x^2 - 5*x - 2:
n := degree(P(x)):
a := Array(0..n):
for i from 0 to n do
    a[i] := coeff(P(x), x, i);
end do:
itmax := 10: TOL := 10^-10:
u := 3:
v := -4:
Bairstow(n, a, u, v, itmax, TOL);
    1 2.2000000 -2.7000000 1.3
    2 2.2727075 -3.9509822 0.07271 
    3 2.2720737 -3.6475280 -0.0006338 0.3035
    4 2.2756100 - -3.6274260 0.003536 0.0201
    5 2.2756822 -3.6273651 7.215e-05 6.090e-05
    6 2.2756822 -3.6273651 6.316e-09 -9.138e-09
    7 2.2756822 -3.6273651 -1.083e-17 -5.260e-17
    Q (x) = (1) x^2 + (-1.72432) (^^1 + (-0.551364)
    Remainder: -2.66446e-18 (x - (2.27568)) + (-2.47514e-16)
    Quadratic Factor: x^2 - (2.27568)x - (-3.62737)
    Zeros: 1.137841102 +- (1.527312251) i
```


Deflation

- Given a polynomial of degree $n, P(x)$, if the Newton's method finds a zero (say, \widehat{x}_{1}), it will be written as

$$
\begin{equation*}
P(x) \approx\left(x-\widehat{x}_{1}\right) Q_{1}(x) \tag{2.69}
\end{equation*}
$$

- Then, we can find a second approximate zero \widehat{x}_{2} (or, a quadratic factor) of P by applying Newton's method to the reduced polynomial $Q_{1}(x)$:

$$
\begin{equation*}
Q_{1}(x) \approx\left(x-\widehat{x}_{2}\right) Q_{2}(x) \tag{2.70}
\end{equation*}
$$

- The computation continues up to the point that P is factorized by linear and quadratic factors. The procedure is called deflation.

Remark 2.43.

- The deflation process introduces an accuracy issue, due to the fact that when we obtain the approximate zeros of $P(x)$, the Newton's method is applied to the reduced polynomials $Q_{k}(x)$.
- An approximate zero \widehat{x}_{k+1} of $Q_{k}(x)$ will generally not approximate a root of $P(x)=0$; inaccuracy increases as k increases.
- One way to overcome the difficulty is to improve the approximate zeros; starting with these zeros, apply the Newton's method with the original polynomial $P(x)$.

Exercises for Chapter 2

2.1. Let the bisection method be applied to a continuous function, resulting in intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \cdots$. Let $p_{n}=\left(a_{n}+b_{n}\right) / 2$ and $p=\lim _{n \rightarrow \infty} p_{n}$. Which of these statements can be false?
(a) $a_{1} \leq a_{2} \leq \cdots$
(b) $\left|p-p_{n}\right| \leq \frac{b_{1}-a_{1}}{2^{n}}, \quad n \geq 1$
(c) $\left|p-p_{n+1}\right| \leq\left|p-p_{n}\right|, \quad n \geq 1$
(d) $\left[a_{n+1}, b_{n+1}\right] \subset\left[a_{n}, b_{n}\right]$
(e) $\left|p-p_{n}\right|=\mathcal{O}\left(\frac{1}{2^{n}}\right)$ as $n \rightarrow \infty$

Ans: (c)
2.2. C Modify the Matlab code used in Example 2.7 for the bisection method to incorporate

$$
\begin{cases}\text { Inputs : } & \mathrm{f}, \mathrm{a}, \mathrm{~b}, \mathrm{TOL}, \text { itmax } \\ \text { Stopping criterion }: & \text { Relative error } \leq \mathrm{TOL} \text { or } k \leq \text { itmax }\end{cases}
$$

Consider the following equations defined on the given intervals:
I. $3 x-e^{x}=0, \quad[0,1]$
II. $2 x \cos (2 x)-(x+1)^{2}=0, \quad[-1,0]$

For each of the above equations,
(a) Use Maple or Matlab (or something else) to find a very accurate solution in the interval.
(b) Find the approximate root by using your Matlab with TOL=10-6 and itmax=10.
(c) Report $p_{n},\left|p-p_{n}\right|$, and $\left|p-p_{n-1}\right|$, for $n \geq 1$, in a table format.

Ans:
Table 2.1: Results of Bisection Method (Problem II)

Iteration	p_{n}	$\left\|p-p_{n}\right\|$	$\left\|p-p_{n-1}\right\|$
1	-0.7500	0.0482	0.2982
2	-0.8750	0.0768	0.0482
3	-0.8125	0.0143	0.0768
4	-0.7812	0.0169	0.0143
5	-0.7969	0.0013	0.0169
6	-0.8047	0.0065	0.0013
7	-0.8008	0.0026	0.0065
8	-0.7988	0.0007	0.0026
9	-0.7979	0.0003	0.0007
10	-0.7983	0.0002	0.0003

2.3. Cet us try to find $5^{1 / 3}$ by the fixed-point method. Use the fact that the result must be the positive solution of $f(x)=x^{3}-5=0$ to solve the following:
(a) Introduce two different fixed-point forms which are convergent for $x \in[1,2]$.
(b) Perform five iterations for each of the iterations with $p_{0}=1.5$, and measure $\left|p-p_{5}\right|$.
(c) Rank the associated iterations based on their apparent speed of convergence with $p_{0}=1.5$. Discuss why one is better than the other.
2.4. Kepler's equation in astronomy reads

$$
\begin{equation*}
y=x-\varepsilon \sin (x), \quad \text { with } 0<\varepsilon<1 . \tag{2.71}
\end{equation*}
$$

(a) Show that for each $y \in[0, \pi]$, there exists an x satisfying the equation.
(b) Interpret this as a fixed-point problem.
(c) Cind x 's for $y=1, \pi / 2,2$, using the fixed-point iteration. Set $\varepsilon=1 / 2$.

Hint: For (a), you may have to use the IVT for $x-\varepsilon * \sin (x)$ defined on $[0, \pi]$, while for (b) you should rearrange the equation in the form of $x=g(x)$. For (c), you may use any source of program which utilizes the fixed-point iteration.
2.5. Consider a variation of Newton's method in which only one derivative is needed; that is,

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{0}\right)}, \quad n \geq 1 \tag{2.72}
\end{equation*}
$$

Find C and s such that

$$
\begin{equation*}
e_{n} \approx C e_{n-1}^{s} \tag{2.73}
\end{equation*}
$$

Hint: You may have to use $f\left(p_{n-1}\right)=e_{n-1} f^{\prime}\left(p_{n-1}\right)-\frac{1}{2} e_{n-1}^{2} f^{\prime \prime}\left(\xi_{n-1}\right)$.
2.6. (Note: Do not use programming for this problem.) Starting with $\mathrm{x}_{0}=(0,1)^{T}$, carry out two iterations of the Newton's method on the system:

$$
\left\{\begin{array}{l}
4 x^{2}-y^{2}=0 \\
4 x y^{2}-x=1
\end{array}\right.
$$

Hint: Define $f_{1}(x, y)=4 x^{2}-y^{2}, f_{2}(x, y)=4 x y^{2}-x-1$. Then try to use (2.37)-(2.38), p.61.
Note that $J(x, y)=\left[\begin{array}{rr}8 x & -2 y \\ 4 y^{2}-1 & 8 x y\end{array}\right]$. Thus, for example, $J\left(x_{0}, y_{0}\right)=\left[\begin{array}{rr}0 & -2 \\ 3 & 0\end{array}\right]$ and $\left[\begin{array}{l}f_{1}\left(x_{0}, y_{0}\right) \\ f_{2}\left(x_{0}, y_{0}\right)\end{array}\right]=$ $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. Now you can find the correction vector to update iterate and get \mathbf{x}_{1}. Do it once more for
2.7. Consider the polynomial

$$
P(x)=3 x^{5}-7 x^{4}-5 x^{3}+x^{2}-8 x+2 .
$$

(a) Use the Horner's algorithm to find $P(4)$.
(b) Use the Newton's method to find a real-valued root, starting with $x_{0}=4$. and applying the Horner's algorithm for the evaluation of $P\left(x_{k}\right)$ and $P^{\prime}\left(x_{k}\right)$.
(c) Apply the Bairstow's method, with the initial point $(u, v)=(0,-1)$, to find a pair of complex-valued zeros.
(d) Find a disk centered at the origin that contains all the roots.

Ans: (c) Quadratic Factor $=x^{2}-0.3275 x+0.7703$. Thus, the complex-valued solutions are $x_{1}=0.1637+0.8623 i$ and $x_{2}=0.1637-0.8623 i$.

Chapter 3

Interpolation and Polynomial Approximation

This chapter introduces the following.

Topics	Applications/Properties
Polynomial interpolation	The first step toward approximation theory
Newton form Lagrange form Chebyshev polynomial	Basis functions for various applications in- cluding visualization and FEMs Optimized interpolation
Divided differences	
Neville's method Hermite interpolation	Evaluation of interpolating polynomials It incorporates $f\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}\right)$
Spline interpolation	Less oscillatory interpolation
B-splines Parametric curves	Curves in the plane or the space

Contents of Chapter 3

3.1. Polynomial Interpolation 82
3.2. Divided Differences 101
3.3. Data Approximation and Neville's Method 106
3.4. Hermite Interpolation 110
3.5. Spline Interpolation 114
3.6. Parametric Curves 126
Exercises for Chapter 3 131

3.1. Polynomial Interpolation

Each continuous function can be approximated (arbitrarily close) by a polynomial, and polynomials of degree n interpolating values at $(n+1)$ distinct points are all the same polynomial, as shown in the following theorems.

Theorem 3.1. (Weierstrass approximation theorem): Suppose $f \in$ $C[a, b]$. Then, for each $\varepsilon>0$, there exists a polynomial $P(x)$ such that

$$
\begin{equation*}
|f(x)-P(x)|<\varepsilon, \text { for all } x \in[a, b] . \tag{3.1}
\end{equation*}
$$

Example 3.2. Let $f(x)=e^{x}$. Then

$$
\begin{aligned}
& f:=x \mapsto \mathrm{e}^{x} \\
& \text { taylor }(f(x), x=0,7)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\mathrm{O}\left(x^{7}\right) \\
& p 0:=x \rightarrow 1: \\
& p 2:=x \rightarrow 1+x+\frac{1}{2} x^{2}: \\
& p 4:=x \rightarrow 1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}: \\
& p 6:=x \rightarrow 1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}:
\end{aligned}
$$

Figure 3.1: Polynomial approximations for $f(x)=e^{x}$.

Theorem 3.3. (Polynomial Interpolation Theorem):

If $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ are $(n+1)$ distinct real numbers, then for arbitrary values $y_{0}, y_{1}, y_{2}, \cdots, y_{n}$, there is a unique polynomial p_{n} of degree at most n such that

$$
\begin{equation*}
p_{n}\left(x_{i}\right)=y_{i} \quad(0 \leq i \leq n) . \tag{3.2}
\end{equation*}
$$

Proof. (Uniqueness).
Suppose there were two such polynomials, p_{n} and q_{n}. Then $p_{n}-q_{n}$ would have the property

$$
\begin{equation*}
\left(p_{n}-q_{n}\right)\left(x_{i}\right)=0, \quad \text { for } 0 \leq i \leq n \tag{3.3}
\end{equation*}
$$

Since the degree of $p_{n}-q_{n}$ is at most n, the polynomial can have at most n zeros unless it is a zero polynomial. Since x_{i} are distinct, $p_{n}-q_{n}$ has $n+1$ zeros and therefore it must be 0 . Hence,

$$
p_{n} \equiv q_{n} .
$$

(Existence).
For the existence part, we proceed inductively through construction.

- For $n=0$, the existence is obvious since we may choose the constant function

$$
\begin{equation*}
p_{0}(x)=y_{0} . \tag{3.4}
\end{equation*}
$$

- Now suppose that we have obtained a polynomial p_{k-1} of degree $\leq k-1$ with

$$
\begin{equation*}
p_{k-1}\left(x_{i}\right)=y_{i}, \quad \text { for } 0 \leq i \leq k-1 . \tag{3.5}
\end{equation*}
$$

- We try to construct p_{k} in the form

$$
\begin{equation*}
p_{k}(x)=p_{k-1}(x)+c_{k}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) \tag{3.6}
\end{equation*}
$$

for some c_{k}.
(a) Note that (3.6) is unquestionably a polynomial of degree $\leq k$.
(b) Furthermore, p_{k} interpolates the data that p_{k-1} interpolates:

$$
\begin{equation*}
p_{k}\left(x_{i}\right)=p_{k-1}\left(x_{i}\right)=y_{i}, \quad 0 \leq i \leq k-1 . \tag{3.7}
\end{equation*}
$$

- Now we determine the constant c_{k} to satisfy the condition

$$
\begin{equation*}
p_{k}\left(x_{k}\right)=y_{k}, \tag{3.8}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
p_{k}\left(x_{k}\right)=p_{k-1}\left(x_{k}\right)+c_{k}\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)=y_{k} . \tag{3.9}
\end{equation*}
$$

This equation can certainly be solved for c_{k} :

$$
\begin{equation*}
c_{k}=\frac{y_{k}-p_{k-1}\left(x_{k}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)}, \tag{3.10}
\end{equation*}
$$

because the denominator is not zero.

3.1.1. Newton Form of the Interpolating Polynomials

As in the proof of the previous theorem, each $p_{k}(k \geq 1)$ is obtained by adding a single term to p_{k-1}. Thus, at the end of the process, p_{n} will be a sum of terms and $p_{0}, p_{1}, \cdots, p_{n-1}$ will be easily visible in the expression of p_{n}. Each p_{k} has the form

$$
\begin{equation*}
p_{k}(x)=c_{0}+c_{1}\left(x-x_{0}\right)+\cdots+c_{k}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) . \tag{3.11}
\end{equation*}
$$

The compact form of this reads

$$
\begin{equation*}
p_{k}(x)=\sum_{i=0}^{k} c_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right) \tag{3.12}
\end{equation*}
$$

(Here the convention has been adopted that $\prod_{j=0}^{m}\left(x-x_{j}\right)=1$ when $m<0$.) The first few cases of (3.12) are

$$
\begin{align*}
& p_{0}(x)=c_{0} \\
& p_{1}(x)=c_{0}+c_{1}\left(x-x_{0}\right) \tag{3.13}\\
& p_{2}(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
\end{align*}
$$

These polynomials are called the interpolating polynomials in Newton form, or Newton form of interpolating polynomials.

Illustration of Newton's interpolating polynomials

Example 3.4. Let $f(x)=\sin (x \cdot(x-1))+1$. Let [$0,0.5,1.0,2.0,1.5$] be a collection of distinct points. Find Newton's interpolating polynomials which pass $\left\{\left(x_{i}, f\left(x_{i}\right)\right) \mid i \leq k\right\}$ for each k.

A Maple implementation

```
restart:
with(Student[NumericalAnalysis]):
f := x -> sin(x*(x - 1)) + 1:
xk := 0:
xy := [[xk, f(xk)]]:
P0 := PolynomialInterpolation(xy, independentvar = x,
                                    method = newton, function = f);
p0 := x -> Interpolant(PO):
p0(x)
                        1
xk := 0.5:
P1 := AddPoint(PO, [xk, f(xk)]):
p1 := x -> Interpolant(P1):
p1(x)
                        1. - 0.4948079186 x
xk := 1.0:
P2 := AddPoint(P1, [xk, f(xk)]):
p2 := x -> Interpolant(P2):
p2(x)
    1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
xk := 2.0:
P3 := AddPoint(P2, [xk, f(xk)]):
p3 := x -> Interpolant(P3):
p3(x)
\[
\begin{aligned}
1 . & -0.4948079186 x+0.9896158372 x(x-0.5) \\
& -0.3566447492 x(x-0.5)(x-1.0)
\end{aligned}
\]
```

```
xk := 1.5:
P4 := AddPoint(P3, [xk, f(xk)]):
p4 := x -> Interpolant(P4):
p4 (x)
```

```
1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
```

1. - 0.4948079186 x + 0.9896158372 x (x - 0.5)
 - 0.3566447492 x (x - 0.5) (x - 1.0)
 - 0.3566447492 x (x - 0.5) (x - 1.0)
-0.5517611839 x (x - 0.5) (x - 1.0) (x - 2.0)
```
    -0.5517611839 x (x - 0.5) (x - 1.0) (x - 2.0)
```


Figure 3.2: Illustration of Newton's interpolating polynomials, with $f(x)=\sin (x \cdot(x-1))+1$, at $[0,0.5,1.0,2.0,1.5]$.

Evaluation of $p_{k}(x)$, assuming that $c_{0}, c_{1}, \cdots, c_{k}$ are known:

We may use an efficient method called nested multiplication or Horner's method. This can be explained most easily for an arbitrary expression of the form

$$
\begin{equation*}
u=\sum_{i=0}^{k} c_{i} \prod_{j=0}^{i-1} d_{j} \tag{3.14}
\end{equation*}
$$

The idea begins with rewriting it in the form

$$
\begin{align*}
u= & c_{0}+c_{1} d_{0}+c_{2} d_{0} d_{1}+\cdots+c_{k-1} d_{0} d_{1} \cdots d_{k-2}+c_{k} d_{0} d_{1} \cdots d_{k-1} \\
& =c_{k} d_{0} d_{1} \cdots d_{k-1}+c_{k-1} d_{0} d_{1} \cdots d_{k-2}+\cdots+c_{2} d_{0} d_{1}+c_{1} d_{0}+c_{0} \\
& =\left(c_{k} d_{1} \cdots d_{k-1}+c_{k-1} d_{1} \cdots d_{k-2}+\cdots+c_{2} d_{1}+c_{1}\right) d_{0}+c_{0} \tag{3.15}\\
& =\left(\left(c_{k} d_{2} \cdots d_{k-1}+c_{k-1} d_{2} \cdots d_{k-2}+\cdots+c_{2}\right) d_{1}+c_{1}\right) d_{0}+c_{0} \\
& \ddots \\
& =\left(\cdots\left(\left(\left(c_{k}\right) d_{k-1}+c_{k-1}\right) d_{k-2}+c_{k-2}\right) d_{k-3}+\cdots+c_{1}\right) d_{0}+c_{0}
\end{align*}
$$

Algorithm 3.5. (Nested Multiplication). Thus the algorithm for the evaluation of u in (3.14) can be written as

```
u : = c [k];
for \(i\) from \(k-1\) by -1 to 0 do
    \(\mathrm{u}:=\mathrm{u} * \mathrm{~d}[\mathrm{i}]+\mathrm{c}[\mathrm{i}]\);
end do
```


The computation of c_{k}, using Horner's algorithm

Algorithm 3.6. The Horner's algorithm for the computation of coefficients c_{k} in Equation (3.12) gives

```
c[0] := y[0];
for \(k\) to \(n\) do
    \(\mathrm{d}:=\mathrm{x}[\mathrm{k}]-\mathrm{x}[\mathrm{k}-1]\);
    u : \(=c[k-1]\);
    for \(i\) from \(k-2\) by -1 to 0 do
        \(u \quad:=u *(x[k]-x[i])+c[i] ;\)
        \(\mathrm{d}:=\mathrm{d} *(\mathrm{x}[\mathrm{k}]-\mathrm{x}[\mathrm{i}])\);
    end do;
    \(c[k]:=(y[k]-u) / d ;\)
end do
```

A more efficient procedure exists that achieves the same result. The alternative method uses divided differences to compute the coefficients c_{k}. The method will be presented later.

Example 3.7. Let

$$
f(x)=4 x^{3}+35 x^{2}-84 x-954
$$

Four values of this function are given as

x_{i}	5	-7	-6	0
y_{i}	1	-23	-54	-954

Construct the Newton form of the polynomial from the data.

Solution.

```
with(Student[NumericalAnalysis]):
f := 4*x^3 + 35*x^2 - 84*x - 954:
xy := [[5, 1], [-7, -23], [-6, -54], [0, -954]]:
N := PolynomialInterpolation(xy, independentvar \(=\mathrm{x}\),
        method = newton, function \(=\) f):
Interpolant (N)
    \(-9+2 x+3(x-5)(x+7)+4(x-5)(x+7)(x+6)\)
\# Since "-9 + 2*x = 1 + 2* (x - 5)", the coefficients are
\# "c[0] = 1, c[1] = 2, c[2] = 3, c[3] = 4"
expand(Interpolant(N));
                                \(3 \quad 2\)
    \(4 \mathrm{x}+35 \mathrm{x}-84 \mathrm{x}-954\)
\# which is the same as f
RemainderTerm(N);
    0 \&where \(\{-7\) <= xi_var and xi_var <= 5\}
Draw (N) ;
```

Polynomial interpolation

DividedDifferenceTable(N);

$$
\left[\begin{array}{rrrr}
\underline{1} & 0 & 0 & 0 \\
-23 & \underline{2} & 0 & 0 \\
-54 & -31 & \underline{3} & 0 \\
-954 & -150 & -17 & \underline{4}
\end{array}\right]
$$

Example 3.8. Find the Newton form of the interpolating polynomial of the data.

x_{i}	2	-1	1
y_{i}	1	4	-2

Solution.

3.1.2. Lagrange Form of Interpolating Polynomials

Let data points $\left(x_{k}, y_{k}\right), 0 \leq k \leq n$ be given, where $n+1$ abscissas x_{i} are distinct. The interpolating polynomial will be sought in the form

$$
\begin{equation*}
p_{n}(x)=y_{0} L_{n, 0}(x)+y_{1} L_{n, 1}(x)+\cdots+y_{n} L_{n, n}(x)=\sum_{k=0}^{n} y_{k} L_{n, k}(x) \tag{3.16}
\end{equation*}
$$

where $L_{n, k}(x)$ are polynomials that depend on the nodes $x_{0}, x_{1}, \cdots, x_{n}$, but not on the ordinates $y_{0}, y_{1}, \cdots, y_{n}$.

How to determine the basis $\left\{L_{n, k}(x)\right\}$

Observation 3.9. Let all the ordinates be 0 except for a 1 occupying i-th position, that is, $y_{i}=1$ and other ordinates are all zero.

- Then,

$$
\begin{equation*}
p_{n}\left(x_{j}\right)=\sum_{k=0}^{n} y_{k} L_{n, k}\left(x_{j}\right)=L_{n, i}\left(x_{j}\right) . \tag{3.17}
\end{equation*}
$$

- On the other hand, the polynomial p_{n} interpolating the data must satisfy $p_{n}\left(x_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- Thus all the basis polynomials must satisfy

$$
\begin{equation*}
L_{n, i}\left(x_{j}\right)=\delta_{i j}, \quad \text { for all } 0 \leq i, j \leq n \tag{3.18}
\end{equation*}
$$

Polynomials satisfying such a property are known as the cardinal functions.

Example 3.10. Construction of $L_{n, 0}(x)$: It is to be an n th-degree polynomial that takes the value 0 at $x_{1}, x_{2}, \cdots, x_{n}$ and the value 1 at x_{0}. Clearly, it must be of the form

$$
\begin{equation*}
L_{n, 0}(x)=c\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=c \prod_{j=1}^{n}\left(x-x_{j}\right) \tag{3.19}
\end{equation*}
$$

where c is determined for which $L_{n, 0}\left(x_{0}\right)=1$. That is,

$$
\begin{equation*}
1=L_{n, 0}\left(x_{0}\right)=c\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right) \tag{3.20}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
c=\frac{1}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)} . \tag{3.21}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
L_{n, 0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}=\prod_{j=1}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{0}-x_{j}\right)} . \tag{3.22}
\end{equation*}
$$

Summary 3.11. Each cardinal function is obtained by similar reasoning; the general formula is then

$$
\begin{equation*}
L_{n, i}(x)=\prod_{j=0, j \neq i}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}, \quad i=0,1, \cdots, n . \tag{3.23}
\end{equation*}
$$

Example 3.12. Find the Lagrange form of interpolating polynomial for the two-point table

x	x_{0}	x_{1}
y	y_{0}	y_{1}

Solution.

Example 3.13. Determine the Lagrange interpolating polynomial that passes through $(2,4)$ and $(5,1)$.

Solution.

Example 3.14. Let $x_{0}=2, x_{1}=4, x_{2}=5$
(a) Use the points to find the second Lagrange interpolating polynomial p_{2} for $f(x)=1 / x$.
(b) Use p_{2} to approximate $f(3)=1 / 3$.

Solution.

Maple-code

```
with(Student[NumericalAnalysis]);
f := x -> 1/x:
unassign('xy'):
xy := [[2, 1/2], [4, 1/4], [5, 1/5]]:
L2 := PolynomialInterpolation(xy, independentvar = x,
    method = lagrange, function = f(x)):
Interpolant(L2);
    1
    -- (x-4) (x - 5) - - (x - 2) (x - 5) + -- (x - 2) (x - 4)
    12 8 15
RemainderTerm(L2);
/ (x-2) (x - 4) (x - 5)\
|- ------------------------ | &where {2 <= xi_var and xi_var <= 5}
\ xi_var /
p2 := x -> expand(Interpolant(L2));
```



```
evalf(p2(3));

\subsection*{3.1.3. Polynomial interpolation error}

Theorem 3.15. (Polynomial Interpolation Error Theorem). Let \(f \in C^{n+1}[a, b]\), and let \(P_{n}\) be the polynomial of degree \(\leq n\) that interpolates \(f\) at \(n+1\) distinct points \(x_{0}, x_{1}, \cdots, x_{n}\) in the interval \([a, b]\). Then, for each \(x \in(a, b)\), there exists a number \(\xi_{x}\) between \(x_{0}, x_{1}, \cdots, x_{n}\), hence in the interval \([a, b]\), such that
\[
\begin{equation*}
f(x)-P_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)=: R_{n}(x) \tag{3.24}
\end{equation*}
\]

Recall: Theorem 1.22. (Taylor's Theorem with Lagrange Remainder), page 9. Suppose \(f \in C^{n}[a, b], f^{(n+1)}\) exists on ( \(\left.a, b\right)\), and \(x_{0} \in[a, b]\). Then, for every \(x \in[a, b]\),
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{R}_{n}(x) \tag{3.25}
\end{equation*}
\]
where, for some \(\xi\) between \(x\) and \(x_{0}\),
\[
\mathcal{R}_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
\]

Example 3.16. For Example 3.14, determine the error bound in \([2,5]\).

\section*{Solution.}
```

p2 := x -> interp([2, 4, 5], [1/2, 1/4, 1/5], x):
p2(x):
f := x -> 1/x:
fd := x -> diff(f(x), x, x, x):
fd(xi)
6
4
xi
fdmax := maximize(abs(fd(x)), x = 2..5)
3
8
r := x -> (x - 2)*(x - 4)*(x - 5):
rmax := maximize(abs(r(x)), x = 2..5);
/5 1 (1/2)\/4 1 (1/2)\/1 1 1 (1/2)\
|---7 | |- +-7 | |- + - 7 |
\3 3 / \3 3 /\3 3 /
\#Thus, " |f(x)-p2(x)|<=(max)|R[2](x)|="
evalf(fdmax*rmax/3!)
0.1320382370

```

Example 3.17. If the function \(f(x)=\sin (x)\) is approximated by a polynomial of degree 5 that interpolates \(f\) at six equally distributed points in \([-1,1]\) including end points, how large is the error on this interval?
Solution. The nodes \(x_{i}\) are \(-1,-0.6,-0.2,0.2,0.6\), and 1 . It is easy to see that
\[
\left|f^{(6)}(\xi)\right|=|-\sin (\xi)| \leq \sin (1) .
\]
```

g := x -> (x+1)*(x+0.6)*(x+0.2)*(x-0.2)*(x-0.6)*(x-1):
gmax := maximize(abs(g(x)), x = -1..1)
0.06922606316

```

Thus,
\[
\begin{array}{r}
\left|\sin (x)-P_{5}(x)\right|=\left|\frac{f^{(6)}(\xi)}{6!} \prod_{i=0}^{5}\left(x-x_{i}\right)\right| \leq \frac{\sin (1)}{6!} \operatorname{gmax}  \tag{3.26}\\
=0.00008090517158
\end{array}
\]

\section*{Theorem 3.18. (Polynomial Interpolation Error Theorem for} Equally Spaced Nodes): Let \(f \in C^{n+1}[a, b]\), and let \(P_{n}\) be the polynomial of degree \(\leq n\) that interpolates \(f\) at
\[
x_{i}=a+i h, \quad h=\frac{b-a}{n}, \quad i=0,1, \cdots, n .
\]

Then, for each \(x \in(a, b)\),
\[
\begin{equation*}
\left|f(x)-P_{n}(x)\right| \leq \frac{h^{n+1}}{4(n+1)} M \tag{3.27}
\end{equation*}
\]
where
\[
M=\max _{\xi \in[a, b]}\left|f^{(n+1)}(\xi)\right| .
\]

Proof. Recall the interpolation error \(R_{n}(x)\) given in (3.24). We consider bounding
\[
\max _{x \in[a, b]} \prod_{j=1}^{n}\left|x-x_{i}\right| .
\]

Start by picking an \(x\). We can assume that \(x\) is not one of the nodes, because
otherwise the product in question is zero. Let \(x \in\left(x_{j}, x_{j+1}\right)\), for some \(j\). Then we have
\[
\begin{equation*}
\left|x-x_{j}\right| \cdot\left|x-x_{j+1}\right| \leq \frac{h^{2}}{4} \tag{3.28}
\end{equation*}
\]

Now note that
\[
\left|x-x_{i}\right| \leq \begin{cases}(j+1-i) h & \text { for } i<j  \tag{3.29}\\ (i-j) h & \text { for } j+1<i\end{cases}
\]

Thus
\[
\begin{equation*}
\prod_{j=1}^{n}\left|x-x_{i}\right| \leq \frac{h^{2}}{4}\left[(j+1)!h^{j}\right]\left[(n-j)!h^{n-j-1}\right] . \tag{3.30}
\end{equation*}
\]

Since \((j+1)!(n-j)!\leq n\) !, we can reach the following bound
\[
\begin{equation*}
\prod_{j=1}^{n}\left|x-x_{i}\right| \leq \frac{1}{4} h^{n+1} n! \tag{3.31}
\end{equation*}
\]

The result of the theorem follows from the above bound.
Example 3.19. How many equally spaced nodes are required to interpolate \(f(x)=\cos x+\sin x\) to within \(10^{-8}\) on the interval \([-1,1]\) ?
Solution. Recall the formula: \(\left|f(x)-P_{n}(x)\right| \leq \frac{h^{n+1}}{4(n+1)} M\). Then, for \(n\), solve
\[
\frac{(2 / n)^{n+1}}{4(n+1)} \sqrt{2} \leq 10^{-8}
\]

\subsection*{3.1.4. Chebyshev polynomials}

Recall the Polynomial Interpolation Error in (3.24), p. 93:
\[
f(x)-P_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} \prod_{\mathbf{i}=0}^{\mathbf{n}}\left(\mathbf{x}-\mathbf{x}_{\mathbf{i}}\right)=: R_{n}(x)
\]

There is a term that can be minimized by choosing the nodes in a special way. An analysis of this problem was first given by a great mathematician Chebyshev (1821-1894). The optimization process leads naturally to a system of polynomials called Chebyshev polynomials.

Definition 3.20. The Chebyshev polynomials (of the first kind) are defined recursively as follows:
\[
\left\{\begin{array}{l}
T_{0}(x)=1, \quad T_{1}(x)=x  \tag{3.32}\\
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1
\end{array}\right.
\]

\section*{The explicit forms of the next few \(T_{n}\) are readily calculated:}
```

 Chebyshev-polynomials
 T2 := x -> simplify(ChebyshevT(2, x)): T2(x)
2
2x-1
T3 := x -> simplify(ChebyshevT(3, x)): T3(x)
3
4x-3x
T4 := x -> simplify(ChebyshevT(4, x)): T4(x)
4 2
8x - 8x + 1
T5 := x -> simplify(ChebyshevT(5, x)): T5(x)
5 3
16x - 20x + 5x

```


Figure 3.3: Chebyshev polynomials.

\section*{Theorem 3.21. (Properties of Chebyshev polynomials):}
(a) \(T_{n}(x) \in[-1,1]\), for all \(x \in[-1,1]\), and the leading coefficient of \(T_{n}(x)\) is \(2^{n-1}\).
(b) The Chebyshev polynomials have this closed-form expression:
\[
\begin{equation*}
T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right), \quad n \geq 0 . \tag{3.33}
\end{equation*}
\]
(c) It has been verified that if the nodes \(x_{0}, x_{1}, \cdots, x_{n} \in[-1,1]\), then
\[
\begin{equation*}
\max _{|x| \leq 1}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right| \geq 2^{-n}, \quad n \geq 0 \tag{3.34}
\end{equation*}
\]
and its minimum value will be attained if
\[
\begin{equation*}
\prod_{i=0}^{n}\left(x-x_{i}\right)=2^{-n} T_{n+1}(x) . \tag{3.35}
\end{equation*}
\]
(d) The nodes then must be the roots of \(T_{n+1}\), which are
\[
\begin{equation*}
x_{i}=\cos \left(\frac{(2 i+1) \pi}{2 n+2}\right), \quad i=0,1, \cdots, n \tag{3.36}
\end{equation*}
\]

\section*{Theorem 3.22. (Interpolation Error Theorem, Chebyshev} nodes): If the nodes are the roots of the Chebyshev polynomial \(T_{n+1}\), as in (3.36), then the error bound for the \(n\) th-degree interpolating polynomial \(P_{n}\) reads
\[
\begin{equation*}
\left|f(x)-P_{n}(x)\right| \leq \frac{1}{2^{n}(n+1)!} \max _{|t| \leq 1}\left|f^{(n+1)}(t)\right| . \tag{3.37}
\end{equation*}
\]

Example 3.23. (A variant of Example 3.17): If the function \(f(x)=\) \(\sin (x)\) is approximated by a polynomial of degree 5 that interpolates \(f\) at at roots of the Chebyshev polynomial \(T_{6}\) in \([-1,1]\), how large is the error on this interval?

Solution. From Example 3.17, we know that
\[
\left|f^{(6)}(\xi)\right|=|-\sin (\xi)| \leq \sin (1)
\]

Thus
\[
\begin{equation*}
\left|f(x)-P_{5}(x)\right| \leq \frac{\sin (1)}{2^{n}(n+1)!}=0.00003652217816 \tag{3.38}
\end{equation*}
\]

It is an optimal upper bound of the error and smaller than the one in Equation (3.26), 0.00008090517158.

Accuracy comparison between uniform nodes and Chebyshev nodes:
```

with(Student [NumericalAnalysis]):
n : $=5$:
f := x -> $\sin (2 * x * P i):$
xd := $\operatorname{Array}(0 . . n):$
for i from 0 to n do
xd[i] := evalf[15] (-1 + (2*i)/n);
end do:
$\operatorname{xyU}:=[[\operatorname{xd}[0], f(x d[0])],[x d[1], f(x d[1])],[x d[2], f(x d[2])]$,
[xd[3],f(xd[3])], [xd[4],f(xd[4])], [xd[5],f(xd[5])]]:
$\mathrm{U}:=$ PolynomialInterpolation(xyU, independentvar $=\mathrm{x}$,
method = lagrange, function $=f(x))$:
pU := x -> Interpolant(U):

```
```

for i from O to n do
xd[i] := evalf[15](cos((2*i + 1)*Pi/(2*n + 2)));
end do:
xyC := [[xd[0],f(xd[0])], [xd[1],f(xd[1])], [xd[2],f(xd[2])],
[xd[3],f(xd[3])], [xd[4],f(xd[4])], [xd[5],f(xd[5])]]:
C := PolynomialInterpolation(xyC, independentvar = x,
method = lagrange, function = f(x)):
pC := x -> Interpolant(C):
plot([pU(x), pC(x)], x = -1..1, thickness = [2,2],
linestyle = [solid, dash], color = [red, blue],
legend = ["Uniform nodes", "Chebyshev nodes"],
legendstyle = [font = ["HELVETICA", 13], location = bottom])

```


Figure 3.4: Accuracy comparison between uniform nodes and Chebyshev nodes.

\subsection*{3.2. Divided Differences}

It turns out that the coefficients \(c_{k}\) for the interpolating polynomials in Newton's form can be calculated relatively easily by using divided differences.

Remark 3.24. For \(\left\{\left(x_{k}, y_{k}\right)\right\}, 0 \leq k \leq n\), the \(k\) th-degree Newton interpolating polynomials are of the form
\[
\begin{equation*}
p_{k}(x)=c_{0}+c_{1}\left(x-x_{0}\right)+\cdots+c_{k}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right), \tag{3.39}
\end{equation*}
\]
for which \(p_{k}\left(x_{k}\right)=y_{k}\). The first few cases are
\[
\begin{align*}
& p_{0}(x)=c_{0}=y_{0}, \\
& p_{1}(x)=c_{0}+c_{1}\left(x-x_{0}\right),  \tag{3.40}\\
& p_{2}(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
\end{align*}
\]
(a) The coefficient \(c_{1}\) is determined to satisfy
\[
\begin{equation*}
y_{1}=p_{1}\left(x_{1}\right)=c_{0}+c_{1}\left(x_{1}-x_{0}\right) . \tag{3.41}
\end{equation*}
\]

Note \(c_{0}=y_{0}\). Thus, we have
\[
\begin{equation*}
y_{1}-y_{0}=c_{1}\left(x_{1}-x_{0}\right) \tag{3.42}
\end{equation*}
\]
and therefore
\[
\begin{equation*}
c_{1}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} . \tag{3.43}
\end{equation*}
\]
(b) Now, since
\[
y_{2}=p_{2}\left(x_{2}\right)=c_{0}+c_{1}\left(x_{2}-x_{0}\right)+c_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right),
\]
it follows from the above, (3.42), and (3.43) that
\[
\begin{align*}
c_{2} & =\frac{y_{2}-y_{0}-c_{1}\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}\right)+\left(y_{1}-y_{0}\right)-c_{1}\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
& =\frac{\left(y_{2}-y_{1}\right)+c_{1}\left(x_{1}-x_{0}\right)-c_{1}\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)-c_{1}}{x_{2}-x_{0}} \tag{3.44}
\end{align*}
\]

\section*{Definition 3.25. (Divided differences):}
- The zeroth divided difference of the function \(f\) with respect to \(x_{i}\), denoted \(f\left[x_{i}\right]\), is the value of at \(x_{i}\) :
\[
\begin{equation*}
f\left[x_{i}\right]=f\left(x_{i}\right) \tag{3.45}
\end{equation*}
\]
- The remaining divided differences are defined recursively. The first divided difference of \(f\) with respect to \(x_{i}, x_{i+1}\) is defined as
\[
\begin{equation*}
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}} . \tag{3.46}
\end{equation*}
\]
- The second divided difference relative to \(x_{i}, x_{i+1}, x_{i+2}\) is defined as
\[
\begin{equation*}
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}} . \tag{3.47}
\end{equation*}
\]
- In general, the \(k\) th divided difference relative to \(x_{i}, x_{i+1}, \cdots, x_{i+k}\) is defined as
\[
\begin{equation*}
f\left[x_{i}, x_{i+1}, \cdots, x_{i+k}\right]=\frac{f\left[x_{i+1}, \cdots, x_{i+k}\right]-f\left[x_{i}, \cdots, x_{i+k-1}\right]}{x_{i+k}-x_{i}} \tag{3.48}
\end{equation*}
\]

Note: It follows from Remark 3.24 that the coefficients of the Newton interpolating polynomials read
\[
\begin{equation*}
c_{0}=f\left[x_{0}\right], \quad c_{1}=f\left[x_{0}, x_{1}\right], \quad c_{2}=f\left[x_{0}, x_{1}, x_{2}\right] \tag{3.49}
\end{equation*}
\]

In general,
\[
\begin{equation*}
c_{k}=f\left[x_{0}, x_{1}, \cdots, x_{k}\right] \tag{3.50}
\end{equation*}
\]

\section*{Newton's Divided Difference Table}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{x}\) & \(\mathbf{f}[\mathbf{x}]\) & DD1 (f[,]) & DD2 (f[, , \()\) & DD3 (f \([,,,])\), \\
\hline \hline\(x_{0}\) & \(f\left[x_{0}\right]\) & & & \\
\hline\(x_{1}\) & \(f\left[x_{1}\right]\) & \begin{tabular}{c}
\(f\left[x_{0}, x_{1}\right]\) \\
\(=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}\)
\end{tabular} & & \\
\hline\(x_{2}\) & \(f\left[x_{2}\right]\) & \begin{tabular}{c}
\(f\left[x_{1}, x_{2}\right]\) \\
\(=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}\)
\end{tabular} & \begin{tabular}{c}
\(f\left[x_{0}, x_{1}, x_{2}\right]\) \\
\(=\frac{\left.f\left[x_{1}, x_{2}\right]\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}\)
\end{tabular} & \\
\hline\(x_{3}\) & \(f\left[x_{3}\right]\) & \begin{tabular}{c}
\(f\left[x_{2}, x_{3}\right]\) \\
\(=\frac{f\left[x_{3}\right]-f\left[x_{2}\right]}{x_{3}-x_{2}}\)
\end{tabular} & \begin{tabular}{c}
\(f\left[x_{1}, x_{2}, x_{3}\right]\) \\
\(=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}\)
\end{tabular} & \begin{tabular}{c}
\(f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\) \\
\(\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Pseudocode 3.26. (Newton's Divided Difference Formula):}

Input: \(\left(x_{i}, y_{i}\right), \quad i=0,1, \cdots, n\), saved as \(F_{i, 0}=y_{i}\)
Output: \(F_{i, i}, \quad i=0,1, \cdots, n\)
Step 1: \(\quad\) For \(i=1,2, \cdots, n\)
For \(j=1,2, \cdots, i\)
\[
F_{i, j}=\frac{F_{i, j-1}-F_{i-1, j-1}}{x_{i}-x_{i-j}}
\]

Step 2: Return \(\left(F_{0,0}, F_{1,1}, \cdots, F_{n, n}\right)\)
Example 3.27. Determine the Newton interpolating polynomial for the data:
\[
\begin{array}{c|c|c|c|c}
x & 0 & 1 & 2 & 5 \\
\hline y & 1 & -1 & 3 & -189
\end{array}
\]

\section*{Solution.}
\[
\text { Ans: } f(x)=1-2 x+3 x(x-1)-4 x(x-1)(x-2)
\]

\section*{Theorem 3.28. (Properties of Divided Differences):}
- If \(f\) is a polynomial of degree \(k\), then
\[
\begin{equation*}
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=0, \quad \text { for all } n>k \tag{3.52}
\end{equation*}
\]
- Permutations in Divided Differences: The divided difference is a symmetric function of its arguments. That is, if \(z_{0}, z_{1}, \cdots, z_{n}\) is a permutation of \(x_{0}, x_{1}, \cdots, x_{n}\), then
\[
\begin{equation*}
f\left[z_{0}, z_{1}, \cdots, z_{n}\right]=f\left[x_{0}, x_{1}, \cdots, x_{n}\right] . \tag{3.53}
\end{equation*}
\]
- Error in Newton Interpolation: Let \(P\) be the polynomial of degree \(\leq n\) that interpolates \(f\) at \(n+1\) distinct nodes, \(x_{0}, x_{1}, \cdots, x_{n}\). If \(t\) is a point different from the nodes, then
\[
\begin{equation*}
f(t)-P(t)=f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{i=0}^{n}\left(t-x_{i}\right) \tag{3.54}
\end{equation*}
\]

Proof: Let \(Q\) be the polynomial of degree at most \((n+1)\) that interpolates \(f\) at nodes, \(x_{0}, x_{1}, \cdots, x_{n}\), . Then, we know that \(Q\) is obtained from \(P\) by adding one more term. Indeed,
\[
\begin{equation*}
Q(x)=P(x)+f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{i=0}^{n}\left(x-x_{i}\right) . \tag{3.55}
\end{equation*}
\]

Since \(f(t)=Q(t)\), the result follows.
- Derivatives and Divided Differences: If \(f \in C^{n}[a, b]\) and if \(x_{0}, x_{1}, \cdots, x_{n}\) are distinct points in \([a, b]\), then there exists a point \(\xi \in(a, b)\) such that
\[
\begin{equation*}
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi) . \tag{3.56}
\end{equation*}
\]

Proof: Let \(p_{n-1}\) be the polynomial of degree at most \(n-1\) that interpolates \(f\) at \(x_{0}, x_{1}, \cdots, x_{n-1}\). By the Polynomial Interpolation Error Theorem, there exists a point \(\xi \in(a, b)\) such that
\[
\begin{equation*}
f\left(x_{n}\right)-p_{n-1}\left(x_{n}\right)=\frac{1}{n!} f^{(n)}(\xi) \prod_{i=1}^{n-1}\left(x_{n}-x_{i}\right) . \tag{3.57}
\end{equation*}
\]

On the other hand, by the previous theorem, we have
\[
\begin{equation*}
f\left(x_{n}\right)-p_{n-1}\left(x_{n}\right)=f\left[x_{0}, x_{1}, \cdots, x_{n}\right] \prod_{i=1}^{n-1}\left(x_{n}-x_{i}\right) . \tag{3.58}
\end{equation*}
\]

The theorem follows from the comparison of above two equations.

Self-study 3.29. Prove that for \(h>0\),
\[
\begin{equation*}
f(x)-2 f(x+h)+f(x+2 h)=h^{2} f^{\prime \prime}(\xi), \tag{3.59}
\end{equation*}
\]
for some \(\xi \in(x, x+2 h)\).
Hint: Use the last theorem; employ the divided difference formula to find \(f[x, x+h, x+2 h]\). Solution.

\subsection*{3.3. Data Approximation and Neville's Method}

\section*{Remark 3.30.}
- We have studied how to construct interpolating polynomials. A frequent use of these polynomials involves the interpolation of tabulated data.
- However, in many applications, an explicit representation of the polynomial is not needed, but only the values of the polynomial at specified points.
- In this situation, the function underlying the data might be unknown so the explicit form of the error cannot be used to assure the accuracy of the interpolation.
- Neville's Method provides an adaptive mechanism for the evaluation of accurate interpolating values.

\section*{Definition 3.31. (Interpolating polynomial at \(x_{m_{1}}, x_{m_{2}}, \cdots, x_{m_{k}}\) ):} Let \(f\) be defined at \(x_{0}, x_{1}, \cdots, x_{n}\), and suppose that \(m_{1}, m_{2}, \cdots, m_{k}\) are \(k\) distinct integers with \(0 \leq m_{i} \leq n\) for each \(i\). The polynomial that agrees with at the points \(x_{m_{1}}, x_{m_{2}}, \cdots, x_{m_{k}}\) is denoted by \(\boldsymbol{P}_{m_{1}, m_{2}}, \cdots, m_{k}\).

Example 3.32. Suppose that \(x_{0}=1, x_{1}=2, x_{2}=3, x_{3}=4, x_{4}=6\) and \(f(x)=e^{x}\). Determine the interpolating polynomial \(P_{1,2,4}(x)\) and use this polynomial to approximate \(f(5)\).

Solution. It can be the Lagrange polynomial that agrees with \(f(x)\) at \(x_{1}=2, x_{2}=3, x_{4}=6\) :
\[
P_{1,2,4}(x)=\frac{(x-3)(x-6)}{(2-3)(2-6)} e^{2}+\frac{(x-2)(x-6)}{(3-2)(3-6)} e^{3}+\frac{(x-2)(x-3)}{(6-2)(6-3)} e^{6} .
\]

Thus
\[
P_{1,2,4}(5)=-\frac{1}{2} e^{2}+e^{3}+\frac{1}{2} e^{6} \approx 218.1054057 .
\]

On the other hand, \(f(5)=e^{5} \approx 148.4131591\).

Theorem 3.33. Let \(f\) be defined at \((n+1)\) distinct points, \(x_{0}, x_{1}, \cdots, x_{n}\). Then for each \(0 \leq i<j \leq n\),
\[
\begin{equation*}
P_{i, i+1, \cdots, j}(x)=\frac{\left(x-x_{i}\right) P_{i+1, i+2, \cdots, j}(x)-\left(x-x_{j}\right) P_{i, i+1, \cdots, j-1}(x)}{x_{j}-x_{i}}, \tag{3.60}
\end{equation*}
\]
which is the polynomial interpolating \(f\) at \(x_{i}, x_{i+1}, \cdots, x_{j}\).
Note: The above theorem implies that the interpolating polynomial can be generated recursively. For example,
\[
\begin{align*}
P_{0,1}(x) & =\frac{\left(x-x_{0}\right) P_{1}(x)-\left(x-x_{1}\right) P_{0}(x)}{x_{1}-x_{0}} \\
P_{1,2}(x) & =\frac{\left(x-x_{1}\right) P_{2}(x)-\left(x-x_{2}\right) P_{1}(x)}{x_{2}-x_{1}}  \tag{3.61}\\
P_{0,1,2}(x) & =\frac{\left(x-x_{0}\right) P_{1,2}(x)-\left(x-x_{2}\right) P_{0,1}(x)}{x_{2}-x_{0}}
\end{align*}
\]
and so on. They are generated in the manner shown in the following table, where each row is completed before the succeeding rows are begun.
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{0}\) & \(y_{0}=P_{0}\) & & & \\
\hline\(x_{1}\) & \(y_{1}=P_{1}\) & \(P_{0,1}\) & & \\
\hline\(x_{2}\) & \(y_{2}=P_{2}\) & \(P_{1,2}\) & \(P_{0,1,2}\) & \\
\hline\(x_{3}\) & \(y_{3}=P_{3}\) & \(P_{2,3}\) & \(P_{1,2,3}\) & \(P_{0,1,2,3}\) \\
\hline
\end{tabular}

For simplicity in computation, we may try to avoid multiple subscripts by defining the new variable
\[
Q_{i, j}=P_{i-j, i-j+1, \cdots, i}
\]

Then the above table can be expressed as
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{0}\) & \(P_{0}=Q_{0,0}\) & & & \\
\hline\(x_{1}\) & \(P_{1}=Q_{1,0}\) & \(P_{0,1}=Q_{1,1}\) & & \\
\hline\(x_{2}\) & \(P_{2}=Q_{2,0}\) & \(P_{1,2}=Q_{2,1}\) & \(P_{0,1,2}=Q_{2,2}\) & \\
\hline\(x_{3}\) & \(P_{3}=Q_{3,0}\) & \(P_{2,3}=Q_{3,1}\) & \(P_{1,2,3}=Q_{3,2}\) & \(P_{0,1,2,3}=Q_{3,3}\) \\
\hline
\end{tabular}

Example 3.34. Let \(x_{0}=2.0, x_{1}=2.2, x_{2}=2.3, x_{3}=1.9, x_{4}=2.15\). Use Neville's method to approximate \(f(2.1)=\ln (2.1)\) in a four-digit accuracy.

\section*{Solution.}
```

with(Student[NumericalAnalysis]):
x0 := 2.0:
x1 := 2.2:
x2 := 2.3:
x3 := 1.9:
x4 := 2.15:
xy := [[x0, ln(x0)], [x1, ln(x1)], [x2, ln(x2)], [x3, ln(x3)], [x4,\operatorname{ln}(x4)]]:
P := PolynomialInterpolation(xy, method = neville):
Q := NevilleTable(P, 2.1)
[[0.6931471806, 0, 0, 0, 0,
[0.7884573604, 0.7408022680, 0, 0, 0],
[0.8329091229, 0.7440056025, 0.7418700461, 0, 0],
[0.6418538862, 0.7373815030, 0.7417975693, 0.7419425227, 0],
[0.7654678421, 0.7407450500, 0.7418662324, 0.7419348958, 0.7419374382]]

```

Note that
\[
\begin{aligned}
& \left|Q_{3,3}-Q_{2,2}\right|=|0.7419425227-0.7418700461|=0.0000724766 \\
& \left|Q_{4,4}-Q_{3,3}\right|=|0.7419374382-0.7419425227|=0.0000050845
\end{aligned}
\]

Thus \(Q_{3,3}=0.7419425227\) is already in a four-digit accuracy.
Check: The real value is \(\ln (2.1)=0.7419373447\). The absolute error: \(\mid \ln (2.1)-\) \(Q_{3,3} \mid=0.0000051780\).

\section*{Pseudocode 3.35.}

Input: \(\left\{\begin{array}{l}\text { the nodes } x_{0}, x_{1}, \cdots, x_{n} ; \text { the evaluation point } x ; \text { the tolerance } \varepsilon ; \\ \text { and values } y_{0}, y_{1}, \cdots, y_{n} \text { in the 1st column of } Q \in \mathbb{R}^{(n+1) \times(n+1)}\end{array}\right.\) Output: \(Q\)
Step 1: For \(i=1,2, \cdots, n\)
For \(j=1,2, \cdots, i\)
\[
\begin{aligned}
& \quad Q_{i, j}=\frac{\left(x-x_{i-j}\right) Q_{i, j-1}-\left(x-x_{i}\right) Q_{i-1, j-1}}{x_{i}-x_{i-j}} \\
& \text { if }\left(\left|Q_{i, i}-Q_{i-1, i-1}\right|<\varepsilon\right)\left\{i_{0}=i ; \text { break; }\right\}
\end{aligned}
\]

Step 2: Return \(\left(Q, i_{0}\right)\)

Example 3.36. Neville's method is used to approximate \(f(0.3)\), giving the following table.
\begin{tabular}{|l|l|l|l|l|}
\hline\(x_{0}=0\) & \(Q_{0,0}=1\) & & & \\
\hline\(x_{1}=0.25\) & \(Q_{1,0}=2\) & \(Q_{1,1}=2.2\) & & \\
\hline\(x_{2}=0.5\) & \(\mathbf{Q}_{2,0}\) & \(Q_{2,1}\) & \(Q_{2,2}\) & \\
\hline\(x_{3}=0.75\) & \(Q_{3,0}=5\) & \(Q_{3,1}\) & \(Q_{3,2}=2.12\) & \(Q_{3,3}=2.168\) \\
\hline
\end{tabular}

Determine \(Q_{2,0}=f\left(x_{2}\right)\).

\section*{Solution.}

\subsection*{3.4. Hermite Interpolation}

The Hermite interpolation refers to the interpolation of a function and some of its derivatives at a set of nodes. When a distinction is being made between this type of interpolation and its simpler type (in which no derivatives are interpolated), the latter is often called Lagrange interpolation.

\section*{Key Idea 3.37. (Basic Concepts of Hermite Interpolation):}
- For example, we require a polynomial of least degree that interpolates a function \(f\) and its derivative \(f^{\prime}\) at two distinct points, say \(x_{0}\) and \(x_{1}\).
- Then the polynomial \(p\) sought will satisfy these four conditions:
\[
\begin{equation*}
p\left(x_{i}\right)=f\left(x_{i}\right), \quad p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right) ; \quad i=0,1 . \tag{3.65}
\end{equation*}
\]
- Since there are four conditions, it seems reasonable to look for a solution in \(\mathbb{P}_{3}\), the space of all polynomials of degree at most 3 . Rather than writing \(p(x)\) in terms of \(1, x, x^{2}, x^{3}\), let us write it as
\[
\begin{equation*}
p(x)=a+b\left(x-x_{0}\right)+c\left(x-x_{0}\right)^{2}+d\left(x-x_{0}\right)^{2}\left(x-x_{1}\right), \tag{3.66}
\end{equation*}
\]
because this will simplify the work. This leads to
\[
\begin{equation*}
p^{\prime}(x)=b+2 c\left(x-x_{0}\right)+2 d\left(x-x_{0}\right)\left(x-x_{1}\right)+d\left(x-x_{0}\right)^{2} . \tag{3.67}
\end{equation*}
\]
- The four conditions on \(p\), in (3.65), can now be written in the form
\[
\begin{align*}
& f\left(x_{0}\right)=a \\
& f^{\prime}\left(x_{0}\right)=b  \tag{3.68}\\
& f\left(x_{1}\right)=a+b h+c h^{2} \quad\left(h=x_{1}-x_{0}\right) \\
& f^{\prime}\left(x_{1}\right)=b+2 c h+d h^{2}
\end{align*}
\]

Thus, the coefficients \(a, b, c, d\) can be obtained easily.

Theorem 3.38. (Hermite Interpolation Theorem): If \(f \in C^{1}[a, b]\) and \(x_{0}, x_{1}, \cdots, x_{n} \in[a, b]\) are distinct, then the unique polynomial of least degree agreeing with \(f\) and \(f^{\prime}\) at the \((n+1)\) points is the Hermite polynomial of degree at most \((2 n+1)\) given by
\[
\begin{equation*}
H_{2 n+1}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) H_{n, i}(x)+\sum_{i=0}^{n} f\left(x_{i}\right) \widehat{H}_{n, i}(x), \tag{3.69}
\end{equation*}
\]
where
\[
\begin{aligned}
H_{n, i}(x) & =\left[1-2\left(x-x_{i}\right) L_{n, i}^{\prime}\left(x_{i}\right)\right] L_{n, i}^{2}(x), \\
\widehat{H}_{n, i}(x) & =\left(x-x_{i}\right) L_{n, i}^{2}(x) .
\end{aligned}
\]

Here \(L_{n, i}(x)\) is the ith Lagrange polynomial of degree \(n\). Moreover, if \(f \in C^{2 n+2}[a, b]\), then
\[
\begin{equation*}
f(x)-H_{2 n+1}(x)=\frac{f^{(2 n+2)}(\xi)}{(2 n+2)!} \prod_{i=0}^{n}\left(x-x_{i}\right)^{2} \tag{3.70}
\end{equation*}
\]

\section*{Construction of Hermite Polynomials using Divided Differences}

Recall: The polynomial \(P_{n}\) that interpolates \(f\) at \(x_{0}, x_{1}, \cdots, x_{n}\) is given
\[
\begin{equation*}
P_{n}(x)=f\left[x_{0}\right]+\sum_{k=1}^{n} f\left[x_{0}, x_{1}, \cdots, x_{k}\right]\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right) . \tag{3.71}
\end{equation*}
\]

\section*{Strategy 3.39. (Construction of Hermite Polynomials):}
- Define a new sequence by \(z_{0}, z_{1}, \cdots, z_{2 n+1}\) by
\[
\begin{equation*}
z_{2 i}=z_{2 i+1}=x_{i}, \quad i=0,1, \cdots, n \tag{3.72}
\end{equation*}
\]
- Then the Newton form of the Hermite polynomial is given by
\[
\begin{equation*}
H_{2 n+1}(x)=f\left[z_{0}\right]+\sum_{k=1}^{2 n+1} f\left[z_{0}, z_{1}, \cdots, z_{k}\right]\left(x-z_{0}\right) \cdots\left(x-z_{k-1}\right), \tag{3.73}
\end{equation*}
\]
with
\[
\begin{equation*}
f\left[z_{2 i}, z_{2 i+1}\right]=f\left[x_{i}, x_{i}\right]=\frac{f\left[x_{i}\right]-f\left[x_{i}\right]}{x_{i}-x_{i}} \quad \text { replaced by } f^{\prime}\left(x_{i}\right) . \tag{3.74}
\end{equation*}
\]

Note: For each \(i=0,1, \cdots, n\),
\[
\begin{equation*}
\lim _{x \rightarrow x_{i}} \frac{f(x)-f\left(x_{i}\right)}{x-x_{i}}=f^{\prime}\left(x_{i}\right) . \tag{3.75}
\end{equation*}
\]

The extended Newton divided difference table: Consider the Hermite polynomial that interpolates \(f\) and \(f^{\prime}\) at three points, \(x_{0}, x_{1}, x_{2}\).
\begin{tabular}{|c|l|l|c|}
\hline \(\mathbf{z}\) & \(\mathbf{f}(\mathbf{z})\) & DD1 & Higher DDs \\
\hline \hline\(z_{0}=x_{0}\) & \(f\left[z_{0}\right]=f\left(x_{0}\right)\) & & \\
\hline\(z_{1}=x_{0}\) & \(f\left[z_{1}\right]=f\left(x_{0}\right)\) & \(f\left[z_{0}, z_{1}\right]=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{0}}\right)\) & \\
\hline \hline\(z_{2}=x_{1}\) & \(f\left[z_{2}\right]=f\left(x_{1}\right)\) & \(f\left[z_{1}, z_{2}\right]=\frac{f\left[z_{2}\right]-f\left[z_{1}\right]}{z_{2}-z_{1}}\) & \\
\hline\(z_{3}=x_{1}\) & \(f\left[z_{3}\right]=f\left(x_{1}\right)\) & \(f\left[z_{2}, z_{3}\right]=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{1}}\right)\) & as usual \\
\hline \hline\(z_{4}=x_{2}\) & \(f\left[z_{4}\right]=f\left(x_{2}\right)\) & \(f\left[z_{3}, z_{4}\right]=\frac{f\left[z_{4}\right]-f\left[z_{3}\right]}{z_{4}-z_{3}}\) & \\
\hline\(z_{5}=x_{2}\) & \(f\left[z_{5}\right]=f\left(x_{2}\right)\) & \(f\left[z_{4}, z_{5}\right]=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{2}}\right)\) & \\
\hline
\end{tabular}

Each zero-over-zero is replaced by its corresponding derivative value, while other divided differences are obtained as usual.

Example 3.40. Use the extended Newton divided difference method to obtain a cubic polynomial that takes these values:
\begin{tabular}{l|r|r}
\hline\(x\) & \(f(x)\) & \(f^{\prime}(x)\) \\
\hline \hline 0 & 2 & -9 \\
\hline 1 & -4 & 4
\end{tabular}

Ans: \(H_{3}(x)=2-9 x+3 x^{2}+7 x^{2}(x-1)\).
Example 3.41. (Continuation): Find a quartic polynomial \(p_{4}\) that takes values given in the preceding example and, in addition, satisfies \(p_{4}(2)=44\).

\subsection*{3.5. Spline Interpolation}

\subsection*{3.5.1. Runge's phenomenon}

Recall: (Weierstrass approximation theorem): Suppose \(f \in C[a, b]\). Then, for each \(\varepsilon>0\), there exists a polynomial \(P(x)\) such that
\[
\begin{equation*}
|f(x)-P(x)|<\varepsilon, \text { for all } x \in[a, b] . \tag{3.77}
\end{equation*}
\]

Interpolation at equidistant points is a natural and common approach to construct approximating polynomials. Runge's phenomenon demonstrates, however, that interpolation can easily result in divergent approximations.

Example 3.42. (Runge's phenomenon): Consider the function
\[
\begin{equation*}
f(x)=\frac{1}{1+25 x^{2}}, \quad x \in[-1,1] . \tag{3.78}
\end{equation*}
\]

Runge found that if this function was interpolated at equidistant points
\[
x_{i}=-1+i \frac{2}{n}, \quad i=0,1, \cdots, n,
\]
the resulting interpolation \(p_{n}\) oscillated toward the end of the interval, i.e. close to -1 and 1 . It can even be proven that the interpolation error tends toward infinity when the degree of the polynomial increases:
\[
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\max _{-1 \leq x \leq 1}\left|f(x)-p_{n}(x)\right|\right)=\infty \tag{3.79}
\end{equation*}
\]


Figure 3.5: Runge's phenomenon.

\section*{Mitigation to the problem}
- Change of interpolation points: e.g., Chebyshev nodes
- Constrained minimization: e.g., Hermite-like higher-order polynomial interpolation, whose first (or second) derivative has minimal norm.
- Use of piecewise polynomials: e.g., Spline interpolation

Definition 3.43. A partition of the interval \([a, b]\) is an ordered sequence \(\left\{x_{i}\right\}_{i=0}^{n}\) such that
\[
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
\]

The numbers \(x_{i}\) are known as knots or nodes.
Definition 3.44. A function \(S\) is a spline of degree \(k\) on \([a, b]\) if
1) The domain of \(S\) is \([a, b]\).
2) There exits a partition \(\left\{x_{i}\right\}_{i=0}^{n}\) of \([a, b]\) such that on each subinterval \(\left[x_{i-1}, x_{i}\right], S \in \mathbb{P}_{k}\).
3) \(S, S^{\prime}, \cdots, S^{(k-1)}\) are continuous on ( \(a, b\) ).

\subsection*{3.5.2. Linear splines}

A linear spline is a continuous function which is linear on each subinterval. Thus it is defined entirely by its values at the nodes. That is, given
\begin{tabular}{l|l|l|l|l}
\hline\(x\) & \(x_{0}\) & \(x_{1}\) & \(\cdots\) & \(x_{n}\) \\
\hline\(y\) & \(y_{0}\) & \(y_{1}\) & \(\cdots\) & \(y_{n}\) \\
\hline
\end{tabular}
the linear polynomial on each subinterval is defined as
\[
\begin{equation*}
L_{i}(x)=y_{i-1}+\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}\left(x-x_{i-1}\right), \quad x \in\left[x_{i-1}, x_{i}\right] \tag{3.80}
\end{equation*}
\]

Example 3.45. Find the linear spline for
\begin{tabular}{l|l|l|l|l|l}
\hline\(x\) & 0.0 & 0.2 & 0.5 & 0.8 & 1.0 \\
\hline\(y\) & 1.3 & 3.0 & 2.0 & 2.1 & 2.5 \\
\hline
\end{tabular}

\section*{Solution.}

The linear spline can be easily computed as
\[
L(x)= \begin{cases}1.3+8.5 x, & x<0.2  \tag{3.81}\\ \frac{11}{3}-\frac{10 x}{3}, & x<0.5 \\ \frac{13}{6}+\frac{x}{3}, & x<0.8 \\ 0.5+2.0 x, & \text { otherwise }\end{cases}
\]


Figure 3.6: Linear spline.

\section*{First-Degree Spline Accuracy}

Theorem 3.46. To find the error bound, we will consider the error on a single subinterval of the partition, and apply a little calculus. Let \(p(x)\) be the linear polynomial interpolating \(f(x)\) at the endpoints of \(\left[x_{i-1}, x_{i}\right]\). Then,
\[
\begin{equation*}
f(x)-p(x)=\frac{f^{\prime \prime}(\xi)}{2!}\left(x-x_{i-1}\right)\left(x-x_{i}\right) \tag{3.82}
\end{equation*}
\]
for some \(\xi \in\left(x_{i-1}, x_{i}\right)\). Thus
\[
\begin{equation*}
|f(x)-p(x)| \leq \frac{M_{2}}{8} \max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)^{2}, \quad x \in[a, b] \tag{3.83}
\end{equation*}
\]
where
\[
M_{2}=\max _{x \in(a, b)}\left|f^{\prime \prime}(x)\right|
\]

\subsection*{3.5.3. Quadratic (Second Degree) Splines}

Remark 3.47. A quadratic spline is a piecewise quadratic function, of which the derivative is continuous on \((a, b)\).
- Typically, a quadratic spline \(Q\) is defined by its piecewise polynomials: Let \(Q_{i}=\left.Q\right|_{\left[x_{i-1}, x_{i}\right]}\). Then
\[
\begin{equation*}
Q_{i}(x)=a_{i} x^{2}+b_{i} x+c_{i}, \quad x \in\left[x_{i-1}, x_{i}\right], \quad i=1,2, \cdots, n . \tag{3.84}
\end{equation*}
\]

Thus there are \(3 n\) parameters to define \(Q(x)\).
- For each of the \(\boldsymbol{n}\) subintervals, the data \(\left(x_{i}, y_{i}\right), i=1,2, \cdots, n\), gives two equations regarding \(Q_{i}(x)\) :
\[
\begin{equation*}
Q_{i}\left(x_{i-1}\right)=y_{i-1} \quad \text { and } \quad Q_{i}\left(x_{i}\right)=y_{i}, \quad i=1,2, \cdots, n \tag{3.85}
\end{equation*}
\]

This is \(2 n\) equations. The continuity condition on \(Q^{\prime}\) gives a single equation for each of the \((n-1)\) internal nodes:
\[
\begin{equation*}
Q_{i}^{\prime}\left(x_{i}\right)=Q_{i+1}^{\prime}\left(x_{i}\right), \quad i=1,2, \cdots, n-1 . \tag{3.86}
\end{equation*}
\]

This totals \((3 n-1)\) equations, but \(3 n\) unknowns.
- Thus an additional user-chosen condition is required, e.g.,
\[
\begin{equation*}
Q^{\prime}(a)=f^{\prime}(a), \quad Q^{\prime}(a)=0, \quad \text { or } \quad Q^{\prime \prime}(a)=0 . \tag{3.87}
\end{equation*}
\]

Alternatively, the additional condition can be given at \(x=b\).

\section*{Algorithm 3.48. (Construction of quadratic splines):}
(0) Define
\[
\begin{equation*}
z_{i}=Q^{\prime}\left(x_{i}\right), \quad i=0,1, \cdots, n \tag{3.88}
\end{equation*}
\]
suppose that the additional condition is given by specifying \(z_{0}\).
(1) Because \(Q_{i}^{\prime}=\left.Q^{\prime}\right|_{\left[x_{i-1}, x_{i}\right]}\) is a linear function satisfying
\[
\begin{equation*}
Q_{i}^{\prime}\left(x_{i-1}\right)=z_{i-1} \quad \text { and } \quad Q_{i}^{\prime}\left(x_{i}\right)=z_{i}, \quad\left(\text { continuity of } Q^{\prime}\right) \tag{3.89}
\end{equation*}
\]
we have
\[
\begin{equation*}
Q_{i}^{\prime}(x)=z_{i-1}+\frac{z_{i}-z_{i-1}}{x_{i}-x_{i-1}}\left(x-x_{i-1}\right), \quad x \in\left[x_{i-1}, x_{i}\right] . \tag{3.90}
\end{equation*}
\]
(2) By integrating it and using \(Q_{i}\left(x_{i-1}\right)=y_{i-1}\) (left edge value)
\[
\begin{equation*}
Q_{i}(x)=\frac{z_{i}-z_{i-1}}{2\left(x_{i}-x_{i-1}\right)}\left(x-x_{i-1}\right)^{2}+z_{i-1}\left(x-x_{i-1}\right)+y_{i-1} . \tag{3.91}
\end{equation*}
\]
(3) In order to determine \(z_{i}, 1 \leq i \leq n\), we use the above at \(x_{i}\) (right edge value):
\[
\begin{equation*}
y_{i}=Q_{i}\left(x_{i}\right)=\frac{z_{i}-z_{i-1}}{2\left(x_{i}-x_{i-1}\right)}\left(x_{i}-x_{i-1}\right)^{2}+z_{i-1}\left(x_{i}-x_{i-1}\right)+y_{i-1}, \tag{3.92}
\end{equation*}
\]
which implies
\[
\begin{aligned}
y_{i}-y_{i-1} & =\frac{1}{2}\left(z_{i}-z_{i-1}\right)\left(x_{i}-x_{i-1}\right)+z_{i-1}\left(x_{i}-x_{i-1}\right) \\
& =\left(x_{i}-x_{i-1}\right) \frac{\left(z_{i}+z_{i-1}\right)}{2}
\end{aligned}
\]

Thus we have
\[
\begin{equation*}
z_{i}=2 \frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}-z_{i-1}, \quad i=1,2, \cdots, n \tag{3.93}
\end{equation*}
\]

Note:
a. You should first decide \(z_{i}\) using (3.93) and then finalize \(Q_{i}\) from (3.91).
b. When \(z_{n}\) is specified, Equation (3.93) can be replaced by
\[
\begin{equation*}
z_{i-1}=2 \frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}-z_{i}, \quad i=n, n-1, \cdots, 1 . \tag{3.94}
\end{equation*}
\]

Example 3.49. Find the quadratic spline for the same dataset used in Example 3.45, p. 116:
\begin{tabular}{l|l|l|l|l|l}
\hline\(x\) & 0.0 & 0.2 & 0.5 & 0.8 & 1.0 \\
\hline\(y\) & 1.3 & 3.0 & 2.0 & 2.1 & 2.5 \\
\hline
\end{tabular}

Solution. \(z_{i}=Q_{i}^{\prime}\left(x_{i}\right)\) are computed as
\[
\begin{aligned}
& z[0]=8.5 \\
& z[1]=8.5 \\
& z[2]=-15.1667 \\
& z[3]=15.8333 \\
& z[4]=-11.8333
\end{aligned}
\]


Figure 3.7: The graph of \(Q(x)\) is superposed over the graph of the linear spline \(L(x)\).

\subsection*{3.5.4. Cubic splines}

Recall: (Definition 3.44): A function \(S\) is a cubic spline on \([a, b]\) if
1) The domain of \(S\) is \([a, b]\).
2) \(S \in \mathbb{P}_{3}\) on each subinterval \(\left[x_{i-1}, x_{i}\right]\).
3) \(S, S^{\prime}, S^{\prime \prime}\) are continuous on \((a, b)\).

Remark 3.50. By definition, a cubic spline is a continuous piecewise cubic polynomial whose first and second derivatives are continuous.
- On each subinterval \(\left[x_{i-1}, x_{i}\right], 1 \leq i \leq n\), we have to determine coefficients of a cubic polynomial of the form
\[
\begin{equation*}
S_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i}, \quad i=1,2, \cdots, n . \tag{3.95}
\end{equation*}
\]

Thus there are \(4 n\) unknowns to define \(S(x)\).
- On the other hand, equations we can get are
\[
\begin{array}{ll}
\hline \text { left an right values of } S_{i}: & 2 n \\
\text { continuity of } S^{\prime}: & n-1  \tag{3.96}\\
\text { continuity of } S^{\prime \prime}: & n-1
\end{array}
\]

Thus there are \((4 n-2)\) equations.
- Two degrees of freedom remain, and there have been various ways of choosing them to advantage.

\section*{Algorithm 3.51. (Construction of cubic splines):}
(0) Similarly as for quadratic splines, we define
\[
\begin{equation*}
z_{i}=S^{\prime \prime}\left(x_{i}\right), \quad i=0,1, \cdots, n . \tag{3.97}
\end{equation*}
\]
(1) Because \(S_{i}^{\prime \prime}=\left.S^{\prime \prime}\right|_{\left[x_{i-1}, x_{i}\right]}\) is a linear function satisfying
\[
\begin{equation*}
S_{i}^{\prime \prime}\left(x_{i-1}\right)=z_{i-1} \quad \text { and } \quad S_{i}^{\prime \prime}\left(x_{i}\right)=z_{i}, \quad\left(\text { continuity of } S^{\prime \prime}\right) \tag{3.98}
\end{equation*}
\]
and therefore is given by the straight line between \(z_{i-1}\) and \(z_{i}\) :
\[
\begin{equation*}
S_{i}^{\prime \prime}(x)=\frac{z_{i-1}\left(x_{i}-x\right)}{h_{i}}+\frac{z_{i}\left(x-x_{i-1}\right)}{h_{i}}, \quad h_{i}=x_{i}-x_{i-1}, \quad x \in\left[x_{i-1}, x_{i}\right] . \tag{3.99}
\end{equation*}
\]
(2) If (3.99) is integrated twice, the result reads
\[
\begin{equation*}
S_{i}(x)=\frac{z_{i-1}\left(x_{i}-x\right)^{3}}{6 h_{i}}+\frac{z_{i}\left(x-x_{i-1}\right)^{3}}{6 h_{i}}+C\left(x-x_{i-1}\right)+D\left(x_{i}-x\right) . \tag{3.100}
\end{equation*}
\]

In order to determine \(C\) and \(D\), we use \(S_{i}\left(x_{i-1}\right)=y_{i-1}\) and \(S_{i}\left(x_{i}\right)=y_{i}\) (left and right edge values):
\[
\begin{equation*}
S_{i}\left(x_{i-1}\right)=\frac{z_{i-1}}{6} h_{i}^{2}+D h_{i}=y_{i-1}, \quad S_{i}\left(x_{i}\right)=\frac{z_{i}}{6} h_{i}^{2}+C h_{i}=y_{i} . \tag{3.101}
\end{equation*}
\]

Thus (3.100) becomes
\[
\begin{aligned}
S_{i}(x)= & \frac{z_{i-1}\left(x_{i}-x\right)^{3}}{6 h_{i}}+\frac{z_{i}\left(x-x_{i-1}\right)^{3}}{6 h_{i}} \\
& +\left(\frac{y_{i}}{h_{i}}-\frac{1}{6} z_{i} h_{i}\right)\left(x-x_{i-1}\right)+\left(\frac{y_{i-1}}{h_{i}}-\frac{1}{6} z_{i-1} h_{i}\right)\left(x_{i}-x\right) .
\end{aligned}
\]
(3.102)
(3) The values \(z_{1}, z_{2}, \cdots, z_{n-1}\) can be determined from the continuity of \(S^{\prime}\) :
\[
\begin{align*}
S_{i}^{\prime}(x)= & -\frac{z_{i-1}\left(x_{i}-x\right)^{2}}{2 h_{i}}+\frac{z_{i}\left(x-x_{i-1}\right)^{2}}{2 h_{i}}  \tag{3.103}\\
& +\left(\frac{y_{i}}{h_{i}}-\frac{1}{6} z_{i} h_{i}\right)-\left(\frac{y_{i-1}}{h_{i}}-\frac{1}{6} z_{i-1} h_{i}\right) .
\end{align*}
\]

\section*{Construction of cubic splines (continue):}

Then substitution of \(x=x_{i}\) and simplification lead to
\[
\begin{equation*}
S_{i}^{\prime}\left(x_{i}\right)=\frac{h_{i}}{6} z_{i-1}+\frac{h_{i}}{3} z_{i}+\frac{y_{i}-y_{i-1}}{h_{i}} . \tag{3.104}
\end{equation*}
\]

Analogously, after obtaining \(S_{i+1}^{\prime}\), we have
\[
\begin{equation*}
S_{i+1}^{\prime}\left(x_{i}\right)=-\frac{h_{i+1}}{3} z_{i-1}-\frac{h_{i+1}}{6} z_{i+1}+\frac{y_{i+1}-y_{i}}{h_{i+1}} . \tag{3.105}
\end{equation*}
\]

When the right sides of (3.104) and (3.105) are set equal to each other, the result reads
\[
\begin{equation*}
h_{i} z_{i-1}+2\left(h_{i}+h_{i+1}\right) z_{i}+h_{i+1} z_{i+1}=\frac{6\left(y_{i+1}-y_{i}\right)}{h_{i+1}}-\frac{6\left(y_{i}-y_{i-1}\right)}{h_{i}}, \tag{3.106}
\end{equation*}
\]
for \(i=1,2, \cdots, n-1\).
(4) Two additional user-chosen conditions are required to determine \((n+1)\) unknowns, \(z_{0}, z_{1}, \cdots, z_{n}\). There are two popular approaches for the choice of the two additional conditions.

Natural Cubic Spline : \(z_{0}=0, z_{n}=0\)
Clamped Cubic Spline : \(S^{\prime}(a)=f^{\prime}(a), \quad S^{\prime}(b)=f^{\prime}(b)\)
Natural Cubic Splines: Let \(z_{0}=z_{n}=0\). Then the system of linear equations in (3.106) can be written as
\[
A\left[\begin{array}{c}
z_{1}  \tag{3.107}\\
z_{2} \\
\vdots \\
z_{n-1}
\end{array}\right]=\left[\begin{array}{c}
b_{2}-b_{1} \\
b_{3}-b_{2} \\
\vdots \\
b_{n}-b_{n-1}
\end{array}\right]
\]
where
\[
A=\left[\begin{array}{ccccc}
2\left(h_{1}+h_{2}\right) & h_{2} & & & \\
h_{2} & 2\left(h_{2}+h_{3}\right) & h_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\
& & & h_{n-1} & 2\left(h_{n-1}+h_{n}\right)
\end{array}\right] \text { and } b_{i}=\frac{6}{h_{i}}\left(y_{i}-y_{i-1}\right) .
\]

Clamped Cubic Splines: Let \(f^{\prime}(a)\) and \(f^{\prime}(b)\) be prescribed. Then the two extra conditions read
\[
\begin{equation*}
S^{\prime}(a)=f^{\prime}(a), \quad S^{\prime}(b)=f^{\prime}(b) \tag{3.108}
\end{equation*}
\]

Since \(a=x_{0}\) and \(b=x_{n}\), utilizing Equation (3.103), the conditions read
\[
\begin{array}{ll}
2 h_{1} z_{0}+h_{1} z_{1} & =\frac{6}{h_{1}}\left(y_{1}-y_{0}\right)-6 f^{\prime}\left(x_{0}\right) \\
h_{n} z_{n-1}+2 h_{n} z_{n} & =6 f^{\prime}\left(x_{n}\right)-\frac{6}{h_{n}}\left(y_{n}-y_{n-1}\right) \tag{3.109}
\end{array}
\]

Equation (3.106) and the above two equations clearly make \((n+1)\) conditions for ( \(n+1\) ) unknowns, \(z_{0}, z_{1}, \cdots, z_{n}\). It is a good exercise to compose an algebraic system for the computation of clamped cubic splines.

Example 3.52. Find the natural cubic spline for the same dataset
\begin{tabular}{l|l|l|l|l|l}
\hline\(x\) & 0.0 & 0.2 & 0.5 & 0.8 & 1.0 \\
\hline\(y\) & 1.3 & 3.0 & 2.0 & 2.1 & 2.5 \\
\hline
\end{tabular}

\section*{Solution.}


Figure 3.8: The graph of \(S(x)\) is superposed over the graphs of the quadratic spline \(Q(x)\) and the linear spline \(L(x)\).

Example 3.53. Find the natural cubic spline that interpolates the data
\begin{tabular}{l|l|l|l}
\hline\(x\) & 0 & 1 & 3 \\
\hline\(y\) & 4 & 2 & 7 \\
\hline
\end{tabular}

\section*{Solution.}
```

with(CurveFitting):
xy := [[0, 4], [1, 2], [3, 7]]:
n := 2:
L := x -> Spline(xy, x, degree = 1, endpoints = 'natural'):
Q := x -> Spline(xy, x, degree = 2, endpoints = 'notaknot'):
S := x -> Spline(xy, x, degree = 3, endpoints = 'natural'):
S(x)
|

```


Figure 3.9: Splines on two subintervals.

\section*{Optimality Theorem for Natural Cubic Splines:}

We now present a theorem to the effect that the natural cubic spline produces the smoothest interpolating function. The word smooth is given a technical meaning in the theorem.

Theorem 3.54. Let \(f^{\prime \prime}\) be continuous in \([a, b]\) and \(a=x_{0}<x_{1}<\cdots<\) \(x_{n}=b\). If \(S\) is the natural cubic spline interpolating \(f\) at the nodes \(x_{i}\) for \(0 \leq i \leq n\), then
\[
\begin{equation*}
\int_{a}^{b}\left[S^{\prime \prime}(x)\right]^{2} d x \leq \int_{a}^{b}\left[f^{\prime \prime}(x)\right]^{2} d x \tag{3.110}
\end{equation*}
\]

\subsection*{3.6. Parametric Curves}

Consider the data of the form:
\[
\mathrm{xy}:=[[-1,0],[0,1],[1,0.5],[0,0],[1,-1]]
\]
of which the point plot is given

- None of the interpolation methods we have learnt so far can be used to generate an interpolating curve for this data, because the curve cannot be expressed as a function of one coordinate variable to the other.
- In this section we will see how to represent general curves by using a parameter to express both the \(x\) - and \(y\)-coordinate variables.

Example 3.55. Construct a pair of interpolating polynomials, as a function of \(t\), for the data:
\begin{tabular}{c||c|c|c|c|c}
\hline\(i\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(t\) & 0 & 0.25 & 0.5 & 0.75 & 1 \\
\(x\) & -1 & 0 & 1 & 0 & 1 \\
\(y\) & 0 & 1 & 0.5 & 0 & -1 \\
\hline
\end{tabular}

\section*{Solution.}
```

with(CurveFitting):
unassign('t'):
tx := [[0, -1], [0.25, 0], [0.5, 1], [0.75, 0], [1, 1]]:
ty := [[0, 0], [0.25, 1], [0.5, 0.5], [0.75, 0], [1, -1]]:
x := t -> PolynomialInterpolation(tx, t, form = Lagrange):
y := t -> PolynomialInterpolation(ty, t, form = Lagrange):
plot([x(t), y(t), t = 0..1], color = blue, thickness = 2)

```


Figure 3.10

\section*{Remark 3.56. (Applications in Computer Graphics):}
- Required: Rapid generation of smooth curves that can be quickly and easily modified.
- Preferred: Change of one portion of a curve should have little or no effect on other portions of the curve.
\(\Rightarrow\) The choice of curve is a form of the piecewise cubic Hermite polynomial.

Example 3.57. For data \(\left\{\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right\}, i=0,1, \cdots, n\right.\), the piecewise cubic Hermite polynomial can be generated independently in each portion \(\left[x_{i-1}, x_{i}\right]\). Why?

\section*{Solution.}

Piecewise cubic Hermite polynomial for General Curve Fitting
Algorithm 3.58. Let us focus on the first portion of the piecewise cubic Hermite polynomial interpolating between
\[
\left(x_{0}, y_{0}\right) \quad \text { and } \quad\left(x_{1}, y_{1}\right)
\]
- For the first portion, the given data are
\[
\begin{align*}
& x(0)=x_{0}, \quad y(0)=y_{0}, \quad \frac{d y}{d x}(t=0) \\
& x(1)=x_{1}, \quad y(1)=y_{1}, \quad \frac{d y}{d x}(t=1) \tag{3.111}
\end{align*}
\]
- Only six conditions are specified, while the cubic polynomials \(x(t)\) and \(y(t)\) each have four parameters, for a total of eight.
- The natural form for determining \(x(t)\) and \(y(t)\) requires
\[
\begin{array}{llll}
x(0), & x(1), & x^{\prime}(0), & x^{\prime}(1) ;  \tag{3.112}\\
y(0), & y(1), & y^{\prime}(0), & y^{\prime}(1) ;
\end{array}
\]
- \(d y / d x=y^{\prime}(t) / x^{\prime}(t)\) provides flexibility for the construction of parametric curves.
- The slopes at the endpoints can be expressed using the so-called guidepoints which are to be chosen from the desired tangent line:
\[
\begin{array}{ll}
\hline\left(x_{0}+\alpha_{0}, y_{0}+\beta_{0}\right): & \text { guidepoint for }\left(x_{0}, y_{0}\right)  \tag{3.113}\\
\left(x_{1}-\alpha_{1}, y_{1}-\beta_{1}\right): & \text { guidepoint for }\left(x_{1}, y_{1}\right) \\
\hline
\end{array}
\]

Thus
\[
\begin{align*}
& \frac{d y}{d x}(t=0)=\frac{y^{\prime}(0)}{x^{\prime}(0)}=\frac{\beta_{0}}{\alpha_{0}}=\frac{\left(y_{0}+\beta_{0}\right)-y_{0}}{\left(x_{0}+\alpha_{0}\right)-x_{0}}  \tag{3.114}\\
& \frac{d y}{d x}(t=1)=\frac{y^{\prime}(1)}{x^{\prime}(1)}=\frac{\beta_{1}}{\alpha_{1}}=\frac{y_{1}-\left(y_{1}-\beta_{1}\right)}{x_{1}-\left(x_{1}-\alpha_{1}\right)}
\end{align*}
\]
- Therefore, we may specify
\[
\begin{equation*}
x^{\prime}(0)=\alpha_{0}, \quad y^{\prime}(0)=\beta_{0} ; \quad x^{\prime}(1)=\alpha_{1}, \quad y^{\prime}(1)=\beta_{1} . \tag{3.115}
\end{equation*}
\]

Formula' 3.59. (The cubic Hermite polynomial \((x(t), y(t))\) on \([0,1]\) ):
- The unique cubic Hermite polynomial \(x(t)\) satisfying
\[
x(0)=x_{0}, \quad x^{\prime}(0)=\alpha_{0} ; \quad x(1)=x_{1}, \quad x^{\prime}(1)=\alpha_{1}
\]
can be constructed as
\[
\begin{align*}
x(t)= & {\left[2\left(x_{0}-x_{1}\right)+\left(\alpha_{0}+\alpha_{1}\right)\right] t^{3}+\left[3\left(x_{1}-x_{0}\right)-\left(2 \alpha_{0}+\alpha_{1}\right)\right] t^{2} } \\
& +\alpha_{0} t+x_{0} \tag{3.116}
\end{align*}
\]
- Similarly, the unique cubic Hermite polynomial \(y(t)\) satisfying
\[
y(0)=y_{0}, \quad y^{\prime}(0)=\beta_{0} ; \quad y(1)=y_{1}, \quad y^{\prime}(1)=\beta_{1}
\]
can be constructed as
\[
\begin{align*}
y(t)= & {\left[2\left(y_{0}-y_{1}\right)+\left(\beta_{0}+\beta_{1}\right)\right] t^{3}+\left[3\left(y_{1}-y_{0}\right)-\left(2 \beta_{0}+\beta_{1}\right)\right] t^{2} } \\
& +\beta_{0} t+y_{0} \tag{3.117}
\end{align*}
\]

Example 3.60. Determine the parametric curve when
\[
\left(x_{0}, y_{0}\right)=(0,0), \frac{d y}{d x}(t=0)=1 ; \quad\left(x_{1}, y_{1}\right)=(1,0), \frac{d y}{d x}(t=1)=-1
\]

\section*{Solution.}
- Let \(\alpha_{0}=1, \beta_{0}=1\) and \(\alpha_{1}=1, \beta_{1}=-1\).
- The cubic Hermite polynomial \(x(t)\) satisfying
\[
\mathrm{x} 0:=0: \text { a0 }:=1: \text { x1 }:=1: \text { a1 }:=1:
\]
is
\[
\mathrm{x}:=\mathrm{t}->(2 *(\mathrm{x} 0-\mathrm{x} 1)+\mathrm{a} 0+\mathrm{a} 1) * \mathrm{t} \wedge 3+(3 *(\mathrm{x} 1-\mathrm{x} 0)-\mathrm{a} 1-2 * \mathrm{a} 0) * \mathrm{t} \wedge 2+\mathrm{a} 0 * \mathrm{t}+\mathrm{x} 0
\]
\[
\Rightarrow x(t)=t
\]
- The cubic Hermite polynomial \(y(t)\) satisfying
\[
\text { y0 }:=0: \text { b0 }:=1: \text { y1 }:=0: \text { b1 }:=-1:
\]
is
\[
\begin{aligned}
& y:=t->(2 *(y 0-y 1)+b 0+b 1) * t \wedge 3+(3 *(y 1-y 0)-b 1-2 * b 0) * t \wedge 2+b 0 * t+y 0 \\
& \Rightarrow y(t)=-t \wedge 2+t \\
&-H 1:= \operatorname{plot}([x(t), y(t), t=0 \ldots 1], \text { coordinateview=}[0 \ldots 1,0 \ldots 1], \\
& \text { thickness=2, linestye=solid) }
\end{aligned}
\]
- Let \(\alpha_{0}=0.5, \beta_{0}=0.5\) and \(\alpha_{1}=0.5, \beta_{1}=-0.5\).
\[
\begin{aligned}
& \text { - a0 := 0.5: b0 := 0.5: a1 := 0.5: b1 := -0.5: } \\
& \mathrm{x}:=\mathrm{t}->(2 *(\mathrm{x} 0-\mathrm{x} 1)+\mathrm{a} 0+\mathrm{a} 1) * \mathrm{t} \wedge 3+(3 *(\mathrm{x} 1-\mathrm{x} 0)-\mathrm{a} 1-2 * a 0) * \mathrm{t}{ }^{\wedge} 2+\mathrm{a} 0 * \mathrm{t}+\mathrm{x} 0 \\
& \Rightarrow \mathrm{x}(\mathrm{t})=-1.0 * \mathrm{t} \wedge 3+1.5 * \mathrm{t} \wedge 2+0.5 * \mathrm{t} \\
& \mathrm{y}:=\mathrm{t}->(2 *(\mathrm{y} 0-\mathrm{y} 1)+\mathrm{b} 0+\mathrm{b} 1) * \mathrm{t} \text { - } 3+(3 *(\mathrm{y} 1-\mathrm{y} 0)-\mathrm{b} 1-2 * \mathrm{~b} 0) * \mathrm{t} \wedge 2+\mathrm{b} 0 * \mathrm{t}+\mathrm{y} 0 \\
& \Rightarrow y(t)=-0.5 * t \wedge 2+0.5 * t \\
& \text { - H2 := plot([x(t),y(t),t=0..1], coordinateview=[0..1, 0..1], } \\
& \text { thickness=2, linestye=dash) }
\end{aligned}
\]
- Tan :=plot([t,-t+1],t =0..1, thickness=[2,2],
linestyle=dot, color = blue)
display(H1, H2, Tan)


Figure 3.11: The parametric curves: \(H_{1}(t)\) and \(H_{2}(t)\).

\section*{Exercises for Chapter 3}
3.1. C For the given functions \(f(x)\), let \(x_{0}=0, x_{1}=0.5, x_{2}=1\). Construct interpolation polynomials of degree at most one and at most two to approximate \(f(0.4)\), and find the absolute error.
(a) \(f(x)=\cos x\)
(b) \(f(x)=\ln (1+x)\)
3.2. Use the Polynomial Interpolation Error Theorem to find an error bound for the approximations in Problem 1 above.
3.3. The polynomial \(p(x)=1-x+x(x+1)-2 x(x+1)(x-1)\) interpolates the first four points in the table:
\[
\begin{array}{c|c|c|c|c|c}
x & -1 & 0 & 1 & 2 & 3 \\
\hline y & 2 & 1 & 2 & -7 & 10
\end{array}
\]

By adding one additional term to \(p\), find a polynomial that interpolates the whole table. (Do not try to find the polynomial from the scratch.)
Ans: By adding another term, \(p_{4}(x)==1-x+x(x+1)-2 x(x+1)(x-1)+c x(x+1)(x-1)(x-2)\). \(p_{4}(3)=10\) gives \(c=2\).
3.4. Determine the Newton interpolating polynomial for the data:
\[
\begin{array}{c|c|c|c|c}
x & 4 & 2 & 0 & 3 \\
\hline y & 63 & 11 & 7 & 28
\end{array}
\]
3.5. Neville's method is used to approximate \(f(0.4)\), giving the following table.
\begin{tabular}{|l|l|l|l|}
\hline\(x_{0}=0\) & \(Q_{0,0}\) & & \\
\hline\(x_{1}=0.5\) & \(Q_{1,0}=1.5\) & \(Q_{1,1}=1.4\) & \\
\hline\(x_{2}=0.8\) & \(Q_{2,0}\) & \(Q_{2,1}\) & \(Q_{2,2}=1.2\) \\
\hline
\end{tabular}

Fill out the whole table.
Ans: Q[2,:]=[3., 1., 1.2]
3.6. Use the extended Newton divided difference method to obtain a quintic polynomial that takes these values:
\begin{tabular}{l|r|r}
\hline\(x\) & \(f(x)\) & \(f^{\prime}(x)\) \\
\hline \hline 0 & 2 & -9 \\
\hline 1 & -4 & 4 \\
\hline 2 & 44 & \\
\hline 3 & 2 & \\
\hline
\end{tabular}
3.7. Find a natural cubic spline for the data.
\begin{tabular}{c|c|c|c}
\hline\(x\) & -1 & 0 & 1 \\
\hline\(f(x)\) & 5 & 7 & 9 \\
\hline
\end{tabular}
(Do not use computer programming for this problem.)
Ans: \(S(x)=2 x+7\).
3.8. Consider the data
\begin{tabular}{c|c|c|c}
\hline\(x\) & 0 & 1 & 3 \\
\hline\(f(x)\) & 4 & 2 & 7 \\
\hline
\end{tabular}
with \(f^{\prime}(0)=-1 / 4\) and \(f^{\prime}(3)=5 / 2\). (The points are used in Example 3.53, p.124.)
(a) Find the quadratic spline that interpolates the data (with \(z_{0}=f^{\prime}(0)\) ).
(b) Find the clamped cubic spline that interpolates the data.
(c) Plot the splines and display them superposed.
3.9. Construct the piecewise cubic Hermite interpolating polynomial for
\begin{tabular}{l|r|r}
\hline\(x\) & \(f(x)\) & \(f^{\prime}(x)\) \\
\hline \hline 0 & 2 & -9 \\
\hline 1 & -4 & 4 \\
\hline 2 & 4 & 12 \\
\hline
\end{tabular}

Ans: \(H_{1}(x)=2-9 x-3 x^{2}+13 x^{2}(x-1)\) and \(H_{2}(x)=-4+4(x-1)+4(x-1)^{2}\).
3.10. C] Let \(C\) be the unit circle of radius \(1: x^{2}+y^{2}=1\). Find a piecewise cubic parametric curve that interpolates the circle at \((1,0),(0,1),(-1,0),(1,0)\). Try to make the parametric curve as circular as possible.

Hint: For the first portion, you may set
```

$\mathrm{x0}:=1: \mathrm{x} 1 \quad:=0: \mathrm{a} 0:=0: \mathrm{a} 1:=-1:$
$\mathrm{x}:=\mathrm{t}->(2 * \mathrm{x} 0-2 * \mathrm{x} 1+\mathrm{a} 0+\mathrm{a} 1) * \mathrm{t} \wedge 3+(3 * \mathrm{x} 1-3 * \mathrm{x} 0-\mathrm{a} 1-2 * \mathrm{a} 0) * \mathrm{t} \sim 2+\mathrm{a} 0 * \mathrm{t}+\mathrm{x} 0$:
$\mathrm{x}(\mathrm{t})$

```
\(t^{3}-2 t^{2}+1\)
y0 := 0: y1 := 1: b0 := 1: b1 := 0:
\(\mathrm{y}:=\mathrm{t}->(2 * \mathrm{y} 0-2 * \mathrm{y} 1+\mathrm{b} 0+\mathrm{b} 1) * \mathrm{t} \sim 3+(3 * y 1-3 * y 0-\mathrm{b} 1-2 * \mathrm{~b} 0) * \mathrm{t} \wedge 2+\mathrm{b} 0 * \mathrm{t}+\mathrm{y} 0\) :
\(y(t)\)
\[
-t^{3}+t^{2}+t
\]
\[
\operatorname{plot}([x(t), y(t), t=0 \ldots 1], \text { coordinateview }=[0 \ldots 1,0 \ldots 1], \text { thickness }=2)
\]


Now, (1) you can make it better, (2) you should find parametric curves for the other two portions, and (3) combine them for a piece.

\section*{Chapter 4}

\section*{Numerical Differentiation and Integration}

\section*{In this chapter:}
\begin{tabular}{|l|l|}
\hline Topics & Applications/Properties \\
\hline \hline Numerical Differentiation & \(f(x) \approx P_{n}(x)\) locally \(\Rightarrow f^{\prime}(x) \approx P_{n}^{\prime}(x)\) \\
\hline \begin{tabular}{l} 
Three/five-point rules \\
Richardson extrapolation
\end{tabular} & \begin{tabular}{l} 
Combination of low-order differences, to \\
get higher-order accuracy
\end{tabular} \\
\hline Numerical Integration & \begin{tabular}{l}
\(f(x) \approx P_{n}(x)\) piecewisely \\
\(\Rightarrow \int_{a}^{b} f(x) \approx \int_{a}^{b} P_{n}(x)\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Trapezoid rule \\
Simpson's rule \\
Simpson's Three-Eights rule \\
Romberg integration
\end{tabular} & Newton-Cotes formulas \\
\hline Gaussian Quadrature & \begin{tabular}{l} 
Method of undetermined coefficients \& \\
orthogonal polynomials
\end{tabular} \\
\hline Legendre polynomials & \\
\hline
\end{tabular}

\section*{Contents of Chapter 4}
4.1. Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2. Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3. Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4. Romberg Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.5. Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

\subsection*{4.1. Numerical Differentiation}

Note: The derivative of \(f\) at \(x_{0}\) is defined as
\[
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} . \tag{4.1}
\end{equation*}
\]

This formula gives an obvious way to generate an approximation of \(f^{\prime}\left(x_{0}\right)\) :
\[
\begin{equation*}
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{4.2}
\end{equation*}
\]

Formula 4.1. (Two-Point Difference Formulas): Let \(x_{1}=x_{0}+h\) and \(P_{0,1}\) be the first Lagrange polynomial interpolating \(f\) on \(\left[x_{0}, x_{1}\right]\). Then
\[
\begin{align*}
f(x) & =P_{0,1}(x)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} f^{\prime \prime}(\xi) \\
& =\frac{x-x_{1}}{-h} f\left(x_{0}\right)+\frac{x-x_{0}}{h} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} f^{\prime \prime}(\xi) \tag{4.3}
\end{align*}
\]

Differentiating it, we obtain
\[
\begin{equation*}
f^{\prime}(x)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}+\frac{2 x-x_{0}-x_{1}}{2} f^{\prime \prime}(\xi)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} \frac{d}{d x} f^{\prime \prime}(\xi) . \tag{4.4}
\end{equation*}
\]

Thus
\[
\begin{align*}
f^{\prime}\left(x_{0}\right) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}\left(\xi\left(x_{0}\right)\right)  \tag{4.5}\\
f^{\prime}\left(x_{1}\right) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}+\frac{h}{2} f^{\prime \prime}\left(\xi\left(x_{1}\right)\right)
\end{align*}
\]

Definition 4.2. For \(h>0\),
\[
\begin{array}{ll}
f^{\prime}\left(x_{i}\right) \approx D_{x}^{+} f\left(x_{i}\right)=\frac{f\left(x_{i}+h\right)-f\left(x_{i}\right)}{h}, & \text { (forward-difference) } \\
f^{\prime}\left(x_{i}\right) \approx D_{x}^{-} f\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i}-h\right)}{h}, & \text { (backward-difference) } \tag{4.6}
\end{array}
\]

Example 4.3. Use the forward-difference formula to approximate \(f(x)=\) \(x^{3}\) at \(x_{0}=1\) using \(h=0.1,0.05,0.025\).
Solution. Note that \(f^{\prime}(1)=3\).
```

f := x -> x^3: x0 := 1:
h := 0.1:
(f(x0 + h) - f(x0))/h
3.310000000
h := 0.05:
(f(x0 + h) - f(x0))/h
3.152500000
h := 0.025:
(f(x0 + h) - f(x0))/h

The error becomes half, as h halves?
Formula 4.4. (In general): Let $\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be ($n+1$) distinct points in some interval I and $f \in C^{n+1}(I)$. Then the Interpolation Error Theorem reads

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^{n}\left(x-x_{k}\right) \tag{4.7}
\end{equation*}
$$

Its derivative gives

$$
\begin{align*}
f^{\prime}(x)= & \sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}^{\prime}(x)+\frac{d}{d x}\left(\frac{f^{(n+1)}(\xi)}{(n+1)!}\right) \prod_{k=0}^{n}\left(x-x_{k}\right) \tag{4.8}\\
& +\frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{d}{d x}\left(\prod_{k=0}^{n}\left(x-x_{k}\right)\right)
\end{align*}
$$

Hence,

$$
\begin{equation*}
f^{\prime}\left(x_{i}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}^{\prime}\left(x_{i}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0, k \neq i}^{n}\left(x_{i}-x_{k}\right) \tag{4.9}
\end{equation*}
$$

Definition 4.5. An $(n+1)$-point difference formula to approximate $f^{\prime}\left(x_{i}\right)$ is

$$
\begin{equation*}
f^{\prime}\left(x_{i}\right) \approx \sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}^{\prime}\left(x_{i}\right) \tag{4.10}
\end{equation*}
$$

'Formula' 4.6. (Three-Point Difference Formulas $(n=2)$): For convenience, let

$$
x 0, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \quad h>0 .
$$

Recall

$$
\begin{aligned}
& L_{2,0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}, \quad L_{2,1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
& L_{2,2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Thus, the three-point endpoint formulas and the three-point midpoint formula read

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =f\left(x_{0}\right) L_{2,0}^{\prime}\left(x_{0}\right)+f\left(x_{1}\right) L_{2,1}^{\prime}\left(x_{0}\right)+f\left(x_{2}\right) L_{2,2}^{\prime}\left(x_{0}\right)+\frac{f^{(3)}(\xi)}{3!} \prod_{k=0, k \neq 0}^{2}\left(x_{0}-x_{k}\right) \\
& =\frac{-\mathbf{3}\left(\mathbf{x}_{\mathbf{0}}\right)+\mathbf{4} \mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)}{\mathbf{2 h}}+\frac{h^{2}}{3} f^{(3)}\left(\xi_{0}\right), \\
f^{\prime}\left(x_{1}\right) & =\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)}{\mathbf{2 h}}-\frac{h^{2}}{6} f^{(3)}\left(\xi_{1}\right), \\
f^{\prime}\left(x_{2}\right) & =\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)-\mathbf{4} \mathbf{f}\left(\mathbf{x}_{\mathbf{1}}\right)+\mathbf{3} \mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)}{\mathbf{2 h}}+\frac{h^{2}}{3} f^{(3)}\left(\xi_{2}\right) . \tag{4.11}
\end{align*}
$$

Formula 4.7. (Five-Point Difference Formulas): Let $f_{i}=f\left(x_{0}+\right.$ $i h), h>0,-\infty<i<\infty$.

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =\frac{f_{-2}-8 f_{-1}+8 f_{1}-f_{2}}{12 h}+\frac{h^{4}}{30} f^{(5)}(\xi) \tag{4.12}\\
f^{\prime}\left(x_{0}\right) & =\frac{-25 f_{0}+48 f_{1}-36 f_{2}+16 f_{3}-3 f_{4}}{12 h}+\frac{h^{4}}{5} f^{(5)}(\xi) .
\end{align*}
$$

Summary 4.8. (Numerical Differentiation, the $(n+1)$-point difference formulas):

1. $f(x)=P_{n}(x)+R_{n}(x), \quad P_{n}(x) \in \mathbb{P}_{n}$
2. $f^{\prime}(x)=P_{n}^{\prime}(x)+\mathcal{O}\left(h^{n}\right)$,

$$
f^{\prime \prime}(x)=P_{n}^{\prime \prime}(x)+\mathcal{O}\left(h^{n-1}\right), \text { and so on. }
$$

Second-Derivative Midpoint Formula

Example 4.9. We can see from the above summary that
when the three-point $(n=2)$ or five-point ($n=4$) difference formula is applied for the approximation of $f^{\prime \prime}$, the accuracy reads $\mathcal{O}(h)$ or $\mathcal{O}\left(h^{3}\right)$.

Use the Taylor series to derive the (central-point) formulas

$$
\begin{align*}
f^{\prime \prime}\left(x_{0}\right)= & \frac{f_{-1}-2 f_{0}+f_{1}}{h^{2}} \\
& -\frac{h^{2}}{12} f^{(4)}\left(x_{0}\right)-\frac{h^{4}}{360} f^{(6)}\left(x_{0}\right)-\frac{h^{6}}{20160} f^{(8)}\left(x_{0}\right)-\cdots \\
f^{\prime \prime}\left(x_{0}\right)= & \frac{-f_{-2}+16 f_{-1}-30 f_{0}+16 f_{1}-f_{2}}{12 h^{2}} \tag{4.13}\\
& +\frac{h^{4}}{90} f^{(6)}\left(x_{0}\right)+\frac{h^{6}}{1008} f^{(8)}\left(x_{0}\right)+\cdots
\end{align*}
$$

Solution. See Example 4.11, p. 141, for the derivation of $f^{\prime \prime}\left(x_{0}\right)$.

Note: In general, the higher-order accuracy in (4.13) can be achieved at the central point only.

Example 4.10. Use the second-derivative midpoint formula to approximate $f^{\prime \prime}(1)$ for $f(x)=x^{5}-3 x^{2}$, using $h=0.2,0.1,0.05$.

Solution.

4.2. Richardson Extrapolation

Richardson extrapolation is used to generate high-accuracy results, using low-order formulas (on two or more different grids).
Example 4.11. Derive the three-point midpoint formulas:

$$
\begin{align*}
f^{\prime}(x) & =\frac{f(x+h)-f(x-h)}{2 h}-\left[\frac{h^{2}}{3!} f^{(3)}(x)+\frac{h^{4}}{5!} f^{(5)}(x)+\frac{h^{6}}{7!} f^{(7)}(x)+\cdots\right] \\
f^{\prime \prime}(x) & =\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}-\left[2 \frac{h^{2}}{4!} f^{(4)}(x)+2 \frac{h^{4}}{6!} f^{(6)}(x)+\cdots\right] \tag{4.14}
\end{align*}
$$

Solution. It follows from the Taylor's series formula (1.14) that

$$
\begin{align*}
& f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\frac{f^{(4)}(x)}{4!} h^{4}+\cdots \tag{4.15}\\
& f(x-h)=f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}-\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\frac{f^{(4)}(x)}{4!} h^{4}-\cdots
\end{align*}
$$

Adding and subtracting these two equations, we have

$$
\begin{align*}
& f(x+h)+f(x-h)=2 f(x)+2 \frac{\mathbf{f}^{\prime \prime}(\mathbf{x})}{2!} h^{2}+2 \frac{f^{(4)}(x)}{4!} h^{4}+\cdots \tag{4.16}\\
& f(x+h)-f(x-h)=2 \mathbf{f}^{\prime}(\mathbf{x}) h+2 \frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+2 \frac{f^{(5)}(x)}{5!} h^{5}+\cdots
\end{align*}
$$

Now, solve these equations for $f^{\prime \prime}(x)$ and $f^{\prime}(x)$.

Observation 4.12. The results in Example 4.11 can be written as

$$
\begin{equation*}
M=N(h)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots, \tag{4.17}
\end{equation*}
$$

where M is the desired (unknown) quantity, $N(h)$ is an approximation of M using the parameter h, and \boldsymbol{K}_{i} are independent of h.

How can we take advantage of the observation?

Strategy 4.13. (Richardson extrapolation): Rewrite (4.17):

$$
\begin{equation*}
M=N(h)+\mathbf{K}_{2} \mathbf{h}^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots . \tag{4.18}
\end{equation*}
$$

1. Let's write out (4.18) with h replaced by $h / 2$:

$$
\begin{equation*}
M=N(h / 2)+\underline{\mathbf{K}_{2} \mathbf{h}^{2} / \mathbf{4}}+K_{4} h^{4} / 16+K_{6} h^{6} / 64+\cdots . \tag{4.19}
\end{equation*}
$$

Then the leading term in the error series, $K_{2} h^{2}$, can be eliminated as follows:

$$
\begin{array}{rlrr}
M & = & N(h) & +K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots \\
4 M & = & 4 N(h / 2) & +K_{2} h^{2}+K_{4} h^{4} / 4+K_{6} h^{6} / 16+\cdots \tag{4.20}\\
\hline 3 M & = & 4 N(h / 2)-N(h) & -\frac{3}{4} K_{4} h^{4}-\frac{15}{16} K_{6} h^{6}-\cdots
\end{array}
$$

Thus we have

$$
\begin{equation*}
M=\frac{1}{3}[4 N(h / 2)-N(h)]-\frac{1}{4} K_{4} h^{4}-\frac{5}{16} K_{6} h^{6}-\cdots . \tag{4.21}
\end{equation*}
$$

The above equation embodies the first step in Richardson extrapolation. It show that a simple combination of two second-order approximations, $N(h)$ and $N(h / 2)$, furnishes an estimate of M with accuracy $\mathcal{O}\left(h^{4}\right)$.
2. For simplicity, we rewrite (4.21) as

$$
\begin{equation*}
M=N_{2}(h)-\frac{1}{4} K_{4} h^{4}-\frac{5}{16} K_{6} h^{6}-\cdots . \tag{4.22}
\end{equation*}
$$

Then, similarly,

$$
\begin{equation*}
M=N_{2}(h / 2)-\frac{1}{64} K_{4} h^{4}-\frac{5}{2^{10}} K_{6} h^{6}-\cdots . \tag{4.23}
\end{equation*}
$$

Subtract (4.21) from 16 times (4.23) to produce a new $\mathcal{O}\left(h^{6}\right)$ formula:

$$
\begin{equation*}
M=\frac{1}{15}\left[16 N_{2}(h / 2)-N_{2}(h)\right]+\frac{1}{64} K_{6} h^{6}+\cdots . \tag{4.24}
\end{equation*}
$$

Algorithm 4.14. (Richardson extrapolation): The above idea can be applied recursively. The complete algorithm of Richardson extrapolation algorithm is formulated as:

1. Select a convenient h and compute

$$
\begin{equation*}
D(i, 0)=N\left(h / 2^{i}\right), \quad i=0,1, \cdots, n . \tag{4.25}
\end{equation*}
$$

2. Compute additional quantities using the formula

$$
\begin{align*}
& \text { for } i=1,2, \cdots, n \text { do } \\
& \quad \text { for } j=1,2, \cdots, i \text { do } \\
& \quad D(i, j)=\frac{1}{4^{j}-1}\left[4^{j} \cdot D(i, j-1)-D(i-1, j-1)\right] \tag{4.26}\\
& \text { end do } \\
& \text { end do }
\end{align*}
$$

Note:
(a) One can prove that

$$
\begin{equation*}
D(i, j)=M+\mathcal{O}\left(h^{2(j+1)}\right) \tag{4.27}
\end{equation*}
$$

(b) The second step in the algorithm can be rewritten for a columnwise computation:

$$
\begin{align*}
& \text { for } j=1,2, \cdots, i \text { do } \\
& \quad \text { for } i=j, j+1, \cdots, n \text { do } \\
& \quad D(i, j)=\frac{1}{4^{j}-1}\left[4^{j} \cdot D(i, j-1)-D(i-1, j-1)\right] \tag{4.28}\\
& \text { end do } \\
& \text { end do }
\end{align*}
$$

Example 4.15. Let $f(x)=\ln x$. Use the Richardson extrapolation to estimate $f^{\prime}(1)=1$ using $h=0.2,0.1,0.05$.

Solution.

Maple-code	
$\mathrm{f}:=\mathrm{x}->\ln (\mathrm{x}):$	
$\mathrm{h}:=0.2$:	
D00 : $=(\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1-\mathrm{h}) \mathrm{)} /(2 * h)$;	
	1.013662770
$\mathrm{h}:=0.1$:	
D10 : $=(\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1-\mathrm{h}) \mathrm{)} /(2 * h)$;	
	1.003353478
$\mathrm{h}:=0.05$:	
D20 := (f(1 + h) - f (1-h))/(2*h);	
	1.000834586
D11 := (4*D10 - D00)/3;	
	0.9999170470
D21 := (4*D20 - D10)/3;	
	0.9999949557
D22 := (16*D21 - D11)/15;	
	1.000000150
\#Error Convergence:abs (1-D11);	
	0.0000829530
abs(1-D21) ;	
	0.0000050443
\#The Ratio: abs(1 - D11)/abs(1 - D21);	
	16.44489820

h	$j=0: \mathcal{O}\left(h^{2}\right)$	$j=1: \mathcal{O}\left(h^{4}\right)$	$j=2: \mathcal{O}\left(h^{6}\right)$
0.2	$D_{0,0}=1.013662770$		
0.1	$D_{1,0}=1.003353478$	$D_{1,1}=0.9999170470$	
0.05	$D_{2,0}=1.000834586$	$D_{2,1}=0.9999949557$	$D_{2,2}=1.000000150$

Example 4.16. Let $f(x)=\ln x$, as in the previous example, Example 4.15. Produce a Richardson extrapolation table for the approximation of $f^{\prime \prime}(1)=$ -1 , using $h=0.2,0.1,0.05$.

Solution.

Maple-code

```
f := x -> ln}(x)
h := 0.2:
D00 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;
                                    -1.020549862
h := 0.1:
D10 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;
                                    -1.005033590
h := 0.05:
D20 := (f(1 - h) - 2*f(1) + f(1 + h))/h^2;
                                    -1.001252088
D11 := (4*D10 - D00)/3;
                                -0.9998614997
D21 := (4*D20 - D10)/3;
                -0.9999915873
D22 := (16*D21 - D11)/15;
                    -1.000000260
#Error Convergence:
abs(-1 - D11);
                                    0.0001385003
abs(-1 - D21);
                            0.0000084127
#The Ratio:
abs(-1 - D11)/abs(-1 - D21);
                                    16.46324010
```

h	$j=0: \mathcal{O}\left(h^{2}\right)$	$j=1: \mathcal{O}\left(h^{4}\right)$	$j=2: \mathcal{O}\left(h^{6}\right)$
0.2	$D_{0,0}=-1.020549862$		
0.1	$D_{1,0}=-1.005033590$	$D_{1,1}=-0.9998614997$	
0.05	$D_{2,0}=-1.001252088$	$D_{2,1}=-0.9999915873$	$D_{2,2}=-1.000000260$

Example 4.17. In Example 4.9, we used the Taylor series to derive the formulas

$$
\begin{align*}
f^{\prime \prime}\left(x_{0}\right)= & \frac{f_{-1}-2 f_{0}+f_{1}}{h^{2}} \\
& -\frac{h^{2}}{12} f^{(4)}\left(x_{0}\right)-\frac{h^{4}}{360} f^{(6)}\left(x_{0}\right)-\frac{h^{6}}{20160} f^{(8)}\left(x_{0}\right)-\cdots \tag{4.29}\\
f^{\prime \prime}\left(x_{0}\right)= & \frac{-f_{-2}+16 f_{-1}-30 f_{0}+16 f_{1}-f_{2}}{12 h^{2}} \\
& +\frac{h^{4}}{90} f^{(6)}\left(x_{0}\right)+\frac{h^{6}}{1008} f^{(8)}\left(x_{0}\right)+\cdots
\end{align*}
$$

Let $N(h)$ be such that

$$
\begin{equation*}
f^{\prime \prime}\left(x_{0}\right)=N(h)-\frac{h^{2}}{12} f^{(4)}\left(x_{0}\right)-\frac{h^{4}}{360} f^{(6)}\left(x_{0}\right)-\frac{h^{6}}{20160} f^{(8)}\left(x_{0}\right)-\cdots \tag{4.30}
\end{equation*}
$$

Then

$$
\begin{equation*}
N(2 h)=\frac{f_{-2}-2 f_{0}+f_{2}}{(2 h)^{2}}, \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime \prime}\left(x_{0}\right)=N(2 h)-\frac{(2 h)^{2}}{12} f^{(4)}\left(x_{0}\right)-\frac{(2 h)^{4}}{360} f^{(6)}\left(x_{0}\right)-\frac{(2 h)^{6}}{20160} f^{(8)}\left(x_{0}\right)-\cdots \tag{4.32}
\end{equation*}
$$

Claim 4.18. Four times of (4.30) minus (4.32), divided by 3, gives exactly the same formula as the second equation of (4.29). This implies that the Richardson extrapolation results in the numerical solution of a higher-order accuracy on the fine grid level. See Exercise 4.3.

4.3. Numerical Integration

Note: Numerical integration can be performed by
(1) approximating the function f by an n th-degree polynomial P_{n}, and
(2) integrating the polynomial over the prescribed interval.

What a simple task it is!
Let $\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be distinct points (nodes) in $[a, b]$. Then the Lagrange interpolating polynomial reads

$$
\begin{equation*}
P_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) L_{n, i}(x), \tag{4.33}
\end{equation*}
$$

which interpolates the function f. Then, as just mentioned, we simply approximate

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x=\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} L_{n, i}(x) d x \tag{4.34}
\end{equation*}
$$

Definition 4.19. In this way, we obtain a formula which is a weighted sum of the function values:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right) \tag{4.35}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i}=\int_{a}^{b} L_{n, i}(x) d x \tag{4.36}
\end{equation*}
$$

The formula of the form in (4.35) is called a Newton-Cotes formula when the nodes are equally spaced.

4.3.1. The Trapezoid Rule

The simplest case results if $n=1$ and the nodes are $x_{0}=a$ and $x_{1}=b$. In this case,

$$
\begin{equation*}
f(x)=\sum_{i=0}^{1} f\left(x_{i}\right) L_{1, i}(x)+\frac{f^{\prime \prime}\left(\xi_{x}\right)}{2!}\left(x-x_{0}\right)\left(x-x_{1}\right) \tag{4.37}
\end{equation*}
$$

and its integration reads

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} f(x) d x=\sum_{i=0}^{1} f\left(x_{i}\right) \int_{x_{0}}^{x_{1}} L_{1, i}(x) d x+\int_{x_{0}}^{x_{1}} \frac{f^{\prime \prime}\left(\xi_{x}\right)}{2!}\left(x-x_{0}\right)\left(x-x_{1}\right) d x \tag{4.38}
\end{equation*}
$$

Derivation 4.20. Terms in the right-side of (4.38) must be verified to get a formula and its error bound. Note that

$$
\begin{align*}
& A_{0}=\int_{x_{0}}^{x_{1}} L_{1,0}(x) d x=\int_{x_{0}}^{x_{1}} \frac{x-x_{1}}{x_{0}-x_{1}} d x=\frac{1}{2}\left(x_{1}-x_{0}\right), \tag{4.39}\\
& A_{1}=\int_{x_{0}}^{x_{1}} L_{1,1}(x) d x=\int_{x_{0}}^{x_{1}} \frac{x-x_{0}}{x_{1}-x_{0}} d x=\frac{1}{2}\left(x_{1}-x_{0}\right),
\end{align*}
$$

and

$$
\begin{align*}
\int_{x_{0}}^{x_{1}} \frac{f^{\prime \prime}\left(\xi_{x}\right)}{2!}\left(x-x_{0}\right)\left(x-x_{1}\right) d x & =\frac{f^{\prime \prime}(\xi)}{2!} \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) d x \tag{4.40}\\
& =-\frac{f^{\prime \prime}(\xi)}{12}\left(x_{1}-x_{0}\right)^{3} .
\end{align*}
$$

(Here we could use the Weighted Mean Value Theorem on Integral because $\left(x-x_{0}\right)\left(x-x_{1}\right) \leq 0$ does not change the sign over $\left[x_{0}, x_{1}\right]$.)

Definition 4.21. The corresponding quadrature formula is

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}(\xi), \quad \text { (Trapezoid) } \tag{4.41}
\end{equation*}
$$

which is known as the trapezoid rule.

Graphical interpretation:

with(Student[Calculus1]):

$$
f:=x^{\wedge} 3+2+\sin (2 * \operatorname{Pi} * x):
$$

ApproximateInt(f, 0..1, output = animation, partition $=1$, method $=$ trapezoid, refinement $=$ halve, boxoptions $=$ [filled $=$ [color=pink,transparency=0.5]]);

An animated approximation of $\int_{0}^{1} f(x) \mathrm{d} x$ using trapezoid rule, where $f(x)=x^{3}+2+\sin (2 \pi x)$ and the partition is uniform. The approximate value of the integral is 2.500000000 . Number of subintervals used: 1

An animated approximation of $\int_{0}^{1} f(x) \mathrm{d} x$ using trapezoid rule,
where $f(x)=x^{3}+2+\sin (2 \pi x)$ and the partition is uniform. The approximate value of the integral is 2.312500000 . Number of subintervals used: 2

Figure 4.1: Trapazoid rule.

Composite Trapezoid Rule

Let the interval $[a, b]$ be partitioned as

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

Then the trapezoid rule can be applied to each subinterval. Here the nodes are not necessarily uniformly spaced. Thus, we obtain the composite trapezoid rule reads

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) d x \approx \sum_{i=1}^{n} \frac{h_{i}}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right), \quad h_{i}=x_{i}-x_{i-1} . \tag{4.42}
\end{equation*}
$$

With a uniform spacing:

$$
x_{i}=a+i h, \quad h=\frac{b-a}{n},
$$

the composite trapezoid rule takes the form

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx h \cdot\left[\frac{f(a)+f(b)}{2}+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right] \tag{4.43}
\end{equation*}
$$

for which the composite error becomes

$$
\begin{equation*}
\sum_{i=1}^{n}\left(-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{i}\right)\right)=-f^{\prime \prime}(\xi) \sum_{i=1}^{n} \frac{h^{3}}{12}=-f^{\prime \prime}(\xi) \frac{h^{3}}{12} \cdot n=-f^{\prime \prime}(\xi) \frac{(b-a) h^{2}}{12} \tag{4.44}
\end{equation*}
$$

where we have used $\left(h=\frac{b-a}{n} \Rightarrow n=\frac{b-a}{h}\right)$.

Example 4.22.

```
with(Student[Calculus1]):
f := x^3 + 2 + sin(2*Pi*x):
ApproximateInt(f, 0..1, output = animation, partition = 8,
    method = trapezoid, refinement = halve,
    boxoptions = [filled = [color=pink,transparency=0.5]]);
```


Figure 4.2: Composite trapazoid rule.

4.3.2. Simpson's Rule

Remark 4.23. Let $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ be a partition of $[a, b]$.

- The Trapezoid rule uses locally linear interpolating polynomials, each of which is formulated on one subinterval.
- We may utilize locally quadratic interpolating polynomials, formulated on each two subintervals (as a group).
- Furthermore, three and more subintervals can be combined, for a higher-order interpolating polynomial.

Simpson's rule results from integrating the second Lagrange polynomial with three equally spaced nodes, combining two subintervals:

$$
x_{0}, \quad x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h
$$

for som $h>0$.
Definition 4.24. Approximating f by the quadratic interpolating polynomial on $\left[x_{0}, x_{2}\right]$, the elementary Simpson's rule reads

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x \approx \int_{x_{0}}^{x_{2}} \sum_{i=0}^{2} f\left(x_{i}\right) L_{2, i}(x)=\sum_{i=0}^{2} f\left(x_{i}\right) \int_{x_{0}}^{x_{2}} L_{2, i}(x) \tag{4.45}
\end{equation*}
$$

which is reduced to

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{2 h}{6}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \tag{4.46}
\end{equation*}
$$

Graphical interpretation:

```
with(Student[Calculus1]):
f := x^3 + 2 + sin(2*Pi*x):
ApproximateInt(f, 0..1, output = animation, partition = 1,
    method = simpson, refinement = halve,
    boxoptions = [filled = [color=pink,transparency=0.5]]);
```


An animated approximation of $\int_{0}^{1} f(x) d x$ using Simpson's rule,
where $f(x)=x^{3}+2+\sin (2 \pi x)$ and the partition is uniform. The approximate value of the integral is 2.250000000 . Number
of subintervals used: 1
Figure 4.3: The elementary Simpson's rule, which is exact for the given problem.

'Remark' 4.25. Error for the Simpson's Rule

- The error for the elementary Simpson's rule can be analyzed from

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} \frac{f^{\prime \prime \prime}(\xi)}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x \tag{4.47}
\end{equation*}
$$

which must be in $\mathcal{O}\left(h^{4}\right)$.

- However, by approximating the problem in another way, one can show the error is in $\mathcal{O}\left(h^{5}\right)$.

Error Analysis for the Elementary Simpson's Rule

- It follows from the Taylor's Theorem that for each $x \in\left[x_{0}, x_{2}\right]$, there is a number $\xi \in\left(x_{0}, x_{2}\right)$ such that

$$
\begin{equation*}
f(x)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+\frac{f^{\prime \prime}\left(x_{1}\right)}{2!}\left(x-x_{1}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{1}\right)}{3!}\left(x-x_{1}\right)^{3}+\frac{f^{(4)}(\xi)}{4!}\left(x-x_{1}\right)^{4} . \tag{4.48}
\end{equation*}
$$

- By integrating the terms over $\left[x_{0}, x_{2}\right]$, we have

$$
\begin{align*}
\int_{x_{0}}^{x_{2}} f(x) d x= & \left\lvert\, f\left(x_{1}\right)\left(x-x_{1}\right)+\frac{f^{\prime}\left(x_{1}\right)}{2}\left(x-x_{1}\right)^{2}+\frac{f^{\prime \prime}\left(x_{1}\right)}{3!}\left(x-x_{1}\right)^{3}\right. \\
& +\left.\frac{f^{\prime \prime \prime}\left(x_{1}\right)}{4!}\left(x-x_{1}\right)^{4}\right|_{x_{0}} ^{x_{2}}+\int_{x_{0}}^{x_{2}} \frac{f^{(4)}(\xi)}{4!}\left(x-x_{1}\right)^{4} d x \tag{4.49}
\end{align*}
$$

The last term can be easily computed by using the Weighted Mean Value Theorem on Integral:

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} \frac{f^{(4)}(\xi)}{4!}\left(x-x_{1}\right)^{4} d x=\frac{f^{(4)}\left(\xi_{1}\right)}{4!} \int_{x_{0}}^{x_{2}}\left(x-x_{1}\right)^{4} d x=\frac{f^{(4)}\left(\xi_{1}\right)}{60} h^{5} . \tag{4.50}
\end{equation*}
$$

- Thus, (4.49) reads

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x=2 h f\left(x_{1}\right)+\frac{h^{3}}{3} \mathbf{f}^{\prime \prime}\left(\mathbf{x}_{1}\right)+\frac{f^{(4)}\left(\xi_{1}\right)}{60} h^{5} \tag{4.51}
\end{equation*}
$$

- See (4.14), p.141, to recall that

$$
\begin{equation*}
f^{\prime \prime}\left(x_{1}\right)=\frac{f\left(x_{0}\right)-2 f\left(x_{1}\right)+f\left(x_{2}\right)}{h^{2}}-\frac{h^{2}}{12} f^{(4)}\left(\xi_{2}\right) \tag{4.52}
\end{equation*}
$$

- Plugging this to (4.51) reads

$$
\begin{align*}
\int_{x_{0}}^{x_{2}} f(x) d x= & 2 h f\left(x_{1}\right)+\frac{h^{3}}{3}\left(\frac{f\left(x_{0}\right)-2 f\left(x_{1}\right)+f\left(x_{2}\right)}{h^{2}}\right) \tag{4.53}\\
& -\frac{h^{3}}{3}\left(\frac{h^{2}}{12} f^{(4)}\left(\xi_{2}\right)\right)+\frac{f^{(4)}\left(\xi_{1}\right)}{60} h^{5},
\end{align*}
$$

and therefore

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{2 h}{6}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{(4)}\left(\xi_{3}\right) . \tag{4.54}
\end{equation*}
$$

Composite Simpson's Rule

A composite Simpson's rule, using an even number of subintervals, is often adopted. Let n be even, and set

$$
x_{i}=a+i h, \quad h=\frac{b-a}{n} . \quad(0 \leq i \leq n)
$$

Then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n / 2} \int_{x_{2 i-2}}^{x_{2 i}} f(x) d x \approx \frac{2 h}{6} \sum_{i=1}^{n / 2}\left[f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right] \tag{4.55}
\end{equation*}
$$

Example 4.26. Show that the error term for the composite Simpson's rule becomes

$$
\begin{equation*}
-\frac{(b-a) h^{4}}{180} f^{(4)}(\xi) \tag{4.56}
\end{equation*}
$$

Solution.

4.3.3. Simpson's Three-Eights Rule

We have developed quadrature rules when the function f is approximated by piecewise Lagrange polynomials of degrees 1 and 2. Such integration formulas are called the closed Newton-Cotes formulas, and the idea can be extended for any degrees. The word closed is used, because the formulas include endpoints of the interval $[a, b]$ as nodes.

Theorem 4.27. When three equal subintervals are combined, the resulting integration formula is called the Simpson's three-eights rule:

$$
\begin{equation*}
\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]-\frac{3 h^{5}}{80} f^{(4)}\left(\xi_{0}\right) \tag{4.57}
\end{equation*}
$$

Example 4.28. Let n be a multiple of 3 . For the nodes,

$$
x_{i}=a+i h, \quad h=\frac{b-a}{n}, \quad(0 \leq i \leq n)
$$

derive the error term for the composite Simpson's three-eights rule. Solution.

$$
\text { Ans: }-\frac{(b-a) h^{4}}{80} f^{(4)}(\xi)
$$

Note: When n is not even, you may approximate the integration by a combination of the Simpson's rule and the Simpson's three-eights rule. For example, let $n=13$. Then you may apply the Simpson's rule for [x_{0}, x_{10}] and the Simpson's three-eights rule for the last three subintervals $\left[x_{10}, x_{13}\right]$.

Self-study 4.29. Consider

$$
\int_{0}^{2} \frac{x}{x^{2}+1} d x
$$

of which the true value is $\frac{\ln 5}{2} \approx 0.80471895621705018730$. Use 6 equally spaced points $(n=5)$ to approximate the integral using
(a) the trapezoid rule, and
(b) a combination of the Simpson's rule and the Simpson's threeeights rule.

Solution.

(a) 0.7895495781 .
(so, the error $=0.0151693779$)
(b) $\int_{0}^{0.8} f(x) d x+\int_{0.8}^{2} f(x) d x \approx 0.2474264468+0.5567293981=0.8041558449$.
$($ so, the error $=0.0005631111)$

4.4. Romberg Integration

Note: Romberg integration is to generate high-accuracy results, using multiple Trapezoid quadrature (obtained on refined partitions).

- In the previous section, we have found that the Composite Trapezoid rule has a truncation error of order $\mathcal{O}\left(h^{2}\right)$.
- Over n equal subintervals of $[a, b]$

$$
x_{k}=a+k h, \quad h=(b-a) / n, \quad(0 \leq k \leq n),
$$

let $T(n)$ be the Trapezoid quadrature:

$$
\begin{equation*}
T(n)=h\left[\frac{1}{2} f(a)+\sum_{k=1}^{n-1} f\left(x_{k}\right)+\frac{1}{2} f(b)\right] . \tag{4.58}
\end{equation*}
$$

Let us begin with an effective computation technique for $T(2 n)$ as a refinement of $T(n)$.

4.4.1. Recursive Trapezoid Rule

Example 4.30. What is the explicit formula for $T(1), T(2), T(4)$, and $T(8)$ in the case in which the interval is $[0,1]$?
Solution. Using Equation (4.58), we have

$$
\begin{align*}
T(1)= & 1 \cdot\left[\frac{1}{2} f(0)+\frac{1}{2} f(1)\right] \\
T(2)= & \frac{1}{2} \cdot\left[\frac{1}{2} f(0)+f\left(\frac{1}{2}\right)+\frac{1}{2} f(1)\right] \\
T(4)= & \frac{1}{4} \cdot\left[\frac{1}{2} f(0)+f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+\frac{1}{2} f(1)\right] \tag{4.59}\\
T(8)= & \frac{1}{8} \cdot\left[\frac{1}{2} f(0)+f\left(\frac{1}{8}\right)+f\left(\frac{1}{4}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{1}{2}\right)\right. \\
& \left.\quad+f\left(\frac{5}{8}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{7}{8}\right)+\frac{1}{2} f(1)\right]
\end{align*}
$$

Remark 4.31. It is clear that if $T(2 n)$ is to be computed, then we can take advantage of the work already done in the computation of $T(n)$. For example, from the preceding example, we see that

$$
\begin{align*}
& T(2)=\frac{1}{2} T(1)+\frac{1}{2} \cdot\left[f\left(\frac{1}{2}\right)\right] \\
& T(4)=\frac{1}{2} T(2)+\frac{1}{4} \cdot\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)\right] \tag{4.60}\\
& T(8)=\frac{1}{2} T(4)+\frac{1}{8} \cdot\left[f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)\right]
\end{align*}
$$

With $h=(b-a) /(2 n)$, the general formula pertaining to any interval $[a, b]$ is as follows:

$$
\begin{equation*}
T(2 n)=\frac{1}{2} T(n)+h[f(a+h)+f(a+3 h)+\cdots+f(a+(2 n-1) h)] \tag{4.61}
\end{equation*}
$$

or

$$
\begin{equation*}
T(2 n)=\frac{1}{2} T(n)+h\left(\sum_{k=1}^{n} f\left(x_{2 k-1}\right)\right) . \tag{4.62}
\end{equation*}
$$

Now, if there are 2^{i} uniform subintervals, Equation (4.61) provides a recursive Trapezoid rule:

$$
\begin{equation*}
T\left(2^{i}\right)=\frac{1}{2} T\left(2^{i-1}\right)+h_{i}\left(\sum_{k=1}^{2^{i-1}} f\left(a+(2 k-1) h_{i}\right)\right) \tag{4.63}
\end{equation*}
$$

where

$$
h_{0}=b-a, \quad h_{i}=\frac{1}{2} h_{i-1}, \quad i \geq 1
$$

4.4.2. The Romberg Algorithm

By the Taylor series method, it can be shown that if $f \in C^{\infty}[a, b]$, the Composite Trapezoid rule (4.58) can also be written with an error term in the form

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=T(n)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots \tag{4.64}
\end{equation*}
$$

where K_{i} are constants independent of h. Since

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=T(2 n)+K_{2} h^{2} / 4+K_{4} h^{4} / 16+K_{6} h^{6} / 64+\cdots, \tag{4.65}
\end{equation*}
$$

as for Richardson extrapolation, we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\frac{1}{3}[4 T(2 n)-T(n)]-\frac{3}{4} K_{4} h^{4}-\frac{15}{16} K_{6} h^{6}-\cdots \tag{4.66}
\end{equation*}
$$

Algorithm 4.32. (Romberg algorithm): The above idea can be applied recursively. The complete algorithm of Romberg integration is formulated as:

1. The computation of $R(i, 0)$ which is the trapezoid estimate with 2^{i} subintervals obtained using the formula (4.63):

$$
\begin{align*}
& R(0,0)=\frac{b-a}{2}[f(a)+f(b)], \\
& R(i, 0)=\frac{1}{2} R(i-1,0)+h_{i}\left(\sum_{k=1}^{2^{i-1}} f\left(a+(2 k-1) h_{i}\right)\right) . \tag{4.67}
\end{align*}
$$

2. Then, evaluate higher-order approximations recursively using

$$
\begin{align*}
& \text { for } i=1,2, \cdots, n \text { do } \\
& \quad \text { for } j=1,2, \cdots, i \text { do } \\
& \quad R(i, j)=\frac{1}{4^{j}-1}\left[4^{j} \cdot R(i, j-1)-R(i-1, j-1)\right] \tag{4.68}
\end{align*}
$$

end do
end do

Example 4.33. Use the Composite Trapezoid rule to find approximations to $\int_{0}^{\pi-} \sin x d x$, with $n=1,2,4$, and 8 . Then perform Romberg extrapolation on the results.

Solution.

```
a := 0: b := Pi:
f := \(x\)-> \(\sin (x)\) :
\(\mathrm{n}:=3\) :
R := Array(0..n, 0..n):
\# Trapezoid estimates
\#----------------------------------
\(R[0,0]:=(b-a) / 2 *(f(a)+f(b)) ;\)
for i to n do
    hi := (b-a)/2^i;
    R[i,0] := R[i-1,0]/2 +hi*add(f(a+(2*k-1)*hi), k=1..2^(i-1));
end do:
\# Now, perform Romberg Extrapolation:
\# ---------------------------------------------------
for i to n do
    for j to i do
        \(R[i, j]:=\left(4^{\wedge} j * R[i, j-1]-R[i-1, j-1]\right) /\left(4^{\wedge} j-1\right) ;\)
    end do
end do
```

$j=0: \mathcal{O}\left(h^{2}\right)$	$j=1: \mathcal{O}\left(h^{4}\right)$	$j=2: \mathcal{O}\left(h^{6}\right)$	$j=3: \mathcal{O}\left(h^{8}\right)$
$R_{0,0}=0$			
$R_{1,0}=1.570796327$	$R_{1,1}=2.094395103$		
$R_{2,0}=1.896118898$	$R_{2,1}=2.004559755$	$R_{2,2}=1.998570731$	
$R_{3,0}=1.974231602$	$R_{3,1}=2.000269171$	$R_{3,2}=1.999983131$	$R_{3,3}=2.000005551$

Self-study 4.34. The true value for the integral: $\int_{0}^{\pi} \sin x d x=2$. Use the table in (4.69) to verify that the error is in $\mathcal{O}\left(h^{4}\right)$ for $j=1$ and $\mathcal{O}\left(h^{6}\right)$ for $j=2$. Hint: For example, for $j=1$, you should measure $\left|R_{1,1}-2\right| /\left|R_{2,1}-2\right|$ and $\left|R_{2,1}-2\right| /\left|R_{3,1}-2\right|$ and interpret them.

4.5. Gaussian Quadrature

Recall: Newton-Cotes Formulas

- In Section 4.3, we saw how to create quadrature formulas of the form

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} w_{i} f\left(x_{i}\right) \tag{4.70}
\end{equation*}
$$

that are exact for polynomials of degree $\leq n$, which is the case if and only if

$$
\begin{equation*}
w_{i}=\int_{a}^{b} L_{n, i}(x) d x=\int_{a}^{b} \prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x \tag{4.71}
\end{equation*}
$$

- In those formulas, the choice of nodes $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ were made a priori. Once the nodes were fixed, the weights were determined uniquely from the requirement that Formula (4.70) must be an equality for $f \in \mathbb{P}_{n}$.

4.5.1. The Method of Undetermined Coefficients

Example 4.35. Find w_{0}, w_{1}, w_{2} with which the following formula is exact for all polynomials of degree ≤ 2 :

$$
\begin{equation*}
\int_{0}^{1} f(x) d x \approx w_{0} f(0)+w_{1} f(1 / 2)+w_{2} f(1) \tag{4.72}
\end{equation*}
$$

Solution. Formula (4.72) must be exact for some low-order polynomials. Consider trial functions $f(x)=1, x, x^{2}$. Then, for each of them,

$$
\begin{align*}
& 1=\int_{0}^{1} 1 d x=w_{0} \cdot 1+w_{1} \cdot 1+w_{2} \cdot 1=w_{0}+w_{1}+w_{2} \\
& \frac{1}{2}=\int_{0}^{1} x d x=w_{0} \cdot 0+w_{1} \cdot \frac{1}{2}+w_{2} \cdot 1=\frac{1}{2} w_{1}+w_{2} \tag{4.73}\\
& \frac{1}{3}=\int_{0}^{1} x^{2} d x=w_{0} \cdot 0+w_{1} \cdot\left(\frac{1}{2}\right)^{2}+w_{2} \cdot 1=\frac{1}{4} w_{1}+w_{2}
\end{align*}
$$

The solution of this system of three simultaneous equations is

$$
\begin{equation*}
\left(w_{0}, w_{1}, w_{2}\right)=\left(\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right) . \tag{4.74}
\end{equation*}
$$

Thus the formula can be written as

$$
\begin{equation*}
\int_{0}^{1} f(x) d x \approx \frac{1}{6}[f(0)+4 f(1 / 2)+f(1)] \tag{4.75}
\end{equation*}
$$

which will produce exact values of integrals for any quadratic polynomial, $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$.

Note: It must be noticed that Formula (4.75) is the elementary Simpson's rule with $h=1 / 2$.

Key Idea 4.36. Gaussian quadrature chooses the nodes in an optimal way, rather than equally-spaced points.

- The nodes $x_{1}, x_{2}, \cdots, x_{n}$ in the interval $[a, b]$ and the weights $w_{1}, w_{2}, \cdots, w_{n}$ are chosen to minimize the expected error obtained in the approximation

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \tag{4.76}
\end{equation*}
$$

- To measure this accuracy, we assume that the best choice of these values produces the exact result for the largest class of polynomials, that is, the choice that gives the greatest degree of precision.
- The above formula gives $2 n$ parameters to choose:

$$
x_{1}, x_{2}, \cdots, x_{n} \text { and } w_{1}, w_{2}, \cdots, w_{n}
$$

Since the class of polynomials of degree at most $(2 n-1)$ is $2 n$ dimensional (containing $2 n$ parameters), one may try to decide the parameters with which the quadrature formula is exact for all polynomials in $\mathbb{P}_{2 n-1}$.

Example 4.37. Determine x_{1}, x_{2} and w_{1}, w_{2} so that the integration formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) \tag{4.77}
\end{equation*}
$$

gives the exact result whenever $f \in \mathbb{P}_{3}$.
Solution. As in the previous example, we may apply the method of undetermined coefficients. This time, use $f(x)=1, x, x^{2}, x^{3}$ as trial functions.

Note: The method of undetermined coefficients is a classical method to determine the nodes and weights for formulas, but an alternative method can obtain them more easily. The alternative is related to Legendre orthogonal polynomials.

- The Chebyshev polynomials, defined in Definition 3.20, are also orthogonal polynomials; see page 97.
- Frequently-cited classical orthogonal polynomials are: Jacobi polynomials, Laguerre polynomials, Chebyshev polynomials, and Legendre polynomials.

4.5.2. Legendre Polynomials: Gauss and Gauss-Lobatto Integration

Definition 4.38. Let $\left\{P_{0}(x), P_{1}(x), \cdots, P_{k}(x), \cdots\right\}$ be a collection of polynomials with $P_{k} \in \mathbb{P}_{k}$. It is called orthogonal polynomials when it satisfies

$$
\begin{equation*}
\int_{-1}^{1} Q(x) P_{k}(x) d x=0, \quad \forall Q(x) \in \mathbb{P}_{k-1} \tag{4.78}
\end{equation*}
$$

Such orthogonal polynomials can be formulated by a certain three-term recurrence relation.

Definition 4.39. The Legendre polynomials obey the three-term recurrence relation, known as Bonnet's recursion formula:

$$
\begin{equation*}
(k+1) P_{k+1}(x)=(2 k+1) x P_{k}(x)-k P_{k-1}(x), \tag{4.79}
\end{equation*}
$$

beginning with $P_{0}(x)=1, P_{1}(x)=x$. A few first Legendre polynomials are

$$
\begin{align*}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{3}{2}\left(x^{2}-\frac{1}{3}\right) \\
& P_{3}(x)=\frac{5}{2}\left(x^{3}-\frac{3}{5} x\right) \tag{4.80}\\
& P_{4}(x)=\frac{35}{8}\left(x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}\right) \\
& P_{5}(x)=\frac{63}{8}\left(x^{5}-\frac{10}{9} x^{3}+\frac{5}{21} x\right)
\end{align*}
$$

Figure 4.4: Legendre polynomials - Wikipedia

Theorem 4.40. The Legendre polynomials satisfy

$$
\begin{align*}
& \left|P_{k}(x)\right| \leq 1, \quad \forall x \in[-1,1], \\
& P_{k}(\pm 1)=(\pm 1)^{k}, \tag{4.81}\\
& \int_{-1}^{1} P_{j}(x) P_{k}(x) d x=0, \quad j \neq k ; \quad \int_{-1}^{1} P_{k}(x)^{2} d x=\frac{1}{k+1 / 2} .
\end{align*}
$$

Gauss Integration

Theorem 4.41. (Gauss integration): Suppose that $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ are the roots of the nth Legendre polynomial P_{n} and $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ are obtained by

$$
\begin{equation*}
w_{i}=\int_{-1}^{1} \prod_{j=1, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x . \quad\left(=\int_{-1}^{1} L_{n-1, i}(x) d x\right) \tag{4.82}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \text { is exact, } \forall f \in \mathbb{P}_{2 n-1} \tag{4.83}
\end{equation*}
$$

Note: Once the nodes are determined, the weights $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ can also be found by using the method of undetermined coefficients. That is, the weights are the solution of the linear system

$$
\begin{equation*}
\sum_{j=1}^{n}\left(x_{j}\right)^{i} w_{j}=\int_{-1}^{1} x^{i} d x, \quad i=0,1, \cdots, n-1 \tag{4.84}
\end{equation*}
$$

```
with(LinearAlgebra):
with(Statistics):
WeightSystem := proc(n, A, b, X)
    local i, j;
    for j to n do
        A[1, j] := 1;
        for i from 2 to n do
            A[i, j] := A[i - 1, j]*X[j];
        end do:
    end do:
    for i to n do
        b[i] := int(x^(i - 1), x = -1..1);
    end do:
end proc
nmax := 5:
for k to nmax do
    Legendre[k] := sort(orthopoly[P](k, x));
end do;
                    Legendre[1] := x
                    Legendre[2] := - x - -
                    2 2
                        5 3 3
            Legendre[3] := - x - - x
                            2 2
```



```
            Legendre[5] := -- x - -- x m + -- x
                8 4 8
Node := Array(0..nmax): Weight := Array(0..nmax):
for k to nmax do
    solve(Legendre[k] = 0, x):
    Node[k] := Sort(Vector([%])):
    n := Dimensions(Node[k]):
    A := Matrix(n, n): b := Vector(n):
    WeightSystem(n, A, b, Node[k]):
    Weight[k] := A^(-1).b:
end do:
```

44
for k to nmax do
printf(" k=\%d\n", k);
print(Nodek = evalf(Node[k]));
print(Weightk = evalf(Weight[k]));
end do;
$\mathrm{k}=1$
Nodek = [0.]
Weightk = [2.]
$\mathrm{k}=2$
Nodek $=\begin{array}{ccc}{\left[\begin{array}{lll}{[} & -0.5773502693 &] \\ {[} & 0.5773502693 &]\end{array}\right]}\end{array}$
[1.]
Weightk = []
[1.]
$\mathrm{k}=3$
Nodek $=\begin{array}{ccc}{[} & -0.7745966692 &] \\ {[} & &] \\ {[} & 0 . &] \\ {[} & 0.7745966692 &]\end{array}$
[0.5555555556]
[]
Weightk $=$ [0.8888888889]
[]
[0.5555555556]
$\mathrm{k}=4$
Nodek $=\begin{array}{ccc}{[} & -0.8611363114 &] \\ {[} & &] \\ {[} & -0.3399810437 &] \\ {[} & 0.3399810437 &] \\ {[} & &] \\ {[} & 0.8611363114 &]\end{array}$
$\begin{aligned} & {[0.3478548456] } \\ & {[}] \\ & \text { Weightk }= {[0.6521451560] } \\ & {[0.6521451563] } \\ & {[\text { [0.3478548450] }}\end{aligned}$
89
$\mathrm{k}=5$

$[$	-0.9061798457	$]$
$[$		$]$
$[$	-0.5384693100	$]$
$[$		$]$
$[$	0.	$]$
$[$		$]$
$[$	0.5384693100	$]$
$[$		$]$

$[0.2427962711]$	
$[$	$]$
	$[0.472491159]$
	$[$
Weightk	$[0.568220204]$
	$[$
	$[0.478558682]$
	$[$
	$[0.2369268937]$

Remark 4.42. (Gaussian Quadrature on Arbitrary Intervals): An integral $\int_{a}^{b} f(x) d x$ over an interval $[a, b]$ can be transformed into an integral over $[-1,1]$ by using the change of variables:

$$
\begin{equation*}
T:[-1,1] \rightarrow[a, b], \quad x=T(t)=\frac{b-a}{2} t+\frac{a+b}{2} . \tag{4.85}
\end{equation*}
$$

Using it, we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{-1}^{1} f\left(\frac{b-a}{2} t+\frac{a+b}{2}\right) \frac{b-a}{2} d t \tag{4.86}
\end{equation*}
$$

Example 4.43. Find the Gaussian Quadrature for $\int_{0}^{\pi} \sin (x) d x$, with $n=$ 2, 3, 4 .
Solution. The transformation $T:[-1,1] \rightarrow[0, \pi]$ reads

$$
\begin{equation*}
T(t)=\frac{\pi}{2}(t+1)=\frac{\pi}{2} t+\frac{\pi}{2} \quad(=x) . \tag{4.87}
\end{equation*}
$$

Using the change of variables, the integral is transformed as

$$
\begin{equation*}
\int_{0}^{\pi} \sin (x) d x=\int_{-1}^{1} \sin (T(t)) \frac{\pi}{2} d t \tag{4.88}
\end{equation*}
$$

```
a := 0: b := Pi:
f := \(\mathrm{x}->\sin (\mathrm{x})\) :
nmax \(:=4\) :
\(\mathrm{T}:=\mathrm{t}->(\mathrm{b}-\mathrm{a}) / 2 * \mathrm{t}+(\mathrm{a}+\mathrm{b}) / 2\) :
T(t)
    \(1 \quad 1\)
    - Pi t + - Pi
    22
trueI := int(f(x), \(x=a . . b)\)
                                    2
\(\mathrm{g}:=\mathrm{t}->\mathrm{f}(\mathrm{T}(\mathrm{t})) *(\mathrm{~b}-\mathrm{a}) / 2\) :
GI := Vector(nmax):
for \(k\) from 2 to nmax do
    GI [k] := \(\operatorname{add}(\) evalf(Weight [k][i] \(\operatorname{g}(\operatorname{Node[k][i])),~i=1..k);~}\)
end do:
for \(k\) from 2 to nmax do
    printf(" n=\%d GI=\%g error=\%g\n",k,GI[k],abs(trueI-GI[k]));
end do
    \(\mathrm{n}=2\) GI=1.93582 error=0.0641804
    n=3 GI=2.00139 error=0.00138891
    n=4 GI=1. 99998 error=1.5768e-05
```


Gauss-Lobatto Integration

Theorem 4.44. (Gauss-Lobatto integration): Let $x_{0}=-1, x_{n}=1$, and $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ are the roots of the first-derivative of the nth Legendre polynomial, $P_{n}^{\prime}(x)$. Let $\left\{w_{0}, w_{1}, w_{2}, \cdots, w_{n}\right\}$ be obtained by

$$
\begin{equation*}
w_{i}=\int_{-1}^{1} \prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x . \quad\left(=\int_{-1}^{1} L_{n, i}(x) d x\right) \tag{4.89}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{i=0}^{n} w_{i} f\left(x_{i}\right) \text { is exact, } \forall f \in \mathbb{P}_{2 n-1} \tag{4.90}
\end{equation*}
$$

Recall: Theorem 4.41 (Gauss integration): Suppose that $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ are the roots of the nth Legendre polynomial P_{n} and $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ are obtained by

$$
\begin{equation*}
w_{i}=\int_{-1}^{1} \prod_{j=1, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x . \quad\left(=\int_{-1}^{1} L_{n-1, i}(x) d x\right) \tag{4.91}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \text { is exact, } \forall f \in \mathbb{P}_{2 n-1} \tag{4.92}
\end{equation*}
$$

Remark 4.45. Once the nodes are determined, $\left\{w_{0}, w_{1}, w_{2}, \cdots, w_{n}\right\}$ can also be found by using the method of undetermined coefficients, as for Gauss integration; the weights are the solution of the linear system

$$
\begin{equation*}
\sum_{j=0}^{n}\left(x_{j}\right)^{i} w_{j}=\int_{-1}^{1} x^{i} d x, \quad i=0,1, \cdots, n \tag{4.93}
\end{equation*}
$$

The Gauss-Lobatto integration is a closed formula for numerical integrations, which is more popular in real-world applications than open formulas such as the Gauss integration.
Self-study?
4.46. Find the Gauss-Lobatto Quadrature for $\int_{0}^{\pi} \sin (x) d x$, with $n=2,3,4$.

Exercises for Chapter 4

4.1. Use the most accurate three-point formulas to determine the missing entries.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
1.0	2.0000		6.00
1.2	1.7536		
1.4	1.9616		
1.6	2.8736		
1.8	4.7776		
2.0	8.0000		52.08
2.2	12.9056		

Hint: The central scheme is more accurate than one-sided schemes.
4.2. Use your results in the above table to approximate $f^{\prime}(1.6)$ and $f^{\prime \prime}(1.6)$ with $\mathcal{O}\left(h^{4}\right)$ accuracy. Make a conclusion by comparing all results (obtained here and from Problem 1) with the exact values:

$$
f^{\prime}(1.6)=6.784, \quad f^{\prime \prime}(1.6)=24.72
$$

Hint: In order to get a 4th-order Richardson approximation, you should have a coarse grid approximation, using $f(1.2), f(1.6), f(2.0)$
Ans: $f^{\prime \prime}(1.6) \approx 24.8$
4.3. Verify Claim 4.18, p. 146: The Richardson extrapolation results in the numerical solution of a higher-order accuracy on the fine grid level.
4.4. Let a numerical process be described by

$$
\begin{equation*}
M=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots \tag{4.94}
\end{equation*}
$$

Explain how Richardson extrapolation will work in this case. (Try to introduce a formula described as in (4.26), page 143.)
4.5. In order to approximate $\int_{0}^{2} x \ln \left(x^{2}+1\right) d x$ with $h=0.4$, use
(a) the Trapezoid rule, and
(b) Simpson's rules.

Hint: For (b), you may use the Simpson's rule for the first two subintervals and the Simpson's three-eighth rule for the remained three subintervals.
Ans: (a) 2.06735. (b) 2.02253 .
4.6. A car laps a race track in 65 seconds. The speed of the car at each 5 second interval is determined by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table:

Time	0	5	10	15	20	25	30	35	40	25	50	55	60	65
Speed	0	90	124	142	156	147	133	121	109	99	95	78	89	98

Estimate the length of the track, using the Simpson's rules.
Ans: 7190.7 ft
4.7. Consider integrals
I. $\int_{1}^{3} \frac{1}{x} d x$
II. $\int_{0}^{\pi} \cos ^{2} x d x$
(a) For each of the integrals, use the Romberg extrapolation to find $R[3,3]$.
(b) Determine the number of subintervals required when the Composite Trapezoid rule is used to find approximations within the same accuracy as $R[3,3]$.

Ans: (a) $R[3,3]=1.0986$
4.8. C] Find the Gaussian Quadrature for $\int_{0}^{\pi / 2} \cos ^{2} x d x$, with $n=2,3,4$. Ans:

Table 4.1: Integration Resulta using Gaussian Quadrature

n	Quadrature	Absolute Error
2	0.785398	0.0
3	0.785398	0.2220×10^{-15}
4	0.785398	0.0

Chapter 5

Numerical Solution of Ordinary Differential Equations

In this chapter:

Topics	Applications/Properties
Elementary Theory of IVPs	Existence and uniqueness of the solution
Taylor-series Methods	
Euler's method Higher-Order Taylor methods	
Runge-Kutta (RK) Methods	
Second-order RK (Heun's method) Fourth-order RK Runge-Kutta-Fehlberg method	Modified Euler's method
Multi-step Methods	Variable step-size (adaptive method)
Adams-Bashforth-Moulton method	
 Systems of Differential Equations	
Implicit Methods	Implicit Differential Equations

Contents of Chapter 5

5.1. Elementary Theory of Initial-Value Problems . 176
5.2. Taylor-Series Methods . 179
5.3. Runge-Kutta Methods . 188
5.4. One-Step Methods: Accuracy Comparison . 194
5.5. Multi-step Methods . 197
5.6. High-Order Equations \& Systems of Differential Equations 201
5.7. Implicit Methods and Implicit Differential Equations 208

Exercises for Chapter 5 . 214

5.1. Elementary Theory of Initial-Value Problems

Definition 5.1. The first-order initial value problem (IVP) is formulated as follows: find $\left\{y_{i}(x): i=1,2, \cdots, M\right\}$ satisfying

$$
\begin{align*}
& \frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, y_{2}, \cdots, y_{M}\right), \quad i=1,2, \cdots, M, \tag{5.1}\\
& y_{i}\left(x_{0}\right)=y_{i 0}
\end{align*}
$$

for a prescribed initial values $\left\{y_{i 0}: i=1,2, \cdots, M\right\}$.

- We assume that (5.1) admits a unique solution in a neighborhood of x_{0}.
- For simplicity, we consider the case $M=1$:

$$
\begin{align*}
& \frac{d y}{d x}=f(x, y) \tag{5.2}\\
& y\left(x_{0}\right)=y_{0}
\end{align*}
$$

Theorem 5.2. (Existence and Uniqueness of the Solution): Sup-

 pose that $R=\{(x, y) \mid a \leq x \leq b,-\infty<y<\infty\}$, f is continuous on R, and $x_{0} \in[a, b]$. If f satisfies a Lipschitz condition on R in the variable y, i.e., there is a constant $L>0$ such that$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|, \quad \forall y_{1}, y_{2}, \tag{5.3}
\end{equation*}
$$

then the IVP (5.2) has a unique solution $y(x)$ in an interval I, where $x_{0} \in I \subset(a, b)$.

Theorem 5.3. Suppose that $f(x, y)$ is defined on $R \subset \mathbb{R}^{2}$. If a constant $L>0$ exists with

$$
\begin{equation*}
\left|\frac{\partial f(x, y)}{\partial y}\right| \leq L, \quad \forall(x, y) \in R \tag{5.4}
\end{equation*}
$$

then f satisfies a Lipschitz condition on R in the variable y with the same Lipschitz constant L.

Example 5.4. Prove that the initial-value problem

$$
y^{\prime}=(x+\sin y)^{2}, \quad y(0)=3,
$$

has a unique solution on the interval $[-1,2]$.

Solution.

Example 5.5. Show that each of the initial-value problems has a unique solution and find the solution.
(a) $y^{\prime}=e^{x-y}, \quad 0 \leq x \leq 1, \quad y(0)=1$
(b) $y^{\prime}=\left(1+x^{2}\right) y, \quad 3 \leq x \leq 5, \quad y(3)=1$

Solution. (Existence and uniqueness):
(Find the solution): Here, we will find the solution for (b), using Maple.

> Maple-code

```
DE := diff(y(x), x) = y(x)*(x^2 + 1);
    d / 2 \
    --- y(x)=y(x) \x + 1/
    dx
IC := y(3) = 1;
    y(3) = 1
dsolve({DE, IC}, y(x));
    M/1 /2 \\ \
    y(x) = -----------------
        exp(12)
```

Strategy 5.6. (Numerical Solution): In the following, we describe step-by-step methods for (5.2); that is, we start from $y_{0}=y\left(x_{0}\right)$ and proceed stepwise.

- In the first step, we compute y_{1} which approximate the solution y of (5.2) at $x=x_{1}=x_{0}+h$, where h is the step size.
- The second step computes an approximate value y_{2} of the solution at $x=x_{2}=x_{0}+2 h$, etc..

Note: We first introduce the Taylor-series methods for (5.2), followed by Runge-Kutta methods and multi-step methods. All of these methods are applicable straightforwardly to (5.1).

5.2. Taylor-Series Methods

Preliminary 7 5.7. Here we rewrite the initial value problem (IVP):

$$
\begin{cases}y^{\prime} & =f(x, y), \tag{5.5}\\ y\left(x_{0}\right) & =y_{0}\end{cases}
$$

For the problem, a continuous approximation to the solution $y(x)$ will not be obtained; instead, approximations to y will be generated at various points, called mesh points in the interval $\left[x_{0}, T\right]$, for some $T>x_{0}$. Let

- $h=\left(T-x_{0}\right) / N_{t}$, for an integer $N_{t} \geq 1$
- $x_{n}=x_{0}+n h, n=0,1,2, \cdots, N_{t}$
- y_{n} be the approximate solution of y at x_{n}, i.e., $y_{n} \approx y\left(x_{n}\right)$.

5.2.1. The Euler Method

Step 1

- It is to find an approximation of $y\left(x_{1}\right)$, marching through the first subinterval $\left[x_{0}, x_{1}\right]$ and using a Taylor-series involving only up to the first-derivative of y.
- Consider the Taylor series

$$
\begin{equation*}
y\left(x_{1}\right)=y\left(x_{0}+h\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\cdots \tag{5.6}
\end{equation*}
$$

- Utilizing $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=f\left(x_{0}, y_{0}\right)$, the value $y\left(x_{1}\right)$ can be approximated by

$$
\begin{equation*}
y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right), \tag{5.7}
\end{equation*}
$$

where the second- and higher-order terms of h are ignored.

Such an idea can be applied recursively for the computation of solution on later subintervals. Indeed, since

$$
y\left(x_{2}\right)=y\left(x_{1}\right)+h y^{\prime}\left(x_{1}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(x_{1}\right)+\cdots
$$

by replacing $y\left(x_{1}\right)$ and $y^{\prime}\left(x_{1}\right)$ with y_{1} and $f\left(x_{1}, y_{1}\right)$, respectively, we obtain

$$
\begin{equation*}
y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right), \tag{5.8}
\end{equation*}
$$

which approximates the solution at $x_{2}=x_{0}+2 h$.
Algorithm 5.8. Summarizing the above, the Euler method solving the first-order IVP (5.5) is formulated as

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right), \quad n \geq 0 \tag{5.9}
\end{equation*}
$$

Figure 5.1: The Euler method.

Geometrically it is an approximation of the curve $\{x, y(x)\}$ by a polygon of which the first segment is tangent to the curve at x_{0}, as shown in the above figure.

- For example, y_{1} is determined by moving the point $\left(x_{0}, y_{0}\right)$ by the length of h with the slope $f\left(x_{0}, y_{0}\right)$, the evaluation of f ad the left edge point.

Algegraic Interpretation of the Euler Method

Remark 5.9. Applying the Fundamental Theorem of Calculus (Part 1), the solution for the IVP (5.5) can be implicitly formulated as

$$
\begin{equation*}
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t \tag{5.10}
\end{equation*}
$$

- Check:

$$
y^{\prime}(x)=f(x, y(x)) \text { and } y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} f(t, y(t)) d t=y_{0} .
$$

- When $x=x_{1}$, Equation (5.10) reads

$$
\begin{equation*}
y\left(x_{1}\right)=y_{0}+\int_{x_{0}}^{x_{1}} f(t, y(t)) d t \tag{5.11}
\end{equation*}
$$

- Let us approximate the integral using the left edge value:

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} f(t, y(t)) d t \approx \int_{x_{0}}^{x_{1}} f\left(x_{0}, y\left(x_{0}\right)\right) d t=\left(x_{1}-x_{0}\right) f\left(x_{0}, y_{0}\right) \tag{5.12}
\end{equation*}
$$

- Now, it follows from (5.10) and (5.12) that

$$
\begin{equation*}
y\left(x_{1}\right) \approx y_{0}+h f\left(x_{0}, y_{0}\right) \quad\left(=: \mathbf{y}_{\mathbf{1}}\right) \tag{5.13}
\end{equation*}
$$

which represents the Euler method.

Convergence of the Euler Method

Theorem 5.10. Let f satisfy the Lipschitz condition in its second variable, i.e., there is $\lambda>0$ such that

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq \lambda\left|y_{1}-y_{2}\right|, \quad \forall y_{1}, y_{2} \tag{5.14}
\end{equation*}
$$

Then, the Euler method is convergent; more precisely,

$$
\begin{equation*}
\left|y_{n}-y\left(x_{n}\right)\right| \leq \frac{C}{\lambda} h\left[(1+\lambda h)^{n}-1\right], \quad n=0,1,2, \cdots, N_{t} . \tag{5.15}
\end{equation*}
$$

Note: The term $(1+\lambda h)^{n}$ is bounded by a constant:

$$
\begin{equation*}
(1+\lambda h)^{n} \leq(1+\lambda h)^{N_{t}} \leq e^{\lambda\left(T-x_{0}\right)}, \quad n=0,1,2, \cdots, N_{t} . \tag{5.16}
\end{equation*}
$$

See Exercise 5.6.
Proof. The true solution y satisfies

$$
\begin{equation*}
y\left(x_{n+1}\right)=y\left(x_{n}\right)+h f\left(x_{n}, y\left(x_{n}\right)\right)+\mathcal{O}\left(h^{2}\right) . \tag{5.17}
\end{equation*}
$$

Thus it follows from (5.9) and (5.17) that

$$
\begin{aligned}
e_{n+1} & =e_{n}+h\left[f\left(x_{n}, y_{n}\right)-f\left(x_{n}, y\left(x_{n}\right)\right)\right]+\mathcal{O}\left(h^{2}\right) \\
& =e_{n}+h\left[f\left(x_{n}, y\left(x_{n}\right)+e_{n}\right)-f\left(x_{n}, y\left(x_{n}\right)\right)\right]+\mathcal{O}\left(h^{2}\right),
\end{aligned}
$$

where $e_{n}=y_{n}-y\left(x_{n}\right)$. Utilizing (5.14), we have

$$
\begin{equation*}
\left|e_{n+1}\right| \leq(1+\lambda h)\left|e_{n}\right|+C h^{2} . \tag{5.18}
\end{equation*}
$$

Here we will prove (5.15) by using (5.18) and induction. It holds trivially when $n=0$. Suppose it holds for n. Then,

$$
\begin{aligned}
\left|e_{n+1}\right| & \leq(1+\lambda h)\left|e_{n}\right|+C h^{2} \\
& \leq(1+\lambda h) \cdot \frac{C}{\lambda} h\left[(1+\lambda h)^{n}-1\right]+C h^{2} \\
& =\frac{C}{\lambda} h\left[(1+\lambda h)^{n+1}-(1+\lambda h)\right]+C h^{2} \\
& =\frac{C}{\lambda} h\left[(1+\lambda h)^{n+1}-1\right],
\end{aligned}
$$

which completes the proof. \square

Example 5.11. Consider

$$
\begin{align*}
& y^{\prime}=y-x^{3}+x+1, \quad 0 \leq x \leq 3 \tag{5.19}\\
& y(0)=0.5
\end{align*}
$$

As the step lengths become smaller, $h=1 \rightarrow \frac{1}{4} \rightarrow \frac{1}{16}$, the numerical solutions represent the exact solution better, as shown in the following figures:

Figure 5.2: The Euler method, with $h=1 \rightarrow \frac{1}{4} \rightarrow \frac{1}{16}$.

Example 5.12. Implement a code for the Euler method to solve

$$
y^{\prime}=y-x^{3}+x+1, \quad 0 \leq x \leq 3, \quad y(0)=0.5, \quad \text { with } h=\frac{1}{16} .
$$

Solution.

Euler.mw
Euler := proc(f, x0, b, nx, y0, Y)
local h, $\mathrm{t}, \mathrm{w}, \mathrm{n}$:
$\mathrm{h}:=(\mathrm{b}-\mathrm{x} 0) / \mathrm{nx}$:
t := x0; w := y0:
Y[0] := w:
for n to $n x$ do
w := w + h*eval (f, [x = t, y = w]);
$\mathrm{Y}[\mathrm{n}]$:= w;
$\mathrm{t}:=\mathrm{t}+\mathrm{h}$;
end do:
end proc:
\# Now, solve it using "Euler"
f : $=-x^{\wedge} 3+x+y+1$:
$\mathrm{x} 0:=0$: b := 3: y0 := 0.5:
nx := 48:
YEuler := Array(0..nx):
Euler (f, x0, b, nx, y0, YEuler):
\# Check the maximum error
DE := $\operatorname{diff}(y(x), x)=y(x)-x^{\wedge} 3+x+1:$
dsolve([DE, $y(x 0)=y 0], y(x))$

$$
y(x)=4+5 x+3 x^{2}+x^{3}-\frac{7}{-}-\exp (x)
$$

exacty $:=x->4+5 * x+3 * x^{\wedge} 2+x^{\wedge} 3-7 / 2 * \exp (x)$:
maxerr := 0:
$\mathrm{h}:=(\mathrm{b}-\mathrm{x} 0) / \mathrm{nx}:$
for n from 0 to nx do
maxerr := max(maxerr, abs (exacty(n*h)-YEuler[n]));
end do:
evalf(maxerr)

5.2.2. Higher-order Taylor Methods

Preliminary 5.13. Higher-order Taylor methods are based on Taylor series expansion.

- If we expand the solution $y(x)$, in terms of its m th-order Taylor polynomial about x_{n} and evaluated at x_{n+1}, we obtain

$$
\begin{align*}
y\left(x_{n+1}\right)= & y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\cdots+\frac{h^{m}}{m!} y^{(m)}\left(x_{n}\right) \\
& +\frac{h^{m+1}}{(m+1)!} y^{(m+1)}\left(\xi_{n}\right) . \tag{5.20}
\end{align*}
$$

- Successive differentiation of the solution, $y(x)$, gives

$$
y^{\prime}(x)=f(x, y(x)), y^{\prime \prime}(x)=f^{\prime}(x, y(x)), \cdots,
$$

and generally,

$$
\begin{equation*}
y^{(k)}(x)=f^{(k-1)}(x, y(x)) . \tag{5.21}
\end{equation*}
$$

- Thus, we have

$$
\begin{align*}
y\left(x_{n+1}\right)= & y\left(x_{n}\right)+h f\left(x_{n}, y\left(x_{n}\right)\right)+\frac{h^{2}}{2!} f^{\prime}\left(x_{n}, y\left(x_{n}\right)\right)+\cdots+\frac{h^{m}}{m!} f^{(m-1)}\left(x_{n}, y\left(x_{n}\right)\right) \\
& +\frac{h^{m+1}}{(m+1)!} f^{(m)}\left(\xi_{n}, y\left(\xi_{n}\right)\right) \tag{5.22}
\end{align*}
$$

Algorithm 5.14. The Taylor method of order m corresponding to (5.22) is obtained by deleting the remainder term involving ξ_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h T_{m}\left(x_{n}, y_{n}\right), \tag{5.23}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{m}\left(x_{n}, y_{n}\right)=f\left(x_{n}, y_{n}\right)+\frac{h}{2!} f^{\prime}\left(x_{n}, y_{n}\right)+\cdots+\frac{h^{m-1}}{m!} f^{(m-1)}\left(x_{n}, y_{n}\right) \tag{5.24}
\end{equation*}
$$

Remark 5.15.

- $m=1 \Rightarrow y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ which is the Euler method.
- $m=2 \Rightarrow y_{n+1}=y_{n}+h\left[f\left(x_{n}, y_{n}\right)+\frac{h}{2} f^{\prime}\left(x_{n}, y_{n}\right)\right]$
- As m increases, the method achieves higher-order accuracy; however, it requires to compute derivatives of $f(x, y(x))$.

Example 5.16. Consider the initial-value problem

$$
\begin{equation*}
y^{\prime}=y-x^{3}+x+1, \quad y(0)=0.5 \tag{5.25}
\end{equation*}
$$

(a) Find $T_{3}(x, y)$.
(b) Perform two iterations to find y_{2}, with $h=1 / 2$.

Solution. Part (a): Since $y^{\prime}=f(x, y)=y-x^{3}+x+1$,

$$
\begin{aligned}
f^{\prime}(x, y) & =y^{\prime}-3 x^{2}+1 \\
& =\left(y-x^{3}+x+1\right)-3 x^{2}+1 \\
& =y-x^{3}-3 x^{2}+x+2
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x, y) & =y^{\prime}-3 x^{2}-6 x+1 \\
& =\left(y-x^{3}+x+1\right)-3 x^{2}-6 x+1 \\
& =y-x^{3}-3 x^{2}-5 x+2
\end{aligned}
$$

Thus

$$
\begin{align*}
T_{3}(x, y)= & f(x, y)+\frac{h}{2} f^{\prime}(x, y)+\frac{h^{2}}{6} f^{\prime \prime}(x, y) \\
= & y-x^{3}+x+1+\frac{h}{2}\left(y-x^{3}-3 x^{2}+x+2\right) \tag{5.26}\\
& \quad+\frac{h^{2}}{6}\left(y-x^{3}-3 x^{2}-5 x+2\right)
\end{align*}
$$

For m large, the computation of T_{m} is time-consuming and cumbersome.

Part (b):

Euler_T3.mw

```
T3 := y - x^3 + x + 1 + 1/2*h* (-x^3 - 3*x^2 + x + y + 2)
```

 \(+1 / 6 * h^{\wedge} 2 *\left(-x^{\wedge} 3-3 * x^{\wedge} 2-5 * x+y+2\right):\)
 h $:=1 / 2$:
$\mathrm{x} 0:=0: \mathrm{y} 0:=1 / 2$:
$y 1:=y 0+h * e v a l(T 3, \quad[x=x 0, y=y 0])$
155

96
$\mathrm{y} 2:=\mathrm{y} 1+\mathrm{h} * \operatorname{eval}(\mathrm{~T} 3, \quad[\mathrm{x}=\mathrm{x} 0+\mathrm{h}, \mathrm{y}=\mathrm{y} 1])$
16217

4608
evalf(\%)
3.519314236
exacty $:=x->4+5 * x+3 * x^{\wedge} 2+x^{\wedge} 3-7 / 2 * \exp (x):$
exacty (1)
$13-\frac{7}{2}-\exp (1)$
evalf(\%)
3.486013602
\#The absolute error:
evalf(abs(exacty(1) - y2))
0.033300634

5.3. Runge-Kutta Methods

Note: What we are going to do is to solve the initial value problem (IVP):

$$
\left\{\begin{align*}
y^{\prime} & =f(x, y), \tag{5.27}\\
y\left(x_{0}\right) & =y_{0}
\end{align*}\right.
$$

- The Taylor-series methods of the preceding section have the drawback of requiring the computation of derivatives of $f(x, y)$.
- It is a tedious and time-consuming procedure for most cases,
- which makes the Taylor methods seldom used in practice.

Definition 5.17. Runge-Kutta methods

- have high-order local truncation error of the Taylor methods,
- but eliminate the need to compute the derivatives of $f(x, y)$. That is, the Runge-Kutta methods are formulated, incorporating a weighted average of the slope, as follows:

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left(w_{1} K_{1}+w_{2} K_{2}+\cdots+w_{m} K_{m}\right) \tag{5.28}
\end{equation*}
$$

where
(a) $w_{j} \geq 0$ and $w_{1}+w_{2}+\cdots+w_{m}=1$
(b) K_{j} are recursive evaluations of the slope $f(x, y)$
(c) Need to determine w_{j} and other parameters to satisfy

$$
\begin{equation*}
w_{1} K_{1}+w_{2} K_{2}+\cdots+w_{m} K_{m} \approx T_{m}\left(x_{n}, y_{n}\right)+\mathcal{O}\left(h^{m}\right) \tag{5.29}
\end{equation*}
$$

That is, Runge-Kutta methods evaluate an average slope of $f(x, y)$ on the interval $\left[x_{n}, x_{n+1}\right]$ in the same order of accuracy as the m th-order Taylor method.

5.3.1. Second-order Runge-Kutta method

Formulation:

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left(w_{1} K_{1}+w_{2} K_{2}\right) \tag{5.30}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=f\left(x_{n}, y_{n}\right) \\
& K_{2}=f\left(x_{n}+\alpha h, y_{n}+\beta h K_{1}\right)
\end{aligned}
$$

Requirement: Determine $w_{1}, w_{2}, \alpha, \beta$ such that

$$
\begin{equation*}
w_{1} K_{1}+w_{2} K_{2}=T_{2}\left(x_{n}, y_{n}\right)+\mathcal{O}\left(h^{2}\right)=f\left(x_{n}, y_{n}\right)+\frac{h}{2} f^{\prime}\left(x_{n}, y_{n}\right)+\mathcal{O}\left(h^{2}\right) . \tag{5.31}
\end{equation*}
$$

Derivation: For the left-hand side of (5.30), the Taylor series reads

$$
y(x+h)=y(x)+h y^{\prime}(x)+\frac{h^{2}}{2} y^{\prime \prime}(x)+\mathcal{O}\left(h^{3}\right) .
$$

Since $y^{\prime}=f$ and $y^{\prime \prime}=f_{x}+f_{y} y^{\prime}=f_{x}+f_{y} f$,

$$
\begin{equation*}
y(x+h)=y(x)+h f+\frac{h^{2}}{2}\left(f_{x}+f_{y} f\right)+\mathcal{O}\left(h^{3}\right) \tag{5.32}
\end{equation*}
$$

On the other hand, the right-side of (5.30) can be reformulated as

$$
\begin{aligned}
& y+h\left(w_{1} K_{1}+w_{2} K_{2}\right) \\
& \quad=y+w_{1} h f(x, y)+w_{2} h f\left(x+\alpha h, y+\beta h K_{1}\right) \\
& \quad=y+w_{1} h f+w_{2} h\left(f+\alpha h f_{x}+\beta h f_{y} f\right)+\mathcal{O}\left(h^{3}\right),
\end{aligned}
$$

which reads

$$
\begin{equation*}
y+h\left(w_{1} K_{1}+w_{2} K_{2}\right)=y+\left(w_{1}+w_{2}\right) h f+h^{2}\left(w_{2} \alpha f_{x}+w_{2} \beta f_{y} f\right)+\mathcal{O}\left(h^{3}\right) \tag{5.33}
\end{equation*}
$$

The comparison of (5.32) and (5.33) drives the following result, for the secondorder Runge-Kutta methods.

Results:

$$
\begin{equation*}
w_{1}+w_{2}=1, \quad w_{2} \alpha=\frac{1}{2}, \quad w_{2} \beta=\frac{1}{2} . \tag{5.34}
\end{equation*}
$$

Common Choices:

Algorithm 5.18.

I. $w_{1}=w_{2}=\frac{1}{2}, \alpha=\beta=1$:

Then, the algorithm (5.30) becomes

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(K_{1}+K_{2}\right), \tag{5.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=f\left(x_{n}, y_{n}\right) \\
& K_{2}=f\left(x_{n}+h, y_{n}+h K_{1}\right)
\end{aligned}
$$

This algorithm is the Second-order Runge-Kutta (RK2) method, which is also known as the Heun's method.
II. $w_{1}=0, w_{2}=1, \alpha=\beta=\frac{1}{2}$:

For the choices, the algorithm (5.30) reads

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right) \tag{5.36}
\end{equation*}
$$

which is also known as the Modified Euler method.
It follows from (5.32) and (5.33) that the local truncation error for the above Runge-Kutta methods are $\mathcal{O}\left(h^{3}\right)$. Thus the global error becomes

$$
\begin{equation*}
\mathcal{O}\left(h^{2}\right) \tag{5.37}
\end{equation*}
$$

5.3.2. Fourth-order Runge-Kutta method

Formulation:

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left(w_{1} K_{1}+w_{2} K_{2}+w_{3} K_{3}+w_{4} K_{4}\right) \tag{5.38}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=f\left(x_{n}, y_{n}\right) \\
& K_{2}=f\left(x_{n}+\alpha_{1} h, y_{n}+\beta_{1} h K_{1}\right) \\
& K_{3}=f\left(x_{n}+\alpha_{2} h, y_{n}+\beta_{2} h K_{1}+\beta_{3} h K_{2}\right) \\
& K_{4}=f\left(x_{n}+\alpha_{3} h, y_{n}+\beta_{4} h K_{1}+\beta_{5} h K_{2}+\beta_{6} h K_{3}\right)
\end{aligned}
$$

Requirement: Determine $w_{j}, \alpha_{j}, \beta_{j}$ such that

$$
w_{1} K_{1}+w_{2} K_{2}+w_{3} K_{3}+w_{4} K_{4}=T_{4}\left(x_{n}, y_{n}\right)+\mathcal{O}\left(h^{4}\right)
$$

The most common choice:

Algorithm 5.19. Fourth-order Runge-Kutta method (RK4): The most commonly used set of parameter values yields

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) \tag{5.39}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{1} & =f\left(x_{n}, y_{n}\right) \\
K_{2} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h K_{1}\right) \\
K_{3} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h K_{2}\right) \\
K_{4} & =f\left(x_{n}+h, y_{n}+h K_{3}\right)
\end{aligned}
$$

The local truncation error for the above RK4 can be derived as

$$
\begin{equation*}
\frac{h^{5}}{5!} y^{(5)}\left(\xi_{n}\right) \tag{5.40}
\end{equation*}
$$

for some $\xi_{n} \in\left[x_{n}, x_{n+1}\right]$. Thus the global error reads, for some $\xi \in\left[x_{0}, T\right]$,

$$
\begin{equation*}
\frac{\left(T-x_{0}\right) h^{4}}{5!} y^{(5)}(\xi) \tag{5.41}
\end{equation*}
$$

Example 5.20. Use RK4 to solve the initial-value problem

$$
\begin{equation*}
y^{\prime}=y-x^{3}+x+1, \quad y(0)=0.5 \tag{5.42}
\end{equation*}
$$

RK4.mw

```
f := proc(x,w)
    w-x^3+x+1
    end proc:
RK4 := proc(x0,xt,nt,y0,y)
    local h,x,w,n,K1,K2,K3,K4;
    h:=(xt-x0)/nt:
    x:=x0: w:=y0:
    y[0]:=W;
    for n from 1 by 1 to nt do
            K1:=f(x,w);
            K2:=f(x+h/2,w+(h/2)*K1);
            K3:=f(x+h/2,w+(h/2)*K2);
            x:=x+h;
            K4:=f(x,w+h*K3);
            W:=W+(h/6.)*(K1+2*K2+2*K3+K4);
            y[n]:=W;
    end do
```

end proc:
$\mathrm{x} 0:=0: \mathrm{xt}:=3:$ nt $:=48: \mathrm{y} 0:=0.5:$
yRK4 := Array (0..nt);
RK4 (x0, xt , nt , y0, yRK4) :
exacty $:=x->4+5 * x+3 * x^{\wedge} 2+x^{\wedge} 3-7 / 2 * \exp (x):$
$\mathrm{h}:=(\mathrm{xt}-\mathrm{x} 0) / \mathrm{nt}:$
maxerr := 0:
for n from 0 by 1 to nt do
maxerr:=max (maxerr, abs (exacty (n*h) $-\mathrm{yRK} 4[\mathrm{n}])$);
end do:
evalf [16] (maxerr)

Convergence Test for RK4, with (5.42):

h	Max-error	Error-ratio
$1 / 4$	$4.61 \cdot 10^{-4}$	
$1 / 8$	$2.93 \cdot 10^{-5}$	$\frac{4.61 \cdot 10^{-4}}{2.93 \cdot 10^{-5}}=15.73378840$
$1 / 16$	$1.85 \cdot 10^{-6}$	$\frac{2.93 \cdot 10^{-5}}{1.85 \cdot 10^{-6}}=15.83783784$
$1 / 32$	$1.01 \cdot 10^{-7}$	$\frac{1.85 \cdot 10^{-6}}{1.01 \cdot 10^{-7}}=18.31683168$

Thus, the global truncation error of RK4 is in $\mathcal{O}\left(h^{4}\right)$.

5.3.3. Adaptive methods

Remark 5.21.

- Accuracy of numerical methods can be improved by decreasing the step size.
- Decreasing the step size \approx Increasing the computational cost
- There may be subintervals where a relatively large step size suffices and other subintervals where a small step is necessary to keep the truncation error within a desired limit.
- An adaptive method is a numerical method which uses a variable step size.
- Example: Runge-Kutta-Fehlberg method (RKF45), which uses RK5 to estimate local truncation error of RK4.

5.4. One-Step Methods: Accuracy Comparison

For an accuracy comparison among the one-step methods presented in the previous sections, consider the motion of the spring-mass system:

$$
\begin{align*}
& y^{\prime \prime}(t)+\frac{\kappa}{m} y=\frac{F_{0}}{m} \cos (\mu t), \tag{5.43}\\
& y(0)=c_{0}, \quad y^{\prime}(0)=0
\end{align*}
$$

where m is the mass attached at the end of a spring of the spring constant κ, the term $F_{0} \cos (\mu t)$ is a periodic driving force of frequency μ, and c_{0} is the initial displacement from the equilibrium position.

- It is not difficult to find the analytic solution of (5.43):

$$
\begin{equation*}
y(t)=A \cos (\omega t)+\frac{F_{0}}{m\left(\omega^{2}-\mu^{2}\right)} \cos (\mu t) \tag{5.44}
\end{equation*}
$$

where $\omega=\sqrt{\kappa / m}$ is the angular frequency and the coefficient A is determined corresponding to c_{0}.

- Let $y_{1}=y$ and $y_{2}=-y_{1}^{\prime} / \omega$. Then, we can reformulate (5.43) as

$$
\begin{array}{ll}
y_{1}^{\prime}=-\omega y_{2}, & y_{0}(0)=c_{0} \\
y_{2}^{\prime}=\omega y_{1}-\frac{F_{0}}{m \omega} \cos (\mu t), & y_{2}(0)=0 \tag{5.45}
\end{array}
$$

We will deal with details of High-Order Equations \& Systems of Differential Equations in § 5.6 on page 201.

- The motion is periodic only if μ / ω is a rational number. We choose

$$
\begin{equation*}
m=1, \quad F_{0}=40, \quad A=1, \omega=4 \pi, \quad \mu=2 \pi . \quad\left(\Rightarrow c_{0} \approx 1.33774\right) \tag{5.46}
\end{equation*}
$$

Thus the fundamental period of the motion

$$
T=\frac{2 \pi q}{\omega}=\frac{2 \pi p}{\mu}=1
$$

See Figure 5.3 for the trajectory of the mass satisfying (5.45)-(5.46).

Figure 5.3: The trajectory of the mass satisfying (5.45)-(5.46).

Accuracy comparison

Table 5.1: The ℓ^{2}-error at $t=1$ for various time step sizes.

$1 / h$	Euler	RK2	RK4
100	1.19	$3.31 \mathrm{E}-2$	$2.61 \mathrm{E}-5$
200	$4.83 \mathrm{E}-1(1.3)$	$8.27 \mathrm{E}-3(2.0)$	$1.63 \mathrm{E}-6(4.0)$
400	$2.18 \mathrm{E}-1(1.1)$	$2.07 \mathrm{E}-3(2.0)$	$1.02 \mathrm{E}-7(4.0)$
800	$1.04 \mathrm{E}-1(1.1)$	$5.17 \mathrm{E}-4(2.0)$	$6.38 \mathrm{E}-9(4.0)$

- Table 5.1 presents the ℓ^{2}-error at $t=1$ for various time step sizes h, defined as

$$
\begin{equation*}
\left|\mathbf{y}_{N_{t}}^{h}-\mathbf{y}(1)\right|=\left(\left[y_{1, N_{t}}^{h}-y_{1}(1)\right]^{2}+\left[y_{2, N_{t}}^{h}-y_{2}(1)\right]^{2}\right)^{1 / 2} \tag{5.47}
\end{equation*}
$$

where $\mathbf{y}_{N_{t}}^{h}$ denotes the computed solution at the N_{t}-th time step with $h=1 / N_{t}$.

- The numbers in parenthesis indicate the order of convergence α, defined as

$$
\begin{equation*}
\alpha:=\frac{\ln (E(2 h) / E(h))}{\ln 2}, \tag{5.48}
\end{equation*}
$$

where $E(h)$ and $E(2 h)$ denote the errors obtained with the grid spacing to be h and $2 h$, respectively.

- As one can see from the table, the one-step methods exhibit the expected accuracy.
- RK4 shows a much better accuracy than the lower-order methods, which explains its popularity.

Definition 5.22. (Order of Convergence): Let's assume that the algorithm under consideration produces error in $\mathcal{O}\left(h^{\alpha}\right)$. Then, we may write

$$
\begin{equation*}
E(h)=C h^{\alpha}, \tag{5.49}
\end{equation*}
$$

where h is the grid size. When the grid size is $p h$, the error will become

$$
\begin{equation*}
E(p h)=C(p h)^{\alpha} . \tag{5.50}
\end{equation*}
$$

It follows from (5.49) and (5.50) that

$$
\begin{equation*}
\frac{E(p h)}{E(h)}=\frac{C(p h)^{\alpha}}{C h^{\alpha}}=p^{\alpha} . \tag{5.51}
\end{equation*}
$$

By taking a logarithm, one can solve the above equation for the order of convergence α :

$$
\begin{equation*}
\alpha=\frac{\ln (E(p h) / E(h))}{\ln p} . \tag{5.52}
\end{equation*}
$$

When $p=2$, the above becomes (5.48).

5.5. Multi-step Methods

The problem: The first-order initial value problem (IVP)

$$
\begin{cases}y^{\prime} & =f(x, y) \tag{5.53}\\ y\left(x_{0}\right) & =y_{0}\end{cases}
$$

Numerical Methods:

- Single-step/Starting methods: Euler's method, Modified Euler's, Runge-Kutta methods
- Multi-step/Continuing methods: Adams-Bashforth-Moulton

Definition 5.23. An m-step method, $m \geq 2$, for solving the IVP, is a difference equation for finding the approximation y_{n+1} at $x=x_{n+1}$, given by

$$
\begin{align*}
y_{n+1}= & a_{1} y_{n}+a_{2} y_{n-1}+\cdots+a_{m} y_{n+1-m} \\
& +h\left[b_{0} f\left(x_{n+1}, y_{n+1}\right)+b_{1} f\left(x_{n}, y_{n}\right)+\cdots+b_{m} f\left(x_{n+1-m}, y_{n+1-m}\right)\right] \tag{5.54}
\end{align*}
$$

The m-step method is said to be

$$
\begin{cases}\text { explicit or open, } & \text { if } b_{0}=0 \\ \text { implicit or closed, } & \text { if } b_{0} \neq 0\end{cases}
$$

Algorithm 5.24. (Fourth-order multi-step methods):

Let $y_{i}^{\prime}=f\left(x_{i}, y_{i}\right)$.

- Adams-Bashforth method (explicit)

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{24}\left(55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right) \tag{5.55}
\end{equation*}
$$

- Adams-Moulton method (implicit)

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right) \tag{5.56}
\end{equation*}
$$

- Adams-Bashforth-Moulton method (predictor-corrector)

$$
\begin{align*}
& y_{n+1}^{*}=y_{n}+\frac{h}{24}\left(55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right) \tag{5.57}\\
& y_{n+1}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime *}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right)
\end{align*}
$$

where $y_{n+1}^{\prime *}=f\left(x_{n+1}, y_{n+1}^{*}\right)$

Remark' 5.25.

- y_{1}, y_{2}, y_{3} can be computed by RK4.
- Multi-step methods may save evaluations of $f(x, y)$ such that in each step, they require only one or two new evaluations of $f(x, y)$ to fulfill the step.
- RK methods are accurate enough and easy to implement, so that multi-step methods are rarely applied in practice.
- ABM shows a strong stability for special cases, occasionally but not often [4].

ABM.mw

```
## Maple code: Adams-Bashforth-Moulton (ABM) Method
## Model Problem: y'= y- x^3 + x + 1, y(0) = 0.5, 0 <= x <= 3
f := proc(x,w)
    w-x^3+x+1
    end proc:
RK4 := proc(x0,xt,nt,y0,y)
    local h,x,w,n,K1,K2,K3,K4;
    h:=(xt-x0)/nt:
    x:=x0: w:=y0:
    y[0]:=w;
    for n from 1 by 1 to nt do
        K1:=f(x,w);
        K2:=f(x+h/2,w+(h/2)*K1);
        K3:=f(x+h/2,w+(h/2)*K2);
        x:=x+h;
        K4:=f(x,w+h*K3);
            w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
            y[n]:=w;
    end do
```

end proc:
$\mathrm{ABM}:=\operatorname{proc}(\mathrm{x} 0, \mathrm{xt}, \mathrm{nt}, \mathrm{y} 0, \mathrm{y})$
local h, x,w, n,ystar;
$h:=(x t-x 0) / n t:$
\#\#\# Initialization with RK4
RK4 (x0, x0+3*h, $3, y 0, y$) ;
$\mathrm{w}:=\mathrm{y}$ [3] ;
\#\#\# Now, ABM steps
for n from 4 by 1 to nt do
$\mathrm{x}:=\mathrm{x} 0+\mathrm{n} * \mathrm{~h}$;
ystar: $=\mathrm{w}+(\mathrm{h} / 24) *(55 * \mathrm{f}(\mathrm{x}-\mathrm{h}, \mathrm{y}[\mathrm{n}-1])-59 * \mathrm{f}(\mathrm{x}-2 * \mathrm{~h}, \mathrm{y}[\mathrm{n}-2])$
$+37 * f(x-3 * h, y[n-3])-9 * f(x-4 * h, y[n-4]))$;
$\mathrm{w}:=\mathrm{w}+(\mathrm{h} / 24) *(9 * \mathrm{f}(\mathrm{x}, \mathrm{ystar})+19 * \mathrm{f}(\mathrm{x}-\mathrm{h}, \mathrm{y}[\mathrm{n}-1])$
$-5 * f(x-2 * h, y[n-2])+f(x-3 * h, y[n-3])) ;$

```
                y[n]:=w;
            end do;
end proc:
x0 := 0: xt := 3: nt := 48: y0 := 0.5:
yABM := Array(0..nt);
ABM(x0, xt , nt , y0, yABM) :
exacty := x -> 4 + 5*x + 3*x^2 + x^3 - 7/2*exp(x):
h := (xt - x0)/nt:
maxerr := 0:
for n from 0 by 1 to nt do
    maxerr:=max(maxerr, abs(exacty (n*h)-yABM[n]));
end do:
evalf[16] (maxerr)

Note: The maximum error for RK4 \(=1.85 \cdot 10^{-6}\).

\subsection*{5.6. High-Order Equations \& Systems of Differential Equations}

The problem: 2nd-order initial value problem (IVP)
\[
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right),  \tag{5.58}\\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=u_{0},
\end{array}\right.
\]

An equivalent problem: Let \(u=y^{\prime}\). Then,
\[
u^{\prime}=y^{\prime \prime}=f\left(x, y, y^{\prime}\right)=f(x, y, u)
\]

Thus, the above 2nd-order IVP can be equivalently written as the following system of first-order DEs:
\[
\left\{\begin{array}{ll}
y^{\prime}=u, & y\left(x_{0}\right)=y_{0},  \tag{5.59}\\
u^{\prime}=f(x, y, u), & u\left(x_{0}\right)=u_{0},
\end{array} \quad x \in\left[x_{0}, T\right] .\right.
\]

The right-side of the DEs involves no derivatives.

Remark 5.26. The system (5.59) can be solved by one of the numerical methods (we have studied), after modifying it for vector functions.
- Let
\[
Y=\left[\begin{array}{l}
y \\
u
\end{array}\right], \quad F(x, Y)=\left[\begin{array}{c}
u \\
f(x, y, u)
\end{array}\right], \quad Y_{0}:=\left[\begin{array}{l}
y_{0} \\
u_{0}
\end{array}\right] .
\]
- Then (5.59) reads
\[
\begin{equation*}
Y^{\prime}=F(x, Y), \quad Y\left(x_{0}\right)=Y_{0} . \tag{5.60}
\end{equation*}
\]

Example 5.27. Write the following DEs as a system of first-order differential equations.
(a) \(\left\{\begin{array}{l}y^{\prime \prime}+x y^{\prime}+y=0, \\ y(0)=1, \quad y^{\prime}(0)=2 .\end{array}\right.\)
(b) \(\left\{\begin{array}{l}x^{\prime \prime}-x^{\prime}+2 y^{\prime \prime}=e^{t}, \\ -2 x+y^{\prime \prime}+2 y=3 t^{2} .\end{array}\right.\)

Hint: For (b), you should first rewrite the first equation as \(x^{\prime \prime}=F\left(t, x, x^{\prime}\right)\) and introduce \(x^{\prime}=u\) and \(y^{\prime}=v\).

\section*{Solution.}

RK4SYS.mw
```


Ex) IVP of 2 equations:

x' = 2x+4y, x(0)=-1

y' = -x+6y, y(0)=6,0<< t <= 1

ef := proc(t,w,f)
f(1):=2*W (1)+4*W (2);
f(2):=-w (1)+6*W (2);
end proc:
RK4SYS := proc(t0,tt,nt,m,x0,x)
local h,t,w,n,j,K1,K2,K3,K4;
\#\#\#\# initial setting
w:=Vector(m):
K1:=Vector(m):
K2:=Vector(m):
K3:=Vector(m):
K4:=Vector(m):
h:=(tt-t0)/nt:
t:=t0;
w:=x0;
for j from 1 by 1 to m do
x[0,j]:=x0(j);
end do;
\#\#\#\# RK4 marching
for n from 1 by 1 to nt do
ef(t,w,K1);
ef(t+h/2,w+(h/2)*K1,K2);
ef(t+h/2,w+(h/2)*K2,K3);
ef(t+h,w+h*K3,K4);
w:=W+(h/6.)*(K1+2*K2+2*K3+K4);
for j from 1 by 1 to m do
x[n,j]:=w(j);
end do
end do
end proc:

```
```

m := 2:
x0 := Vector(m):
t0 := 0: tt := 1.: nt := 40:
x0(1) := -1:
x0(2) := 6:
xRK4 := Array(0..nt, 1..m):
RK4SYS(t0,tt,nt,m,x0,xRK4):

Compute the analytic solution

\#--------------------------------
ODE := diff(x(t),t)=2*x(t)+4*y(t), diff(y(t),t)=-x(t)+6*y(t):
ivs := x(0) = -1, y(0) = 6;
dsolve([ODE, ivs]);
/ 1 \
{x(t) = exp(4 t) (-1 + 26 t), y(t) = - exp(4 t) (24 + 52 t) }
\ 4
ex := t -> exp(4*t)*(-1 + 26*t):
ey := t -> 1/4*exp (4*t)*(24 + 52*t):

Check error

\#-----------------------------------
h := (tt - t0)/nt:
printf(" n x(n) y(n) error(x) error(y)\n");
printf(" --
for n from 0 by 2 to nt do
printf(" \t %5d %10.3f %10.3f %-10.3g %-10.3g\n",
n, xRK4[n,1], xRK4[n,2], abs(xRK4[n,1]-ex (n*h)),
abs(xRK4[n,2]-ey(n*h)));
end do;

```


RK4SYSTEM.mw
```


Ex) y''-2*y'+2*y = exp(2*x)*sin(x), 0<= x <= 1,

y(0) = -0.4, y'(0) = -0.6

Digits := 20:
RK4SYSTEM := proc(a,b,nt,X,F,x0,xn)
local h,hh,t,m,n,j,w,K1,K2,K3,K4;
\#\#\#\# initial setting
with(LinearAlgebra):
m := Dimension(Vector(F));
W :=Vector(m);
K1:=Vector(m);
K2:=Vector(m);
K3:=Vector(m);
K4:=Vector(m);
h:=(b-a)/nt; hh:=h/2;
t :=a;
w:=x0;
for j from 1 by 1 to m do
xn[0,j]:=x0[j];
end do;
\#\#\#\# RK4 marching
for n from 1 by 1 to nt do
K1:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i], i = 1..m)]));
K2:=Vector (eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K1[i], i = 1..m)]));
K3:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K2[i], i = 1..m)]));
t:=t+h;
K4:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i]+h*K3[i], i = 1..m)]));
w:=w+(h/6)*(K1+2*K2+2*K3+K4);
for j from 1 by 1 to m do
xn[n,j]:=evalf(w[j]);
end do
end do
end proc:

Call RK4SYSTEM.mw

\#---------------------------------
with(LinearAlgebra):
m := 2:
F := [yp, exp (2*x)*sin(x) - 2*y + 2*yp]:
X := [x, y, yp]:
X0 := <-0.4, -0.6>:
\textrm{a}}:=0:\textrm{b}:= 1: nt := 10
Xn := Array(0..nt, 1..m):
RK4SYSTEM(a, b, nt, X, F, X0, Xn):

```
```


Compute the analytic solution

\#---------------------------------
DE := diff(y(x), x, x) - 2*diff(y(x), x) + 2*y(x) = exp(2*x)*sin(x):
IC := y(0) = -0.4, D(y)(0) = -0.6:
dsolve({DE, IC}, y(x))
1
y(x) = - exp(2 x) (sin(x) - 2 cos(x))
5
ey := x -> 1/5*exp(2*x)*(sin(x) - 2*\operatorname{cos(x))}
diff(ey(x), x)
2 1
- exp(2 x) (sin(x) - 2 cos(x)) + - exp(2 x) (2 sin(x) + cos(x))
5 5
eyp:=x->2/5*exp(2*x)*(sin(x)-2*\operatorname{cos}(x))+1/5*exp(2*x)*(2*\operatorname{sin}(x)+\operatorname{cos}(x)):

Check error

\#---------------------------------
printf(" n y_n y(x_n) y'_n y'(x_n) err(y) err(y')\n");
printf("--");
for n from 0 to nt do
xp := h*n + a;
printf(" %2d %12.8f %12.8f %12.8f %12.8f %.3g %.3g\n",
n, Xn[n, 1], ey(xp), Xn[n, 2], eyp(xp),
abs(Xn[n, 1] - ey(xp)), abs(Xn[n, 2] - eyp(xp)));
end do:

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline n & y_n & y (x_n) & \(y^{\prime}\) _n & \(y^{\prime}\left(\mathrm{x} \_\mathrm{n}\right)\) & err (y) & err(y') \\
\hline 0 & -0.40000000 & -0.40000000 & -0.60000000 & -0.60000000 & 0 & 0 \\
\hline 1 & -0.46173334 & -0.46173297 & -0.63163124 & -0.63163105 & 3.72e-07 & 1.91e-07 \\
\hline 2 & -0.52555988 & -0.52555905 & -0.64014895 & -0.64014866 & 8.36e-07 & 2.84e-07 \\
\hline 3 & -0.58860144 & -0.58860005 & -0.61366381 & -0.61366361 & \(1.39 \mathrm{e}-06\) & \(1.99 \mathrm{e}-07\) \\
\hline 4 & -0.64661231 & -0.64661028 & -0.53658203 & -0.53658220 & 2.02e-06 & \(1.68 \mathrm{e}-07\) \\
\hline 5 & -0.69356666 & -0.69356395 & -0.38873810 & -0.38873905 & \(2.71 \mathrm{e}-06\) & \(9.58 \mathrm{e}-07\) \\
\hline 6 & -0.72115190 & -0.72114849 & -0.14438087 & -0.14438322 & \(3.41 \mathrm{e}-06\) & \(2.35 \mathrm{e}-06\) \\
\hline 7 & -0.71815295 & -0.71814890 & 0.22899702 & 0.22899243 & 4.06e-06 & \(4.59 \mathrm{e}-06\) \\
\hline 8 & -0.66971133 & -0.66970677 & 0.77199180 & 0.77198383 & \(4.55 \mathrm{e}-06\) & \(7.97 e-06\) \\
\hline 9 & -0.55644290 & -0.55643814 & 1.53478148 & 1.53476862 & \(4.77 \mathrm{e}-06\) & \(1.29 \mathrm{e}-05\) \\
\hline 10 & -0.35339886 & -0.35339436 & 2.57876634 & 2.57874662 & \(4.50 \mathrm{e}-06\) & \(1.97 \mathrm{e}-05\) \\
\hline
\end{tabular}

\subsection*{5.7. Implicit Methods and Implicit Differential Equations}

\subsection*{5.7.1. Revisit of the Euler Method}

The problem: The first-order initial value problem (IVP)
\[
\left\{\begin{align*}
y^{\prime} & =f(x, y)  \tag{5.61}\\
y\left(x_{0}\right) & =y_{0}
\end{align*}\right.
\]

The Euler method \(y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)\) can be rewritten as
\[
\begin{equation*}
\frac{y_{n+1}-y_{n}}{h}=f\left(x_{n}, y_{n}\right), \quad(\text { Forward Euler }) \tag{5.62}
\end{equation*}
\]
in which the left side is a forward approximation of \(y^{\prime}\left(x_{n}\right)\). The formula (5.62) is called the forward Euler method for the IVP (5.61).

Definition 5.28. The backward Euler method for the IVP (5.61) is defined as
\[
\begin{equation*}
\frac{y_{n+1}-y_{n}}{h}=f\left(x_{n+1}, y_{n+1}\right), \quad(\text { Backward Euler }) \tag{5.63}
\end{equation*}
\]
in which the left side is a backward approximation of \(y^{\prime}\left(x_{n+1}\right)\).

\section*{Remark 5.29. The Euler Methods}
- The forward Euler method (5.62) is an explicit method.
- The backward Euler method (5.63) is an implicit method, which requires to solve the following equation for \(y_{n+1}\) :
\[
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right) . \tag{5.64}
\end{equation*}
\]

Claim 5.30. Let \(f\) satisfy a Lipschitz condition in \(y\) with a Lipschitz constant \(L\). Then the fixed-point iteration applied for (5.64) converges when \(h<1 / L\).

\section*{Example 5.31. Apply the Euler methods to solve the following IVP}
\[
\begin{equation*}
y^{\prime}+2 y=2-e^{-4 x}, \quad y(0)=1, \quad 0 \leq x \leq 1, \tag{5.65}
\end{equation*}
\]
whose theoretical solution is \(y(x)=1+\frac{1}{2}\left(e^{-4 x}-e^{-2 x}\right)\).

\section*{Euler.py}
```

\#!/usr/bin/python3

```
import numpy as \(n p\)
from numpy.linalg import norm
def \(f(x, y):\) return \(-2 * y-n p \cdot \exp (-4 * x)+2\)
def exact_y(x):
    return \(1+0.5 *(n p \cdot \exp (-4 * x)-n p \cdot \exp (-2 * x))\)
\#---------------------------------------------
def forward_Euler (x0, T, Nt,y0):
    \(\mathrm{x}=\mathrm{x} 0\); \(\mathrm{h}=(\mathrm{T}-\mathrm{x} 0) / \mathrm{Nt}\);
    \(y=n p . z e r o s([N t+1],) ; y[0]=y 0\);
    for \(n\) in range(Nt):
        \(\mathrm{y}[\mathrm{n}+1]=\mathrm{y}[\mathrm{n}]+\mathrm{h} * \mathrm{f}(\mathrm{x}, \mathrm{y}[\mathrm{n}])\)
        \(\mathrm{x}+=\mathrm{h}\);
    return \(y\)
\#--------------------------------------------
def fixed_point(x,p,yn,h,tol):
    \(\mathrm{pp}=\mathrm{p}\); err=10.; it0=0
    while(err>tol):
        \(\mathrm{p}=\mathrm{yn}+\mathrm{h} * \mathrm{f}(\mathrm{x}, \mathrm{p})\)
        err = abs(p-pp);
        pp=p; it0+=1
    return p ,it0
\#----------------------------------------------
def backward_Euler(x0,T,Nt,y0,tol):
    \(\mathrm{x}=\mathrm{x} 0\); \(\mathrm{h}=(\mathrm{T}-\mathrm{x} 0) / \mathrm{Nt}\);
    \(y=n p . z e r o s([N t+1]\),\() ; y[0]=y 0\); it=0;
    for \(n\) in range(Nt):
        \(\mathrm{x}+=\mathrm{h}\);
        p,it0 = fixed_point( \(x, y[n], y[n], h, t o l)\)
        \(y[n+1]=p\); it \(+=\) it0
    return \(y, i t\)
```

\#--
def Crank_Nicolson(x0,T,Nt,y0,tol):
x=x0; h =(T-x0)/Nt;
y = np.zeros([Nt+1,]); y[0]=y0; it=0;
for n in range(Nt):
fn = f(x,y[n])
x += h;
\#fixed-point iteration: included
p = y[n]; pp=p; err=10.
while(err>tol):
p = y[n]+(h/2)*(f(x,p) + fn);
err = abs(p-pp);
pp=p; it += 1
y[n+1] = p
return y,it
\#===
if __name__ == "__main__":
x0=0.0; T=1; y0=1.0; Nt = 40
h = (T-x0)/Nt;
tol1 = h/5
tol2 = h**2/5
X = np.linspace(x0,T,Nt+1)
Y = exact_y(X.T)
yf = forward_Euler(x0,T,Nt,y0)
print('forward_Euler: max-error = %g' %(norm(Y-yf,np.inf)))
yb,it = backward_Euler(x0,T,Nt,y0,tol1)
print('backward_Euler: max-error = %g' %(norm(Y-yb,np.inf)))
print(' average fixed-point iter = %g' %(it/Nt))
yc,it = Crank_Nicolson(x0,T,Nt,y0,tol2)
print('Crank_Nicolson: max-error = %g' %(norm(Y-yc,np.inf)))
print(' average fixed-point iter = %g' %(it/Nt))

```

Output
```

[Fri Jun.23] Euler.py
forward_Euler: max-error = 0.0085829
backward_Euler: max-error = 0.00787605
average fixed-point iter = 1.225
Crank_Nicolson: max-error = 0.000168574
average fixed-point iter = 2.225

```

Algorithm 5.32. The Crank-Nicolson method For the IVP (5.61), the Crank-Nicolson (CN) method is formulated as
\[
\begin{equation*}
\frac{y_{n+1}-y_{n}}{h}=\frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)}{2}, \quad(\mathrm{CN}) \tag{5.66}
\end{equation*}
\]
of which the global truncation error is \(\mathcal{O}\left(h^{2}\right)\) :
\[
\frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)}{2}=f\left(x_{n+1 / 2}, y_{n+1 / 2}\right)+\mathcal{O}\left(h^{2}\right) .
\]

Note: Equation (5.66) can be rewritten as
\[
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(f_{n}+f\left(x_{n+1}, y_{n+1}\right)\right), \quad f_{n}=f\left(x_{n}, y_{n}\right) . \tag{5.67}
\end{equation*}
\]
- Equation (5.67) is implemented in Euler.py.
- The CN method is also called the Trapezoid method.
- When \(f\left(x_{n+1}, y_{n+1}\right)\) is evaluated by using a predicted value:
\[
f\left(x_{n+1}, y_{n+1}\right) \rightarrow f\left(x_{n+1}, y_{n+1}^{*}\right), y_{n+1}^{*}=y_{n}+h f\left(x_{n}, y_{n}\right),
\]
the resulting algorithm becomes the Heun's method (RK2).

\section*{Remark 5.33. Implicit Methods}

The disadvantage to using implicit methods is the cost to solve (5.64) or (5.67). However, advantages include that
- they are usually more numerically stable, and
- a larger step size \(h\) can be used, in particular for the numerical solution of stiff equations.

\subsection*{5.7.2. Implicit Differential Equations}

Definition 5.34. An equation of the type
\[
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0, \quad y\left(x_{0}\right)=y_{0}, \tag{5.68}
\end{equation*}
\]
where \(F\) is continuous, is called the first-order implicit ordinary differential equation (IODE-1).
- Under a suitable assumption on \(F\), (5.68) can be reduced to
\[
\begin{equation*}
y^{\prime}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0} . \tag{5.69}
\end{equation*}
\]

Algorithm 5.35. The third-order Runge-Kutta method (RK3) for solving (5.69) is defined as
\[
\begin{align*}
y_{n+1}= & y_{n}+\frac{h}{6}\left(K_{1}+4 K_{2}+K_{3}\right), \quad \text { where } \\
& K_{1}=f\left(x_{n}, y_{n}, K_{1}\right)  \tag{5.70}\\
& K_{2}=f\left(x_{n}+h / 2, y_{n}+(h / 2) K_{1}, K_{2}\right) \\
& K_{3}=f\left(x_{n+1}, y_{n}-h K_{1}+2 h K_{2}, K_{3}\right)
\end{align*}
\]

Note: The terms \(K_{i}, i=1,2,3\), are defined implicitly.
- They can be estimated by applying an iterative method, e.g., the fixed-point iteration.
- Each estimation of \(K_{i}\) is of the form \(d=f(x, y, d)\).
- It can be initialized by the last \(K\) value.
- When \(n=0, K_{1}=y^{\prime}\left(x_{0}\right)\) must be initialized appropriately.
- The iteration may stop with a reasonable stopping tolerance:
\[
\begin{equation*}
\mathrm{tol}=\mathcal{O}\left(h^{\alpha}\right), \quad \alpha=3 \tag{5.71}
\end{equation*}
\]

\section*{Self-study 5.36. Consider the problem}
\[
\begin{gather*}
y^{\prime}=\frac{1}{10}\left(\cos \left(x^{2} y^{\prime}\right)-\cos \left(e^{y}\right)\right)+\frac{1}{x}, \quad 1 \leq x \leq 3  \tag{5.72}\\
y(1)=0
\end{gather*}
\]

The exact solution is \(y(x)=\ln x\). Apply the RK3 and the fixed-point iteration to solve the problem, with \(N_{t}=20,40,80(h=0.1,0.05,0.025)\).
Hint: You may use some portions/ideas in Euler.py, implemented in Example 5.31, p. 209. For example, you may start with

\section*{IODE1.py}
```

\#!/usr/bin/python3
import numpy as np
from numpy.linalg import norm
def f(x,y,d): return (np.cos(x**2*d)-np.cos(np.exp(y)))/10+1/x
def exact_y(x): return np.log(x)

def fixed_pointF3(x,y,d,tol):
err=1.; pd=d;
while(err>tol):
d = f(x,y,d)
err = abs(d-pd); pd=d
return d

Here, implement "a function for the RK3"

that uses fixed_pointF3

```

Ans: Set tol \(=h^{3} / 5\) and for the fixed-point iteration, \(y^{\prime}\left(x_{0}\right)\) is initialized by 1. Max.Error= [1.55e-05, 3.38e-06, 9.60e-08], for \(h=[0.1,0.05,0.025]\).

\section*{Exercises for Chapter 5}
5.1. Show that the initial-value problem
\[
x^{\prime}(t)=\tan (x), \quad x(0)=0
\]
has a unique solution in the interval \(|t| \leq \pi / 4\). Can you find the solution, by guessing?
5.2. C Use Taylor method of order \(m\) to approximate the solution of the following initial-value problems.
(a) \(y^{\prime}=e^{x-y}, \quad 0 \leq x \leq 1 ; y(0)=1\), with \(h=0.25\) and \(m=2\).
(b) \(y^{\prime}=e^{x-y}, \quad 0 \leq x \leq 1 ; y(0)=1\), with \(h=0.5\) and \(m=3\).
(c) \(y^{\prime}=\frac{\sin x-2 x y}{x^{2}} 1 \leq x \leq 2 ; y(1)=2\), with \(h=0.5\) and \(m=4\).
5.3. (Do not use computer programming for this problem.) Consider the initial-value problem:
\[
\begin{cases}y^{\prime} & =1+(x-y)^{2}, \quad 2 \leq x \leq 3  \tag{5.73}\\ y(2) & =1\end{cases}
\]
of which the actual solution is \(y(x)=x+1 /(1-x)\). Use \(h=1 / 2\) and a calculator to get the approximate solution at \(x=3\) by applying
(a) Euler's method
(b) RK2
(c) Modified Euler method
(d) RK4

Then, compare their results with the actual value \(y(3)=2.5\).
Ans:
Table 5.2: Comparisons
\begin{tabular}{c|c|c}
\hline Method & \(y_{2}\) & Error \\
\hline \hline Euler & 2.625 & 0.125 \\
RK2 & 2.48155 & 0.018448 \\
Modified Euler & 2.45506 & 0.044936 \\
RK4 & 2.49996 & 0.00004 \\
\hline
\end{tabular}
5.4. C Now, solve the problem in the preceding exercise, (5.73), by implementing
(a) RK4
(b) Adams-Bashforth-Moulton method

Use \(h=0.05\) and compare the accuracy.
Ans: Error: \((\mathrm{RK} 4, \mathrm{ABM})=\left(1.0616 \times 10^{-7}, 6.9225 \times 10^{-6}\right)\)
5.5. Consider the following system of first-order differential equations:
\[
\left\{\begin{array}{lll}
u_{1}^{\prime}=u_{2}-u_{3}+t, & u_{1}(0)=1,  \tag{5.74}\\
u_{2}^{\prime}=3 t^{2}, & & u_{2}(0)=1, \\
u_{3}^{\prime}=u_{2}+e^{-t}, & & u_{3}(0)=-1,
\end{array} \quad(0 \leq t \leq 1)\right.
\]

The actual solution is
\[
\begin{aligned}
& u_{1}(t)=-t^{5} / 20+t^{4} / 4+t+2-e^{-t} \\
& u_{2}(t)=t^{3}+1 \\
& u_{3}(t)=t^{4} / 4+t-e^{-t}
\end{aligned}
\]

Use RK4SYSTEM to approximate the solution with \(h=0.2,0.1,0.05\), and compare the errors to see if you can conclude that the algorithm is a fourth-order method for systems of differential equations.
Ans:
Table 5.3: Comparison Results
\begin{tabular}{c|c|c}
\hline Step-size & E-Time (sec) & Error \(\left(\times 10^{-4}\right)\) \\
\hline \hline 0.2 & 0.0002 & 0.3219 \\
0.1 & 0.0005 & 0.0266 \\
0.05 & 0.0013 & 0.0023 \\
\hline
\end{tabular}
5.6. Verify (5.16).

Hint: Use (1) \(\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}=e\) and (2) the limit is obtained from an increasing sequence, i.e., \((1+x)^{1 / x} \nearrow e\) as \(x \searrow 0\).
5.7. Prove Claim 5.30, page 208.

\section*{Chapter 6}

\section*{Gauss Elimination and Its Variants}

One of the most frequently occurring problems in all areas of scientific endeavor is that of solving a system of \(n\) linear equations in \(n\) unknowns. The main subject of this chapter is to study the use of Gauss elimination to solve such systems. We will see that there are many ways to organize this fundamental algorithm.

\section*{Contents of Chapter 6}
6.1. Systems of Linear Equations ..... 218
6.2. Triangular Systems ..... 223
6.3. Gauss Elimination ..... 226
Exercises for Chapter 6 ..... 238

\subsection*{6.1. Systems of Linear Equations}

Note: Consider a system of \(n\) linear equations in \(n\) unknowns
\[
\left\{\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}= & b_{1}  \tag{6.1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}= & b_{n}
\end{array}\right.
\]

Given the coefficients \(a_{i j}\) and the source \(b_{i}\), we wish to find \(\left[x_{1}, x_{2}, \cdots, x_{n}\right]\) which satisfy the equations.
- Since it is tedious to write (6.1) again and again, we generally prefer to write it as a single matrix equation
\[
\begin{equation*}
A \mathrm{x}=\mathrm{b}, \tag{6.2}
\end{equation*}
\]
where
\[
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] .
\]

\section*{Solvers for Linear Systems:}
- Direct algebraic solvers
- \(L U, L L^{T}, L D L^{T}, Q R, S V D\), SuperLU, \(\cdots \quad\) (factorization)
- Harder to optimize and parallelize
- Numerically robust, but higher algorithmic complexity
- Iterative algebraic solvers
- Stationary and nonstationary methods (Jacobi, Gauss-Seidel, SOR, SSOR; CG, MINRES, GMRES, BiCG, QMR, ...)
- Easier to optimize and parallelize
- Low algorithmic complexity, but may not converge

\subsection*{6.1.1. Nonsingular matrices}

Definition 6.1. (Definition 1.38) An \(n \times n\) matrix \(A\) is said to be invertible (nonsingular) if there is an \(n \times n\) matrix \(B\) such that \(A B=\) \(I_{n}=B A\), where \(I_{n}\) is the identity matrix.

Note: In this case, \(B\) is the unique inverse of \(A\) denoted by \(A^{-1}\).
(Thus \(A A^{-1}=I_{n}=A^{-1} A\).)
Theorem 6.2. (Invertible Matrix Theorem; Theorem 1.43) Let \(A\) be an \(n \times n\) matrix. Then the following are equivalent.
a. \(A\) is an invertible matrix.
b. \(A\) is row equivalent to the \(n \times n\) identity matrix.
c. \(A\) has \(n\) pivot positions.
\(d\). The columns of \(A\) are linearly independent.
e. The equation \(A \mathrm{x}=0\) has only the trivial solution \(\mathrm{x}=0\).
f. The equation \(A \mathrm{x}=\mathrm{b}\) has unique solution for each \(\mathrm{b} \in \mathbb{R}^{n}\).
\(g\). The linear transformation \(\mathrm{x} \mapsto A \mathrm{x}\) is one-to-one.
h. The linear transformation \(\mathrm{x} \mapsto A \mathrm{x}\) maps \(\mathbb{R}^{n}\) onto \(\mathbb{R}^{n}\).
i. There is a matrix \(C \in \mathbb{R}^{n \times n}\) such that \(C A=I\)
\(j\). There is a matrix \(D \in \mathbb{R}^{n \times n}\) such that \(A D=I\)
k. \(A^{T}\) is invertible and \(\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}\).
l. The number 0 is not an eigenvalue of \(A\).
m. \(\operatorname{det} A \neq 0\).

Example 6.3. Let \(A \in \mathbb{R}^{n \times n}\) and eigenvalues of \(A\) be \(\lambda_{i}, i=1,2, \cdots, n\). Show that
\[
\begin{equation*}
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i} \tag{6.3}
\end{equation*}
\]

Thus we conclude that \(A\) is singular if and only if 0 is an eigenvalue of \(A\).
Hint: Consider the characteristic polynomial of \(A, \phi(\lambda)=\operatorname{det}(A-\lambda I)\), and \(\phi(0)\). See Remark 1.52.

\subsection*{6.1.2. Numerical Solutions of Differential Equations}

Consider the following differential equation:
(a) \(-u_{x x}+c u=f, x \in\left(a_{x}, b_{x}\right)\),
(b) \(-u_{x}+\beta u=g, x=a_{x}\),
(c) \(u_{x}+\beta u=g, x=b_{x}\).
where
\[
c \geq 0 \text { and } \beta \geq 0 \quad(c+\beta>0)
\]

\section*{Numerical Discretization:}
- Select \(n_{x}\) equally spaced grid points on the interval \(\left[a_{x}, b_{x}\right]\) :
\[
x_{i}=a_{x}+i h_{x}, \quad i=0,1, \cdots, n_{x}, \quad h_{x}=\frac{b_{x}-a_{x}}{n_{x}} .
\]
- Let \(u_{i}=u\left(x_{i}\right)\), for \(i=0,1, \cdots, n_{x}\).
- It follows from the Taylor series that
\[
-u_{x x}\left(x_{i}\right)=\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h_{x}^{2}}+\frac{u_{x x x x}\left(x_{i}\right)}{12} h_{x}^{2}+\cdots .
\]

Thus the central second-order finite difference (FD) scheme for \(u_{x x}\) at \(x_{i}\) reads
\[
\begin{equation*}
-u_{x x}\left(x_{i}\right) \approx \frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h_{x}^{2}} \tag{6.5}
\end{equation*}
\]

See also (4.14).
- Apply the FD scheme for (6.4.a) to have
\[
\begin{equation*}
-u_{i-1}+\left(2+h_{x}^{2} c\right) u_{i}-u_{i+1}=h_{x}^{2} f_{i}, \quad i=0,1, \cdots, n_{x} \tag{6.6}
\end{equation*}
\]
- However, we will meet ghost grid values at the end points. For example, at the point \(a_{x}=x_{0}\), the formula becomes
\[
\begin{equation*}
-u_{-1}+\left(2+h_{x}^{2} c\right) u_{0}-u_{1}=h_{x}^{2} f_{0} \tag{6.7}
\end{equation*}
\]

Here the value \(u_{-1}\) is not defined and we call it a ghost grid value.
- Now, let's replace the ghost grid value \(u_{-1}\) by using the boundary condition (6.4.b). The central FD scheme for \(u_{x}\) at \(x_{0}\) can be formulated as
\[
\begin{equation*}
u_{x}\left(x_{0}\right) \approx \frac{u_{1}-u_{-1}}{2 h_{x}}, \text { Trunc.Err }=-\frac{u_{x x x}\left(x_{0}\right)}{6} h_{x}^{2}+\cdots \tag{6.8}
\end{equation*}
\]

Thus the equation (6.4.b), \(-u_{x}+\beta u=g\), can be approximated (at \(x_{0}\) )
\[
\begin{equation*}
u_{-1}+2 h_{x} \beta u_{0}-u_{1}=2 h_{x} g_{0} \tag{6.9}
\end{equation*}
\]
- Hence it follows from (6.7) and (6.9) that
\[
\begin{equation*}
\left(2+h_{x}^{2} c+2 h_{x} \beta\right) u_{0}-2 u_{1}=h_{x}^{2} f_{0}+2 h_{x} g_{0} . \tag{6.10}
\end{equation*}
\]

The same can be considered for the algebraic equation at the point \(x_{n}\).
Scheme 6.4. The problem (6.4) is reduced to finding the solution \(\mathbf{u}\) satisfying
\[
\begin{equation*}
A \mathbf{u}=\mathbf{b} \tag{6.11}
\end{equation*}
\]
where \(A \in \mathbb{R}^{\left(n_{x}+1\right) \times\left(n_{x}+1\right)}\),
\[
A=\left[\begin{array}{ccccc}
2+h_{x}^{2} c+2 h_{x} \beta & -2 & & & \\
-1 & 2+h_{x}^{2} c & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2+h_{x}^{2} c & -1 \\
& & & -2 & 2+h_{x}^{2} c+2 h_{x} \beta
\end{array}\right]
\]
and
\[
\mathbf{b}=\left[\begin{array}{c}
h_{x}^{2} f_{0} \\
h_{x}^{2} f_{1} \\
\vdots \\
h_{x}^{2} f_{n_{x}-1} \\
h_{x}^{2} f_{n_{x}}
\end{array}\right]+\left[\begin{array}{c}
2 h_{x} g_{0} \\
0 \\
\vdots \\
0 \\
2 h_{x} g_{n_{x}}
\end{array}\right]
\]

Definition 6.5. Such a technique of removing ghost grid values is called outer bordering.

\section*{Dirichlet Boundary Condition:}

Scheme 6.6. When the boundary values of the DE are known (Dirichlet boundary condition), the algebraic system does not have to include rows corresponding to the nodal points.
- However, it is more reusable if the algebraic system incorporates rows for all nodal points.
- For example, consider
\[
\begin{align*}
& \text { (a) }-u_{x x}+c u=f, \quad x \in\left(a_{x}, b_{x}\right) \text {, } \\
& \text { (b) }-u_{x}+\beta u=g, \quad x=a_{x} \text {, }  \tag{6.12}\\
& \text { (c) } u=u_{d}, x=b_{x} \text {. }
\end{align*}
\]
- Then, the corresponding algebraic system can be formulated as
\[
\begin{equation*}
A^{\prime} \mathbf{u}=\mathbf{b}^{\prime} \tag{6.13}
\end{equation*}
\]
where \(A^{\prime} \in \mathbb{R}^{\left(n_{x}+1\right) \times\left(n_{x}+1\right)}\),
\[
A^{\prime}=\left[\begin{array}{ccccc}
2+h_{x}^{2} c+2 h_{x} \beta & -2 & & & \\
-1 & 2+h_{x}^{2} c & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2+h_{x}^{2} c & -1 \\
& & & 0 & 1
\end{array}\right]
\]
and
\[
\mathbf{b}^{\prime}=\left[\begin{array}{c}
h_{x}^{2} f_{0} \\
h_{x}^{2} f_{1} \\
\vdots \\
h_{x}^{2} f_{n_{x}-1} \\
u_{d}
\end{array}\right]+\left[\begin{array}{c}
2 h_{x} g_{0} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
\]

\subsection*{6.2. Triangular Systems}

\section*{Definition 6.7.}
(a) A matrix \(L=\left(\ell_{i j}\right) \in \mathbb{R}^{n \times n}\) is lower triangular if
\[
\ell_{i j}=0 \text { whenever } i<j .
\]
(b) A matrix \(U=\left(u_{i j}\right) \in \mathbb{R}^{n \times n}\) is upper triangular if
\[
u_{i j}=0 \text { whenever } i>j .
\]

Theorem 6.8. Let \(G\) be a triangular matrix. Then \(G\) is nonsingular if and only if \(g_{i i} \neq 0\) for \(i=1, \cdots, n\).

\section*{Lower-triangular systems}

Consider the \(n \times n\) system
\[
\begin{equation*}
L \mathbf{y}=\mathbf{b} \tag{6.14}
\end{equation*}
\]
where \(L\) is a nonsingular, lower-triangular matrix ( \(\ell_{i i} \neq 0\) ). It is easy to see how to solve this system if we write it in detail:
\[
\begin{array}{ll}
\ell_{11} y_{1} & =b_{1} \\
\ell_{21} y_{1}+\ell_{22} y_{2} & =b_{2} \\
\ell_{31} y_{1}+\ell_{32} y_{2}+\ell_{33} y_{3} & =b_{3}  \tag{6.15}\\
\vdots & \vdots \\
\ell_{n 1} y_{1}+\ell_{n 2} y_{2}+\ell_{n 3} y_{3}+\cdots+\ell_{n n} y_{n} & =b_{n}
\end{array}
\]

The first equation involves only the unknown \(y_{1}\), which can be found as
\[
\begin{equation*}
y_{1}=b_{1} / \ell_{11} . \tag{6.16}
\end{equation*}
\]

With \(y_{1}\) just obtained, we can determine \(y_{2}\) from the second equation:
\[
\begin{equation*}
y_{2}=\left(b_{2}-\ell_{21} y_{1}\right) / \ell_{22} . \tag{6.17}
\end{equation*}
\]

Now with \(y_{2}\) known, we can solve the third equation for \(y_{3}\), and so on.

Algorithm 6.9. In general, once we have \(y_{1}, y_{2}, \cdots, y_{i-1}\), we can solve for \(y_{i}\) using the \(i\) th equation:
\[
\begin{align*}
y_{i} & =\left(b_{i}-\ell_{i 1} y_{1}-\ell_{i 2} y_{2}-\cdots-\ell_{i, i-1} y_{i-1}\right) / \ell_{i i} \\
& =\frac{1}{\ell_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} y_{j}\right) \tag{6.18}
\end{align*}
\]

\section*{Matlab-code 6.10. (Forward Substitution/Elimination):}
```

for i=1:n
for j=1:i-1
b(i) = b(i)-L(i,j)*b(j)
end
if L(i,i)==0, error('L: singular!'); end
b(i) = b(i)/L(i,i)
end

```

The result is \(y\).
Computational complexity: For each \(i\), the forward substitution requires \(2(i-1)+1\) flops. Thus the total number of flops becomes
\[
\begin{equation*}
\sum_{i=1}^{n}\{2(i-1)+1\}=\sum_{i=1}^{n}\{2 i-1\}=n(n+1)-n=n^{2} \tag{6.20}
\end{equation*}
\]

\section*{Upper-triangular systems}

Consider the system
\[
\begin{equation*}
U \mathbf{x}=\mathbf{y} \tag{6.21}
\end{equation*}
\]
where \(U=\left(u_{i j}\right) \in \mathbb{R}^{n \times n}\) is nonsingular, upper-triangular. Writing it out in detail, we get
\[
\begin{align*}
u_{11} x_{1}+u_{12} x_{2}+\cdots+u_{1, n-1} x_{n-1}+u_{1, n} x_{n} & =y_{1} \\
u_{22} x_{2}+\cdots+u_{2, n-1} x_{n-1}+u_{2, n} x_{n} & =y_{2} \\
\vdots & =\vdots  \tag{6.22}\\
u_{n-1, n-1} x_{n-1}+u_{n-1, n} x_{n} & =y_{n-1} \\
u_{n, n} x_{n} & =y_{n}
\end{align*}
\]

It is clear that we should solve the system from bottom to top.
```

Matlab-code 6.11. (Back Substitution):
for i=n:-1:1
if(U(i,i)==0), error('U: singular!'); end
x(i)=b(i)/U(i,i);
b(1:i-1)=b(1:i-1)-U(1:i-1,i)*x(i);
end

```

Computational complexity: \(n^{2}+\mathcal{O}(n)\) flops.

\subsection*{6.3. Gauss Elimination}
— a very basic algorithm for solving \(A \mathrm{x}=\mathrm{b}\)
The algorithms developed here produce (in the absence of rounding errors) the unique solution of \(A \mathbf{x}=\mathbf{b}\), whenever \(A \in \mathbb{R}^{n \times n}\) is nonsingular.

\section*{Strategy 6.12. (Gauss elimination):}
- First, transform the system \(A \mathbf{x}=\mathbf{b}\) to an equivalent system \(U \mathbf{x}=\mathbf{y}\), where \(U\) is upper-triangular;
- then Further transform the system \(U \mathbf{x}=\mathbf{y}\) to get \(\mathbf{x}\).
- It is convenient to represent \(A \mathbf{x}=\mathbf{b}\) by an augmented matrix \([A \mid \mathbf{b}]\); each equation in \(A \mathrm{x}=\mathrm{b}\) corresponds to a row of the augmented matrix.
- Transformation of the system: By means of three elementary row operations, applied on the augmented matrix.

\section*{Definition 6.13. Elementary row operations (EROs).}

Replacement: \(R_{i} \leftarrow R_{i}+\alpha R_{j}(i \neq j)\)
Interchange: \(\quad R_{i} \leftrightarrow R_{j}\)
Scaling: \(\quad R_{i} \leftarrow \beta R_{i}(\beta \neq 0)\)

\section*{Proposition 6.14.}
(a) If \([\hat{A} \mid \hat{\mathbf{b}}]\) is obtained from \([A \mid \mathbf{b}]\) by elementary row operations (EROs), then systems \([A \mid \mathbf{b}]\) and \([\hat{A} \mid \hat{\mathbf{b}}]\) represent the same solution.
(b) Suppose \(\hat{A}\) is obtained from \(A\) by EROs. Then \(\hat{A}\) is nonsingular if and only if \(A\) is.
(c) Each ERO corresponds to left-multiple of an elementary matrix.
(d) Each elementary matrix is nonsingular.
(e) The elementary matrices corresponding to "Replacement" and "Scaling" operations are lower triangular.

\subsection*{6.3.1. The \(L U\) Factorization/Decomposition}

The \(L U\) factorization is motivated by the fairly common industrial and business problem of solving a sequence of equations, all with the same coefficient matrix:
\[
\begin{equation*}
A \mathbf{x}=\mathbf{b}_{1}, A \mathbf{x}=\mathbf{b}_{2}, \cdots, A \mathbf{x}=\mathbf{b}_{p} \tag{6.25}
\end{equation*}
\]

Definition 6.15. Let \(A \in \mathbb{R}^{m \times n}\). The \(\mathbf{L U}\) factorization of \(A\) is \(A=L U\), where \(L \in \mathbb{R}^{m \times m}\) is a unit lower triangular matrix and \(U \in \mathbb{R}^{m \times n}\) is an echelon form of \(A\) (upper triangular matrix):
\[
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
* & 1 & 0 & 0 \\
* & * & 1 & 0 \\
* & * & * & 1
\end{array}\right]\left[\begin{array}{lllll} 
& * & * & * & * \\
0 & \bullet & * & * & * \\
0 & 0 & 0 & \bullet & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\]

Remark 6.16. Let \(A \mathbf{x}=\mathbf{b}\) be to be solved. Then \(A \mathbf{x}=L U \mathbf{x}=\mathbf{b}\) and it can be solved as
\[
\left\{\begin{array}{l}
L \mathbf{y}=\mathbf{b}  \tag{6.26}\\
U \mathbf{x}=\mathbf{y}
\end{array}\right.
\]
each algebraic equation can be solved effectively, via substitutions.

Algorithm 6.17. (An \(L U\) Factorization Algorithm) The derivation introduces an \(L U\) factorization: Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\begin{align*}
A & =I_{m} A \\
& =I_{m} E_{1}^{-1} E_{1} A \\
& =I_{m} E_{1}^{-1} E_{2}^{-1} E_{2} E_{1} A=\left(E_{2} E_{1}\right)^{-1} E_{2} E_{1} A  \tag{6.27}\\
& =\vdots \\
& =I_{m} E_{1}^{-1} E_{2}^{-1} \cdots E_{p}^{-1} \underbrace{E_{p} \cdots E_{2} E_{1} A}_{\text {an echelon form }}=\underbrace{\left(E_{p} \cdots E_{1}\right)^{-1}}_{L} \underbrace{E_{p} \cdots E_{1} A}_{U},
\end{align*}
\]
where \(E_{i}\) are elementary matrics for "replacement".

Example 6.18. Find the \(L U\) factorization of
\(A=\left[\begin{array}{rrr}4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 8 & -7\end{array}\right]\).

\section*{Solution.}

Ans: \(A=L U=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]\left[\begin{array}{rrr}4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 5\end{array}\right]\).

\section*{Theorem \\ 6.19. ( \(L U\) Decomposition Theorem) The following are equivalent.}
1. All leading principal submatrices of \(A\) are nonsingular. (The \(j\) th leading principal submatrix is \(A(1: j, 1: j)\).)
2. There exists a unique unit lower triangular \(L\) and nonsingular upper-triangular \(U\) such that \(A=L U\).

Proof. (2) \(\Rightarrow\) (1): \(A=L U\) may also be written
\[
\left[\begin{array}{ll}
A_{11} & A_{12}  \tag{6.28}\\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & \mathbf{0} \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
\mathbf{0} & U_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} U_{11} & L_{11} U_{12} \\
L_{21} U_{11} & L_{21} U_{12}+L_{22} U_{22}
\end{array}\right]
\]
where \(A_{11}\) is a \(j \times j\) leading principal submatrix. Thus
\[
\operatorname{det}\left(A_{11}\right)=\operatorname{det}\left(L_{11} U_{11}\right)=1 \cdot \operatorname{det}\left(U_{11}\right)=\prod_{k=1}^{j}\left(U_{11}\right)_{k k} \neq 0 .
\]

Here we have used the assumption that \(U\) is nonsingular and so is \(U_{11}\). (1) \(\Rightarrow\) (2): It can be proved by induction on \(n\).

Example 6.20. Find the \(L U\) factorization of \(A=\left[\begin{array}{rrr}3 & -1 & 1 \\ 9 & 1 & 2 \\ -6 & 5 & -5\end{array}\right]\).
Solution. (Practical Implementation):
\[
\begin{aligned}
A= & {\left[\begin{array}{rrr}
3 & -1 & 1 \\
9 & 1 & 2 \\
-6 & 5 & -5
\end{array}\right] \xrightarrow[R_{3} \leftarrow R_{3}+2 R_{1}]{R_{2} \leftarrow R_{2}-3 R_{1}}\left[\begin{array}{rrr}
\mathbf{3} & -1 & \mathbf{1} \\
\mathbf{3} & \mathbf{4} & -1 \\
\mathbf{- 2} & 3 & -3
\end{array}\right] } \\
& \xrightarrow{R_{3} \leftarrow R_{3}-\frac{3}{4} R_{2}}\left[\begin{array}{rrr}
\mathbf{3} & -1 & 1 \\
\mathbf{3} & \mathbf{4} & -1 \\
\mathbf{- 2} & \frac{3}{4} & -\frac{9}{4}
\end{array}\right] \\
L= & {\left[\begin{array}{rrr}
1 & 0 & 0 \\
\mathbf{3} & 1 & 0 \\
-2 & \frac{3}{4} & 1
\end{array}\right], \quad U=\left[\begin{array}{rrr}
3 & -1 & 1 \\
0 & 4 & -1 \\
0 & 0 & -\frac{9}{4}
\end{array}\right] }
\end{aligned}
\]
* It is easy to verify that \(A=L U\).

Example 6.21. Find the \(L U\) factorization of \(A=\left[\begin{array}{rr}2 & -1 \\ 6 & 5 \\ -10 & 3 \\ 12 & -2\end{array}\right]\).

\section*{Solution.}
\[
\begin{gathered}
{\left[\begin{array}{rr}
2 & -1 \\
6 & 5 \\
-10 & 3 \\
12 & -2
\end{array}\right] \xrightarrow[\substack{R_{3} \not R_{3} \leftarrow R_{3}+5 R_{1} \\
R_{4} \leftarrow R_{4}-6 R_{1}}]{R_{2} \leftarrow R_{2}-3 R_{1}}\left[\begin{array}{rr}
2 & -1 \\
\mathbf{3} & 8 \\
-5 & -2 \\
\mathbf{6} & 4
\end{array}\right] \xrightarrow[R_{4} \leftarrow R_{4}-\frac{1}{2} R_{2}]{R_{3} \leftarrow R_{3}+\frac{1}{4} R_{2}}\left[\begin{array}{rr}
2 & -1 \\
\mathbf{3} & 8 \\
-5 & -\frac{1}{4} \\
\mathbf{6} & \frac{1}{2}
\end{array}\right]} \\
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
-5 & -\frac{1}{4} & 1 & 0 \\
6 & \frac{1}{2} & 0 & 1
\end{array}\right]_{4 \times 4} \quad, \quad U=\left[\begin{array}{rr}
2 & -1 \\
0 & 8 \\
0 & 0 \\
0 & 0
\end{array}\right]_{4 \times 2} .
\end{gathered}
\]

Note: \(U\) has the same size as \(A\), i.e,, \(A \in \mathbb{R}^{4 \times 2}\), while \(L\) is a square matrix and is a unit lower triangular matrix.

Remark 6.22. For an \(n \times n\) dense matrix \(A\) (with most entries nonzero) with \(n\) moderately large.
- Computing an \(L U\) factorization of \(A\) takes about \(2 n^{3} / 3\) flops \(^{\dagger}\) ( \(\sim\) row reducing \([A \mathbf{b}]\) ), while finding \(A^{-1}\) requires about \(2 n^{3}\) flops.
- Solving \(L \mathbf{y}=\mathbf{b}\) and \(U \mathbf{x}=\mathbf{y}\) requires about \(2 n^{2}\) flops, because any \(n \times n\) triangular system can be solved in about \(n^{2}\) flops.
- Multiplying by by \(A^{-1}\) also requires about \(2 n^{2}\) flops, but the result may not as accurate as that obtained from \(L\) and \(U\) (due to round-off errors in computing \(A^{-1} \& A^{-1} \mathbf{b}\) ).

If \(A\) is sparse (with mostly zero entries), then \(L\) and \(U\) may be sparse, too. On the other hand, \(A^{-1}\) is likely to be dense.
- In this case, a solution of \(A \mathbf{x}=\mathbf{b}\) with \(L U\) factorization is much faster than using \(A^{-1}\).
\({ }^{\dagger}\) A flop is a floating point operation by,,\(+- \times\) or \(\div\).

\section*{Solving Linear Systems by \(\boldsymbol{L} \boldsymbol{U}\) Factorization}
- The \(L U\) factorization can be applied for general \(m \times n\) matrices:
\[
A=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0  \tag{6.29}\\
* & 1 & 0 & 0 \\
* & * & 1 & 0 \\
* & * & * & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{ccccc}
\boldsymbol{\square} & * & * & * & * \\
0 & \boldsymbol{\square} & * & * & * \\
0 & 0 & 0 & \boldsymbol{\square} & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}_{U}
\]
- Let \(A \in \mathbb{R}^{n \times n}\) be nonsingular. If \(A=L U\), where \(L\) is a unit lowertriangular matrix and \(U\) is an upper-triangular matrix, then
\[
A \mathbf{x}=\mathbf{b} \Longleftrightarrow(L U) \mathbf{x}=L(U \mathrm{x})=\mathbf{b} \Longleftrightarrow\left\{\begin{array}{l}
L \mathbf{y}=\mathbf{b}  \tag{6.30}\\
U \mathbf{x}=\mathbf{y}
\end{array}\right.
\]

In the following couple of examples, \(L U\) is given.

Example 6.23. Let \(A=\left[\begin{array}{rrr}1 & 4 & -2 \\ 2 & 5 & -3 \\ -3 & -18 & 16\end{array}\right], \mathbf{b}=\left[\begin{array}{c}-12 \\ -14 \\ 64\end{array}\right]\);
\[
A=L U \triangleq\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 4 & -2 \\
0 & -3 & 1 \\
0 & 0 & 8
\end{array}\right]
\]

Use the \(L U\) factorization of \(A\) to solve \(A \mathbf{x}=\mathbf{b}\).
Solution. From (6.30), we know there are two steps to perform:
(1) Solve \(L y=b\) for \(y\);
(2) Solve \(U \mathrm{x}=\mathrm{y}\) for x .
(1) Solve \(L \mathbf{y}=\mathbf{b}\) for y by row reduction
\[
[L: \mathbf{b}]=\left[\begin{array}{rrrrr}
1 & 0 & 0 & \vdots & -12  \tag{6.31}\\
2 & 1 & 0 & \vdots & -14 \\
-3 & 2 & 1 & \vdots & 64
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & \vdots & -12 \\
0 & 1 & 0 & \vdots & 10 \\
0 & 0 & 1 & \vdots & 8
\end{array}\right]=[I \vdots \mathbf{y}] .
\]
(2) Solve \(U \mathrm{x}=\mathrm{y}\) for x by row reduction
\[
[U: \mathbf{y}]=\left[\begin{array}{rrrlr}
1 & 4 & -2 & \vdots & -12  \tag{6.32}\\
0 & -3 & 1 & \vdots & 10 \\
0 & 0 & 8 & \vdots & 8
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & \vdots & 2 \\
0 & 1 & 0 & \vdots & -3 \\
0 & 0 & 1 & \vdots & 1
\end{array}\right]=[I \vdots \mathbf{x}]
\]

Thus, \(\mathbf{x}=[2,-3,1]^{T}\).

Example 6.24. Let \(A=\left[\begin{array}{rrrr}5 & 4 & -2 & -3 \\ 15 & 13 & 2 & -10 \\ -5 & -1 & 28 & 3 \\ 10 & 10 & 8 & -8\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}-10 \\ -29 \\ 30 \\ -22\end{array}\right]\);
\[
A=L U \triangleq\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
-1 & 3 & 1 & 0 \\
2 & 2 & -2 & 1
\end{array}\right]\left[\begin{array}{rrrr}
5 & 4 & -2 & -3 \\
0 & 1 & 8 & -1 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 6
\end{array}\right]
\]

Use the \(L U\) factorization of \(A\) to solve \(A \mathbf{x}=\mathbf{b}\).
Solution.
(1) Solve \(L \mathbf{y}=\mathrm{b}\) for y :
\[
[L \vdots \mathbf{b}]=\left[\begin{array}{rrrr:r}
1 & 0 & 0 & 0 & \vdots \\
3 & 1 & 0 & 0 & \vdots \\
-10 \\
-1 & 3 & 1 & 0 & \vdots \\
2 & 2 & -2 & 1 & \vdots \\
\hline
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & \vdots & -10 \\
0 & 1 & 0 & 0 & \vdots & 1 \\
0 & 0 & 1 & 0 & \vdots & 17 \\
0 & 0 & 0 & 1 & \vdots & 30
\end{array}\right]=[I \vdots \mathbf{y}] .
\]
(2) Solve \(U \mathrm{x}=\mathrm{y}\) for x :
\[
[U: \mathbf{y}]=\left[\begin{array}{rrrrcc}
5 & 4 & -2 & -3 & \vdots & -10 \\
0 & 1 & 8 & -1 & \vdots & 1 \\
0 & 0 & 2 & 3 & \vdots & 17 \\
0 & 0 & 0 & 6 & \vdots & 30
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lllllr}
1 & 0 & 0 & 0 & \vdots & 3 \\
0 & 1 & 0 & 0 & \vdots & -2 \\
0 & 0 & 1 & 0 & \vdots & 1 \\
0 & 0 & 0 & 1 & \vdots & 5
\end{array}\right]=[I: \mathbf{x}]
\]

Thus, \(\mathbf{x}=[3,-2,1,5]^{T}\).

\subsection*{6.3.2. Gauss Elimination with Pivoting}

Definition 6.25. A permutation matrix is a matrix that has exactly one 1 in each row and in each column, all other entries being zero.

Self-study 6.26. Show that if \(P\) is permutation matrix, then \(P^{T} P=\) \(P \bar{P} \stackrel{T}{=}\). Thus \(P\) is nonsingular and
\[
P^{-1}=P^{T} .
\]

\section*{Solution.}

Lemma 6.27. Let \(P\) and \(Q\) be \(n \times n\) permutation matrices and \(A \in\) \(\mathbb{R}^{n \times n}\). Then
(a) \(P A\) is \(A\) with its rows permuted \(A P\) is \(A\) with its columns permuted.
(b) \(\operatorname{det}(P)= \pm 1\).
(c) \(P Q\) is also a permutation matrix.

Example 6.28. Let \(A \in \mathbb{R}^{n \times n}\), and let \(\widehat{A}\) be a matrix obtained from scrambling the rows of \(A\). Show that there is a unique permutation matrix \(P \in\) \(\mathbb{R}^{n \times n}\) such that \(\widehat{A}=P A\).
Hint: Consider the row indices in the scrambled matrix \(\widehat{A}\), say \(\left\{k_{1}, k_{2}, \cdots, k_{n}\right\}\). (This means that for example, the first row of \(\widehat{A}\) is the same as the \(k_{1}\)-th row of \(A\).) Use the index set to define a permutation matrix \(P\).

\section*{Proof. (Self-study)}

Theorem 6.29. Gauss elimination with partial pivoting, applied to \(A \in \mathbb{R}^{n \times n}\), produces a unit lower-triangular matrix \(L\) with \(\left|\ell_{i j}\right| \leq 1\), an upper-triangular matrix \(U\), and a permutation matrix \(P\) such that
\[
\begin{equation*}
\widehat{A}=P A=L U \tag{6.33}
\end{equation*}
\]
or, equivalently,
\[
\begin{equation*}
A=P^{T} L U \tag{6.34}
\end{equation*}
\]

Note: If \(A\) is singular, then so is \(U\).
Algorithm 6.30. Solving \(A \mathrm{x}=\mathrm{b}\) using Gauss elimination with partial pivoting:
1. Factorize \(A\) into \(A=P^{T} L U\), where
\(P=\) permutation matrix,
\(L=\) unit lower triangular matrix (i.e., with ones on the diagonal),
\(U=\) nonsingular upper-triangular matrix.
2. Solve \(P^{T} L U \mathbf{x}=\mathbf{b}\)
(a) \(L U \mathbf{x}=P \mathbf{b} \quad\) (permuting \(\mathbf{b}\) )
(b) \(U \mathbf{x}=L^{-1}(P \mathbf{b}) \quad\) (forward substitution)
(c) \(\mathrm{x}=U^{-1}\left(L^{-1} P \mathbf{b}\right) \quad\) (back substitution)

\section*{In practice:}
\[
\left.\begin{array}{rl}
A \mathbf{x}=\mathbf{b} & \Longleftrightarrow P^{T}(L U) \mathbf{x}=\mathbf{b} \\
& \Longleftrightarrow L(U \mathbf{x})=P \mathbf{b}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
L \mathbf{y}=P \mathbf{b} \\
U \mathbf{x}=\mathbf{y}
\end{array}\right.
\]

Theorem 6.31. If \(A\) is nonsingular, then there exist permutations \(P_{1}\) and \(P_{2}\), a unit lower triangular matrix \(L\), and a nonsingular uppertriangular matrix \(U\) such that
\[
P_{1} A P_{2}=L U
\]

Only one of \(P_{1}\) and \(P_{2}\) is necessary.
Remark 6.32. \(P_{1} A\) reorders the rows of \(A, A P_{2}\) reorders the columns, and \(P_{1} A P_{2}\) reorders both. Consider
\[
\begin{align*}
P_{1}^{\prime} A P_{2}^{\prime} & =\left[\begin{array}{ll}
a_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathbf{0} \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
u_{11} & U_{12} \\
0 & \tilde{A}_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
u_{11} & U_{12} \\
L_{21} u_{11} & L_{21} U_{12}+\tilde{A}_{22}
\end{array}\right] \tag{6.35}
\end{align*}
\]
- We can choose \(P_{2}^{\prime}=I\) and \(P_{1}^{\prime}\) so that \(a_{11}\) is the largest entry in absolute value in its column, which implies \(L_{21}=\frac{A_{21}}{a_{11}}\) has entries bounded by 1 in modulus.
- More generally, at step \(k\) of Gaussian elimination, where we are computing the \(k\) th column of \(L\), we reorder the rows so that the largest entry in the column is on the pivot. This is called Gaussian elimination with partial pivoting, or GEPP for short. GEPP guarantees that all entries of \(L\) are bounded by one in modulus.

Remark 6.33. We can choose \(P_{1}\) and \(P_{2}\) so that \(a_{11}\) in (6.35) is the largest entry in modulus in the whole matrix. More generally, at step \(k\) of Gaussian elimination, we reorder the rows and columns so that the largest entry in the matrix is on the pivot. This is called Gaussian elimination with complete pivoting, or GECP for short.

Example 6.34. Find the \(L U\) factorization of \(A=\left[\begin{array}{rrr}3 & -1 & 1 \\ 9 & 1 & 2 \\ -6 & 5 & -5\end{array}\right]\), which is considered in Example 6.20.

\section*{Solution. (Without pivoting)}
\[
\begin{aligned}
A= & {\left[\begin{array}{rrr}
3 & -1 & 1 \\
9 & 1 & 2 \\
-6 & 5 & -5
\end{array}\right] \xrightarrow[R_{3} \leftarrow R_{3}+2 R_{1}]{R_{2} \leftarrow R_{2}-3 R_{1}}\left[\begin{array}{rrr}
3 & -1 & 1 \\
\mathbf{3} & \begin{array}{r}
4 \\
\mathbf{2} \\
\mathbf{- 2}
\end{array} & -1 \\
3 & -3
\end{array}\right] } \\
& \xrightarrow{R_{3} \leftarrow R_{3}-\frac{3}{4} R_{2}}\left[\begin{array}{rrr}
3 & -1 & 1 \\
\mathbf{3} & 4 & -1 \\
\mathbf{- 2} & \frac{3}{4} & -\frac{9}{4}
\end{array}\right] \\
L= & {\left[\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
-2 & \frac{3}{4} & 1
\end{array}\right], \quad U=\left[\begin{array}{rrr}
3 & -1 & 1 \\
0 & 4 & -1 \\
0 & 0 & -\frac{9}{4}
\end{array}\right] . }
\end{aligned}
\]

\section*{(With partial pivoting)}
\[
\begin{aligned}
& A=\left[\begin{array}{rrr}
3 & -1 & 1 \\
9 & 1 & 2 \\
-6 & 5 & -5
\end{array}\right] \xrightarrow{\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{rrr}
9 & 1 & 2 \\
3 & -1 & 1 \\
-6 & 5 & -5
\end{array}\right] \\
& \xrightarrow[R_{3} \leftarrow R_{3}+\frac{2}{3} R_{1}]{R_{2} \leftarrow R_{2}-\frac{1}{3} R_{1}}\left[\begin{array}{rcc}
9 & 1 & 2 \\
\begin{array}{r}
\frac{1}{3} \\
-\frac{4}{3}
\end{array} & \frac{1}{3} \\
-\frac{2}{3} & \frac{17}{3} & -\frac{11}{3}
\end{array}\right] \xrightarrow{\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}}\left[\begin{array}{rr|cc}
9 & 1 & 2 \\
-\frac{2}{3} & \frac{17}{3} & -\frac{11}{3} \\
\frac{1}{3} & -\frac{4}{3} & \frac{1}{3}
\end{array}\right] \\
& \xrightarrow{R_{3} \leftarrow R_{3}+\frac{4}{17} R_{2}}\left[\begin{array}{ccc}
9 & 1 & 2 \\
\hline-\frac{2}{3} & \frac{17}{3} & -\frac{11}{3} \\
\frac{1}{3} & -\frac{4}{17} & -\frac{9}{17}
\end{array}\right], I \xrightarrow{\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}} E \xrightarrow{\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}} P
\end{aligned}
\]
\[
\begin{aligned}
& P A=L U \\
& P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad L=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{2}{3} & 1 & 0 \\
\frac{1}{3} & -\frac{4}{17} & 1
\end{array}\right], \quad U=\left[\begin{array}{ccc}
\boxed{9} & 1 & 2 \\
0 & \boxed{\frac{17}{3}} & -\frac{11}{3} \\
0 & 0 & -\frac{9}{17}
\end{array}\right]
\end{aligned}
\]

\subsection*{6.3.3. The Computation of \(A^{-1}\)}

\section*{Algorithm 6.35. (The computation of \(A^{-1}\) ):}
- The program to solve \(A x=b\) can be used to calculate the inverse of a matrix. Letting \(X=A^{-1}\), we have
\[
\begin{equation*}
A X=I \tag{6.36}
\end{equation*}
\]
- This equation can be written in partitioned form:
\[
A\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n} \tag{6.37}
\end{array}\right]
\]
where \(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\) and \(\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\) are columns of \(X\) and \(I\), respectively.
- Thus \(A X=I\) is equivalent to the \(n\) equations
\[
\begin{equation*}
A \mathbf{x}_{i}=\mathbf{e}_{i}, \quad i=1,2, \cdots, n \tag{6.38}
\end{equation*}
\]

Solving these \(n\) systems by Gauss elimination with partial pivoting, we obtain \(A^{-1}\).

\section*{Computational complexity}
- A naive flop count:
\begin{tabular}{ll}
\(L U\)-factorization of \(A:\) & \(\frac{2}{3} n^{3}+\mathcal{O}\left(n^{2}\right)\) \\
Solve for \(n\) equations in (6.38): & \(n \cdot 2 n^{2}=2 n^{3}\) \\
\hline Total cost: & \(\frac{8}{3} n^{3}+\mathcal{O}\left(n^{2}\right)\)
\end{tabular}
- A modification: The forward-substitution phase requires the solution of
\[
\begin{equation*}
L \mathbf{y}_{i}=\mathbf{e}_{i}, \quad i=1,2, \cdots, n \tag{6.39}
\end{equation*}
\]

Some operations can be saved by exploiting the leading zeros in \(e_{i}\). (For each \(i\), the portion of \(L\) to be accessed is triangular.) With these savings, one can conclude that \(A^{-1}\) can be computed in \(2 n^{3}+\mathcal{O}\left(n^{2}\right)\) flops.

\section*{Exercises for Chapter 6}
6.1. Solve the equation \(A \mathbf{x}=\mathbf{b}\) by using the \(L U\) factorization.
\[
A=\left[\begin{array}{rrr}
4 & 3 & -5 \\
-4 & -5 & 7 \\
8 & 6 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{r}
2 \\
-4 \\
6
\end{array}\right]
\]
(Do not use computer programming for this problem.)
\[
\text { Ans: } \mathrm{x}=\left[\begin{array}{r}
1 / 4 \\
2 \\
1
\end{array}\right]
\]
6.2. Let \(L=\left[\ell_{i j}\right]\) and \(M=\left[m_{i j}\right]\) be lower-triangular matrices.
(a) Prove that \(L M\) is lower triangular.
(b) Prove that the entries of the main diagonal of \(L M\) are
\[
\ell_{11} m_{11}, \ell_{22} m_{22}, \cdots, \ell_{n n} m_{n n}
\]

Thus the product of two unit lower-triangular matrices is unit lower triangular.
6.3. Consider the system \(A \mathrm{x}=\mathrm{b}\), where
\[
A=\left[\begin{array}{rrrr}
1 & -2 & -1 & 3 \\
1 & -2 & 0 & 1 \\
-3 & -2 & 1 & 7 \\
0 & -2 & 8 & 5
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-12 \\
-5 \\
-14 \\
-7
\end{array}\right]
\]
(a) Perform \(L U\) decomposition with partial pivoting for \(A\) to show \(P, L\), and \(U\).
(b) Solve the system.
(You may use any built-in functions for this problem.)
6.4. Consider the finite difference method on uniform meshes to solve
(a) \(-u_{x x}+u=\left(\pi^{2}+1\right) \cos (\pi x), \quad x \in(0,1)\),
(b) \(u(0)=1\) and \(u_{x}(1)=0\).
(a) Implement a function to construct algebraic systems in the full matrix form, for general \(n_{x} \geq 1\).
(b) Use a direct method (e.g., \(A \backslash b\) ) to find approximate solutions for \(n_{x}=25,50,100\).
(c) The actual solution for (6.40) is \(u(x)=\cos (\pi x)\). Measure the maximum errors for the approximate solutions.
(This problem is optional for undergraduate students; you will get an extra credit when you solve it.)

\section*{Chapter 7}

\section*{Iterative Algebraic Solvers}

This chapter is concerned with iterative algebraic solvers.
For \(A \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^{n}\), we will learn iterative methods for an approximate solution of
\[
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{7.1}
\end{equation*}
\]

Iterative methods we will consider can be formulated as
\[
\begin{equation*}
\mathbf{x}^{k}=\mathbf{x}^{k-1}+G\left(\mathbf{b}-A \mathbf{x}^{k-1}\right), \tag{7.2}
\end{equation*}
\]
where \(\mathbf{b}-A \mathbf{x}^{k-1}=\mathbf{r}^{k-1}\) is the \((k-1)\) st residual and \(G\) is an operator which can be either a scalar or a matrix.

\section*{Maple built-in command: \\ with(NumericalAnalysis); \\ IterativeApproximate(A, b, opts);}

\section*{Contents of Chapter 7}
7.1. Norms of Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.2. Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.3. Iterative Algebraic Solvers 251
7.4. Relaxation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.5. Graph Theory: Estimation of the Spectral Radius . . . . . . . . . . . . . . . . . . . . . 264
7.6. Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.7. Generalized Minimum Residuals - GMRES . . . . . . . . . . . . . . . . . . . . . . . . . 277

Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

\subsection*{7.1. Norms of Vectors and Matrices}

\subsection*{7.1.1. Vectors}

Definition 7.1. Let \(\mathbf{u}=\left[u_{1}, u_{2}, \cdots, u_{n}\right]^{T}\) and \(\mathbf{v}=\left[v_{1}, v_{2}, \cdots, v_{n}\right]^{T}\) are vectors in \(\mathbb{R}^{n}\). Then, the inner product (or dot product) of \(\mathbf{u}\) and \(\mathbf{v}\) is given by
\[
\begin{align*}
\mathbf{u}^{\bullet} \mathbf{v} & =\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]  \tag{7.3}\\
& =u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\sum_{k=1}^{n} u_{k} v_{k}
\end{align*}
\]

Definition 7.2. The length (Euclidean norm) of \(v\) is nonnegative scalar \(\|\mathrm{v}\|\) defined by
\[
\begin{equation*}
\|\mathbf{v}\|=\sqrt{\mathbf{v}^{\bullet} \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \quad \text { and } \quad\|\mathbf{v}\|^{2}=\mathbf{v} \bullet \mathbf{v} \tag{7.4}
\end{equation*}
\]

Definition 7.3. For \(u, v \in \mathbb{R}^{n}\), the distance between \(u\) and \(v\) is
\[
\begin{equation*}
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| \tag{7.5}
\end{equation*}
\]
the length of the vector \(\mathbf{u}-\mathrm{v}\).
Definition 7.4. Two vectors \(\mathbf{u}\) and \(\mathbf{v}\) in \(\mathbb{R}^{n}\) are orthogonal if \(\mathbf{u}^{\bullet} \mathbf{v}=0\).

Theorem 7.5. Pythagorean Theorem: Two vectors \(u\) and \(v\) are orthogonal if and only if
\[
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} \tag{7.6}
\end{equation*}
\]

Note: The inner product can be defined as
\[
\begin{equation*}
\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \tag{7.7}
\end{equation*}
\]
where \(\theta\) is the angle between \(\mathbf{u}\) and \(\mathbf{v}\).
Example 7.6. Let \(\mathbf{u}=\left[\begin{array}{r}1 \\ 2 \\ -2\end{array}\right]\) and \(\mathbf{v}=\left[\begin{array}{r}0 \\ 0 \\ -4\end{array}\right]\). Use (7.7) to find the angle between \(\mathbf{u}\) and \(\mathbf{v}\).

\section*{Solution.}

\subsection*{7.1.2. Vector and matrix norms}

Definition 7.7. A norm (or, vector norm) on \(\mathbb{R}^{n}\) is a function that assigns to each \(x \in \mathbb{R}^{n}\) a nonnegative real number \(\|x\|\) such that the following three properties are satisfied: for all \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}\) and \(\lambda \in \mathbb{R}\),
\[
\begin{array}{ll}
\|\mathrm{x}\|>0 \text { if } \mathrm{x} \neq 0 & \text { (positive definiteness) } \\
\|\lambda \mathbf{x}\|=|\lambda|\|\mathrm{x}\| & \text { (homogeneity) }  \tag{7.8}\\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
\]

Example 7.8. The most vector common norms are the \(p\)-norms
\[
\begin{equation*}
\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{7.9}
\end{equation*}
\]
and the infinity-norm or maximum-norm
\[
\begin{equation*}
\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right| . \tag{7.10}
\end{equation*}
\]

Note: Two of frequently used \(p\)-norms are
\[
\begin{equation*}
\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|, \quad\|\mathbf{x}\|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / 2} \tag{7.11}
\end{equation*}
\]

The \(\ell^{2}\)-norm is also called the Euclidean norm, often denoted by \(\|\cdot\|\).
Example 7.9. One may consider the infinity-norm as the limit of \(p\)-norms, as \(p \rightarrow \infty\).

\section*{Solution.}

\section*{Theorem 7.10. (Cauchy-Schwarz Inequality).}
\[
\begin{equation*}
|\mathbf{x} \cdot \mathbf{y}|=\left|\sum_{i=1}^{n} x_{i} y_{1}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}=\|\mathbf{x}\|\|\mathbf{y}\| \tag{7.12}
\end{equation*}
\]

Theorem 7.11. The sequence of vectors \(\left\{\mathrm{x}^{(k)}\right\}\) converges to x in \(\mathbb{R}^{n}\) with respect to the \(\ell^{\infty}\)-norm if and only if
\[
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \text { for all } i=1,2, \cdots, n
\]

Example 7.12. \(\mathbf{x}^{(k)}=\left(1,2+\frac{1}{k}, \frac{3}{k^{2}}, e^{-k} \sin k\right)^{T} \rightarrow(1,2,0,0)^{T}\) with respect to the \(\ell^{\infty}\)-norm.

\section*{Solution.}

\section*{Theorem 7.13. (Equivalence between the \(\ell^{2}\)-norm and the \(\ell^{\infty}\) -} norm). For each \(\mathrm{x} \in \mathbb{R}^{n}\),
\[
\begin{equation*}
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty} \tag{7.13}
\end{equation*}
\]

\subsection*{7.1.3. Matrix norms}

Definition 7.14. A matrix norm on \(m \times n\) matrices is a vector norm on the \(m n\)-dimensional space, satisfying
\[
\begin{array}{ll}
\|A\| \geq 0, \text { and }\|A\|=0 \Leftrightarrow A=0 & \text { (positive definiteness) } \\
\|\lambda A\|=|\lambda|\|A\| & \text { (homogeneity) }  \tag{7.14}\\
\|A+B\| \leq\|A\|+\|B\| & \text { (triangle inequality) }
\end{array}
\]

Example 7.15. \(\|A\|_{F} \equiv\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}\) is called the Frobenius norm.
Definition 7.16. Once a vector norm \(\|\cdot\|\) has been specified, the induced matrix norm is defined by
\[
\begin{equation*}
\|A\|=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \tag{7.15}
\end{equation*}
\]

It is also called an operator norm or subordinate norm.

\section*{Theorem 7.17.}
a. For all operator norms and the Frobenius norm,
\[
\begin{equation*}
\|A x\| \leq\|A\|\|x\|, \quad\|A B\| \leq\|A\|\|B\| . \tag{7.16}
\end{equation*}
\]
b. \(\|A\|_{1} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}}=\max _{j} \sum_{i}\left|a_{i j}\right| \quad\) (max of vertical sums)
c. \(\|A\|_{\infty} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}=\max _{i} \sum_{j}\left|a_{i j}\right| \quad\) (max of horizontal sums)
d. \(\|A\|_{2} \equiv \max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}\),
where \(\lambda_{\text {max }}\) denotes the largest eigenvalue.
e. \(\|A\|_{2}=\left\|A^{T}\right\|_{2}\).
f. \(\|A\|_{2}=\max _{i}\left|\lambda_{i}(A)\right|\), when \(A^{T} A=A A^{T}\) (normal matrix).

Definition 7.18. Let \(A \in \mathbb{R}^{n \times n}\). Then
\[
\kappa(A) \equiv\|A\|\left\|A^{-1}\right\|
\]
is called the condition number of \(A\), associated to the matrix norm.
Example 7.19. Let \(A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 3 & -1 \\ 1 & -2 & 1\end{array}\right]\). Then, we have
\[
A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 2 & 1 \\
-3 & 4 & 3
\end{array}\right] \text { and } A^{T} A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 17 & -7 \\
0 & -7 & 3
\end{array}\right]
\]
a. Find \(\|A\|_{1},\|A\|_{\infty}\), and \(\|A\|_{2}\).
b. Compute the \(\ell^{1}\)-condition number \(\kappa_{1}(A)\).

\section*{Solution.}

Theorem 7.20. (Neumann Series Theorem). If \(A \in \mathbb{R}^{n \times n}\) and \(\|A\|<1\) for any subordinate matrix norm, then \(I-A\) is invertible and
\[
\begin{equation*}
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k} \tag{7.17}
\end{equation*}
\]

\subsection*{7.2. Eigenvectors and Eigenvalues}

Definition 7.21. Let \(A\) be an \(n \times n\) matrix. An eigenvector of \(A\) is a nonzero vector x such that
\[
\begin{equation*}
A \mathbf{x}=\lambda \mathbf{x} \tag{7.18}
\end{equation*}
\]
for some scalar \(\lambda\). In this case, a scalar \(\lambda\) is an eigenvalue and \(x\) is the corresponding eigenvector.

Definition 7.22. The scalar equation
\[
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{7.19}
\end{equation*}
\]
is called the characteristic equation of \(A\); the polynomial \(p(\lambda)=\) \(\operatorname{det}(A-\lambda I)\) is called the characteristic polynomial of \(A\). The solutions of \(\operatorname{det}(A-\lambda I)=0\) are the eigenvalues of \(A\).

Claim 7.23. \(\lambda\) is an eigenvalue of \(A\) if and only if \(\operatorname{det}(A-\lambda I)=0\).
Example 7.24. Find eigenvalues and eigenvectors of \(A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]\).

\section*{Solution.}

Example 7.25. Find the eigenvalues and eigenvectors for the matrix
\[
A:=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 1 & 2 \\
1 & -1 & 4
\end{array}\right]
\]

\section*{Solution.}

Maple
\[
\begin{array}{r}
\text { with(LinearAlgebra): Eigenvectors }=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right],\left[\begin{array}{rrr}
-2 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \\
p:=\text { CharacteristicPolynomial(A, lambda); factor }(p) ; \\
-12+\lambda^{3}-7 \lambda^{2}+16 \lambda \tag{7.20}
\end{array}
\]

Now, let us find them by using pencils.

Remark 7.26. Let \(A\) be an \(n \times n\) matrix. Then the characteristic equation of \(A\) is of the form
\[
\begin{align*}
p(\lambda)=\operatorname{det}(A-\lambda I) & =(-1)^{n}\left(\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}\right) \\
& =(-1)^{n} \prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right) \tag{7.21}
\end{align*}
\]
where some of eigenvalues \(\lambda_{i}\) can be complex-valued numbers. Thus
\[
\begin{equation*}
\operatorname{det} A=p(0)=(-1)^{n} \prod_{i=1}^{n}\left(0-\lambda_{i}\right)=\prod_{i=1}^{n} \lambda_{i} \tag{7.22}
\end{equation*}
\]

That is, \(\operatorname{det} A\) is the product of all eigenvalues of \(A\).

\subsection*{7.2.1. Spectral radius}

Definition 7.27. The spectral radius \(\rho(A)\) of a matrix \(A\) is defined by
\[
\begin{equation*}
\rho(A)=\max |\lambda|, \tag{7.23}
\end{equation*}
\]
where \(\lambda\) is an eigenvalue of \(A\).

Theorem 7.28. If \(A \in \mathbb{R}^{n \times n}\), then
(a) \(\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}\)
(b) \(\rho(A) \leq\|A\|\), or any natural matrix norm \(\|\cdot\|\).

Proof. The proof of part (a) requires more advanced matrix algebra. For part (b), let \(\lambda\) be an eigenvalue of \(A\) with its corresponding eigenvector x with \(\|\mathrm{x}\|=1\). Then
\[
\begin{equation*}
|\lambda|=|\lambda|\|\mathbf{x}\|=\|\lambda \mathbf{x}\|=\|A \mathbf{x}\| \leq\|A\|\|\mathbf{x}\|=\|A\| . \tag{7.24}
\end{equation*}
\]

Thus, the assertion follows.

\subsection*{7.2.2. Convergent matrices}

Definition 7.29. A matrix \(A \in \mathbb{R}^{n \times n}\) is convergent if
\[
\begin{equation*}
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0, \text { for each } 1 \leq i, j \leq n \tag{7.25}
\end{equation*}
\]

Example 7.30. Is \(A:=\left[\begin{array}{rr}1 / 2 & 0 \\ 1 / 4 & 1 / 2\end{array}\right]\) convergent?
Solution.
\[
A^{2}=\left[\begin{array}{rr}
1 / 4 & 0 \\
1 / 4 & 1 / 4
\end{array}\right] \quad A^{3}=\left[\begin{array}{rr}
1 / 8 & 0 \\
3 / 16 & 1 / 8
\end{array}\right] \quad A^{4}=\left[\begin{array}{rr}
1 / 16 & 0 \\
1 / 8 & 1 / 16
\end{array}\right] \quad \ldots
\]

In general,
\[
A^{k}=\left[\begin{array}{cc}
\frac{1}{2^{k}} & 0 \\
\frac{k}{2^{k+1}} & \frac{1}{2^{k}}
\end{array}\right] \rightarrow \mathbf{0}
\]

Thus the matrix \(A\) is convergent.
Theorem 7.31. The following statements are equivalent.
(a) \(A\) is convergent.
(b) \(\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0\) for some natural matrix norm.
(c) \(\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0\) for all natural matrix norms.
(d) \(\rho(A)<1\).
(e) \(\lim _{n \rightarrow \infty} A^{n} \mathrm{x}=0\) for all \(\mathrm{x} \in \mathbb{R}^{n}\).

\subsection*{7.2.3. Invertible matrices}

Definition 7.32. An \(n \times n\) matrix \(A\) is said to be invertible (nonsingular) if there is an \(n \times n\) matrix \(B\) such that
\[
A B=I_{n}=B A,
\]
where \(I_{n}\) is the identity matrix. The matrix \(B\) is called an inverse of \(A\).
Note: We may prove that such a matrix \(B\) is unique. Thus \(B\) is the unique inverse of \(A\) denoted by \(A^{-1}\).

Definition 7.33. Let \(A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}\). The transpose of \(A\) is \(A^{T}=\) \(\left(a_{j i}\right)\). The matrix is symmetric if \(A=A^{T}\).

Note: \((A B)^{T}=B^{T} A^{T}\).

\section*{Theorem 7.34.}
1. A square matrix can possess at most one right inverse.
2. If \(A\) and \(B\) are square matrices such that \(A B=I\), then \(B A=I\).
3. Let \(A\) and \(B\) be invertible square matrices. Then,
\[
(A B)^{-1}=B^{-1} A^{-1} .
\]

Proof. Let's prove Part 2 only. Let \(C=B A-I+B\). Then,
\[
A C=A B A-A+A B=A-A+I=I .
\]

By the uniqueness of the right inverse (Part 1), we can conclude \(B=C\), which implies \(B A-I=0\).

Theorem 7.35. (Invertible Matrix Theorem) Let \(A\) be an \(n \times n\) matrix. Then the following are equivalent.
a. \(A\) is an invertible matrix.
b. \(A\) is row equivalent to the \(n \times n\) identity matrix.
c. \(A\) has \(n\) pivot positions.
\(d\). The columns of \(A\) are linearly independent.
e. The equation \(A \mathrm{x}=0\) has only the trivial solution \(\mathrm{x}=0\).
f. The equation \(A \mathrm{x}=\mathrm{b}\) has unique solution for each \(\mathrm{b} \in \mathbb{R}^{n}\).
g. The linear transformation \(\mathrm{x} \mapsto A \mathrm{x}\) is one-to-one.
h. The linear transformation \(\mathrm{x} \mapsto A \mathrm{x}\) maps \(\mathbb{R}^{n}\) onto \(\mathbb{R}^{n}\).
i. There is a matrix \(C \in \mathbb{R}^{n \times n}\) such that \(C A=I\)
\(j\). There is a matrix \(D \in \mathbb{R}^{n \times n}\) such that \(A D=I\)
k. \(A^{T}\) is invertible and \(\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}\).
1. The number 0 is not an eigenvalue of \(A\).
m. \(\operatorname{det} A \neq 0\).

\subsection*{7.3. Iterative Algebraic Solvers}

\subsection*{7.3.1. Basic concepts for iterative solvers}

We consider iterative methods in a more general mathematical setting. A general type of iterative process for solving the algebraic system
\[
\begin{equation*}
A \mathbf{x}=\mathbf{b}, \quad A \in \mathbb{R}^{n \times n} \tag{7.26}
\end{equation*}
\]
can be described as follows.
- Split the matrix \(A\) as
\[
\begin{equation*}
A=M-N, \tag{7.27}
\end{equation*}
\]
where \(M\) is an invertible matrix.
- Then, the system (7.26) can be expressed equivalently as
\[
\begin{equation*}
M \mathrm{x}=N \mathrm{x}+\mathbf{b} \tag{7.28}
\end{equation*}
\]
- Associated with the splitting is an iterative method
\[
\begin{equation*}
M \mathbf{x}^{k}=N \mathbf{x}^{k-1}+\mathbf{b} \Rightarrow \mathbf{x}^{k}=M^{-1} N \mathbf{x}^{k-1}+M^{-1} \mathbf{b} \tag{7.29}
\end{equation*}
\]
for a given initialization \(\mathrm{x}^{0}, k \geq 1\).
- Since \(N=M-A\), (7.29) can be rewritten as
\[
\begin{align*}
\mathbf{x}^{k} & =\left(I-M^{-1} A\right) \mathbf{x}^{k-1}+M^{-1} \mathbf{b} \\
& \text { or }  \tag{7.30}\\
\mathbf{x}^{k}= & \mathbf{x}^{k-1}+M^{-1}\left(\mathbf{b}-A \mathbf{x}^{k-1}\right)
\end{align*}
\]

Here, the matrix \(I-M^{-1} A\left(=M^{-1} N\right)\) is called the iteration matrix.

We shall say that the iterative method in (7.30) is convergent if it converges for any initial vector \(x^{0}\). A sequence of vectors \(\left\{x^{1}, x^{2}, \cdots\right\}\) will be computed from (7.30), and our objective is to choose \(M\) so that these two conditions are met:
1. The sequence \(\left\{\mathrm{x}^{k}\right\}\) is easily computed. (Of course, \(M\) must be invertible.)
2. The sequence \(\left\{\mathrm{x}^{k}\right\}\) converges rapidly to the solution.

Both conditions can be satisfied if (1) \(M\) is easy to invert and (2) \(M^{-1}\) approximates \(A^{-1}\) well.

Convergence: Recall (7.30):
\[
\mathbf{x}^{k}=\left(I-M^{-1} A\right) \mathbf{x}^{k-1}+M^{-1} \mathbf{b} \quad(k \geq 1)
\]

If the sequence \(\left\{\mathrm{x}^{k}\right\}\) converges, say to a vector x , then it follows from (7.30) that
\[
\begin{equation*}
\mathbf{x}=\left(I-M^{-1} A\right) \mathbf{x}+M^{-1} \mathbf{b} \tag{7.31}
\end{equation*}
\]

Thus, by letting \(\mathrm{e}^{k}=\mathrm{x}-\mathrm{x}^{k}\), we have
\[
\begin{equation*}
\mathbf{e}^{k}=\left(I-M^{-1} A\right) \mathbf{e}^{k-1} \quad(k \geq 1) \tag{7.32}
\end{equation*}
\]
which implies
\[
\begin{align*}
\left\|\mathbf{e}^{k}\right\| & \leq\left\|I-M^{-1} A\right\|\left\|\mathbf{e}^{k-1}\right\| \\
& \leq\left\|I-M^{-1} A\right\|^{2}\left\|\mathbf{e}^{k-2}\right\|  \tag{7.33}\\
& \leq \cdots \leq\left\|I-M^{-1} A\right\|^{k}\left\|\mathbf{e}^{0}\right\|
\end{align*}
\]

Thus, it can be concluded as in the following theorem.

\section*{Theorem 7.36. (Sufficient condition for convergence).}

If \(\left\|I-M^{-1} A\right\|=\left\|M^{-1} N\right\|<1\) for some induced matrix norm, then the sequence produced by (7.30) converges to the solution of \(A \mathrm{x}=\mathrm{b}\) for any initial vector \(\mathrm{x}^{0}\).

Note: Let \(\delta=\left\|I-M^{-1} A\right\|\).
- (Choice of \(M\) ) When
\[
M^{-1} A \approx I, \text { or equivalently } M^{-1} \approx A^{-1}
\]
the quantity \(\delta\) will become smaller and therefore the iteration converges faster.
- (Stopping criterion) If \(\delta=\left\|I-M^{-1} A\right\|<1\), then it is safe to halt the iterative process when \(\left\|\mathrm{x}^{k}-\mathrm{x}^{k-1}\right\|\) is small. Indeed, since
\[
\mathbf{e}^{k}=\left(I-M^{-1} A\right) \mathbf{e}^{k-1}=\left(I-M^{-1} A\right)\left(\mathbf{e}^{k}+\mathbf{x}^{k}-\mathbf{x}^{k-1}\right),
\]
we can obtain
\[
\left\|\mathbf{e}^{k}\right\| \leq \delta\left(\left\|\mathbf{e}^{k}\right\|+\left\|\mathbf{x}^{k}-\mathbf{x}^{k-1}\right\|\right)
\]
which implies
\[
\begin{equation*}
\left\|\mathbf{e}^{k}\right\| \leq \frac{\delta}{1-\delta}\left\|\mathbf{x}^{k}-\mathbf{x}^{k-1}\right\| . \tag{7.34}
\end{equation*}
\]

Theorem 7.37. The iteration (7.30) converges if and only if
\[
\begin{equation*}
\rho\left(I-M^{-1} A\right)=\rho\left(M^{-1} N\right)<1 . \tag{7.35}
\end{equation*}
\]

Note: An iterative algorithm converges if and only if its iteration matrix is convergent. See Theorem (7.31), p.248, for details of matrix convergence.

\subsection*{7.3.2. Richardson method: the simplest iteration}

The iterative method is called the Richardson method if \(M\) is simply chosen to be the identity matrix:
\[
M=I \text { and } N=I-A .
\]

In this case, the second equation in (7.30) reads
\[
\begin{equation*}
\mathrm{x}^{k}=\mathrm{x}^{k-1}+\left(\mathbf{b}-A \mathrm{x}^{k-1}\right) . \tag{7.36}
\end{equation*}
\]
```

Richardson := $\operatorname{proc}(n, A, b, x$, itmax $)$
local k, i, r,
$r:=\operatorname{Vector}(n)$;
for k from 1 to itmax do
for i from 1 to n do
$r[i]:=b[i]-\operatorname{add}(A[i, j] \cdot x[j], j=1 . . n) ;$
end do;
for i from 1 to n do
$x[i]:=x[i]+r[i] ;$
end do;
print ($\left.{ }^{`} k={ }^{`}, k, \operatorname{evalf}\left(x^{\% T}\right)\right)$;
end do;
end proc:

```

Figure 7.1: A maple implementation for the Richardson method.
```

 Results of Richardson
 A := 1/6*Matrix([[6, 3, 2], [2, 6, 3], [3, 2, 6]]):
b := 1/6*Vector([11, 11, 11]):
x := Vector([0, 0, 0]):
Richardson(3, A, b, x, 10)
k=, 1, [1.833333333, 1.833333333, 1.833333333]
k=, 2, [0.3055555556, 0.3055555556, 0.3055555556]
k=, 3, [1.578703704, 1.578703704, 1.578703704]
k=, 4, [0.5177469136, 0.5177469136, 0.5177469136]
k=, 5, [1.401877572, 1.401877572, 1.401877572]
k=, 6, [0.6651020233, 0.6651020233, 0.6651020233]
k=, 7, [1.279081647, 1.279081647, 1.279081647]
k=, 8, [0.7674319606, 0.7674319606, 0.7674319606]
k=, 9, [1.193806699, 1.193806699, 1.193806699]
k=, 10, [0.8384944171, 0.8384944171, 0.8384944171]

```
```

Eigenvalues of the iteration matrix
with(LinearAlgebra): Id := Matrix(3, shape = identity):
evalf(Eigenvalues(Id - A));
[-0.8333333333]
[0.4166666667 - 0.1443375673 I]
[0.4166666667 + 0.1443375673 I]

```

Note: Eigenvalues of \(A\) must be
\[
\left[\begin{array}{l}
1.833333333 \\
0.5833333333+i 0.1443375673 \\
0.5833333333-i 0.1443375673
\end{array}\right] .
\]

Thus all eigenvalues \(\lambda\) of \(A\) are in the open disk \(\{z \in \mathbb{C}:|z-1|<1\}\), which is a sufficient and necessary condition for the convergence of the Richardson method.

\section*{Generalization of the Richardson method}

Consider
\[
\begin{equation*}
A \mathbf{x}=\mathbf{b}, \tag{7.37}
\end{equation*}
\]
where some eigenvalues of \(A\) are not in \(\{z \in \mathbb{C}:|z-1|<1\}\).
- First, scale (7.37) with a constant \(\eta\) :
\[
\begin{equation*}
\eta A \mathbf{x}=\eta \mathbf{b}, \tag{7.38}
\end{equation*}
\]
where all the eigenvalues of \(\eta A\) are in the open disk.
- Then, apply the Richardson method to (7.38):
with \(M=I\) and \(N=I-\eta A\), the iteration reads
\[
\begin{align*}
\mathbf{x}^{k} & =\mathbf{x}^{k-1}+\left(\eta \mathbf{b}-\eta A \mathbf{x}^{k-1}\right)  \tag{7.39}\\
& =\mathbf{x}^{k-1}+\eta\left(\mathbf{b}-A \mathbf{x}^{k-1}\right)
\end{align*}
\]

Thus the Richardson method converges by choosing an appropriate scaling factor \(\eta\).

Self-study 7.38. Let \(A \in \mathbb{R}^{n \times n}\) be a definite matrix. Prove that the generalized Richardson method is convergent for the solution of \(A \mathbf{x}=\mathbf{b}\).

\section*{Solution.}

\subsection*{7.4. Relaxation Methods}

Definition 7.39. A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices: \(A=M-N\).

Relaxation methods: We first express \(A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}\) as the matrix sum:
\[
\begin{equation*}
A=D-E-F, \tag{7.40}
\end{equation*}
\]
where
\[
\begin{aligned}
D & =\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n n}
\end{array}\right] \\
-F & =\left[\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1, n} \\
0 & \cdots & 0 & 0
\end{array}\right]-E=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
a_{21} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
a_{n 1} & \cdots & a_{n, n-1} & 0
\end{array}\right]
\end{aligned}
\]

Then, relaxation methods can be formulated by selecting \(M\) and \(N\) for the matrix splitting. Examples are:

Table 7.1: Common relaxation methods.
\begin{tabular}{|l||l|l|}
\hline & \(M\) & \(N\) \\
\hline \hline Jacobi method & \(D\) & \(E+F\) \\
Gauss-Seidel method & \(D-E\) & \(F\) \\
SOR method & \(\frac{1}{\omega} D-E, \omega \in(0,2)\) & \(\frac{1-\omega}{\omega} D+F\) \\
\hline
\end{tabular}

Here, SOR stands for successive over relaxation.

\section*{Jacobi Method}

The Jacobi method is formulated with \(M=D\) and \(N=E+F\) :
\[
\begin{equation*}
D \mathbf{x}^{k}=(E+F) \mathbf{x}^{k-1}+\mathbf{b} . \tag{7.41}
\end{equation*}
\]

The \(i\)-th component of (7.41) reads
\[
\begin{equation*}
a_{i i} x_{i}^{k}=b_{i}+\sum_{j=1}^{i-1}\left(-a_{i j} x_{j}^{k-1}\right)+\sum_{j=i+1}^{n}\left(-a_{i j} x_{j}^{k-1}\right), \tag{7.42}
\end{equation*}
\]
or, equivalently,
\[
\begin{equation*}
x_{i}^{k}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k-1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k-1}\right) \tag{7.43}
\end{equation*}
\]

Example 7.40. Let \(A:=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\) and \(\mathbf{b}:=\left[\begin{array}{l}1 \\ 0 \\ 5\end{array}\right]\). Use the Jacobi \(\operatorname{method}\) to find \(\mathbf{x}^{k}, k=1,2,3\), beginning from \(\mathbf{x}^{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\).

\section*{Solution.} Manual checking in Maple
```

x0 := Vector([1,1,1]):
x1 := Vector(3): x2 := Vector(3): x3 := Vector(3):
x1[1] := (-A[1, 2]*x0[2] - A[1, 3]*x0[3] + b[1])/A[1, 1];
x1[2] := (-A[2, 1]*x0[1] - A[2, 3]*x0[3] + b[2])/A[2, 2];
x1[3] := (-A[3, 1]*x0[1] - A[3, 2]*x0[2] + b[3])/A[3, 3];
x1^%T
[1, 1, 3]
x2[1] := (-A[1, 2]*x1[2] - A[1, 3]*x1[3] + b[1])/A[1, 1];
x2[2] := (-A[2, 1]*x1[1] - A[2, 3]*x1[3] + b[2])/A[2, 2];
x2[3] := (-A[3, 1]*x1[1] - A[3, 2]*x1[2] + b[3])/A[3, 3];
x2~%%
[1, 2, 3]
x3[1] := (-A[1, 2]*x2[2] - A[1, 3]*x2[3] + b[1])/A[1, 1];

```
```

x3[2] := (-A[2, 1]*x2[1] - A[2, 3]*x2[3] + b[2])/A[2, 2];
x3[3] := (-A[3, 1]*x2[1] - A[3, 2]*x2[2] + b[3])/A[3, 3];
x3~%T

```
    \(\begin{array}{lll}{[3} & 7]\end{array}\)
    [-, 2, -]
    \(\begin{array}{cc}{[2} & 2]\end{array}\)

Note: The true solution is \([2,3,4]^{T}\).
Jacobi: Maple implementation
```

Jacobi := $\operatorname{proc}(n, A, b, x$, tol, itmax $)$
local $i, j, k, i d 1, i d 2, x x ;$
$x x:=\operatorname{Matrix}(n, 2)$;
for i from 1 to n do
$x x[i, 1]:=x[i] ;$
end do;
for k from 1 to itmax do
$i d 1:=\operatorname{modp}(k+1,2)+1$;
$i d 2:=\operatorname{modp}(k, 2)+1$;
for i from 1 to n do
$x x[i, i d 2]:=(b[i]-\operatorname{add}(A[i, j] \cdot x x[j, i d 1], j=1 . . i-1)$
$-\operatorname{add}(A[i, j] \cdot x x[j, i d 1], j=i+1 . . n)) / A[i, i] ;$
end do;
$\operatorname{print}\left(` k={ }^{`}, k, \operatorname{evalf}\left(x x[1 . . n, i d 2]^{\% T}\right)\right)$;
end do;
end proc:

```

Figure 7.2: Maple implementation for the Jacobi method.
```

Jacobi(3, A, b, x0, tol, 10)
k=, 1, [1., 1., 3.]
k=, 2, [1., 2., 3.]
k=, 3, [1.500000000, 2., 3.500000000]
k=, 4, [1.500000000, 2.500000000, 3.500000000]
k=, 5, [1.750000000, 2.500000000, 3.750000000]
k=, 6, [1.750000000, 2.7500000000, 3.750000000]
k=, 7, [1.875000000, 2.750000000, 3.875000000]
k=, 8, [1.875000000, 2.875000000, 3.875000000]
k=, 9, [1.937500000, 2.875000000, 3.937500000]
k=, 10, [1.937500000, 2.937500000, 3.937500000]

```
Jacobi: the \(\ell^{\infty}\)-error \(=0.0625\)

\section*{Gauss-Seidel Method}

The Gauss-Seidel method is formulated with \(M=D-E\) and \(N=F\) :
\[
\begin{equation*}
(D-E) \mathbf{x}^{k}=F \mathbf{x}^{k-1}+\mathbf{b} . \tag{7.44}
\end{equation*}
\]

Note that (7.44) can be equivalently written as
\[
\begin{equation*}
D \mathbf{x}^{k}=\mathbf{b}+E \mathbf{x}^{k}+F \mathbf{x}^{k-1} . \tag{7.45}
\end{equation*}
\]

The \(i\)-th component of (7.45) reads
\[
\begin{equation*}
a_{i i} x_{i}^{k}=b_{i}+\sum_{j=1}^{i-1}\left(-a_{i j} x_{j}^{k}\right)+\sum_{j=i+1}^{n}\left(-a_{i j} x_{j}^{k-1}\right), \tag{7.46}
\end{equation*}
\]
or, equivalently,
\[
\begin{equation*}
x_{i}^{k}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k-1}\right) \tag{7.47}
\end{equation*}
\]

The difference is that the SOR method utilizes updated values.

\section*{Gauss-Seidel (GS): Maple implementation}
```

GaussSeidel := $\operatorname{proc}(n, A, b, x$, tol, itmax $)$
local i, j, k;
for k from 1 to itmax do
for i from 1 to n do
$x[i]:=(b[i]-\operatorname{add}(A[i, j] \cdot x[j], j=1 . . i-1)$
$-\operatorname{add}(A[i, j] \cdot x[j], j=i+1 . . n)) / A[i, i] ;$
end do;
print ($\left.{ }^{k} k=`, k, \operatorname{evalf}\left(x^{\% T}\right)\right)$;
end do;
end proc:

```

Figure 7.3: Maple implementation for the Gauss-Seidel method.
```

Results of GaussSeidel
GaussSeidel(3, A, b, x0, tol, 10)
k=, 1, [1., 1., 3.]
k=, 2, [1., 2., 3.500000000]
k=, 3, [1.500000000, 2.500000000, 3.750000000]
k=, 4, [1.750000000, 2.750000000, 3.875000000]
k=, 5, [1.875000000, 2.875000000, 3.937500000]
k=, 6, [1.937500000, 2.937500000, 3.968750000]
k=, 7, [1.968750000, 2.968750000, 3.984375000]
k=, 8, [1.984375000, 2.984375000, 3.992187500]
k=, 9, [1.992187500, 2.992187500, 3.996093750]
k=, 10, [1.996093750, 2.996093750, 3.998046875]

```

Gauss-Seidel: the \(\ell^{\infty}\)-error \(\approx 0.0039=3.9 \mathrm{E}-3\).
Note: By comparison with the result of the Jacobi method, we may conclude that Gauss-Seidel method is twice faster than the Jacobi method.

\section*{Successive Over Relaxation (SOR) Method}

The successive over relaxation (SOR) is formulated with \(M=\frac{1}{\omega} D-E\) and \(N=\frac{1-\omega}{\omega} D+F\) :
\[
\begin{equation*}
(D-\omega E) \mathbf{x}^{k}=((1-\omega) D+\omega F) \mathbf{x}^{k-1}+\omega \mathbf{b} . \tag{7.48}
\end{equation*}
\]

Note that (7.48) can be equivalently written as
\[
\begin{equation*}
D \mathbf{x}^{k}=(1-\omega) D \mathbf{x}^{k-1}+\omega\left(\mathbf{b}+E \mathbf{x}^{k}+F \mathbf{x}^{k-1}\right) \tag{7.49}
\end{equation*}
\]

The \(i\)-th component of (7.49) reads
\[
\begin{equation*}
a_{i i} x_{i}^{k}=(1-\omega) a_{i i} x_{i}^{k-1}+\omega\left(b_{i}+\sum_{j=1}^{i-1}\left(-a_{i j} x_{j}^{k}\right)+\sum_{j=i+1}^{n}\left(-a_{i j} x_{j}^{k-1}\right)\right), \tag{7.50}
\end{equation*}
\]
or, equivalently,
\[
\begin{align*}
x_{G S, i}^{k} & =\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k-1}\right)  \tag{7.51}\\
x_{i}^{k} & =(1-\omega) x_{i}^{k-1}+\omega x_{G S, i}^{k}
\end{align*}
\]

Note that when \(\omega=1\), the SOR becomes the Gauss-Seidel method.

\section*{SOR: Maple implementation}
```

SOR := $\operatorname{proc}(n, A, b, x, w$, tol, itmax $)$
local $i, j, k, x G S$;
for k from 1 to itmax do
for i from 1 to n do
$x G S:=(b[i]-\operatorname{add}(A[i, j] \cdot x[j], j=1 . . i-1)$
$-\operatorname{add}(A[i, j] \cdot x[j], j=i+1 . . n)) / A[i, i] ;$
$x[i]:=(1-w) \cdot x[i]+w \cdot x G S ;$
end do;
print ($\left.{ }^{`} k={ }^{`}, k, \operatorname{evalf}\left(x^{\% T}\right)\right)$;
end do;
end proc:

```

Figure 7.4: Maple implementation for the SOR method.
```

SOR(3, A, b, x0, 1.2, tol, 10)
k=, 1, [1.0, 1.000000000, 3.400000000]
k=, 2, [1.000000000, 2.440000000, 3.784000000]
k=, 3, [1.864000000, 2.900800000, 3.983680000]
k=, 4, [1.967680000, 2.990656000, 3.997657600]
k=, 5, [2.000857600, 3.000977920, 4.001055232]
k=, 6, [2.000415232, 3.000686694, 4.000200970]
k=, 7, [2.000328970, 3.000180625, 4.000068180]
k=, 8, [2.000042580, 3.000030331, 4.000004563]
k=, 9, [2.000009683, 3.000002482, 4.000000576]
k=, 10, [1.999999552, 2.999999581, 3.999999633]

```

SOR: the \(\ell^{\infty}\)-error \(\approx 0.00000045=4.5 \mathrm{E}-7\).
Note: The SOR with \(\omega=1.2\) :
- It is much faster than the Jacobi and GS methods.
- Question: How can we find the optimal parameter \(\widehat{\omega}\) ?

We will see it soon.

\section*{Convergence Theory}

Theorem 7.41. For and \(\mathrm{x}^{0} \in \mathbb{R}^{n}\), the sequence defined by
\[
\begin{equation*}
\mathbf{x}^{k}=T \mathbf{x}^{k-1}+\mathbf{c} \tag{7.52}
\end{equation*}
\]
converges to the unique solution of \(\mathrm{x}=T \mathrm{x}+\mathbf{c}\) if and only if \(\rho(T)<1\). In this case, the iterates satisfy
\[
\begin{equation*}
\left\|\mathrm{x}-\mathrm{x}^{k}\right\| \leq\|T\|^{k}\left\|\mathrm{x}-\mathrm{x}^{0}\right\| . \tag{7.53}
\end{equation*}
\]

For example:
\begin{tabular}{|l|l|}
\hline Relaxation method & \(T\) (Iteration matrix) \\
\hline Jacobi method & \(T_{J}=D^{-1}(E+F)\) \\
Gauss-Seidel method & \(T_{G S}=(D-E)^{-1} F\) \\
SOR method & \(T_{S O R}=(D-\omega E)^{-1}[(1-\omega) D+\omega F]\) \\
\hline
\end{tabular}

Theorem 7.42. (Stein and Rosenberg, 1948) [22]. One and only one of the following mutually exclusive relations is valid:
1. \(\rho\left(T_{J}\right)=\rho\left(T_{G S}\right)=0\)
2. \(0<\rho\left(T_{G S}\right)<\rho\left(T_{J}\right)<1\)
3. \(\rho\left(T_{J}\right)=\rho\left(T_{G S}\right)=1\)
4. \(1<\rho\left(T_{J}\right)<\rho\left(T_{G S}\right)\)

Theorem 7.43. Let \(A\) be symmetric. Then,
\[
\begin{equation*}
\rho\left(T_{S O R}\right)<1 \Longleftrightarrow A \text { is is positive definite and } 0<\omega<2 . \tag{7.54}
\end{equation*}
\]

Parameter 7.44. (Optimal \(\boldsymbol{\omega}\) for the SOR). For algebraic systems of good properties, it is theoretically known that the convergence of the SOR can be optimized when
\[
\begin{equation*}
\widehat{\omega}=\frac{2}{1+\sqrt{1-\rho\left(T_{J}\right)^{2}}} . \tag{7.55}
\end{equation*}
\]

However, in many cases you can find a better \(\omega\) for a given algebraic system.

Note: Let \(0<\rho\left(T_{J}\right)<1\). Then the theoretically optimal SOR parameter
\[
\begin{align*}
& 1<\widehat{\omega}<2, \\
& \widehat{\omega} \approx 1+\frac{1}{4} \rho\left(T_{J}\right)^{2}+\frac{1}{8} \rho\left(T_{J}\right)^{4} . \tag{7.56}
\end{align*}
\]

\section*{Remark 7.45.}
- When \(\omega>1\), the blending of the SOR, the second equation in (7.51), is an extrapolation. It is how the algorithm is named.
- On the other hand, when \(\omega<1\), the algorithm is also called the successive under relaxation (SUR).

\subsection*{7.5. Graph Theory: Estimation of the Spectral Radius}

Definition 7.46. A permutation matrix is a square matrix in which each row and each column has one entry of unity, all others zero.

\subsection*{7.5.1. Irreducible matrices}

Definition 7.47. For \(n \geq 2\), an \(n \times n\) complex-valued matrix \(A\) is reducible if there is a permutation matrix \(P\) such that
\[
P A P^{T}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
\]
where \(A_{11}\) and \(A_{22}\) are respectively \(r \times r\) and \((n-r) \times(n-r)\) submatrices, \(0<r<n\). If no such permutation matrix exists, then \(A\) is irreducible.

The geometrical interpretation of the concept of the irreducibility by means of graph theory is useful.

\section*{Geometrical interpretation of irreducibility}

\section*{Directed graph}
- Given \(A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}\), consider \(n\) distinct points
\[
P_{1}, P_{2}, \cdots, P_{n}
\]
in the plane, which we will call nodes or nodal points.
- For any nonzero entry \(a_{i j}\) of \(A\), we connect \(P_{i}\) to \(P_{j}\) by a path \({\overrightarrow{P_{i} P}}_{j}\), directed from the node \(P_{i}\) to the node \(P_{j}\); a nonzero \(a_{i i}\) is joined to itself by a directed loop, as shown in Figure 7.5.
- In this way, every \(n \times n\) matrix \(A\) can be associated with a directed graph \(G(A)\).


Figure 7.5: The directed paths for nonzero \(a_{i i}\) and \(a_{i j}\).

Example 7.48. For example, the matrix
\[
A=\left[\begin{array}{rrr}
2 & -1 & 0  \tag{7.57}\\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
\]
has a directed graph shown in Figure 7.6.


Figure 7.6: The directed graph \(G(A)\) for \(A\) in (7.57).

Definition 7.49. A directed graph is strongly connected if, for any ordered pair of nodes \(\left(P_{i}, P_{j}\right)\), there is a directed path of a finite length
\[
\overrightarrow{P_{i} P_{k_{1}}},{\overrightarrow{P k_{1}}}_{P_{k_{2}}}, \cdots, P_{k_{r-1}} \vec{P}_{k_{r}=j}
\]
connecting from \(P_{i}\) to \(P_{j}\).
The theorems to be presented in this subsection can be found in (Varga, 2000) [25] along with their proofs.

Theorem 7.50. An \(n \times n\) complex-valued matrix \(A\) is irreducible if and only if its directed graph \(G(A)\) is strongly connected.

\subsection*{7.5.2. Eigenvalue locus theorem}

For \(A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}\), let
\[
\begin{equation*}
\Lambda_{i}:=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \tag{7.58}
\end{equation*}
\]

Theorem 7.51. (Eigenvalue locus theorem) Let \(A=\left[a_{i j}\right]\) be an irreducible \(n \times n\) complex matrix. Then,
1. (Gerschgorin, 1931) [7]: All eigenvalues of \(A\) lie in the union of the disks in the complex plane
\[
\begin{equation*}
\left|z-a_{i i}\right| \leq \Lambda_{i}, \quad 1 \leq i \leq n . \tag{7.59}
\end{equation*}
\]
2. (Taussky, 1948) [23]: In addition, assume that \(\lambda\), an eigenvalue of \(A\), is a boundary point of the union of the disks \(\left|z-a_{i i}\right| \leq \Lambda_{i}\). Then, all the \(n\) circles \(\left|z-a_{i i}\right|=\Lambda_{i}\) must pass through the point \(\lambda\), i.e., \(\left|\lambda-a_{i i}\right|=\Lambda_{i}\) for all \(1 \leq i \leq n\).

Example 7.52. Consider an algebraic system \(A \mathbf{x}=\mathbf{b}\), with
\[
A=\left[\begin{array}{rrr}
2 & -1 & 0  \tag{7.60}\\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
\]

Estimate spectral radii of iteration matrices, for the Jacobi, the GaussSeidel, and the SOR.

\section*{Solution. Jacobi:}

Jacobi
```

M := Matrix([[2, 0, 0], [0, 2, 0], [0, 0, 2]]):
N := M - A:
TJ := M^-1 N

$$
\left.\begin{array}{rl}
\mathrm{TJ}:= & {\left[\begin{array}{ccc}
0 & 1 / 2 & 0
\end{array}\right]} \\
{[1 / 2} & 0 \\
{[0} & 1 / 2
\end{array}\right]\left[\begin{array}{c}
0
\end{array}\right]
$$

```
\(\Lambda_{1}=1 / 2, \Lambda_{2}=1\), and \(\Lambda_{3}=1 / 2\). Thus \(\left|\lambda_{i}-0\right|=\left|\lambda_{i}\right|<1\), for \(i=1,2,3\).
```

with(LinearAlgebra):
Eigenvalues(TJ)~%T
[0 1/sqrt(2) -1/sqrt(2)]

```

Thus, \(\rho\left(T_{J}\right)=1 / \sqrt{2} \approx 0.7071067810\).

\section*{Gauss-Seidel:}

Gauss-Seidel
```

M := Matrix([[2, 0, 0], [-1, 2, 0], [0, -1, 2]]):
N := M - A:
TGS := M^-1 N

```
\[
\left.\mathrm{TGS}:=\begin{array}{ccc}
{[0} & 1 / 2 & 0
\end{array}\right]
\]
\(\Lambda_{1}=1 / 2, \Lambda_{2}=1 / 2\), and \(\Lambda_{3}=1 / 8:\)
\[
\lambda_{i} \in\left\{|z-0|<\frac{1}{2}\right\} \cup\left\{\left|z-\frac{1}{4}\right|<\frac{1}{2}\right\} \cup\left\{\left|z-\frac{1}{2}\right|<\frac{1}{8}\right\}
\]

Thus \(-\frac{1}{2}<\Re\left(\lambda_{i}\right)<\frac{3}{4}\) and therefore \(\rho\left(T_{G S}\right)<\frac{3}{4}\).

\section*{Eigenvalues(TGS) ~\%T}
\[
\begin{array}{ccc}
{[0} & 0 & 1 / 2]
\end{array}
\]

Thus, \(\rho\left(T_{G S}\right)=0.5\), which is exactly the square of \(\rho\left(T_{J}\right)\).

SOR
\[
\begin{aligned}
& M:=\left[\begin{array}{ccc}
2 / w & 0 & 0 \\
-1 & 2 / w & 0 \\
0 & -1 & 2 / w
\end{array}\right]: N:=M-A: w:=\frac{6}{5}: \\
& \text { TSOR }:=M^{-1} . N \\
& \\
& \text { TSOR }:=\left[\begin{array}{ccc}
-\frac{1}{5} & \frac{3}{5} & 0 \\
-\frac{3}{25} & \frac{4}{25} & \frac{3}{5} \\
-\frac{9}{125} & \frac{12}{125} & \frac{4}{25}
\end{array}\right]
\end{aligned}
\]
\(\Lambda_{1}=3 / 5, \Lambda_{2}=18 / 25\), and \(\Lambda_{3}=21 / 125\).
Thus \(-\frac{4}{5}<\Re\left(\lambda_{i}\right)<\frac{22}{25}\) and therefore \(\rho\left(T_{S O R}\right)<\frac{22}{25}\).
Eigenvalues \((T S O R)^{\% T}=\left[-\frac{1}{5} \frac{4}{25}-\frac{3 \text { I }}{25} \quad \frac{4}{25}+\frac{3 \text { I }}{25}\right.\)
\(\rho(T S O R)=\max \left(\operatorname{abs}\left(\frac{4}{25}+\frac{3}{25} \mathrm{I}\right), \frac{1}{5}\right)=\frac{1}{5}\)

\section*{Positiveness}

Definition 7.53. An \(n \times n\) complex-valued matrix \(A=\left[a_{i j}\right]\) is diagonally dominant if
\[
\begin{equation*}
\left|a_{i i}\right| \geq \Lambda_{i}:=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \tag{7.61}
\end{equation*}
\]
for all \(1 \leq i \leq n\). An \(n \times n\) matrix \(A\) is irreducibly diagonally dominant if \(A\) is irreducible and diagonally dominant, with strict inequality holding in (7.61) for at least one \(i\).

Theorem 7.54. Let \(A\) be an \(n \times n\) strictly or irreducibly diagonally dominant complex-valued matrix. Then, \(A\) is nonsingular. If all the diagonal entries of \(A\) are in addition positive real, then the real parts of all eigenvalues of \(A\) are positive.

Corollary 7.55. A Hermitian matrix satisfying the conditions in Theorem 7.54 is positive definite.

\subsection*{7.5.3. Regular splitting and M-matrices}

Definition 7.56. For \(n \times n\) real matrices, \(A, M\), and \(N, A=M-N\) is a regular splitting of \(A\) if \(M\) is nonsingular with \(M^{-1} \geq 0\), and \(N \geq 0\).

Theorem 7.57. If \(A=M-N\) is a regular splitting of \(A\) and \(A^{-1} \geq 0\), then
\[
\begin{equation*}
\rho\left(M^{-1} N\right)=\frac{\rho\left(A^{-1} N\right)}{1+\rho\left(A^{-1} N\right)}<1 . \tag{7.62}
\end{equation*}
\]

Thus, the matrix \(M^{-1} N\) is convergent and the iterative method (7.29) converges for any initial value \(\mathrm{x}^{0}\).

Definition 7.58. An \(n \times n\) real matrix \(A=\left[a_{i j}\right]\) with \(a_{i j} \leq 0\) for all \(i \neq j\) is an M-matrix if \(A\) is nonsingular and \(A^{-1} \geq 0\).

Theorem 7.59. Let \(A=\left(a_{i j}\right)\) be an \(n \times n M\)-matrix. If \(M\) is any \(n \times n\) matrix obtained by setting certain off-diagonal entries of \(A\) to zero, then \(A=M-N\) is a regular splitting of \(A\) and \(\rho\left(M^{-1} N\right)<1\).

Theorem 7.60. Let \(A\) be an \(n \times n\) real matrix with \(A^{-1}>0\), and \(A=\) \(M_{1}-N_{1}=M_{2}-N_{2}\) be two regular splittings of \(A\). If \(N_{2} \geq N_{1} \geq 0\), where neither \(N_{2}-N_{1}\) nor \(N_{1}\) is null, then
\[
\begin{equation*}
1>\rho\left(M_{2}^{-1} N_{2}\right)>\rho\left(M_{1}^{-1} N_{1}\right)>0 \tag{7.63}
\end{equation*}
\]

\subsection*{7.6. Krylov Subspace Methods}

Definition 7.61. A matrix \(A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}\) is said to be positive definite if
\[
\begin{equation*}
\mathbf{x}^{T} A \mathbf{x}=\sum_{i, j=1}^{n} x_{i} a_{i j} x_{j}>0, \quad \forall \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{x} \neq 0 . \tag{7.64}
\end{equation*}
\]

For solving a linear system
\[
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{7.65}
\end{equation*}
\]
where \(A\) is symmetric positive definite, Krylov subspace methods update the iterates as follows.

Given an initial guess \(\mathrm{x}_{0} \in \mathbb{R}^{n}\), find successive approximations \(\mathrm{x}_{k} \in \mathbb{R}^{n}\) of the form
\[
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}, \quad k=0,1, \cdots, \tag{7.66}
\end{equation*}
\]
where \(\mathbf{p}_{k}\) is the search direction and \(\alpha_{k}>0\) is the step length.
- Different methods differ in the choice of the search direction and the step length.
- In this section, we consider the gradient descent method the conjugate gradient (CG) method, and preconditioned CG method.
- For other Krylov subspace methods, see e.g. [1, 15].

Remark 7.62. The algebraic system (7.65) admits a unique solution \(\mathrm{x} \in \mathbb{R}^{n}\), which is equivalently characterized by
\[
\begin{equation*}
\mathbf{x}=\arg \min _{\eta \in \mathbb{R}^{n}} f(\eta), \quad f(\eta)=\frac{1}{2} \eta \cdot A \eta-\mathbf{b} \cdot \eta . \tag{7.67}
\end{equation*}
\]

\subsection*{7.6.1. Gradient descent (GD) method}

The gradient descent method is also known as the steepest descent method or the Richardson's method.

\section*{Derivation of the GD method}
- We denote the gradient and Hessian of \(f\) by \(f^{\prime}\) and \(f^{\prime \prime}\), respectively:
\[
\begin{equation*}
f^{\prime}(\eta)=A \eta-\mathbf{b}, \quad f^{\prime \prime}(\eta)=A . \tag{7.68}
\end{equation*}
\]
- Given \(\mathbf{x}_{k+1}\) as in (7.66), we have by Taylor's formula
\[
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & =f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \\
& =f\left(\mathbf{x}_{k}\right)+\alpha_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\frac{\alpha_{k}^{2}}{2} \mathbf{p}_{k} \cdot f^{\prime \prime}(\boldsymbol{\xi}) \mathbf{p}_{k} \tag{7.69}
\end{align*}
\]
for some \(\boldsymbol{\xi}\).
- Since \(f^{\prime \prime}(\eta)(=A)\) is bounded,
\[
f\left(\mathbf{x}_{k+1}\right)=f\left(\mathbf{x}_{k}\right)+\alpha_{k} f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}+\mathcal{O}\left(\alpha_{k}^{2}\right), \quad \text { as } \alpha_{k} \rightarrow 0 .
\]
- The goal is to find \(\mathbf{p}_{k}\) and \(\alpha_{k}\) such that
\[
\begin{equation*}
f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right), \tag{7.70}
\end{equation*}
\]
which can be achieved if
\[
\begin{equation*}
f^{\prime}\left(\mathbf{x}_{k}\right) \cdot \mathbf{p}_{k}<0 \tag{7.71}
\end{equation*}
\]
and either \(\gamma_{k}\) is sufficiently small or \(f^{\prime \prime}(\boldsymbol{\xi})\) is nonnegative.
- Choice: When \(f^{\prime}\left(\mathrm{x}_{k}\right) \neq 0\), (7.71) holds, if we choose:
\[
\begin{equation*}
\mathbf{p}_{k}=-f^{\prime}\left(\mathbf{x}_{k}\right)=\mathbf{b}-A \mathbf{x}_{k}=: \mathbf{r}_{k} \tag{7.72}
\end{equation*}
\]

That is, the search direction is the negative gradient, the steepest descent direction.

Optimal step length: We may determine \(\alpha_{k}\) such that
\[
\begin{equation*}
f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)=\min _{\alpha} f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right) \tag{7.73}
\end{equation*}
\]
in which case \(\alpha_{k}\) is said to be optimal.
If \(\alpha_{k}\) is optimal, then
\[
\begin{align*}
0 & =\left.\frac{\mathrm{d}}{\mathrm{~d} \alpha} f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)\right|_{\alpha=\alpha_{k}}=f^{\prime}\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \cdot \mathbf{p}_{k} \\
& =\left(A\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)-\mathbf{b}\right) \cdot \mathbf{p}_{k}  \tag{7.74}\\
& =\left(A \mathbf{x}_{k}-\mathbf{b}\right) \cdot \mathbf{p}_{k}+\alpha_{k} \mathbf{p}_{k} \cdot A \mathbf{p}_{k}
\end{align*}
\]

So,
\[
\begin{equation*}
\alpha_{k}=\frac{\mathbf{r}_{k} \cdot \mathbf{p}_{k}}{\mathbf{p}_{k} \cdot A \mathbf{p}_{k}} \tag{7.75}
\end{equation*}
\]

Theorem 7.63. (Convergence of the GD method): The GD method converges, satisfying
\[
\begin{equation*}
\left\|\mathbf{x}-\mathrm{x}_{k}\right\|_{2} \leq\left(1-\frac{1}{\kappa(A)}\right)^{k}\left\|\mathrm{x}-\mathrm{x}_{0}\right\|_{2} \tag{7.76}
\end{equation*}
\]

Thus, the number of iterations required to reduce the error by a factor of \(\varepsilon\) is in the order of the condition number of \(A\) :
\[
\begin{equation*}
k \geq \kappa(A) \log \frac{1}{\varepsilon} . \tag{7.77}
\end{equation*}
\]

\subsection*{7.6.2. Conjugate gradient (CG) method}

In this method the search directions \(\mathbf{p}_{k}\) are conjugate, i.e.,
\[
\begin{equation*}
\mathbf{p}_{i} \cdot A \mathbf{p}_{j}=0, \quad i \neq j, \tag{7.78}
\end{equation*}
\]
and the step length \(\alpha_{k}\) is chosen to be optimal.

\section*{Algorithm 7.64. (CG Algorithm, V.1)}

Select \(\mathbf{x}_{0}, \varepsilon\);
\[
\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, \quad \mathbf{p}_{0}=\mathbf{r}_{0}
\]

Do \(k=0,1, \cdots\)
\[
\begin{align*}
& \alpha_{k}=\mathbf{r}_{k} \cdot \mathbf{p}_{k} / \mathbf{p}_{k} \cdot A \mathbf{p}_{k} ; \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} ; \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} ;  \tag{7.79}\\
& \text { if }\left\|\mathbf{r}_{k+1}\right\|_{2}<\varepsilon\left\|\mathbf{r}_{0}\right\|_{2}, \text { stop; } \\
& \beta_{k}=-\mathbf{r}_{k+1} \cdot A \mathbf{p}_{k} / \mathbf{p}_{k} \cdot A \mathbf{p}_{k} ; \\
& \mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\beta_{k} \mathbf{p}_{k} ;
\end{align*}
\]

End Do

\section*{Remark 7.65. (CG Algorithm, V.1)}
- In practice, \(\mathbf{q}_{k}=A \mathbf{p}_{k}\) is computed only once, and saved.
- \(\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}\), by definition. So,
\[
\begin{align*}
\mathbf{r}_{k+1} & =\mathbf{b}-A \mathbf{x}_{k+1}=\mathbf{b}-A\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right) \\
& =\mathbf{b}-A \mathbf{x}_{k}-\alpha_{k} A \mathbf{p}_{k}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \tag{CG3}
\end{align*}
\]
- \(\alpha_{k}\) in (CG1) is optimal as shown in (7.75). Also it satisfies \(\mathbf{r}_{k+1} \cdot \mathbf{p}_{k}=0\). You may easily verify it using \(\mathbf{r}_{k+1}\) in (CG3).
- \(\beta_{k}\) in (CG4) is determined such that \(\mathbf{p}_{k+1} \cdot A \mathbf{p}_{k}=0\). Verify it using \(\mathbf{p}_{k+1}\) in (CG5).

Theorem 7.66. For \(m=0,1, \cdots\),
\[
\begin{align*}
\operatorname{span}\left\{\mathbf{p}_{0}, \cdots, \mathbf{p}_{m}\right\} & =\operatorname{span}\left\{\mathbf{r}_{0}, \cdots, \mathbf{r}_{m}\right\}  \tag{7.80}\\
& =\operatorname{span}\left\{\mathbf{r}_{0}, A \mathbf{r}_{0}, \cdots, A^{m} \mathbf{r}_{0}\right\}
\end{align*}
\]

Theorem 7.67. The search directions and the residuals satisfy the orthogonality,
\[
\begin{equation*}
\mathbf{p}_{i} \cdot A \mathbf{p}_{j}=0 ; \quad \mathbf{r}_{i} \cdot \mathbf{r}_{j}=0, \quad i \neq j \tag{7.81}
\end{equation*}
\]

Theorem 7.68. For some \(m \leq n\), we have \(A \mathbf{x}_{m}=\mathbf{b}\) and
\[
\begin{equation*}
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{k}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{A} \tag{7.82}
\end{equation*}
\]

So the required iteration number to reduce the error by a factor of \(\varepsilon\) is
\[
\begin{equation*}
k \geq \frac{1}{2} \sqrt{\kappa(A)} \log \frac{2}{\varepsilon} . \tag{7.83}
\end{equation*}
\]

Proofs of the above theorems can be found in e.g. [13].
Simplification of the CG method: Using the properties and identities involved in the method, one can derive a more popular form of the CG method.

\section*{Algorithm 7.69. (CG Algorithm, V.2)}

Select \(\mathbf{x}_{0}, \varepsilon\);
\(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, \quad \mathbf{p}_{0}=\mathbf{r}_{0} ;\)
Compute \(\rho_{0}=\mathbf{r}_{0} \cdot \mathbf{r}_{0}\);
Do \(k=0,1, \cdots\)
\[
\begin{align*}
& \alpha_{k}=\rho_{k} / \mathbf{p}_{k} \cdot A \mathbf{p}_{k} ; \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} ;  \tag{7.84}\\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} ; \\
& \text { if }\left\|\mathbf{r}_{k+1}\right\|_{2}<\varepsilon\left\|\mathbf{r}_{0}\right\|_{2}, \text { stop; } \\
& \rho_{k+1}=\mathbf{r}_{k+1} \cdot \mathbf{r}_{k+1} ; \\
& \beta_{k}=\rho_{k+1} / \rho_{k} ; \\
& \mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\beta_{k} \mathbf{p}_{k}
\end{align*}
\]

End Do

Note:
\[
\begin{align*}
\mathbf{r}_{k} \cdot \mathbf{p}_{k} & =\mathbf{r}_{k} \cdot\left(\mathbf{r}_{k}+\beta_{k-1} \mathbf{p}_{k-1}\right)=\mathbf{r}_{k} \cdot \mathbf{r}_{k} \\
\beta_{k} & =-\mathbf{r}_{k+1} \cdot A \mathbf{p}_{k} / \mathbf{p}_{k} \cdot A \mathbf{p}_{k}=-\mathbf{r}_{k+1} \cdot A \mathbf{p}_{k} \frac{\alpha_{k}}{\rho_{k}}  \tag{7.85}\\
& =\mathbf{r}_{k+1} \cdot\left(\mathbf{r}_{k+1}-\mathbf{r}_{k}\right) / \rho_{k}=\rho_{k+1} / \rho_{k}
\end{align*}
\]

\section*{Example 7.70. (Revisit to Example 7.40)}

Let \(A:=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\) and \(\mathbf{b}:=\left[\begin{array}{l}1 \\ 0 \\ 5\end{array}\right]\). Use the CG method to find \(\mathbf{x}^{k}\), \(k=1,2,3\), beginning from \(\mathbf{x}^{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\).

\section*{Solution.}
\[
\begin{aligned}
& n:=3 \text { : } \\
& x:=x O: r:=b-A x: p:=r: \\
& r h o o:=r^{\% T} . r \text { : } \\
& \text { for } k \text { from } 1 \text { to } n \text { do } \\
& q:=A . p \text {; } \\
& \text { al }:=\frac{r h o O}{p^{\% T} \cdot q} \text {; } \\
& x:=x+a l \cdot p ; \\
& r:=r-a l \cdot q \text {, } \\
& \text { rho1 := r.r, } \\
& b e:=\frac{r h o 1}{r h o 0} \text {; } \\
& p:=r+b e \cdot p ; \\
& \text { rhoO:= rho1; } \\
& \text { print ( ` } k={ }^{`}, k, x, r \text { ); } \\
& \text { if }\left(\text { sqrt }(r h o 1)<10^{-8}\right) \text { then break; end if; } \\
& \text { end do: } \\
& k=, 1,\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] \\
& k=, 2,\left[\begin{array}{c}
1 \\
\frac{7}{3} \\
\frac{11}{3}
\end{array}\right],\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
0
\end{array}\right] \\
& k=, 3,\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
\]

\section*{Remark 7.71.}
- For the example, the CG converged completely in three iterations.
- The CG method was originally developed as a direct solver.

\subsection*{7.6.3. Preconditioned CG method}
- The condition number of \(A, \kappa(A)\), is the critical factor for the convergence of the CG method.
- If we can find a matrix \(M\) such that
\[
M \approx A
\]
and it is easy to invert, we may try to apply the CG algorithm to the following system
\[
\begin{equation*}
M^{-1} A \mathbf{x}=M^{-1} \mathbf{b} \tag{7.86}
\end{equation*}
\]
- Since
\[
\begin{equation*}
\kappa\left(M^{-1} A\right) \ll \kappa(A) \tag{7.87}
\end{equation*}
\]
(hopefully, \(\kappa\left(M^{-1} A\right) \approx 1\) ), the CG algorithm will converge much faster.
In practice, we do not have to multiply \(M^{-1}\) to the original algebraic system and the algorithm can be implemented as

\section*{Algorithm 7.72. (Preconditioned CG)}

Select \(\mathbf{x}_{0}, \varepsilon\);
\(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, M \mathbf{z}_{0}=\mathbf{r}_{0} ;\)
\(\mathbf{p}_{0}=\mathbf{z}_{0}\), compute \(\rho_{0}=\mathbf{z}_{0}^{*} \mathbf{r}_{0}\);
Do \(k=0,1, \cdots\)
\[
\begin{align*}
& \alpha_{k}=\rho_{k} / \mathbf{p}_{k}^{*} A \mathbf{p}_{k} \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} ;  \tag{7.88}\\
& \text { if }\left\|\mathbf{r}_{k+1}\right\|_{2}<\varepsilon\left\|\mathbf{r}_{0}\right\|_{2}, \text { stop; } \\
& M \mathbf{z}_{k+1}=\mathbf{r}_{k+1} ; \\
& \rho_{k+1}=\mathbf{z}_{k+1}^{*} \mathbf{r}_{k+1} \\
& \beta_{k}=\rho_{k+1} / \rho_{k} \\
& \mathbf{p}_{k+1}=\mathbf{z}_{k+1}+\beta_{k} \mathbf{p}_{k}
\end{align*}
\]

End Do
Here the superscript * indicates the transpose complex-conjugate; it is the transpose for real-valued systems.

\subsection*{7.7. Generalized Minimum Residuals - GMRES}

Note: GMRES was developed in 1986 by Saad and Schultz [21].
- The GMRES can be used for linear systems \(A \mathrm{x}=\mathrm{b}\), with arbitrary nonsingular square matrices \(A \in \mathbb{R}^{n \times n}\),
- while application of the classical iterative solvers was limited to either diagonally dominant or positive definite matrices.
- The essential ingredient in this general solver is Arnoldi iteration.

\subsection*{7.7.1. Arnoldi Iteration}

Note: The Arnoldi iteration method will be applicable to both linear systems and eigenvalue problems.
- Thus we are interested in re-examining similarity transformations of the form
\[
\begin{equation*}
A=Q H Q^{T}, \tag{7.89}
\end{equation*}
\]
where \(H\) is an upper Hessenberg matrix.
- For the similarity transformation, we will use a modified GramSchmidt process.
- It is less stable than the Householder reflectors.
- However, it has the advantage that we can get columns of \(Q\), one at a time.

\section*{Derivation of Arnoldi Iteration}
- We start with the similarity transformation: for \(Q, H \in \mathbb{R}^{n \times n}\),
\[
A=Q H Q^{T} .
\]
- Clearly, this is equivalent to
\[
A Q=Q H,
\]
which in detail is
\[
\begin{align*}
& A\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}, \mathbf{q}_{k+1}, \cdots, \mathbf{q}_{n}\right]=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}, \mathbf{q}_{k+1}, \cdots, \mathbf{q}_{n}\right] \times \\
& \times\left[\begin{array}{cccccc}
h_{11} & h_{12} & & \cdots & \cdots & h_{1 n} \\
h_{21} & h_{22} & & \cdots & \cdots & h_{2 n} \\
0 & h_{32} & h_{33} & \cdots & \cdots & h_{3 n} \\
\vdots & 0 & h_{43} & h_{44} & \cdots & h_{4 n} \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & h_{n-1, n} & h_{n n}
\end{array}\right] . \tag{7.90}
\end{align*}
\]
- Next, we consider only part of this system. For \(k<n\), let
\[
\begin{align*}
Q_{k} & =\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}\right] \\
Q_{k+1} & =\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}, \mathbf{q}_{k+1}\right] \\
\widetilde{H}_{k} & =\left[\begin{array}{cccccc}
h_{11} & h_{12} & & \cdots & \cdots & h_{1 k} \\
h_{21} & h_{22} & & \cdots & \cdots & h_{2 k} \\
0 & h_{32} & h_{33} & \cdots & \cdots & h_{3 k} \\
& 0 & h_{43} & h_{44} & \cdots & h_{4 k} \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
& & & 0 & h_{k-1, k} & h_{k k} \\
0 & \cdots & \cdots & & 0 & h_{k+1, k}
\end{array}\right] \tag{7.91}
\end{align*}
\]
and then take
\[
\begin{equation*}
A Q_{k}=Q_{k+1} \widetilde{H}_{k} \quad\left(\in \mathbb{R}^{n \times k}\right) . \tag{7.92}
\end{equation*}
\]
- If we compare the \(k\) th columns on both sides, then we get
\[
\begin{equation*}
A \mathbf{q}_{k}=h_{1 k} \mathbf{q}_{1}+h_{2 k} \mathbf{q}_{2}+\cdots+h_{k k} \mathbf{q}_{k}+h_{k+1, k} \mathbf{q}_{k+1} \tag{7.93}
\end{equation*}
\]
which can be rewritten for \(\mathbf{q}_{k+1}\) :
\[
\begin{equation*}
\mathbf{q}_{k+1}=\frac{A \mathbf{q}_{k}-\sum_{j=1}^{k} h_{j k} \mathbf{q}_{j}}{h_{k+1, k}}, \tag{7.94}
\end{equation*}
\]
which is a modified Gram-Schmidt process.
- It follows from (7.93) that
\[
\begin{equation*}
h_{j k}=\mathbf{q}_{j}^{T} A \mathbf{q}_{k} . \tag{7.95}
\end{equation*}
\]

Since \(\left\|\mathbf{q}_{k+1}\right\|=1\), we must have
\[
\begin{equation*}
h_{k+1, k}=\left\|A \mathbf{q}_{k}-\sum_{j=1}^{k} h_{j k} \mathbf{q}_{j}\right\| . \tag{7.96}
\end{equation*}
\]

The recursive computation of the columns of \(Q\), given as in (7.94), is known as the Arnoldi iteration.

Example 7.73. The first step of the Arnoldi iteration proceeds as follows.
- Start with an arbitrary normalized vector \(\mathrm{q}_{1}\). Then, according to (7.94),
\[
\begin{equation*}
\mathbf{q}_{2}=\frac{A \mathbf{q}_{1}-h_{11} \mathbf{q}_{1}}{h_{21}} \tag{7.97}
\end{equation*}
\]
- Since it requires \(\mathbf{q}_{2}^{T} \mathbf{q}_{1}=0\), orthogonality of the columns of \(Q\), we get
\[
0=\mathbf{q}_{1}^{T} A \mathbf{q}_{1}-h_{11} \mathbf{q}_{1}^{T} \mathbf{q}_{1}=\mathbf{q}_{1}^{T} A \mathbf{q}_{1}-h_{11},
\]
and therefore \(h_{11}\) is a Rayleigh quotient:
\[
\begin{equation*}
h_{11}=\mathbf{q}_{1}^{T} A \mathbf{q}_{1} \tag{7.98}
\end{equation*}
\]
- Now, we set
\[
\begin{equation*}
h_{21}=\left\|A \mathbf{q}_{1}-h_{11} \mathbf{q}_{1}\right\| \tag{7.99}
\end{equation*}
\]
which finalizes \(\mathbf{q}_{2}\).

\section*{Algorithm 7.74. Arnoldii iteration}

0 . Let \(b\) be an arbitrary initial nonzero vector
1. \(\mathbf{q}_{1}=\mathbf{b} /\|\mathbf{b}\|\)
2. For \(k=1,2,3, \cdots\)
(a) \(\mathbf{v}=A \mathbf{q}_{k}\)
(b) For \(j=1: k\)
\[
\begin{aligned}
& h_{j k}=\mathbf{q}_{j}^{T} \mathbf{v} \\
& \mathbf{v}=\mathbf{v}-h_{j k} \mathbf{q}_{j}
\end{aligned}
\]
(c) \(h_{k+1, k}=\|\mathbf{v}\|\)
(d) \(\mathbf{q}_{k+1}=\mathbf{v} / h_{k+1, k}\)

\subsection*{7.7.2. Derivation of the GMRES Method}

Key Idea 7.75. The main idea of the GMRES is to solve a leastsquares problem at each step of the iteration. At step \(k\) :

We find the \(k\) th iterate \(\mathrm{x}_{k} \in \mathcal{K}_{k}\) which minimizes the residual
\[
\begin{equation*}
\mathbf{x}_{k}=\arg \min _{\mathbf{x} \in \mathcal{K}_{k}}\|A \mathbf{x}-\mathbf{b}\|, \tag{7.100}
\end{equation*}
\]
where \(\mathcal{K}_{k}\) is the \(\boldsymbol{k}\) th-order Krylov subspace:
\[
\begin{equation*}
\mathcal{K}_{k}=\operatorname{Span}\left\{\mathbf{b}, A \mathbf{b}, \cdots, A^{k-1} \mathbf{b}\right\} \tag{7.101}
\end{equation*}
\]

Note: In order to solve the least-squares problem (7.100):
- We may start with the Krylov matrix
\[
\begin{equation*}
K_{k} \xlongequal{\text { def }}\left\{\mathbf{b}, A \mathbf{b}, \cdots, A^{k-1} \mathbf{b}\right\} \in \mathbb{R}^{n \times k} \tag{7.102}
\end{equation*}
\]
- Then the desired solution \(\mathbf{x}_{k} \in \mathcal{K}_{k}\) can be expressed as
\[
\begin{equation*}
\mathbf{x}_{k}=K_{k} \mathbf{c}, \text { for some } \mathbf{c} \in \mathbb{R}^{k}, \tag{7.103}
\end{equation*}
\]
and therefore the least-squares problem reads
\[
\begin{equation*}
\min _{\mathbf{c} \in \mathbb{R}^{k}}\left\|A K_{k} \mathbf{c}-\mathbf{b}\right\| . \tag{7.104}
\end{equation*}
\]
- The problem (7.104) can be solved using the \(Q R\)-factorization of the matrix \(A \mathcal{K}_{k} \in \mathbb{R}^{n \times k}\).

However this is both unstable and too expensive.
- We consider an orthonormal basis for the Krylov subspace \(\mathcal{K}_{k}\) :
\[
\begin{equation*}
\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}\right\} \tag{7.105}
\end{equation*}
\]
the columns of the matrix \(Q_{k}\) used in the Arnoldi iteration.
- With the new basis, the \(k\) th iterate \(\mathbf{x}_{k} \in \mathcal{K}_{k}\) can be written as
\[
\begin{equation*}
\mathbf{x}_{k}=Q_{k} \mathbf{y}, \text { for some } \mathbf{y} \in \mathbb{R}^{k} \tag{7.106}
\end{equation*}
\]

Then the residual minimization problem (7.100) becomes
\[
\begin{equation*}
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|A Q_{k} \mathbf{y}-\mathbf{b}\right\| . \tag{7.107}
\end{equation*}
\]
- Now, we utilize the partial similarity transform of the Arnoldi iteration (7.92):
\[
\begin{equation*}
A Q_{k}=Q_{k+1} \widetilde{H}_{k}, \quad \widetilde{H}_{k} \in \mathbb{R}^{(k+1) \times k} \tag{7.108}
\end{equation*}
\]
- Then, the least-squares problem (7.107) reads
\[
\begin{equation*}
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\widetilde{H}_{k} \mathbf{y}-Q_{k+1}^{T} \mathbf{b}\right\| \tag{7.109}
\end{equation*}
\]
which is equivalent to
\[
\begin{equation*}
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\widetilde{H}_{k} \mathbf{y}-\right\| \mathbf{b}\left\|\mathbf{e}_{1}\right\| . \tag{7.110}
\end{equation*}
\]

Note: This is much simpler; it will permit a more efficient solution.

Example 7.76. Prove that \(Q_{k+1}^{T} \mathbf{b}=\|\mathbf{b}\| \mathbf{e}_{1}\).
Proof. The vector \(Q_{k+1}^{T} \mathbf{b}\) is given by
\[
Q_{k+1}^{T} \mathbf{b}=\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \mathbf{b}  \tag{7.111}\\
\mathbf{q}_{2}^{T} \mathbf{b} \\
\vdots \\
\mathbf{q}_{k+1}^{T} \mathbf{b}
\end{array}\right]
\]
and, in detail, the Krylov subspaces are
\[
\begin{align*}
\mathcal{K}_{1} & =\operatorname{Span}\{\mathbf{b}\} \\
\mathcal{K}_{1} & =\operatorname{Span}\{\mathbf{b}, A \mathbf{b}\}  \tag{7.112}\\
& \vdots
\end{align*}
\]

Since the columns \(\mathbf{q}_{j}\) of \(Q_{k}\) form an orthonormal basis for \(\mathcal{K}_{k}\),
\[
\begin{equation*}
\mathbf{q}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}, \quad \text { and } \mathbf{q}_{j}^{T} \mathbf{b}=0 \text { for } j>1 \tag{7.113}
\end{equation*}
\]

It follows from (7.111) and (7.113) that
\[
\begin{equation*}
Q_{k+1}^{T} \mathbf{b}=\|\mathbf{b}\| \mathbf{e}_{1} \tag{7.114}
\end{equation*}
\]
which completes the proof.
The GMRES method is summarized as follows.
Algorithm 7.77. GMIRES
1. Let \(\mathbf{q}_{1}=\mathbf{b} /\|\mathbf{b}\|\)
2. For \(k=1,2,3, \cdots\)
(a) Perform Step \(k\) of the Arnoldi iteration
(i.e., compute new entries for \(\widetilde{H}_{k}\) and \(Q_{k}\) )
(b) Find \(\mathbf{y}\) that minimizes \(\left\|\widetilde{H}_{k} \mathbf{y}-\right\| \mathbf{b}\left\|\mathbf{e}_{1}\right\|\)
(e.g., with \(Q R\)-factorization)
(c) \(\operatorname{Set} \mathbf{x}_{k}=Q_{k} \mathbf{y}\)

\section*{Exercises for Chapter 7}
7.1. (a) Verify that the function \(\|\cdot\|_{1}\), defined on \(\mathbb{R}^{n}\) by
\[
\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
\]
is a norm on \(\mathbb{R}^{n}\).
(b) Prove that \(\|\mathrm{x}\|_{2} \leq\|\mathrm{x}\|_{1}\) for all \(\mathrm{x} \in \mathbb{R}^{n}\).
7.2. Let \(A=\left[\begin{array}{rrr}2 & 1 & -2 \\ 0 & 3 & -1 \\ 4 & 5 & 1\end{array}\right]\). Find \(\|A\|_{1},\|A\|_{2}\), and \(\|A\|_{\infty}\).
7.3. Let \(A=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\).
(a) Use Gerschgorin-Taussky theorem to find a range of eigenvalues of \(A\).
(b) Is \(A\) nonsingular?

\subsection*{7.4. C When the boundary-value problem}
\[
\left\{\begin{array}{l}
-u_{x x}=-2, \quad 0<x<4  \tag{7.115}\\
u_{x}(0)=0, \quad u(4)=16
\end{array}\right.
\]
is discretized by the second-order finite difference method with \(h=1\), the algebraic system reads \(A \mathrm{x}=\mathrm{b}\), where
\[
A=\left[\begin{array}{rrrr}
2 & -2 & 0 & 0  \tag{7.116}\\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-2 \\
-2 \\
-2 \\
14
\end{array}\right]
\]
and the exact solution is \(\mathbf{x}=[0,1,4,9]^{T}\).
(a) Is \(A\) irreducibly diagonally dominant?
(b) Perform 10 iterations of the Jacobi and Gauss-Seidel methods, starting from \(\mathbf{x}_{0}=[0,0,0,0]^{T}\).
(c) Try to find the best \(\omega\) with which the SOR method converges fastest during the first 10 iterations.
(d) Find the spectral radii of the iteration matrices of the Jacobi, the Gauss-Seidel, and the SOR.
7.5. C Symmetrize the algebraic system (7.116) and
(a) Apply the CG method to solve it.
(b) Download a public-domain code for GMRES to solve the algebraic system; compare its performance with that of the CG method.

\section*{Chapter 8}

\section*{Approximation Theory}

\section*{In this chapter:}
\begin{tabular}{|l|l|}
\hline Topics & Applications/Properties \\
\hline \hline Orthogonal Projection & Gram-Schmidt Process \\
\hline \begin{tabular}{l} 
Least Squares (LS) Approximation \\
Linear models \\
Method of normal equations
\end{tabular} & Over-determined systems \\
\hline \begin{tabular}{l} 
Regression analysis \\
Linear regression \\
Nonlinear models
\end{tabular} & Linearization \\
\hline \begin{tabular}{l} 
Scene analysis \\
RANSAC
\end{tabular} & Noisy data \\
\hline Rational Function Approximation & Padé rational approximation \\
\hline
\end{tabular}

\section*{Contents of Chapter 8}
8.1. Orthogonality and the Gram-Schmidt Process ..... 286
8.2. Least-Squares Approximation ..... 290
8.3. Regression Analysis ..... 295
8.4. Scene Analysis with Noisy Data: RANSAC ..... 301
8.5. Padé Rational Function Approximation ..... 306
Exercises for Chapter 8 ..... 310

\subsection*{8.1. Orthogonality and the Gram-Schmidt Process}

\subsection*{8.1.1. Orthogonal projections}

Definition 8.1. Given a nonzero vector \(\mathbf{u} \in \mathbb{R}^{n}\) and \(\mathbf{y} \in \mathbb{R}^{n}\), let
\[
\begin{equation*}
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}, \quad \widehat{\mathbf{y}} / / \mathbf{u} \text { and } \mathbf{z} \perp \mathbf{u} \tag{8.1}
\end{equation*}
\]

Then
\[
\begin{equation*}
\widehat{\mathbf{y}}=\alpha \mathbf{u}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}, \quad \mathbf{z}=\mathbf{y}-\widehat{\mathbf{y}} . \tag{8.2}
\end{equation*}
\]

The vector \(\hat{\mathbf{y}}\) is called the orthogonal projection of \(\mathbf{y}\) onto \(\mathbf{u}\), and z is called the component of \(\mathbf{y}\) orthogonal to \(\mathbf{u}\). Let \(L=\operatorname{Span}\{\mathbf{u}\}\). Then we denote
\[
\begin{equation*}
\widehat{\mathbf{y}}=\frac{\mathbf{y}^{\bullet} \mathbf{u}}{\mathbf{u}^{\bullet} \mathbf{u}} \mathbf{u}=\operatorname{proj}_{L} \mathbf{y} \tag{8.3}
\end{equation*}
\]
which is called the orthogonal projection of \(\mathbf{y}\) onto \(L\).
We will expand this orthogonal projection for a subspace.
Theorem 8.2. (The Orthogonal Decomposition Theorem) Let W be a subspace of \(\mathbb{R}^{n}\). Then each \(\mathrm{y} \in \mathbb{R}^{n}\) can be written uniquely in the form
\[
\begin{equation*}
\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z} \tag{8.4}
\end{equation*}
\]
where \(\widehat{\mathbf{y}} \in W\) and \(\mathbf{z} \in W^{\perp}\). In fact, if \(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}\) is an orthogonal basis for \(W\), then
\[
\begin{align*}
\widehat{\mathbf{y}} & =\operatorname{proj}_{W} \mathbf{y}=\frac{\mathbf{y}^{\bullet} \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y}^{\bullet} \mathbf{u}_{2}}{\mathbf{u}_{\mathbf{2}} \bullet \mathbf{u}_{\mathbf{2}}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y}^{\bullet} \mathbf{u}_{p}}{\mathbf{u}_{p} \bullet \mathbf{u}_{p}} \mathbf{u}_{p}  \tag{8.5}\\
\mathbf{z} & =\mathbf{y}-\widehat{\mathbf{y}}
\end{align*}
\]


Figure 8.1: Orthogonal projection of y onto \(W\).

\section*{Remark 8.3. (Properties of Orthogonal Decomposition)}

Let \(\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}\), where \(\widehat{\mathbf{y}} \in W\) and \(\mathbf{z} \in W^{\perp}\). Then
1. \(\widehat{\mathbf{y}}\) is called the orthogonal projection of \(\mathbf{y}\) onto \(W\left(=\operatorname{proj}_{W} \mathbf{y}\right)\)
2. \(\widehat{y}\) is the closest point to y in \(W\).
(in the sense \(\|\mathbf{y}-\widehat{\mathbf{y}}\|_{2} \leq\|\mathbf{y}-\mathbf{v}\|_{2}\), for all \(\mathbf{v} \in W\) )
3. \(\widehat{\mathbf{y}}\) is called the best approximation to y by elements of \(W\).
4. If \(\mathbf{y} \in W\), then \(\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}\).

Proof. 2. For an arbitrary \(\mathbf{v} \in W, \mathbf{y}-\mathbf{v}=(\mathbf{y}-\widehat{\mathbf{y}})+(\widehat{\mathbf{y}}-\mathbf{v})\), where \((\widehat{\mathbf{y}}-\mathbf{v}) \in W\). Thus, by the Pythagorean theorem,
\[
\|\mathbf{y}-\mathbf{v}\|_{2}^{2}=\|\mathbf{y}-\widehat{\mathbf{y}}\|_{2}^{2}+\|\widehat{\mathbf{y}}-\mathbf{v}\|_{2}^{2}
\]
which implies that \(\|\mathbf{y}-\mathbf{v}\|_{2} \geq\|\mathbf{y}-\widehat{\mathbf{y}}\|_{2}\).
Note: The orthogonal projection can be viewed as a matrix transformation; see Exercise 8.1, p.310.

\subsection*{8.1.2. The Gram-Schmidt process}

Note: The Gram-Schmidt process is an algorithm to produce an orthogonal or orthonormal basis for any nonzero subspace of \(\mathbb{R}^{n}\).

Example 8.4. Let \(W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\), where \(\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]\) and \(\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\). Find an orthogonal basis for \(W\).
Main idea: Orthogonal projection
\[
\left\{\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array} { l } 
{ \mathbf { x } _ { 1 } } \\
{ \mathbf { x } _ { 2 } = \alpha \mathbf { x } _ { 1 } + \mathbf { v } _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathbf{v}_{1}=\mathbf{x}_{1} \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\left\{\mathbf{x}_{1}\right\}} \mathbf{x}_{2}
\end{array}\right.\right.
\]
where \(\mathbf{x}_{1} \bullet \mathbf{v}_{2}=0\). Then \(W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\).
Solution. \(\alpha=\frac{\mathbf{x}_{2} \bullet \mathbf{x}_{1}}{\mathbf{x}_{1} \bullet \mathbf{x}_{1}}=\frac{15}{45}=\frac{1}{3}\).
\(\Rightarrow \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{1}{3} \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\)


Figure 8.2: Construction of an orthogonal basis \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\).

\section*{Theorem 8.5. (The Gram-Schmidt Process) Given a basis} \(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{p}\right\}\) for a nonzero subspace \(W\) of \(\mathbb{R}^{n}\), define
\[
\begin{align*}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\frac{\mathbf{x}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\frac{\mathbf{x}_{\mathbf{3}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{3}} \bullet \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{2}  \tag{8.6}\\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\frac{\mathbf{x}_{\mathbf{p}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{p}} \bullet}{\mathbf{v}_{\mathbf{2}} \bullet} \mathbf{v}_{\mathbf{2}} \\
\mathbf{v}_{\mathbf{2}} & \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{\mathbf{p}} \bullet \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \bullet \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
\end{align*}
\]

Then \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}\) is an orthogonal basis for \(W\). In addition,
\[
\begin{equation*}
\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}, \quad \text { for } 1 \leq k \leq p \tag{8.7}
\end{equation*}
\]

Remark 8.6. For the result of the Gram-Schmidt process, define
\[
\begin{equation*}
\mathbf{u}_{k}=\frac{\mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|}, \quad \text { for } 1 \leq k \leq p \tag{8.8}
\end{equation*}
\]

Then \(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}\) is an orthonormal basis for \(W\). In practice, it is often implemented with the normalized Gram-Schmidt process.

Self-study 8.7. Find an orthonormal basis for \(W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}\), where
\[
\mathbf{x}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}
-2 \\
2 \\
1 \\
0
\end{array}\right], \text { and } \mathbf{x}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
1
\end{array}\right] .
\]

\subsection*{8.2. Least-Squares Approximation}

Definition 8.8. For a given dataset \(\left\{\left(x_{i}, y_{i}\right)\right\}\), let a continuous function \(p(x)\) be constructed.
(a) \(p\) is an interpolation if it passes (interpolates) all the data points.
(b) \(p\) is an approximation if it approximates (represents) the data points.

\section*{Dataset}
```

with(LinearAlgebra): with(CurveFitting):
n := 100: roll := rand(-n..n):
m := 10: xy := Matrix(m, 2):
for i to m do
xy[i, 1] := i;
xy[i, 2] := i + roll()/n;
end do:
plot(xy,color=red, style=point, symbol=solidbox, symbolsize=20);

```

\(p:=\) PolynomialInterpolation \((x y, x)\);
\(\frac{1507}{12096000} x^{9}-\frac{27977}{4032000} x^{8}+\frac{36751}{224000} x^{7}-\frac{68851}{32000} x^{6}+\frac{1975291}{115200} x^{5}\) \(-\frac{5471791}{64000} x^{4}+\frac{199836041}{756000} x^{3}-\frac{486853651}{1008000} x^{2}+\frac{39227227}{84000} x-\frac{1771}{10}\)
\(L:=\) CurveFitting[LeastSquares] \((x y, x)\);
\[
-\frac{121}{500}+\frac{523}{500} x
\]


Note: Interpolation may be too oscillatory to be useful; furthermore, it may not be defined.

\subsection*{8.2.1. The least-squares (LS) problem}

Note: Let \(A\) is an \(m \times n\) matrix. Then \(A \mathbf{x}=\mathbf{b}\) may have no solution, particularly when \(m>n\). In real-world,
- \(m \gg n\), where \(m\) represents the number of data points and \(n\) denotes the dimension of the points
- Need to find a best solution for \(A \mathrm{x} \approx \mathrm{b}\)

Definition 8.9. Let \(A \in \mathbb{R}^{m \times n}, m \geq n\), and \(\mathbf{b} \in \mathbb{R}^{m}\). The least-squares problem is to find \(\widehat{\mathrm{x}} \in \mathbb{R}^{n}\) which minimizes \(\|A \mathrm{x}-\mathbf{b}\|_{2}\) :
\[
\begin{align*}
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2} \\
& \text { or, equivalently }  \tag{8.9}\\
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}
\end{align*}
\]
where \(\widehat{\mathrm{x}}\) called a least-squares solution of \(A \mathrm{x}=\mathbf{b}\).

\section*{Remark 8.10.}
- For all \(\mathrm{x} \in \mathbb{R}^{n}, A \mathrm{x}\) will necessarily be in \(\operatorname{Col} A\), a subspace of \(\mathbb{R}^{m}\). So we seek an x that makes \(A \mathrm{x}\) the closest point in \(\operatorname{Col} A\) to b .
- Let \(\widehat{\mathbf{b}}=\operatorname{proj}_{C o l} A\). Then \(A \mathrm{x}=\widehat{\mathrm{b}}\) has a solution and there is an \(\widehat{\mathrm{x}} \in \mathbb{R}^{n}\) such that
\[
\begin{equation*}
A \widehat{\mathbf{x}}=\widehat{\mathbf{b}} . \tag{8.10}
\end{equation*}
\]
- \(\widehat{\mathrm{x}}\) is an LS solution of \(A \mathrm{x}=\mathbf{b}\).
- The quantity \(\|\mathbf{b}-\widehat{\mathbf{b}}\|=\|\mathbf{b}-A \widehat{\mathbf{x}}\|\) is called the least-squares error. That is,
\[
\begin{equation*}
\|\mathbf{b}-A \widehat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} \tag{8.11}
\end{equation*}
\]
where \(\|\cdot\|=\|\cdot\|_{2}\).


Figure 8.3: The LS solution \(\widehat{\mathrm{x}}\) is in \(\mathbb{R}^{n}\).

Remark 8.11. If \(A \in \mathbb{R}^{n \times n}\) is invertible, then \(A \mathbf{x}=\mathbf{b}\) has a unique solution \(\widehat{x}\) and therefore
\[
\begin{equation*}
\|\mathbf{b}-A \widehat{\mathbf{x}}\|=0 \tag{8.12}
\end{equation*}
\]

\subsection*{8.2.2. Normal equations}

Theorem 8.12. The set of \(L S\) solutions of \(A \mathrm{x}=\mathrm{b}\) coincides with the nonempty set of solutions of the normal equations
\[
\begin{equation*}
A^{T} A \mathbf{x}=A^{T} \mathbf{b} . \tag{8.13}
\end{equation*}
\]

Proof. Suppose \(\widehat{\mathrm{x}}\) satisfies \(A \widehat{\mathrm{x}}=\widehat{\mathbf{b}}\)
\(\Rightarrow \mathbf{b}-\widehat{\mathbf{b}}=\mathbf{b}-A \widehat{\mathbf{x}} \perp \operatorname{Col} A\)
\(\Rightarrow \mathbf{a}_{j} \bullet(\mathbf{b}-A \widehat{\mathbf{x}})=0\) for all columns \(\mathbf{a}_{j}\)
\(\Rightarrow \mathbf{a}_{j}{ }^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=0\) for all columns \(\mathbf{a}_{j} \quad\) (Note that \(\mathbf{a}_{j}{ }^{T}\) is a row of \(\left.A^{T}\right)\)
\(\Rightarrow A^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=0\)
\(\Rightarrow A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}\)
Remark 8.13. Theorem 8.12 implies that LS solutions of \(A \mathrm{x}=\mathrm{b}\) are solutions of the normal equations \(A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}\).
- When \(A^{T} A\) is not invertible, the normal equations have either no solution or infinitely many solutions.
- So, data acquisition is important, to make it invertible.

Theorem 8.14. (Method of normal equations) Let \(A \in \mathbb{R}^{m \times n}, m \geq n\). The following statements are logically equivalent:
a. The equation \(A \mathrm{x}=\mathrm{b}\) has a unique \(L S\) solution for each \(\mathrm{b} \in \mathbb{R}^{m}\).
\(b\). The columns of \(A\) are linearly independent.
c. The matrix \(A^{T} A\) is invertible.

When these statements are true, the unique \(L S\) solution \(\widehat{x}\) is given by
\[
\begin{equation*}
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \tag{8.14}
\end{equation*}
\]

Example 8.15. Describe all least squares solutions of the equation \(A \mathbf{x}=\mathbf{b}\), given
\[
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right] .
\]

\section*{Solution.}

\section*{Method of Calculus}

Let \(\mathcal{J}(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|^{2}=(A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b})\) and \(\widehat{\mathbf{x}}\) a minimizer of \(\mathcal{J}(\mathbf{x})\).
- Then we must have
\[
\begin{equation*}
\nabla_{\mathbf{x}} \mathcal{J}(\widehat{\mathbf{x}})=\left.\frac{\partial \mathcal{J}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\widehat{\mathbf{x}}}=\mathbf{0} \tag{8.15}
\end{equation*}
\]
- Let's compute the gradient of \(\mathcal{J}\).
\[
\begin{align*}
\frac{\partial \mathcal{J}(\mathbf{x})}{\partial \mathbf{x}} & =\frac{\partial\left((A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b})\right)}{\partial \mathbf{x}} \\
& =\frac{\partial\left(\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{x}^{T} A^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b}\right)}{\partial \mathbf{x}}  \tag{8.16}\\
& =2 A^{T} A \mathbf{x}-2 A^{T} \mathbf{b}
\end{align*}
\]
- By setting the last term to zero, we obtain normal equations.

\subsection*{8.3. Regression Analysis}

Definition 8.16. Regression analysis is a set of statistical methods used for the estimation of relationships between a dependent variable and one or more independent variables.

\subsection*{8.3.1. Regression line}


Figure 8.4: A regression line.

Definition 8.17. Suppose a set of experimental data points are given as
\[
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{m}, y_{m}\right)
\]
such that the graph is close to a line. We determine a line
\[
\begin{equation*}
y=\beta_{0}+\beta_{1} x \tag{8.17}
\end{equation*}
\]
that is as close as possible to the given points. This line is called the least-squares line; it is also called the regression line of \(y\) on \(x\) and \(\beta_{0}, \beta_{1}\) are called regression coefficients.

\section*{Calculation of Least-Squares Lines}

Consider a least-squares (LS) model of the form \(y=\beta_{0}+\beta_{1} x\), for a given data set \(\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, m\right\}\).
- Then
\[

\]
- It can be equivalently written as
\[
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} \tag{8.19}
\end{equation*}
\]
where
\[
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] .
\]

Here we call \(X\) the design matrix, \(\boldsymbol{\beta}\) the parameter vector, and \(y\) the observation vector.
- Thus the LS solution can be determined by solving the normal equations:
\[
\begin{equation*}
X^{T} X \boldsymbol{\beta}=X^{T} \mathbf{y} \tag{8.20}
\end{equation*}
\]
provided that \(X^{T} X\) is invertible.
- The normal equations for the regression line read
\[
\left[\begin{array}{cc}
m & \Sigma x_{i}  \tag{8.21}\\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right] .
\]

\section*{Remark 8.18. (Pointwise construction of the normal equations)}

The normal equations for the regression line in (8.21) can be rewritten as
\[
\sum_{i=1}^{m}\left[\begin{array}{cc}
1 & x_{i}  \tag{8.22}\\
x_{i} & x_{i}^{2}
\end{array}\right] \boldsymbol{\beta}=\sum_{i=1}^{m}\left[\begin{array}{c}
y_{i} \\
x_{i} y_{i}
\end{array}\right]
\]
- The pointwise construction of the normal equation is convenient when either points are first to be searched or weights are applied depending on the point location.
- The idea is applicable for other regression models as well.

Self-study 8.19. Find the equation \(y=\beta_{0}+\beta_{1} x\) of least-squares line that best fits the given points:
\((-1,0),(0,1),(1,2),(2,4)\)

\section*{Solution.}

\subsection*{8.3.2. Least-squares fitting of other curves}

Remark 8.20. Consider a regression model of the form
\[
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2},
\]
for a given data set \(\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, m\right\}\). Then
\begin{tabular}{ccc}
\hline Predicted \(y\)-value & \multicolumn{2}{l}{ Observed \(y\)-value } \\
\hline\(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}\) & \(=\) & \(y_{1}\) \\
\(\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}\) & \(=\) & \(y_{2}\) \\
\(\vdots\) & & \(\vdots\) \\
\(\beta_{0}+\beta_{1} x_{m}+\beta_{2} x_{m}^{2}\) & \(=\) & \(y_{m}\) \\
\hline
\end{tabular}

It can be equivalently written as
\[
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} \tag{8.24}
\end{equation*}
\]
where
\[
X=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{m} & x_{m}^{2}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] .
\]

Now, it can be solved through normal equations:
\[
X^{T} X \boldsymbol{\beta}=\left[\begin{array}{ccc}
\Sigma 1 & \Sigma x_{i} & \Sigma x_{i}^{2}  \tag{8.25}\\
\Sigma x_{i} & \Sigma x_{i}^{2} & \Sigma x_{i}^{3} \\
\Sigma x_{i}^{2} & \Sigma x_{i}^{3} & \Sigma x_{i}^{4}
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i} \\
\Sigma x_{i}^{2} y_{i}
\end{array}\right]=X^{T} \mathbf{y}
\]

Self-study 8.21. Find an LS curve of the form \(y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}\) that best fits the given points:
\((0,1),(1,1),(1,2),(2,3)\).

\section*{Solution.}

\subsection*{8.3.3. Nonlinear regression: Linearization}

Strategy 8.22. For nonlinear models, a change of variables can be applied to get a linear model.
\begin{tabular}{l:cll}
\hline Model & Change of Variables & Linearization \\
\hline\(y=A+\frac{B}{x}\) & \(\widetilde{x}=\frac{1}{x}, \widetilde{y}=y\) & \(\Rightarrow \widetilde{y}=A+B \widetilde{x}\) \\
\(y=\frac{1}{A+B x}\) & \(\widetilde{x}=x, \widetilde{y}=\frac{1}{y}\) & \(\Rightarrow \widetilde{y}=A+B \widetilde{x}\) \\
\(y=C e^{D x}\) & \(\widetilde{x}=x, \widetilde{y}=\ln y\) & \(\Rightarrow \widetilde{y}=\ln C+D \widetilde{x}\) \\
\(y=\frac{1}{A+B \ln x}\) & \(\widetilde{x}=\ln x, \widetilde{y}=\frac{1}{y}\) & \(\Rightarrow \widetilde{y}=A+B \widetilde{x}\) \\
\hline
\end{tabular}

The above table contains just a few examples of linearization; for other nonlinear models, use your imagination and creativity.

Example 8.23. Find the best fitting curve of the form \(y=c e^{d x}\) for the data
\(\left[\begin{array}{rr}0.1 & 1.9940 \\ 0.2 & 2.0087 \\ 0.3 & 1.8770 \\ 0.4 & 3.5783 \\ 0.5 & 3.9203 \\ 0.6 & 4.7617 \\ 0.7 & 6.7246 \\ 0.8 & 7.1491 \\ 0.9 & 9.5777 \\ 1.0 & 11.5625\end{array}\right]\)


Solution. Applying the natural \(\log\) function (ln) to \(y=c e^{d x}\) gives
\[
\begin{equation*}
\ln y=\ln c+d x \tag{8.27}
\end{equation*}
\]

Using the change of variables
\[
Y=\ln y, \quad a_{0}=\ln c, \quad a_{1}=d, \quad X=x
\]
the equation (8.27) reads
\[
\begin{equation*}
Y=a_{0}+a_{1} X \tag{8.28}
\end{equation*}
\]

\section*{for which one can apply the linear LS procedure.}
```


The transformed data

xlny := Matrix(m, 2):
for i to m do
xlny[i, 1] := xy[i, 1];
xlny[i, 2] := ln(xy[i, 2]);
end do:

The linear LS

L := CurveFitting[LeastSquares](xlny, x, curve = b*x + a);
0.295704647799999 + 2.1530740654363654 x

Back to the original parameters

c := exp(0.295704647799999) = 1.344073123
d := 2.15307406543637:

The desired nonlinear model

c*exp (d*x);
1.344073123 exp(2.15307406543637 x)

```


\subsection*{8.4. Scene Analysis with Noisy Data: RANSAC}

Note: Scene analysis is concerned with the interpretation of acquired data in terms of a set of predefined models. It consists of 2 subproblems:
1. finding the best model (classification problem)
2. computing the best parameter values (parameter estimation problem)
- Traditional parameter estimation techniques, such as leastsquares (LS), optimize the model to all of the presented data.
- Those techniques are simple averaging methods, based on the smoothing assumption: There will always be good data points enough to smooth out any gross deviation.
- However, in many interesting parameter estimation problems, the smoothing assumption does not hold; that is, the data set may involve gross errors such as noise.
- Thus, in order to obtain more reliable model parameters, there must be internal mechanisms to determine which points are matching to the model (inliers) and which points are false matches (outliers).

\subsection*{8.4.1. Weighted least-squares}

Definition 8.24. When certain data points are more important or more reliable than the others, one may try to compute the coefficient vector with larger weights on more reliable data points. The weighted leastsquares method is an LS method which involves a weight. The weight is often given as a diagonal matrix
\[
\begin{equation*}
W=\operatorname{diag}\left(w_{1}, w_{2}, \cdots, w_{m}\right) \tag{8.29}
\end{equation*}
\]

The weight matrix \(W\) can be decided either manually or automatically.

\section*{Algorithm 8.25. (Weighted Least-Squares)}
- Given data \(\left\{\left(x_{i}, y_{i}\right)\right\}, 1 \leq i \leq m\), the best-fitting curve can be found by solving an over-determined algebraic system (8.19):
\[
\begin{equation*}
X \boldsymbol{\beta}=\mathbf{y} . \tag{8.30}
\end{equation*}
\]
- When a weight matrix is applied, the above system can be written as
\[
\begin{equation*}
W X \boldsymbol{\beta}=W \mathbf{y} \tag{8.31}
\end{equation*}
\]
- Thus its weighted normal equations read
\[
\begin{equation*}
X^{T} W X \boldsymbol{\beta}=X^{T} W \mathbf{y} . \tag{8.32}
\end{equation*}
\]

Example 8.26. Given data, find the LS line with and without a weight. When a weight is applied, weigh the first and the last data point by \(1 / 4\).
\[
\mathrm{xy}:=\left[\begin{array}{cccccccccc}
1 . & 2 . & 3 . & 4 . & 5 . & 6 . & 7 . & 8 . & 9 . & 10 . \\
5.89 & 1.92 & 2.59 & 4.41 & 4.49 & 6.22 & 7.74 & 7.07 & 9.05 & 5.7
\end{array}\right]^{T}
\]

\section*{Solution.}
```

LS := CurveFitting[LeastSquares](xy, x);
2.7639999999999967 + 0.49890909090909125 x
WLS := CurveFitting[LeastSquares](xy, x,
weight = [1/4,1,1,1,1,1,1,1,1,1/4]);
1.0466694879390623 + 0.8019424460431653 x

```


\subsection*{8.4.2. RANdom SAmple Consensus (RANSAC)}

The random sample consensus (RANSAC) is one of the most powerful tools for the reconstruction of ground structures from point cloud observations in many applications. The algorithm utilizes iterative search techniques for a set of inliers to find a proper model for given data.

\section*{Algorithm 8.27. (RANSAC) (Fischler-Bolles, 1981) [6]}

Input: Measurement set \(\boldsymbol{X}=\left\{\mathbf{x}_{i}\right\}\), the error tolerance \(\tau_{e}\), the stopping threshold \(\eta\), and the maximum number of iterations \(N\).
1. Select randomly a minimum point set \(S\), required to determine a hypothesis.
2. Generate a hypothesis \(\mathbf{p}=g(S)\).
3. Compute the hypothesis consensus set, fitting within the error tolerance \(\tau_{e}\) :
\[
\mathcal{C}=\operatorname{inlier}\left(\boldsymbol{X}, \mathbf{p}, \tau_{\mathrm{e}}\right)
\]
4. If \(|\mathcal{C}| \geq \eta|\boldsymbol{X}|\), then re-estimate a hypothesis \(\mathbf{p}=g(\mathcal{C})\) and stop.
5. Otherwise, repeat steps \(1-4\) (maximum of \(N\) times).

Example 8.28. Let's set a hypothesis for a regression line.
1. Minimum point set \(S\) : a set of two points, \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\).
2. Hypothesis p: \(y=a+b x \quad(\Rightarrow a+b x-y=0)\)
\[
y=b\left(x-x_{1}\right)+y_{1}=a+b x \Leftarrow b=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, a=y_{1}-b x_{1} .
\]
3. Consensus set \(\mathcal{C}\) :
\[
\begin{equation*}
\mathcal{C}=\left\{\left(x_{i}, y_{i}\right) \in \boldsymbol{X} \left\lvert\, d=\frac{\left|a+b x_{i}-y_{i}\right|}{\sqrt{b^{2}+1}} \leq \tau_{e}\right.\right\} \tag{8.33}
\end{equation*}
\]

Note: In practice:
- Step 2: A hypothesis \(p\) is the set of model parameters, rather than the model itself.
- Step 3: The consensus set can be represented more conveniently using an index array. That is,
\[
\operatorname{ID}(i)= \begin{cases}1 & \text { if } \mathbf{x}_{i} \in \mathcal{C}  \tag{8.34}\\ 0 & \text { if } \mathbf{x}_{i} \notin \mathcal{C}\end{cases}
\]

Remark 8.29. The "inlier" function in Step 3 collects points whose distance from the model, \(f(\mathbf{p})\), is not larger than \(\tau_{e}\). Thus, the function can be interpreted as an automatic weighting mechanism. Indeed, for each point \(\mathrm{x}_{i}\),
\[
\operatorname{dist}\left(f(\mathbf{p}), \mathbf{x}_{i}\right)\left\{\begin{array}{l}
\leq \tau_{e}, \text { then } w_{i}=1  \tag{8.35}\\
>\tau_{e}, \text { then } w_{i}=0
\end{array}\right.
\]

Then the re-estimation in Step 4, \(\mathbf{p}=g(\mathcal{C})\), can be seen as an parameter estimation \(\mathbf{p}=g(\boldsymbol{X})\) with the corresponding weight matrix \(W=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}\).

\section*{Remark 8.30.}
- The above basic RANSAC algorithm is an iterative search method for a set of inliers which may produce presumably accurate model parameters.
- It is simple to implement and efficient. However, it is problematic and often erroneous.
- The main disadvantage of RANSAC is that RANSAC is unrepeatable; it may yield different results in each run so that none of the results can be optimal.


Figure 8.5: The RANSAC for linear-type synthetic datasets.

Table 8.1: The RANSAC: model fitting \(y=a_{0}+a_{1} x\). The algorithm runs 1000 times for each dataset to find the standard deviation of the error: \(\sigma\left(a_{0}-\widehat{a}_{0}\right)\) and \(\sigma\left(a_{1}-\widehat{a}_{1}\right)\).
\begin{tabular}{|c||cc|c|}
\hline Data & \(\sigma\left(a_{0}-\widehat{a}_{0}\right)\) & \(\sigma\left(a_{1}-\widehat{a}_{1}\right)\) & E-time (sec) \\
\hline \hline 1 & 0.1156 & 0.0421 & 0.0156 \\
\hline 2 & 0.1101 & 0.0391 & 0.0147 \\
\hline
\end{tabular}

\section*{The RANSAC is neither repeatable nor optimal.}

In order to overcome the drawbacks, various variants have been studied in the literature. Nonetheless, it remains a prevailing algorithm for finding inliers. For variants, see e.g.,
- Maximum Likelihood Estimation Sample Consensus (MLESAC) [24]
- Progressive Sample Consensus (PROSAC) [2]
- Recursive RANSAC (R-RANSAC) [17]

\subsection*{8.5. Padé Rational Function Approximation}

\section*{The Class of Algebraic Polynomials}

\section*{Advantages:}
- There are a sufficient number of polynomials to approximate any continuous function on a closed interval to within an arbitrary tolerance.
- Polynomials are easy to evaluate.
- Their derivatives and integrals exist and are easily determined.

\section*{Disadvantage:}
- Tendency for oscillation, which often causes the error bound to significantly exceed the average approximation error.

Definition 8.31. A rational function \(r\) of degree \(N\) has the form
\[
\begin{equation*}
r(x)=\frac{p(x)}{q(x)}, \tag{8.36}
\end{equation*}
\]
where \(p(x)\) and \(q(x)\) are polynomials whose degrees sum to \(N\).

\section*{Padé Approximation:}

Definition 8.32. Padé rational function of degree \(N=n+m\), approximating \(f(x)\), has the form
\[
\begin{equation*}
f(x) \approx R_{n, m}(x)=\frac{p(x)}{q(x)}=\frac{p_{0}+p_{1} x+\cdots+p_{n} x^{n}}{1+q_{1} x+\cdots+q_{m} x^{m}} \tag{8.37}
\end{equation*}
\]

\section*{Determination of the constants \(\left\{\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \cdots, \boldsymbol{p}_{n}, \boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{m}\right\}\)}

We will find them to satisfy
\[
\begin{equation*}
\left(\frac{d^{k} f}{d x^{k}}-\frac{d^{k} R_{n, m}}{d x^{k}}\right)(0)=0, \quad \text { for } k=0,1, \cdots, N \tag{8.38}
\end{equation*}
\]
- Let \(f\) have the Maclaurin series expansion
\[
\begin{equation*}
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \tag{8.39}
\end{equation*}
\]
- Then, for \(q_{0}=1\),
\[
\begin{equation*}
f(x)-R_{n, m}(x)=\frac{\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{m} q_{i} x^{i}\right)-\left(\sum_{i=0}^{n} p_{i} x^{i}\right)}{q(x)} . \tag{8.40}
\end{equation*}
\]
- Our objective is to determine the constants \(\left\{p_{0}, p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{m}\right\}\) such that (8.38) is satisfied, which is equivalent to \(\left(f-R_{n, m}\right)\) having a zero of multiplicity \(N+1\) at \(x=0\).
- As a consequence, we choose the constants so that the numerator on the right side of (8.40),
\[
\begin{equation*}
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{m} q_{i} x^{i}\right)-\left(\sum_{i=0}^{n} p_{i} x^{i}\right) \tag{8.41}
\end{equation*}
\]
has no terms of degree \(\leq N\).
- In order to simplify the notation, we define
\[
\begin{aligned}
& q_{m+1}=q_{m+2}=\cdots=q_{N}=0 \\
& p_{n+1}=p_{n+2}=\cdots=p_{N}=0
\end{aligned}
\]
- Then the coefficient of \(x^{k}\) in (8.41) can be expresses as
\[
\begin{equation*}
\sum_{i=0}^{k} a_{i} q_{k-i}-p_{k}, \quad k=0,1, \cdots, N \tag{8.42}
\end{equation*}
\]

Summary 8.33. (Padé approximation) Let \(f\) have the Maclaurin series expansion \(f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}\). Then the rational function for Padé approximation, \(R_{n, m}\), results from the solution of \(N+1\) linear equations
\[
\begin{equation*}
\sum_{i=0}^{k} a_{i} q_{k-i}=p_{k}, \quad k=0,1, \cdots, N \tag{8.43}
\end{equation*}
\]

Example 8.34. Find the Padé approximation to \(e^{-x}\) of degree 5 with \(n=3\) and \(m=2\).

\section*{Solution.}
\[
\text { PadeRatApprox : }=\operatorname{proc}(f, n, m)
\]
local \(i, j, N, p, q, e q, P Q, T, a, R\);
\(N:=m+n\);
\(T:=\operatorname{convert}(\) taylor \((f, x=0, N+1)\), polynom \()\);
for \(i\) from 0 to \(N\) do \(a_{i}:=\operatorname{coeff}(T, x, i)\); end do;
\(q_{0}:=1\);
for \(i\) from \(m+1\) to \(N\) do \(q_{i}:=0\); end do;
for \(i\) from \(n+1\) to \(N\) do \(p_{i}:=0\); end do;
for \(i\) from 0 to \(N\) do
\[
e q_{i}:=\operatorname{add}\left(a_{j} \cdot q_{i-j} j=0 \ldots i\right)=p_{i}
\]
end do;
\(P Q:=\operatorname{solve}\left(\left\{\operatorname{seq}\left(e q_{i} i=0 . . N\right)\right\},\left\{\operatorname{seq}\left(p_{i} i=0 . . n\right), \operatorname{seq}\left(q_{i}, i=1 . . m\right)\right\}\right)\);
\(R:=x \rightarrow \frac{\operatorname{add}\left(r h s(P Q[1+i]) \cdot x^{i}, i=0 . . n\right)}{a_{0}+\operatorname{add}\left(r h s(P Q[n+1+i]) \cdot x^{i}, i=1 . . m\right)} ;\)
return \(R\);
end proc:
\[
\begin{aligned}
& R 32:=\text { PadeRatApprox }\left(\mathrm{e}^{-x}, 3,2\right): \\
& >R 32(x)
\end{aligned}
\]
\[
\frac{1-\frac{3}{5} x+\frac{3}{20} x^{2}-\frac{1}{60} x^{3}}{1+\frac{2}{5} x+\frac{1}{20} x^{2}}
\]

\[
\begin{aligned}
& \text { Use of built-in command } \\
& \mathrm{T}:=\text { taylor }(\exp (-x), x=0,6):
\end{aligned}
\]

\section*{Exercises for Chapter 8}
8.1. Let \(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}\) be an orthonormal basis for a subspace \(W\) of \(\mathbb{R}^{n}\), that is, \(\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\) \(\delta_{i j}\). Let \(U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right] \in \mathbb{R}^{n \times p}\). Prove that
\[
\begin{equation*}
\operatorname{proj}_{w} \mathbf{y}=U U^{T} \mathbf{y}, \quad \text { for all } \mathbf{y} \in \mathbb{R}^{n} \tag{8.44}
\end{equation*}
\]
(Thus the orthogonal projection can be viewed as a matrix transformation.)
8.2. CC Let \(A=\left[\begin{array}{rrrr}-10 & 13 & 7 & -11 \\ 2 & 1 & -5 & 3 \\ -6 & 3 & 13 & -3 \\ 16 & -16 & -2 & 5 \\ 2 & 1 & -5 & -7\end{array}\right]\). Use the Gram-Schmidt process to produce an orthogonal basis for the column space of \(A\).
\[
A n s: \mathbf{v}_{4}=(0,5,0,0,-5)
\]
8.3. C Given data
\begin{tabular}{c|cccccccccc}
\hline\(x_{i}\) & 0.2 & 0.4 & 0.6 & 0.8 & 1. & 1.2 & 1.4 & 1.6 & 1.8 & 2. \\
\(y_{i}\) & 1.88 & 2.13 & 1.76 & 2.78 & 3.23 & 3.82 & 6.13 & 7.22 & 6.66 & 9.07 \\
\hline
\end{tabular}
(a) Plot the data (scattered point plot)
(b) Decide what curve fits the data best.
(c) Implement an LS code to find the curve.
(d) Plot the curve superposed over the point plot.
8.4. C Implement a code for the RANSAC, Algorithm 8.27, and use the data in Example 8.26 , p.302, to find a best-fitting regression line. Set \(\tau_{e}=1\) and \(\eta|\boldsymbol{X}|=8\).
8.5. C Determine Pad'e approximation of degree 6 for \(f(x)=\sin x\), and compare the results at \(x_{i}=0.2 i, i=0,1, \cdots, 5\), with \(f(x)\) and with its sixth Maclaurin polynomial
\[
\operatorname{convert}(\operatorname{taylor}(\sin (\mathrm{x}), \mathrm{x}=0,7), \text { polynom })=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
\]
(a) with \(n=2, \quad m=4\)
(b) with \(n=3, m=3\)
(c) with \(n=4, m=2\)
(You should not use any built-in functions which produce the results immediately.)

\section*{Chapter 9}

\section*{Eigenvalues and Matrix Decomposition}

\section*{In This Chapter:}
\begin{tabular}{|l|l|}
\hline Topics & Applications/Properties \\
\hline \hline \begin{tabular}{l} 
Power Method \\
Symmetric power method \\
Inverse power method
\end{tabular} & Symmetric matrices \\
\hline \begin{tabular}{l} 
QR Factorization \\
Gram-Schmidt process \\
Householder reflectors
\end{tabular} & QR algorithm \\
\hline \begin{tabular}{l} 
Singular Value Decomposition \\
(SVD)
\end{tabular} & LS problems, pseudoinverse \\
\hline \begin{tabular}{l} 
Principal Component Analysis \\
(PCA)
\end{tabular} & Feature extraction, data compression \\
\hline
\end{tabular}

\section*{Contents of Chapter 9}
9.1. The Power Method ..... 312
9.2. QR Factorization ..... 322
9.3. Singular Value Decomposition ..... 340
9.4. Principal Component Analysis ..... 354
Exercises for Chapter 9 ..... 360

\subsection*{9.1. The Power Method}

The power method is an eigenvalue algorithm:
Given a matrix \(A \in \mathbb{R}^{n \times n}\), the algorithm will produce a number \(\lambda\), which is the greatest (in absolute value) eigenvalue of \(A\), and a nonzero vector \(\mathbf{v}\), which is a corresponding eigenvector of \(\lambda(A \mathbf{v}=\lambda \mathbf{v})\).

Assumption. To apply the power method, we assume that \(A \in \mathbb{R}^{n \times n}\) has
- \(n\) eigenvalues \(\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}\),
- \(n\) associated eigenvectors \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}\), which are linearly independent, and
- precisely one eigenvalue that is largest in magnitude, \(\lambda_{1}\) :
\[
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right| \tag{9.1}
\end{equation*}
\]

The power method approximates the largest eigenvalue \(\lambda_{1}\) and its associated eigenvector \(\mathrm{v}_{1}\).

\subsection*{9.1.1. Power iteration}
- Since eigenvectors \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}\) are linearly independent, any vector \(\mathrm{x} \in \mathbb{R}^{n}\) can be expressed as
\[
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j} \tag{9.2}
\end{equation*}
\]
for some constants \(\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}\).
- Multiplying both sides of (9.2) by \(A\) and \(A^{2}\) gives
\[
\begin{align*}
& A \mathbf{x}=A\left(\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} \beta_{j} A \mathbf{v}_{j}=\sum_{j=1}^{n} \beta_{j} \lambda_{j} \mathbf{v}_{j}  \tag{9.3}\\
& A^{2} \mathbf{x}=A\left(\sum_{j=1}^{n} \beta_{j} \lambda_{j} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} \beta_{j} \lambda_{j}^{2} \mathbf{v}_{j}
\end{align*}
\]
- In general,
\[
\begin{equation*}
A^{k} \mathbf{x}=\sum_{j=1}^{n} \beta_{j} \lambda_{j}^{k} \mathbf{v}_{j}, \quad k=1,2, \cdots \tag{9.4}
\end{equation*}
\]
which gives
\[
\begin{equation*}
A^{k} \mathbf{x}=\lambda_{1}^{k} \sum_{j=1}^{n} \beta_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \mathbf{v}_{j}, \quad k=1,2, \cdots \tag{9.5}
\end{equation*}
\]
- Since \(\left|\lambda_{1}\right|>\left|\lambda_{j}\right|, 2 \leq j \leq n\), we have \(\lim _{k \rightarrow \infty}\left|\lambda_{j} / \lambda_{1}\right|^{k}=0\), and
\[
\begin{equation*}
\lim _{k \rightarrow \infty} A^{k} \mathbf{x}=\lim _{k \rightarrow \infty} \lambda_{1}^{k} \beta_{1} \mathbf{v}_{1} \tag{9.6}
\end{equation*}
\]

Remark 9.1. The sequence in (9.6) converges to 0 if \(\left|\lambda_{1}\right|<1\) and diverges if \(\left|\lambda_{1}\right|>1\), provided that \(\beta_{1} \neq 0\).
- The entries of \(A^{k} \mathrm{x}\) will grow with \(k\) if \(\left|\lambda_{1}\right|>1\) and will go to 0 if \(\left|\lambda_{1}\right|<1\).
- In either case, it is hard to decide the largest eigenvalue \(\lambda_{1}\) and its associated eigenvector \(\mathbf{v}_{1}\).
- To take care of that possibility, we scale \(A^{k} \mathrm{x}\) in an appropriate manner to ensure that the limit in (9.6) is finite and nonzero.

\section*{Algorithm 9.2. (The Power Iteration) Given \(x \neq 0\) :}
initialization : \(\mathrm{x}^{0}=\mathrm{x} /\|\mathrm{x}\|_{\infty}\)
for \(k=1,2, \cdots\)
\[
\begin{aligned}
& \mathbf{y}^{k}=A \mathbf{x}^{k-1} ; \quad \mu_{k}=\left\|\mathbf{y}^{k}\right\|_{\infty} \\
& \mathbf{x}^{k}=\mathbf{y}^{k} / \mu_{k}
\end{aligned}
\]
end for

\section*{Properties}
- First of all,
\[
\left\|\mathrm{x}^{k}\right\|_{\infty}=1, \text { for all } k \geq 0
\]
- It follows from (9.6) that for \(k\) sufficiently large,
\[
\begin{align*}
& \mathbf{x}^{k}=\left(\prod_{j=1}^{k} \mu_{j}\right)^{-1} A^{k} \mathbf{x}^{0} \approx\left(\prod_{j=1}^{k} \mu_{j}\right)^{-1} \lambda_{1}^{k} \beta_{1} \mathbf{v}_{1}, \\
& \mathbf{x}^{k+1}=\left(\prod_{j=1}^{k+1} \mu_{j}\right)^{-1} A^{k+1} \mathbf{x}^{0} \approx\left(\prod_{j=1}^{k+1} \mu_{j}\right)^{-1} \lambda_{1}^{k+1} \beta_{1} \mathbf{v}_{1} . \tag{9.8}
\end{align*}
\]
- Note that \(\left\|\mathrm{x}^{k}\right\|_{\infty}=\left\|\mathrm{x}^{k+1}\right\|_{\infty}=1\). Comparison of the above two equations reads
\[
\begin{equation*}
\left|\frac{\lambda_{1}}{\mu_{k+1}}\right| \approx 1 \tag{9.9}
\end{equation*}
\]

Claim 9.3. Let \(\left\{\mathrm{x}^{k}, \mu_{k}\right\}\) be sequences produced by the power method. Then,
\[
\begin{equation*}
\mathbf{x}^{k} \rightarrow \mathbf{v}_{1}, \quad \mu_{k} \rightarrow\left|\lambda_{1}\right|, \quad \text { as } k \rightarrow \infty \tag{9.10}
\end{equation*}
\]

More precisely, the power method converges as
\[
\begin{equation*}
\mu_{k}=\left|\lambda_{1}\right|+\mathcal{O}\left(\left|\lambda_{2} / \lambda_{1}\right|^{k}\right) . \tag{9.11}
\end{equation*}
\]

Note: We have assumed that \(A\) has \(n\) linearly independent eigenvectors, which equivalently implies that \(A\) is diagonalizable. Thus, the Diagonalization Theorem says that \(A\) can be written as
\[
\begin{equation*}
A=P D P^{-1} \tag{9.12}
\end{equation*}
\]
where, for \(A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}, k=1,2, \cdots, n\),
\[
\begin{aligned}
& P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right], \\
& D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] .
\end{aligned}
\]

Example 9.4. The matrix \(A=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]\) has eigenvalues and eigenvectors as follows
\[
\text { Linear Algebra }[\text { Eigenvectors }](A)=\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right],\left[\begin{array}{rrr}
1 & -2 & 0 \\
-1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]
\]

Verify that the sequences produced by the power method converge to the largest eigenvalue and its associated eigenvector.

\section*{Solution.}
```

$x:=\langle 1,0,0\rangle$:
for k from 1 to 10 do
$y:=A x ;$
muk := LinearAlgebra[VectorNorm](y, infinity);
$x:=\frac{1}{m u k} y$,
print (${ }^{`} k=`, k, ` m u k={ }^{`}$, evalf $_{8}(m u k)$, evalf $_{4}\left(x^{\% T}\right)$, evalf $\left._{4}(\operatorname{abs}(6-m u k))\right)$;
end do:

```

Results
\(\mathrm{k}=, 1, \operatorname{muk}=, 4 ., \quad[1 .,-0.2500,0.2500], 2\).
\(\mathrm{k}=, 2, \operatorname{muk}=, 4.500000, \quad[1 .,-0.5000,0.5000], 1.500\)
\(\mathrm{k}=, 3, \operatorname{muk}=, 5 ., \quad[1 .,-0.7000,0.7000], 1\).
\(\mathrm{k}=, 4, \operatorname{muk}=5.4000000,[1 .,-0.8333,0.8333], 0.6000\)
\(\mathrm{k}=, 5, \operatorname{muk}=5.6666667,[1 .,-0.9118,0.9118], 0.3333\)
\(\mathrm{k}=, 6, \operatorname{muk}=, 5.8235294,[1 .,-0.9545,0.9545], 0.1765\)
\(\mathrm{k}=, 7, \operatorname{muk}=, 5.9090909,[1 .,-0.9769,0.9769], 0.09091\)
\(\mathrm{k}=, 8, \operatorname{muk}=, 5.9538462,[1 .,-0.9884,0.9884], 0.04615\)
\(\mathrm{k}=, 9, \operatorname{muk}=, 5.9767442,[1 .,-0.9942,0.9942], 0.02326\)
\(\mathrm{k}=, 10, \operatorname{muk}=, 5.9883268\),

Notice that \(\left|6-\mu_{k+1}\right| \approx \frac{1}{2}\left|6-\mu_{k}\right|\), for which \(\left|\lambda_{2} / \lambda_{1}\right|=\frac{1}{2}\).

\subsection*{9.1.2. Symmetric Power Method}

Theorem 9.5. (The Spectral Theorem) Suppose \(A \in \mathbb{R}^{n \times n}\) is symmetric. Then
(a) A has \(n\) eigenvectors \(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\) such that \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}\) is an orthonormal basis for \(\mathbb{R}^{n}\).
(b) Every eigenvalue \(\lambda\) of \(A\) is a real number.
(c) Eigenvectors corresponding to distinct eigenvalues are necessarily orthogonal.
(d) There exists a diagonal matrix \(D \in \mathbb{R}^{n \times n}\) and an orthogonal matrix \(U \in \mathbb{R}^{n \times n}\) such that
\[
\begin{equation*}
A=U D U^{T} \tag{9.13}
\end{equation*}
\]

The diagonal entries of \(D\) are the eigenvalues of \(A\) and the columns of \(U\) are the corresponding eigenvectors.

Note that (a) implies (d).
When \(A \in \mathbb{R}^{n \times n}\) is symmetric, the power method can exploit it to converge faster.

Algorithm 9.6. (Symmetric Power Method) Suppose \(A \in \mathbb{R}^{n \times n}\) is symmetric. Given \(x \neq 0\) :
\[
\begin{aligned}
& \text { initialization : } \mathbf{x}^{0}=\mathbf{x} /\|\mathbf{x}\|_{2} \\
& \text { for } k=1,2, \cdots \\
& \qquad \mathbf{y}^{k}=A \mathbf{x}^{k-1} ; \mu_{k}=\mathbf{y}^{k} \bullet \mathbf{x}^{k-1} \\
& \quad \mathbf{x}^{k}=\mathbf{y}^{k} /\left\|\mathbf{y}^{k}\right\|_{2} \\
& \text { end for }
\end{aligned}
\]

Claim 9.7. The symmetric power method converges as
\[
\begin{equation*}
\mu_{k}=\lambda_{1}+\mathcal{O}\left(\left|\lambda_{2} / \lambda_{1}\right|^{2 k}\right) \tag{9.15}
\end{equation*}
\]
which converges twice faster than the basic power method.

Example 9.8. The matrix \(A\) is as in Example 9.4: \(A=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]\).
Find the largest eigenvalue using the symmetric power method.

\section*{Solution.}
```

$x:=\langle 1,0,0\rangle$:
for k from 1 to 10 do
$y:=A x ;$
muk $:=x^{\% T} \cdot y$,
ynorm := LinearAlgebra $[$ VectorNorm $](y, 2)$;
$x:=\frac{1}{y \text { norm }} y$,
$\operatorname{print}\left(` k=`, k, ` m u k=`, \operatorname{evalf}_{8}(m u k), \operatorname{evalf}_{4}\left(x^{\% T}\right), \operatorname{evalf}_{4}(\operatorname{abs}(6-m u k))\right)$;
end do:

```

Results
\[
\begin{aligned}
& \mathrm{k}=, 1, \operatorname{muk}=, 4 .,[0.9427,-0.2357,0.2357], 2 . \\
& \mathrm{k}=, 2, \operatorname{muk}=, 5 .,[0.8163,-0.4082,0.4082], 1 . \\
& \mathrm{k}=, 3, \operatorname{muk}=, 5.6666667,[0.7105,-0.4974,0.4974], 0.3333 \\
& \mathrm{k}=, 4, \operatorname{muk}=, 5.9090909,[0.6471,-0.5393,0.5393], 0.09091 \\
& \mathrm{k}=, 5, \operatorname{muk}=, 5.9767442,[0.6127,-0.5587,0.5587], 0.02326 \\
& \mathrm{k}=, 6, \operatorname{muk}=, 5.9941520,[0.5950,-0.5679,0.5679], 0.005848 \\
& \mathrm{k}=, 7, \operatorname{muk}=, 5.9985359,[0.5863,-0.5728,0.5728], 0.001464 \\
& \mathrm{k}=, 8, \operatorname{muk}=5.9996338,[0.5819,-0.5751,0.5751], 0.0003662 \\
& \mathrm{k}=, 9, \operatorname{muk}=, 5.9999084,[0.5792,-0.5760,0.5760], 0.00009155 \\
& \mathrm{k}=, 10, \operatorname{muk}=, 5.9999771,[0.5781,-0.5764,0.5764], 0.00002289
\end{aligned}
\]

Notice that \(\left|6-\mu_{k+1}\right| \approx \frac{1}{4}\left|6-\mu_{k}\right|\), for which \(\left|\lambda_{2} / \lambda_{1}\right|=\frac{1}{2}\).

\section*{Accuracy Analysis}

Let \(\mu\) be a real number that approximates an eigenvalue of a symmetric matrix \(A\) and x an associated eigenvector. Then \(A \mathrm{x}-\mu \mathrm{x}\) is approximately the zero vector. The following theorem shows a relation between the norm of the vector and the accuracy of \(\mu\) to the eigenvalue.

Theorem 9.9. Suppose \(A \in \mathbb{R}^{n \times n}\) is symmetric, having eigenvalues \(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\). Then, for \(\|\mathbf{x}\|_{2}=1\) and \(\mu \in \mathbb{R}\),
\[
\begin{equation*}
\min _{1 \leq i \leq n}\left|\lambda_{i}-\mu\right| \leq\|A \mathbf{x}-\mu \mathbf{x}\|_{2} \tag{9.16}
\end{equation*}
\]

Proof. Let \(\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}\) form an orthonormal set of eigenvectors of \(A\) associated with the eigenvalues \(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\). Then there is a unique set of constants \(\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}\) such that
\[
\mathbf{x}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
\]
where \(\sum_{i=1}^{n} c_{i}^{2}=\|\mathbf{x}\|_{2}^{2}=1\). Thus,
\[
\begin{align*}
\|A \mathbf{x}-\mu \mathbf{x}\|_{2}^{2} & =\left\|\sum_{i=1}^{n} c_{i}\left(A \mathbf{v}_{i}-\mu \mathbf{v}_{i}\right)\right\|_{2}^{2}=\left\|\sum_{i=1}^{n} c_{i}\left(\lambda_{i}-\mu\right) \mathbf{v}_{i}\right\|_{2}^{2} \\
& =\sum_{i=1}^{n} c_{i}^{2}\left(\lambda_{i}-\mu\right)^{2}  \tag{9.17}\\
& \geq \min _{1 \leq i \leq n}\left|\lambda_{i}-\mu\right|^{2} \sum_{i=1}^{n} c_{i}^{2}=\min _{1 \leq i \leq n}\left|\lambda_{i}-\mu\right|^{2}
\end{align*}
\]
which completes the proof. \(\square\)
Note: The above theorem implies that the approximated eigenvalue represents one of the eigenvalues of \(A\), with accuracy that is in the same order as the stopping tolerance.

\subsection*{9.1.3. Inverse Power Method}

Some applications require to find an eigenvalue of near a prescribed value \(q\). The inverse power method is a variant of the Power method to solve such a problem.
- We begin with the eigenvalues and eigenvectors of \((A-q I)^{-1}\). Let
\[
\begin{equation*}
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i=1,2, \cdots, n \tag{9.18}
\end{equation*}
\]
- Then it is easy to see that
\[
\begin{equation*}
(A-q I) \mathbf{v}_{i}=\left(\lambda_{i}-q\right) \mathbf{v}_{i} . \tag{9.19}
\end{equation*}
\]

Thus, we obtain
\[
\begin{equation*}
(A-q I)^{-1} \mathbf{v}_{i}=\frac{1}{\lambda_{i}-q} \mathbf{v}_{i} . \tag{9.20}
\end{equation*}
\]
- That is, when \(q \notin\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}\), the eigenvalues of \((A-q I)^{-1}\) are
\[
\begin{equation*}
\frac{1}{\lambda_{1}-q}, \frac{1}{\lambda_{2}-q}, \cdots, \frac{1}{\lambda_{n}-q}, \tag{9.21}
\end{equation*}
\]
with the same eigenvectors \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}\) of \(A\).

Algorithm 9.10. (Inverse Power Method) Applying the power method to \((A-q I)^{-1}\) gives the inverse power method. Given \(\mathbf{x} \neq 0\) :
\[
\begin{align*}
& \text { set : } \quad \mathbf{x}^{0}=\mathbf{x} \\
& \text { for } k=1,2, \cdots \\
& \qquad \mathbf{y}^{k}=(A-q I)^{-1} \mathbf{x}^{k-1} ; \quad \mu_{k}=\left\|\mathbf{y}^{k}\right\|_{\infty}  \tag{9.22}\\
& \mathbf{x}^{k}=\mathbf{y}^{k} / \mu_{k} \\
& \lambda=1 / \mu_{k}+q
\end{align*}
\]
end for

Example 9.11. The matrix \(A\) is as in Example 9.4: \(A=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]\). Find the the eigenvalue of \(A\) nearest to \(q=5 / 2\), using the inverse power method.

\section*{Solution.}
```

$x:=\langle 1,0,0\rangle:$
$q:=\frac{5}{2}$:
$I d:=\operatorname{Matrix}(3,3$, shape $=$ identity $):$
for k from 1 to 10 do
$y:=(A-q I d)^{-1} \cdot x ;$
ynorm := LinearAlgebra[VectorNorm](y, infinity);
$x:=\frac{1}{\text { ynorm }} y$,
muk $:=\frac{1}{\text { ynorm }}+q$;
$\operatorname{print}\left(` k=`, k, ` m u k=`, \operatorname{evalf}_{8}(m u k), \operatorname{evalf}_{4}\left(x^{\% T}\right), \operatorname{evalf}_{8}(\operatorname{abs}(3-m u k))\right)$;
end do:

```
\(\mathrm{k}=, 1, \mathrm{muk}=, 3.2000000\), [1., \(0.4000,-0.4000\) ], 0.20000000
\(\mathrm{k}=, 2\), muk=, 3.0303030, [1., 0.4848, -0.4848], 0.030303030
\(\mathrm{k}=, 3, \mathrm{muk}=, 3.0043668\), [1., 0.4978, -0.4978], 0.0043668122
\(\mathrm{k}=, 4, \mathrm{muk}=, 3.0006246\), [1., 0.4997, -0.4997], 0.00062460962
\(\mathrm{k}=, 5\), muk=, 3.0000892, [1., 0.5000, -0.5000], 0.000089245872
\(\mathrm{k}=, 6, \mathrm{muk}=, 3.0000127\), [1., 0.5000, -0.5000], 0.000012749735
\(\mathrm{k}=, 7, \mathrm{muk}=, 3.0000018\), [1., 0.5000, -0.5000], 0.0000018213974
\(\mathrm{k}=, 8\), muk=, 3.0000003, [1., 0.5000, -0.5000], 2.6019977 10~-7
\(\mathrm{k}=, 9\), muk=, 3.0000000, [1., 0.5000, -0.5000], 3.7171398 10~-8
\(\mathrm{k}=, 10\), muk=, 3.0000000, [1., 0.5000, -0.5000], \(5.310199810^{\wedge}-9\)

\section*{Symmetric Inverse Power method}
\[
\begin{aligned}
& \text { for } k \text { from } 1 \text { to } 10 \text { do } \\
& \quad y:=\left(A-a \text { Id }^{-1} \cdot x ;\right. \\
& \text { lam }:=x^{\% T} . y, \\
& \quad \text { ynorm }:=\text { LinearAlgebra }[\text { VectorNorm }](y, 2) ; \\
& x:=\frac{1}{y n o r m} y, \\
& \quad \text { muk }:=\frac{1}{\text { lam }}+q ; \\
& \quad \text { print }\left(` k=`, k, ` m u k=`, \text { evalf }_{8}(m u k), \text { evalf }_{4}\left(x^{\% T}\right), \text { evalf }_{10}(\operatorname{abs}(3-m u k))\right) ; \\
& \text { end do: }
\end{aligned}
\]

Inverse Power Method
```

k=, 1, muk=, 3.2000000, [0.8704, 0.3482, -0.3482], 0.2000000000
k=, 2, muk=, 3.0043668, [0.8245, 0.3997, -0.3997], 0.004366812227
k=, 3, muk=, 3.0000892, [0.8178, 0.4071, -0.4071], 0.00008924587238
k=, 4, muk=, 3.0000018, [0.8164, 0.4080, -0.4080], 0.000001821397413
k=, 5, muk=, 3.0000000, [0.8167, 0.4083, -0.4083], 3.717139787 10^-8
k=, 6, muk=, 3.0000000, [0.8159, 0.4080, -0.4080], 7.585999658 10^-10
k=, 7, muk=, 3.0000000, [0.8166, 0.4084, -0.4084], 1.548163196 10^-10
k=, 8, muk=, 3.0000000, [0.8167, 0.4082, -0.4082], 3.159516726 10^-13
k=, 9, muk=, 3.0000000, [0.8166, 0.4083, -0.4083], 6.447993319 10^-15
k=, 10, muk=, 3.0000000, [0.8171, 0.4084, -0.4084], 1.315917004 10^-16

```

The symmetric inverse power method converges twice faster than the basic inverse power method.

\subsection*{9.2. QR Factorization}

Note: Power methods are not in general suitable for calculating all the eigenvalues of a matrix because of the growth of round-off error. In this section, we will consider the so-called \(\mathbf{Q R}\) factorization. The method can be utilized to find all the eigenvalues simultaneously. However, it is useful for a wide range of applications. Thus here we will derive the QR algorithm for general purpose.

Theorem 9.12. (QR Factorization Theorem) For \(A \in \mathbb{R}^{m \times n}\), we can factor it as
\[
A=Q R,
\]
where \(Q\) is an \(m \times n\) matrix whose columns are orthonormal and \(R\) is an \(n \times n\) upper triangular matrix. If \(A\) is of full rank, the factorization is unique with \(R\) having positive main diagonal entries.

Corollary 9.13. Let \(A \in \mathbb{R}^{n \times n}\). Then there exist an orthogonal matrix \(Q\) and an upper triangular matrix \(R\) such that \(A=Q R\).

Corollary 9.14. Let \(A \in \mathbb{R}^{n \times n}\) be nonsingular. Then there exist unique \(\bar{Q}, R \in \mathbb{R}^{n \times n}\) such that \(Q\) is orthogonal, \(R\) is upper triangular with positive main diagonal entries, and \(A=Q R\).

\section*{Computation of the QR factorization}

There have been several methods for the computation of the QR factorization, such as by means of

\section*{\(\left\{\begin{array}{l}\text { Gram-Schmidt process } \\ \text { Householder reflectors }\end{array}\right.\)}

The Gram-Schmidt process is considered earlier in Section 8.1.2, p. 288.

\subsection*{9.2.1. QR factorization by the Gram-Schmidt process}

Theorem 9.15. (The Gram-Schmidt process - Revisit of Theorem 8.5) Given a basis \(\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{p}\right\}\) for a nonzero subspace \(W\) of \(\mathbb{R}^{n}\), define
\[
\begin{align*}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\frac{\mathbf{x}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\frac{\mathbf{x}_{\mathbf{3}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{3}} \bullet \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{2}  \tag{9.23}\\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\frac{\mathbf{x}_{\mathbf{p}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}-\frac{\mathbf{x}_{\mathbf{p}} \bullet \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{\mathbf{p}} \bullet \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \bullet \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
\end{align*}
\]

Then \(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}\) is an orthogonal basis for \(W\). In addition,
\[
\begin{equation*}
\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}, \quad \text { for } 1 \leq k \leq p \tag{9.24}
\end{equation*}
\]

\section*{Algorithm 9.16. (QR Factorization by the Gram-Schmidt Process)}

Let \(A=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right]\) have full rank. From the Gram-Schmidt process, obtain an orthonormal basis \(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}\). Then
\[
\begin{align*}
\mathbf{x}_{1} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{1}\right) \mathbf{u}_{1} \\
\mathbf{x}_{2} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{2}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2} \bullet \mathbf{x}_{2}\right) \mathbf{u}_{2} \\
\mathbf{x}_{3} & =\left(\mathbf{u}_{1} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{2}+\left(\mathbf{u}_{3} \bullet \mathbf{x}_{3}\right) \mathbf{u}_{3}  \tag{9.25}\\
& \vdots \\
\mathbf{x}_{n} & =\sum_{j=1}^{n}\left(\mathbf{u}_{j} \bullet \mathbf{x}_{n}\right) \mathbf{u}_{j},
\end{align*}
\]
which is a rephrase (with normalization) of (9.23). Thus
\[
A=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \tag{9.26}
\end{array}\right]=Q R
\]
implies that
\[
\begin{align*}
Q & =\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \cdot\right. \\
R & =\left[\begin{array}{ccccc}
\left.\mathbf{u}_{n}\right], \\
\mathbf{u}_{1} \bullet \mathbf{x}_{1} & \mathbf{u}_{1} \bullet \mathbf{x}_{2} & \mathbf{u}_{1} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{1} \bullet \mathbf{x}_{n} \\
0 & \mathbf{u}_{2} \bullet \mathbf{x}_{2} & \mathbf{u}_{2} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{2} \bullet \mathbf{x}_{n} \\
0 & 0 & \mathbf{u}_{3} \bullet \mathbf{x}_{3} & \cdots & \mathbf{u}_{3} \bullet \mathbf{x}_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathbf{u}_{n} \bullet \mathbf{x}_{n}
\end{array}\right]=Q^{T} A . \tag{9.27}
\end{align*}
\]

In practice, the coefficients \(r_{i j}=\mathbf{u}_{i} \bullet \mathbf{x}_{j}, i<j\), can be saved during the Gram-Schmidt process.

Example 9.17. Find the QR factorization for \(A=\left[\begin{array}{rr}4 & -1 \\ 3 & 2\end{array}\right]\).
Solution. Using the Gram-Schmidt process,
\[
\left\{\begin{array}{l}
\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
4 \\
3
\end{array}\right] \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{\mathbf{2}} \bullet \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \bullet \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]-\frac{2}{25}\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\frac{1}{25}\left[\begin{array}{r}
-33 \\
44
\end{array}\right]
\end{array}\right.
\]
and
\[
\left\{\begin{array}{l}
\mathbf{u}_{1}=\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|=\left[\begin{array}{c}
0.8 \\
0.6
\end{array}\right]  \tag{9.28}\\
\mathbf{u}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|=\left[\begin{array}{r}
-0.6 \\
0.8
\end{array}\right]
\end{array}\right.
\]

Thus,
\[
Q=\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]=\left[\begin{array}{rr}
0.8 & -0.6  \tag{9.29}\\
0.6 & 0.8
\end{array}\right]
\]

Now, you can get \(R=Q^{T} A\).
\[
\text { Ans: } Q=\left[\begin{array}{rr}
0.8 & -0.6 \\
0.6 & 0.8
\end{array}\right] R=\left[\begin{array}{ll}
5 & 0.4 \\
0 & 2.2
\end{array}\right]
\]

Note: The determinant of the orthogonal matrix has a value of \(\pm 1\). Thus \(\operatorname{det}(A)= \pm \operatorname{det}(R)\).

Example 9.18. Find the QR factorization for \(A=\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 6 & 4 \\ 6 & 7 & 8 \\ 3 & 3 & 7\end{array}\right]\). QR factorization
```

with(LinearAlgebra):
A := Matrix([[3, 1, 3], [1, 6, 4], [6, 7, 8], [3, 3, 7]]):
a[1] := Column(A, 1): v[1] := a[1]: u[1] := v[1]/norm(v[1], 2):
n:=3:
for k from 2 to n do
a[k] := Column(A, k);
v[k] := a[k] - add((a[k].u[j]) u[j], j = 1..k-1);
u[k] := v[k]/norm(v[k],2);
end do:
R := Matrix(n):
for i to n do
for j from i to n do R[i,j] := u[i].a[j]; end do;
end do:

```
\[
\begin{aligned}
& Q:=\left\langle u_{1}\right| u_{2}\left|u_{3}\right\rangle=\left[\begin{array}{ccc}
\frac{3 \sqrt{55}}{55} & -\frac{5 \sqrt{143}}{143} & -\frac{23 \sqrt{4030}}{12090} \\
\frac{\sqrt{55}}{55} & \frac{54 \sqrt{143}}{715} & \frac{\sqrt{4030}}{2015} \\
\frac{6 \sqrt{55}}{55} & \frac{\sqrt{143}}{143} & -\frac{38 \sqrt{4030}}{6045} \\
\frac{3 \sqrt{55}}{55} & -\frac{3 \sqrt{143}}{715} & \frac{173 \sqrt{4030}}{12090}
\end{array}\right] \\
& R=\left[\begin{array}{ccc}
\sqrt{55} & \frac{12 \sqrt{55}}{11} & \frac{82 \sqrt{55}}{55} \\
0 & \frac{5 \sqrt{143}}{11} & \frac{32 \sqrt{143}}{143} \\
0 & 0 & \frac{3 \sqrt{4030}}{65}
\end{array}\right]
\end{aligned}
\]

\subsection*{9.2.2. Householder reflectors}

Let's revisit the orthogonal projection, Definition 8.1:
Definition 9.19. For a nonzero vector \(\mathbf{b} \in \mathbb{R}^{n}\) and \(\mathbf{a} \in \mathbb{R}^{n}\), the orthogonal projection of \(a\) onto \(b\) is defined as
\[
\begin{equation*}
\operatorname{proj}_{\mathrm{b}} \mathrm{a}=\frac{\mathrm{a}^{\bullet} \mathrm{b}}{\mathrm{~b}^{\bullet} \mathrm{b}} \mathbf{b} \tag{9.30}
\end{equation*}
\]


In the figure,
- \(\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\mathbf{a}_{1}\)
- \(\left\|\mathbf{a}_{1}\right\|=\|\mathbf{a}\| \cos \theta\)
- \(\mathbf{a}=\mathbf{a}_{1}+\mathbf{a}_{2}\) is called an orthogonal decomposition of a.

Householder reflection (or, Householder transformation, Elementary reflector) is a transformation that takes a vector and reflects it about some plane or a hyperplane.
- Let u be a unit vector which is orthogonal to the hyperplane. Then, the reflection of a point x about this hyperplane is given as
\[
\begin{equation*}
\mathbf{x}-2 \operatorname{proj}_{\mathbf{u}} \mathrm{x}=\mathrm{x}-2\left(\mathrm{x}^{\bullet} \mathbf{u}\right) \mathbf{u} \tag{9.31}
\end{equation*}
\]
(In the above figure, you may think \(\operatorname{Span}\{\mathbf{b}\}\) is a hyperplane; \(\mathbf{x}=\mathbf{a}\) and \(\mathbf{u}=\mathbf{a}_{2} /\left\|\mathbf{a}_{2}\right\|\). .)
- Note that
\[
\begin{equation*}
\mathbf{x}-2(\mathbf{x} \cdot \mathbf{u}) \mathbf{u}=\mathbf{x}-2 \mathbf{u}\left(\mathbf{u}^{T} \mathbf{x}\right)=\left(I-2 \mathbf{u} \mathbf{u}^{T}\right) \mathbf{x} \tag{9.32}
\end{equation*}
\]

Definition 9.20. The matrix
\[
\begin{equation*}
Q:=I-2 \mathbf{u u}^{T} \tag{9.33}
\end{equation*}
\]
is called a Householder matrix or a Householder reflector.

\section*{Theorem 9.21. (Theorems on Reflectors)}
I. Let \(\mathbf{u} \in \mathbb{R}^{n}\), with \(\|\mathbf{u}\|=1\), and define \(P \in \mathbb{R}^{n \times n}\) by \(P=\mathbf{u u}^{T}\). Then
(a) \(P \mathbf{u}=\mathbf{u}\)
(b) \(P \mathbf{v}=0 \quad\) if \(\mathbf{u}^{\bullet} \mathbf{v}=0\)
(c) \(P^{2}=P\)
(d) \(P^{T}=P\)
II. Let \(\mathbf{u} \in \mathbb{R}^{n}\), with \(\|\mathbf{u}\|=1\), and define \(Q \in \mathbb{R}^{n \times n}\) by \(Q=I-2 \mathbf{u u}^{T}\). Then
(a) \(Q \mathbf{u}=-\mathbf{u}\)
(b) \(Q \mathbf{v}=\mathbf{v}\) if \(\mathbf{u}^{\bullet} \mathbf{v}=0\)
(c) \(Q=Q^{T} \quad\) ( \(Q\) is symmetric)
(d) \(Q^{T}=Q^{-1} \quad\) ( \(Q\) is orthogonal)
(e) \(Q^{-1}=Q \quad\) ( \(Q\) is an involution)
III. Let \(\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}\) with \(\mathrm{x} \neq \mathrm{y}\) and \(\|\mathrm{x}\|=\|\mathrm{y}\|\). Then there is a unique reflector \(Q\) such that \(Q \mathbf{x}=\mathbf{y}\).
(We will prove it by constructing such a reflector \(Q\), in Algorithm 9.24 below.)

Corollary 9.22. Let \(\mathbf{u} \in \mathbb{R}^{n}\) be a nonzero vector. Define \(Q \in \mathbb{R}^{n \times n}\) by
\[
\begin{equation*}
Q=I-\gamma \mathbf{u} \mathbf{u}^{T}, \quad \gamma=2 /\|\mathbf{u}\|^{2} . \tag{9.34}
\end{equation*}
\]

Then
(a) \(Q \mathbf{u}=-\mathbf{u}\)
(b) \(Q \mathbf{v}=\mathbf{v}\) if \(\mathbf{u} \cdot \mathbf{v}=0\)

Clearly, \(Q\) satisfies all other properties in Theorem 9.21.II.

Corollary 9.23. Let \(\mathrm{x} \in \mathbb{R}^{n}\) be a nonzero vector. Then there is a reflector \(\bar{Q}\) such that
\[
Q \mathbf{x}=Q\left[\begin{array}{c}
x_{1}  \tag{9.35}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}\right]
\]

Proof. Let \(\mathbf{y}=[-\tau, 0, \cdots, 0]^{T}\) with \(\tau= \pm\|\mathbf{x}\|\). By choosing the sign appropriately, we can guarantee that \(\mathrm{x} \neq \mathrm{y}\). Clearly \(\|\mathrm{x}\|=\|\mathrm{y}\|\). Thus, the corollary follows from Theorem 9.21.III.

\section*{Algorithm 9.24. (Construction of the Reflector)}
\[
\begin{equation*}
Q: \mathbf{x} \mapsto \mathbf{y}=[-\tau, 0, \cdots, 0]^{T}, \quad \text { where } \tau= \pm\|\mathbf{x}\| \tag{9.36}
\end{equation*}
\]
- Let
\[
\begin{equation*}
\mathbf{u}=\mathbf{x}-\mathbf{y}=\left[x_{1}+\tau, x_{2}, \cdots, x_{n}\right]^{T} \tag{9.37}
\end{equation*}
\]
where the sign of \(\tau\) is such that \(x_{1}+\tau \neq 0\).
- Define
\[
\begin{equation*}
Q=I-\gamma \mathbf{u} \mathbf{u}^{T}, \quad \gamma=\frac{2}{\|\mathbf{u}\|^{2}} \tag{9.38}
\end{equation*}
\]

\section*{Check if \(Q \mathrm{x}=\mathrm{y}\)}
- Rewrite x as
\[
\begin{equation*}
\mathbf{x}=\frac{1}{2}(\mathbf{x}-\mathbf{y})+\frac{1}{2}(\mathrm{x}+\mathrm{y}) . \tag{9.39}
\end{equation*}
\]
- By Corollary 9.22 (a),
\[
\begin{equation*}
Q(\mathbf{x}-\mathbf{y})=Q \mathbf{u}=-\mathbf{u}=-\mathbf{x}+\mathbf{y} \tag{9.40}
\end{equation*}
\]
- Since \((\mathrm{x}-\mathrm{y}) \bullet(\mathrm{x}+\mathrm{y})=\|\mathrm{x}\|^{2}-\|\mathrm{y}\|^{2}=0\), it follows from Corollary 9.22 (b) that
\[
\begin{equation*}
Q(\mathbf{x}+\mathbf{y})=\mathbf{x}+\mathbf{y} \tag{9.41}
\end{equation*}
\]
- Thus, \(Q \mathbf{x}=\mathbf{y}\) holds.

Example 9.25. Let \(\mathbf{x}=[2,2,-1]^{T}\) and \(\mathbf{y}=[*, 0,0]^{T}\).
Find \(Q=I-\gamma \mathbf{u u}^{T}: \mathbf{x} \mapsto \mathbf{y}\), where \(\mathbf{u}=\mathbf{x}-\mathbf{y}\) and \(\gamma=2 /\|\mathbf{u}\|^{2}\).

\section*{Solution.}
- Let \(\tau=\|\mathbf{x}\|\). Then \(\tau=3\).
- \(\mathbf{y}=\left[\begin{array}{r}-3 \\ 0 \\ 0\end{array}\right]\) and \(\mathbf{u}=\mathbf{x}-\mathbf{y}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]-\left[\begin{array}{r}-3 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{r}5 \\ 2 \\ -1\end{array}\right]\).
- \(Q=I-\frac{2}{\|\mathbf{u}\|^{2}} \mathbf{u u}^{T}=I-\frac{2}{30}\left[\begin{array}{rrr}25 & 10 & -5 \\ 10 & 4 & -2 \\ -5 & -2 & 1\end{array}\right]=\frac{1}{15}\left[\begin{array}{rrr}-10 & -10 & 5 \\ -10 & 11 & 2 \\ 5 & 2 & 14\end{array}\right]\)
- \(Q \mathbf{x}=\left[\begin{array}{r}-3 \\ 0 \\ 0\end{array}\right]\)

What if we set \(\tau=-3\) ?
- Then, \(\mathbf{y}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]\) and \(\mathbf{u}=\mathbf{x}-\mathbf{y}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]-\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right]\).
- \(Q=I-\frac{2}{\|\mathbf{u}\|^{2}} \mathbf{u u}^{T}=I-\frac{2}{6}\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2\end{array}\right]\)
- \(Q \mathbf{x}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]\)

Note: For each y, \(Q\) is symmetric, orthogonal, and an involution matrix. In addition, it is unique for each choice of \(y\).

\subsection*{9.2.3. QR factorization by Householder reflectors}

We will construct a QR factorization algorithm using Householder reflectors for \(A \in \mathbb{R}^{n \times n}\), for simplicity. Consider Corollary 9.13, p.322:

Corollary 9.26. (Revisit of Corollary 9.13) Let \(A \in \mathbb{R}^{n \times n}\). Then there exist an orthogonal matrix \(Q\) and an upper triangular matrix \(R\) such that \(A=Q R\).

Proof. The proof is by induction on \(n\).
- When \(n=1\). Then \(A=\left[a_{11}\right]\).

Let \(Q=[1]\) and \(R=\left[a_{11}\right]\) to get \(A=Q R\).
- Let \(A \in \mathbb{R}^{n \times n}\) for \(n \geq 2\).
(a) Assume that QR factorization exists for \((n-1) \times(n-1)\) matrices.
(b) Let \(Q_{1}\) be a reflector that creates zeros in the first column of \(A, \mathbf{a}_{1}\) :
\[
Q_{1} \mathbf{a}_{1}=Q_{1}\left[\begin{array}{c}
a_{11}  \tag{9.42}\\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right]=\left[\begin{array}{c}
-\tau_{1} \\
0 \\
\vdots \\
0
\end{array}\right], \quad \text { where } \tau_{1}= \pm\left\|\mathbf{a}_{1}\right\| .
\]
(c) Thus,
\[
Q_{1}^{T} A=Q_{1} A=\left[\begin{array}{rrrr}
-\tau & \widehat{a_{12}} & \cdots & \widehat{a_{1 n}}  \tag{9.43}\\
0 & & & \\
\vdots & & \widehat{A_{2}} & \\
0 & & &
\end{array}\right]
\]
where, by the induction hypothesis, \(\widehat{A_{2}} \in \mathbb{R}^{(n-1) \times(n-1)}\) has a QR decomposition
\[
\widehat{A_{2}}=\widehat{Q_{2}} \widehat{R_{2}}
\]
(d) Define \(Q_{2} \in \mathbb{R}^{n \times n}\) by
\[
Q_{2}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0  \tag{9.44}\\
0 & & \\
\vdots & \widehat{Q_{2}} & \\
0 & &
\end{array}\right]
\]
(e) Then \(Q_{2}\) is obviously orthogonal and, from (9.43) and (9.44), we have
\[
Q_{2}^{T} Q_{1}^{T} A=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0  \tag{9.45}\\
0 & & & \\
\vdots & & \widehat{Q_{2}} & \\
0 & & &
\end{array}\right]\left[\begin{array}{rrrr}
-\tau & \widehat{a_{12}} & \cdots & \widehat{a_{1 n}} \\
0 & & & \\
\vdots & & \widehat{A_{2}} & \\
0 & & &
\end{array}\right]=\left[\begin{array}{rrrr}
-\tau & \widehat{a_{12}} & \cdots & \widehat{a_{1 n}} \\
0 & & \widehat{R_{2}} & \\
\vdots & & \\
0 & & &
\end{array}\right] .
\]
(f) The last matrix is upper triangular; let us call it \(R\). Let \(Q=Q_{1} Q_{2}\). Then \(A=Q R\), clearly.

It completes the proof.

\section*{Remark 9.27.}
1. For \(Q=I-\gamma \mathbf{u u}^{T}: \mathbf{x} \mapsto \mathbf{y}=[-\tau, 0, \cdots, 0]^{T}\), since any multiple of \(\mathbf{u}=\mathbf{x}-\mathbf{y}\) will generate the same reflector, you may scale \(\mathbf{u}\) so that its first entry is 1 . That is,
\[
\mathbf{u}=\frac{\mathbf{x}-\mathbf{y}}{x_{1}+\tau}=\left[\begin{array}{c}
1  \tag{9.46}\\
x_{2} /\left(x_{1}+\tau\right) \\
\vdots \\
x_{n} /\left(x_{1}+\tau\right)
\end{array}\right] .
\]

In this case, the first entry of \(\mathbf{u}\) does not need to be saved. Furthermore
\[
\|\mathbf{u}\|^{2}=\frac{\left(x_{1}+\tau\right)^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{\left(x_{1}+\tau\right)^{2}}=\frac{\tau^{2}+2 \tau x_{1}+\|\mathbf{x}\|^{2}}{\left(x_{1}+\tau\right)^{2}} .
\]

Since \(\tau^{2}=\|\mathbf{x}\|^{2}\),
\[
\begin{equation*}
\|\mathbf{u}\|^{2}=\frac{2 \tau^{2}+2 \tau x_{1}}{\left(x_{1}+\tau\right)^{2}}=\frac{2 \tau\left(\tau+x_{1}\right)}{\left(x_{1}+\tau\right)^{2}}=\frac{2 \tau}{x_{1}+\tau} \tag{9.47}
\end{equation*}
\]
and therefore
\[
\begin{equation*}
\gamma=\frac{2}{\|\mathbf{u}\|^{2}}=\frac{x_{1}+\tau}{\tau} \tag{9.48}
\end{equation*}
\]
2. The the proof of Corollary 9.26 suggests an algorithm for the construction of \(Q\) and \(R\).
\[
Q_{1}=I-\gamma_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}, \quad \text { where } \mathbf{u}_{1}=\left[\begin{array}{c}
1  \tag{9.49}\\
a_{21} /\left(a_{11}+\tau_{1}\right) \\
\vdots \\
a_{n 1} /\left(a_{11}+\tau_{1}\right)
\end{array}\right]
\]
and
\[
Q_{2}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0  \tag{9.50}\\
0 & & & \\
\vdots & I-\gamma_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T} \\
0 & &
\end{array}\right]
\]
where \(\mathbf{u}_{2}\) is determined from \(\widehat{A_{2}}\). In general,
\[
Q_{k}=\left[\begin{array}{cccc}
I_{k-1} & \mathbf{0} & \cdots & \mathbf{0}  \tag{9.51}\\
\mathbf{0} & & & \\
\vdots & I-\gamma_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{T} \\
\mathbf{0} & & &
\end{array}\right] .
\]

Then, if \(Q=Q_{1} Q_{2} \cdots Q_{n-1}\), then \(Q^{T} A=R\) is an upper triangular matrix.
3. We do not need form \(Q_{1}, Q_{2}, \cdots, Q_{n}\) explicitly. For example, for
\[
Q_{1}=I-\gamma_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}
\]
we store only \(-\tau_{1}, \gamma_{1}, \mathbf{u}_{1}\). (The construction of \(Q_{1} \operatorname{costs} \mathcal{O}(n)\) flops.) Then, for each \(\mathbf{a}_{k}\) (or columns of \(A\) ), \(k=2,3, \cdots, n\),
\[
\begin{equation*}
Q_{1}^{T} \mathbf{a}_{k}=Q_{1} \mathbf{a}_{k}=\left(I-\gamma_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}\right) \mathbf{a}_{k}=\mathbf{a}_{k}-\gamma_{1}\left(\mathbf{u}_{1}^{T} \mathbf{a}_{k}\right) \mathbf{u}_{1} \tag{9.52}
\end{equation*}
\]
where the last term requires about \(4 n\) flops.
4. The flop count for \(Q_{1}^{T} A\) :
\[
\begin{equation*}
\operatorname{cost}\left(Q_{1}^{T} A\right) \approx 4 n^{2} \tag{9.53}
\end{equation*}
\]

\section*{Algorithm 9.28. (The QR Factorization by Reflectors)}

Let \(A \in \mathbb{R}^{n \times n}\).
for \(k=1:(n-1)\)
(a) Determine \(Q_{k}=I-\gamma_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{T}\) such that
\[
Q_{k}\left[\widehat{a_{k k}}, \widehat{a_{k+1, k}}, \cdots, \widehat{a_{n k}}\right]^{T}=\left[-\tau_{k}, 0, \cdots, 0\right]^{T}
\]
(b) Store \(\mathbf{u}_{k}\) over \(A[k: n, k]\)
(c) Save \(A[k, k]=-\tau_{k}\)
(d) Transform \(A[k: n, k+1: n] \leftarrow Q_{k} A[k: n, k+1: n]\)
(e) Save \(G[k]=\gamma_{k}\)
end for
\[
G[n]=A[n, n]
\]

\section*{Note: (The QR Factorization by Reflectors)}
- The output ( \(Q\) and \(R\) ) is saved over \(A\).
- Recall that the flop count for \(k=1\) is about \(4 n^{2}\). For \(k=2\), it is about \(4(n-1)^{2}\); for \(k=2\), it is about \(4(n-2)^{2}\); and so on. Thus the total flop count for QR Decomposition by Reflectors reads
\[
\begin{equation*}
4 n^{2}+4(n-1)^{2}+\cdots \approx \mathcal{O}\left(\frac{4}{3} n^{3}\right) \tag{9.55}
\end{equation*}
\]
which is twice that of an LU-factorization.
- Although each of \(Q_{k}\) is symmetric and an involution,
\[
Q=Q_{1} Q_{2} \cdots Q_{n-1}
\]
may not be symmetric nor an involution matrix. However, it is still orthogonal.
- The matrix \(A\) is singular if at least one entry of \(G\) (particularly, \(G[n]\) ) is zero.

Example 9.29. Use reflectors to get QR decomposition of \(A=\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 6 & 4 \\ 6 & 7 & 8\end{array}\right]\).
Solution. Consider a program showing details.
```

m := 3: n := 3:
a[1] := Column(A, 1): tau[1] := norm(a[1], 2):
if a[1][1] < 0 then tau[1] := -tau[1]; end if:
u[1] := a[1]: scale := a[1][1] + tau[1]:
u[1][1] := 1:
for i from 2 to m do
u[1][i] := u[1][i]/scale;
end do:
g[1] := scale/tau[1]:

```

\section*{Result:}
\[
\begin{aligned}
& \text { Q1 }:=\text { Matrix }(m, \text { shape }=\text { identity })-g_{1} \cdot u_{1} \cdot u_{1}^{\% T} \\
& \left.\qquad \begin{array}{ccc}
1-\frac{1}{46}(3+\sqrt{46}) \sqrt{46} & -\frac{1}{46} \sqrt{46} & -\frac{3}{23} \sqrt{46} \\
-\frac{1}{46} \sqrt{46} & 1-\frac{1}{46} \frac{\sqrt{46}}{3+\sqrt{46}} & -\frac{3}{23} \frac{\sqrt{46}}{3+\sqrt{46}} \\
-\frac{3}{23} \sqrt{46} & -\frac{3}{23} \frac{\sqrt{46}}{3+\sqrt{46}} & 1-\frac{18}{23} \frac{\sqrt{46}}{3+\sqrt{46}}
\end{array}\right]
\end{aligned}
\]
\(Q 1 A:=\operatorname{simplify}\left(Q 1^{\% T} . A\right): \operatorname{evalf}(Q 1 A)\)
\(\left[\begin{array}{ccc}-6.782329983 & -7.519539763 & -8.993959329 \\ 0 . & 5.129088899 & 2.773915892 \\ 0 . & 1.774533402 & 0.6434953557\end{array}\right]\)
```

A2 := Q1A[2..m, 2..n]:
a[2] := Column(A2, 1): tau[2] := norm(a[2], 2):
if evalf(a[2][1]) < 0 then tau[2] := -tau[2]; end if:
u[2] := a[2]: scale := a[2][1] + tau[2]:
u[2][1] := 1:
for i from 2 to m - 1 do
u[2][i] := u[2][i]/scale;
end do:
g[2] := scale/tau[2]:
Q2sub := Matrix(m-1, shape=identity) - g[2]* u[2].u[2] %%T:
Q2 := Matrix(m): Q2[1, 1] := 1:
for i from 2 to m do
for j from 2 to m do Q2[i,j] := Q2sub[i-1, j-1]; end do:
end do:

```

\section*{Result:}
evalf(Q2)
\(\left[\begin{array}{ccc}1 . & 0 . & 0 . \\ 0 . & -0.9450384856 & -0.3269591131 \\ 0 . & -0.3269591131 & 0.9450384849\end{array}\right]\)

\section*{Check:}
\[
\begin{aligned}
& Q:=\operatorname{simplify}(Q 1 . Q 2) \text { : evalf( } Q \text { ) } \\
& {\left[\begin{array}{ccc}
-0.4423258684 & 0.4285832703 & -0.7878224459 \\
-0.1474419561 & -0.9012265027 & -0.4074943688 \\
-0.8846517369 & -0.06408721798 & 0.4618269510
\end{array}\right]} \\
& R:=\operatorname{simplify}\left(Q 2^{\% T} . Q 1 A\right): \operatorname{evalf}(R) \\
& {\left[\begin{array}{ccc}
-6.782329983 & -7.519539763 & -8.993959329 \\
0 . & -5.427386271 & -2.831853944 \\
0 . & 0 . & -0.2988292036
\end{array}\right]} \\
& \text { simplify ( } Q . R \text { ) }
\end{aligned}
\]
\(\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 6 & 4 \\ 6 & 7 & 8\end{array}\right]\)

\section*{Use the build-in command:}
\(q, r:=\) QRDecomposition \((A)\)
\[
\left[\begin{array}{cccc}
\frac{3}{46} \sqrt{46} & -\frac{107}{62330} \sqrt{62330} & \frac{29}{1355} \sqrt{1355} \\
\frac{1}{46} \sqrt{46} & \frac{45}{12466} \sqrt{62330} & \frac{3}{271} \sqrt{1355} \\
\frac{3}{23} \sqrt{46} & \frac{8}{31165} \sqrt{62330} & -\frac{17}{1355} \sqrt{1355}
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt{46} & \frac{51}{46} \sqrt{46} & \frac{61}{46} \sqrt{46} \\
0 & \frac{1}{46} \sqrt{62330} & \frac{707}{62330} \sqrt{62330} \\
0 & 0 & \frac{11}{1355} \sqrt{1355}
\end{array}\right]
\]
\(\operatorname{evalf}(q)\)
\(\left[\begin{array}{ccc}0.4423258684 & -0.4285832703 & 0.7878224461 \\ 0.1474419561 & 0.9012265027 & 0.4074943687 \\ 0.8846517369 & 0.06408721798 & -0.4618269512\end{array}\right]\)
evalf( \(r\) )
\[
\left[\begin{array}{ccc}
6.782329983 & 7.519539763 & 8.993959329 \\
0 . & 5.427386271 & 2.831853944 \\
0 . & 0 . & 0.2988292037
\end{array}\right]
\]

See Exercise 9.2 for transforming the QR decomposition for all diagonal entries of \(R\) are nonnetative.

\subsection*{9.2.4. The \(\mathbf{Q R}\) method for finding eigenvalues}

\section*{Algorithm 9.30. (QR Algorithm) Let \(A \in \mathbb{R}^{n \times n}\).}
set \(A_{0}=A\) and \(U_{0}=I\)
for \(k=1,2, \cdots\) do
(a) \(A_{k-1}=Q_{k} R_{k}\); \% QR factorization
(b) \(A_{k}=R_{k} Q_{k}\);
(c) \(U_{k}=U_{k-1} Q_{k}\); \% Update transformation matrix end for
\(\boldsymbol{\operatorname { s e t }} T:=A_{\infty}\) and \(U:=U_{\infty}\)

\section*{Claim 9.31.}
- Algorithm 9.30 produces an upper triangular matrix \(T\), with its diagonals being eigenvalues of \(A\), and an orthogonal matrix \(U\) such that
\[
\begin{equation*}
A=U T U^{T}, \tag{9.57}
\end{equation*}
\]
which is called the Schur decomposition of \(A\).
- If \(A\) is symmetric, then \(T\) becomes a diagonal matrix of eigenvalues of \(A\) and \(U\) is the collection of corresponding eigenvectors.

Remark 9.32. It follows from (a) and (b) of Algorithm 9.30 that
\[
\begin{equation*}
A_{k}=R_{k} Q_{k}=Q_{k}^{T} A_{k-1} Q_{k}, \tag{9.58}
\end{equation*}
\]
and therefore
\[
\begin{align*}
A_{k} & =R_{k} Q_{k}=Q_{k}^{T} A_{k-1} Q_{k}=Q_{k}^{T} Q_{k-1}^{T} A_{k-2} Q_{k-1} Q_{k}=\cdots \\
& =Q_{k}^{T} Q_{k-1}^{T} \cdots Q_{1}^{T} A_{0} \underbrace{Q_{1} Q_{2} \cdots Q_{k}}_{U_{k}} \tag{9.59}
\end{align*}
\]

The above converges to
\[
\begin{equation*}
T=U^{T} A U \tag{9.60}
\end{equation*}
\]

Example 9.33. Let \(A=\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 6 & 4 \\ 6 & 7 & 8\end{array}\right]\) and \(B=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]\). Apply the QR algorithm, Algorithm 9.30, to find their Schur decompositions.

\section*{Solution.}
```

 qr_algorithm.m
 function [T,U,iter] = qr_algorithm(A)
% It produces the Schur decomposition: A = U*T*U^T
% T: upper triangular, with diagonals being eigenvalues of A
% U: orthogonal
% Once A is symmetric,
% T becomes diagonal \&\& U contains eigenvectors of A
T = A; U = eye(size(A));
% for stopping
D0 = diag(T); change = 1;
tol = 10^-15; iter=0;
%%
while change>tol
[Q,R] = qr (T);
T = R*Q;
U = U*Q;
% for stopping
iter= iter+1;
D=diag(T); change=norm(D-DO); DO=D;
end

```

\section*{We may call it as}
call_qr_algorithm.m
\(\mathrm{A}=\left[\begin{array}{lllllll}3 & 1 & 3 & 1 & 6 & 4 ; 67 & 7\end{array}\right.\);
[T1,U1,iter1] = qr_algorithm(A)
\(\mathrm{U} 1 * \mathrm{~T} 1 * \mathrm{U} 1^{\prime}\)
[V1,D1] \(=\operatorname{eig}(A) \%\) built-in
\(\mathrm{B}=\left[\begin{array}{llllllll}4 & -1 & 1 ; & -1 & 3 & -2 ; & 1 & -2\end{array}\right]\);
[T2,U2,iter2] = qr_algorithm(B)
U2*T2*U2 \({ }^{\prime}\)
[V2,D2] \(=\operatorname{eig}(B) \quad \%\) built-in

```

T2 = $\mathrm{T} 2=$

```

B \(\qquad\)
\begin{tabular}{rrr}
6.0000 & -0.0000 & 0.0000 \\
-0.0000 & 3.0000 & -0.0000 \\
0.0000 & -0.0000 & 1.0000 \\
U2 = & & \\
0.5774 & 0.8165 & -0.0000 \\
-0.5774 & 0.4082 & 0.7071 \\
0.5774 & -0.4082 & 0.7071
\end{tabular}
iter2 =
    28
ans =
\begin{tabular}{rrr}
4.0000 & -1.0000 & 1.0000 \\
-1.0000 & 3.0000 & -2.0000 \\
1.0000 & -2.0000 & 3.0000
\end{tabular}
\%---- [V2,D2] = eig(B)
V2 =
\begin{tabular}{rrr}
-0.0000 & 0.8165 & 0.5774 \\
0.7071 & 0.4082 & -0.5774 \\
0.7071 & -0.4082 & 0.5774
\end{tabular}
D2 =
\begin{tabular}{rrr}
1.0000 & 0 & 0 \\
0 & 3.0000 & 0 \\
0 & 0 & 6.0000
\end{tabular}

Note: QR decomposition can also be used for solving LS problems, when the system matrix has full rank; see Exercise 9.9.

\subsection*{9.3. Singular Value Decomposition}

Here we will deal with the SVD in detail.
Theorem 9.34. (SVD Theorem). Let \(A \in \mathbb{R}^{m \times n}\) with \(m \geq n\). Then we can write
\[
\begin{equation*}
A=U \Sigma V^{T} \tag{9.61}
\end{equation*}
\]
where \(U \in \mathbb{R}^{m \times n}\) and satisfies \(U^{T} U=I, V \in \mathbb{R}^{n \times n}\) and satisfies \(V^{T} V=I\), and \(\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)\), where
\[
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
\]

Remark 9.35. The matrices are illustrated pictorially as
\[
\left[\begin{array}{l} 
 \tag{9.62}\\
A
\end{array}\right]=\left[\begin{array}{l} 
\\
\end{array}\right]\left[\begin{array}{l} 
\\
\\
\\
\\
\\
\\
\end{array}\right]
\]
where
\(U\) : \(m \times n\) orthogonal (the left singular vectors of \(A\).)
\(\Sigma: n \times n\) diagonal (the singular values of \(A\).)
\(V: n \times n\) orthogonal (the right singular vectors of \(A\).)
- For some \(r \leq n\), the singular values may satisfy
\[
\begin{equation*}
\underbrace{\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}}_{\text {nonzero singular values }}>\sigma_{r+1}=\cdots=\sigma_{n}=0 \tag{9.63}
\end{equation*}
\]

In this case, \(\operatorname{rank}(A)=r\).
- If \(m<n\), the SVD is defined by considering \(A^{T}\).

Proof. (of Theorem 9.34) Use induction on \(m\) and \(n\) : we assume that the \(S V D\) exists for \((m-1) \times(n-1)\) matrices, and prove it for \(m \times n\). We assume \(A \neq 0\); otherwise we can take \(\Sigma=0\) and let \(U\) and \(V\) be arbitrary orthogonal matrices.
- The basic step occurs when \(n=1(m \geq n)\). We let \(A=U \Sigma V^{T}\) with \(U=A /\|A\|_{2}, \Sigma=\|A\|_{2}\), \(V=1\).
- For the induction step, choose v so that
\[
\|\mathbf{v}\|_{2}=1 \text { and }\|A\|_{2}=\|A \mathbf{v}\|_{2}>0
\]
- Let \(\mathbf{u}=\frac{A \mathbf{v}}{\|A \mathbf{v}\|_{2}}\), which is a unit vector. Choose \(\widetilde{U}, \widetilde{V}\) such that
\[
U=\left[\begin{array}{ll}
\mathbf{u} & \widetilde{U}
\end{array}\right] \in \mathbb{R}^{m \times n} \text { and } V=\left[\begin{array}{ll}
\mathbf{v} & \widetilde{V}
\end{array}\right] \in \mathbb{R}^{n \times n}
\]
are orthogonal.
- Now, we write
\[
U^{T} A V=\left[\begin{array}{c}
\mathbf{u}^{T} \\
\widetilde{U}^{T}
\end{array}\right] \cdot A \cdot[\mathbf{v} \quad \widetilde{V}]=\left[\begin{array}{cc}
\mathbf{u}^{T} A \mathbf{v} & \mathbf{u}^{T} A \widetilde{V} \\
\widetilde{U}^{T} A \mathbf{v} & \widetilde{U}^{T} A \widetilde{V}
\end{array}\right]
\]

Since
\[
\begin{aligned}
\mathbf{u}^{T} A \mathbf{v} & =\frac{(A \mathbf{v})^{T}(A \mathbf{v})}{\|A \mathbf{v}\|_{2}}=\frac{\|A \mathbf{v}\|_{2}^{2}}{\|A \mathbf{v}\|_{2}}=\|A \mathbf{v}\|_{2}=\|A\|_{2} \equiv \sigma \\
\widetilde{U}^{T} A \mathbf{v} & =\widetilde{U}^{T} \mathbf{u}\|A \mathbf{v}\|_{2}=0
\end{aligned}
\]
we have
\[
U^{T} A V=\left[\begin{array}{cc}
\sigma & 0 \\
0 & U_{1} \Sigma_{1} V_{1}^{T}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & U_{1}
\end{array}\right]\left[\begin{array}{cc}
\sigma & 0 \\
0 & \Sigma_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right]^{T},
\]
or equivalently
\[
A=\left(U\left[\begin{array}{cc}
1 & 0  \tag{9.64}\\
0 & U_{1}
\end{array}\right]\right)\left[\begin{array}{cc}
\sigma & 0 \\
0 & \Sigma_{1}
\end{array}\right]\left(V\left[\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right]\right)^{T}
\]

Equation (9.64) is our desired decomposition.

\subsection*{9.3.1. Interpretation of the SVD}

\section*{Algebraic interpretation of the SVD}

Let \(\operatorname{rank}(A)=r\). let the SVD of \(A\) be \(A=U \Sigma V^{T}\), with
\[
\begin{aligned}
U & =\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}
\end{array}\right] \\
\Sigma & =\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right) \\
V & =\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
\end{aligned}
\]
and \(\sigma_{r}\) be the smallest positive singular value. Since
\[
A=U \Sigma V^{T} \Longleftrightarrow A V=U \Sigma V^{T} V=U \Sigma,
\]
we have
\[
\begin{align*}
& A V=A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lllll}
A \mathbf{v}_{1} & A \mathbf{v}_{2} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
&=\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \cdots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{llllll}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & \ddots & \\
& =\left[\begin{array}{llllll}
\sigma_{1} \mathbf{u}_{1} & \cdots & \sigma_{r} \mathbf{u}_{r} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right] .
\end{array}\right.  \tag{9.65}\\
&
\end{align*}
\]

Therefore,
\[
A=U \Sigma V^{T} \Leftrightarrow \begin{cases}A \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{j}, & j=1,2, \cdots, r  \tag{9.66}\\ A \mathbf{v}_{j}=\mathbf{0}, & j=r+1, \cdots, n\end{cases}
\]

Similarly, starting from \(A^{T}=V \Sigma U^{T}\),
\[
A^{T}=V \Sigma U^{T} \Leftrightarrow \begin{cases}A^{T} \mathbf{u}_{j}=\sigma_{j} \mathbf{v}_{j}, & j=1,2, \cdots, r  \tag{9.67}\\ A^{T} \mathbf{u}_{j}=\mathbf{0}, & j=r+1, \cdots, n\end{cases}
\]

Summary 9.36. It follows from (9.66) and (9.67) that
- \(\left(\mathbf{v}_{j}, \sigma_{j}^{2}\right), j=1,2, \cdots, r\), are eigenvector-eigenvalue pairs of \(A^{T} A\).
\[
\begin{equation*}
A^{T} A \mathbf{v}_{j}=A^{T}\left(\sigma_{j} \mathbf{u}_{j}\right)=\sigma_{j}^{2} \mathbf{v}_{j}, \quad j=1,2, \cdots, r . \tag{9.68}
\end{equation*}
\]

So, the singular values play the role of eigenvalues.
- Similarly, we have
\[
\begin{equation*}
A A^{T} \mathbf{u}_{j}=A\left(\sigma_{j} \mathbf{v}_{j}\right)=\sigma_{j}^{2} \mathbf{u}_{j}, \quad j=1,2, \cdots, r \tag{9.69}
\end{equation*}
\]
- Equation (9.68) gives how to find the singular values \(\left\{\sigma_{j}\right\}\) and the right singular vectors \(V\), while (9.66) shows a way to compute the left singular vectors \(U\).
- (Dyadic decomposition) The matrix \(A \in \mathbb{R}^{m \times n}\) can be expressed as
\[
\begin{equation*}
A=\sum_{j=1}^{n} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} . \tag{9.70}
\end{equation*}
\]

When \(\operatorname{rank}(A)=r \leq n\),
\[
\begin{equation*}
A=\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} . \tag{9.71}
\end{equation*}
\]

This property has been utilized for various approximations and applications, e.g., by dropping singular vectors corresponding to small singular values.

\section*{Geometric interpretation of the SVD}

The matrix \(A\) maps an orthonormal basis
\[
\mathcal{B}_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}
\]
of \(\mathbb{R}^{n}\) onto a new "scaled" orthogonal basis
\[
\mathcal{B}_{2}=\left\{\sigma_{1} \mathbf{u}_{1}, \sigma_{2} \mathbf{u}_{2}, \cdots, \sigma_{r} \mathbf{u}_{r}\right\}
\]
for a subspace of \(\mathbb{R}^{m}\) :
\[
\begin{equation*}
\mathcal{B}_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\} \xrightarrow{A} \mathcal{B}_{2}=\left\{\sigma_{1} \mathbf{u}_{1}, \sigma_{2} \mathbf{u}_{2}, \cdots, \sigma_{r} \mathbf{u}_{r}\right\} \tag{9.72}
\end{equation*}
\]

Consider a unit sphere \(\mathcal{S}^{n-1}\) in \(\mathbb{R}^{n}\) :
\[
\mathcal{S}^{n-1}=\left\{\mathbf{x} \mid \sum_{j=1}^{n} x_{j}^{2}=1\right\}
\]

Then, \(\forall \mathrm{x} \in \mathcal{S}^{n-1}\),
\[
\begin{align*}
\mathbf{x} & =x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n} \\
A \mathbf{x} & =\sigma_{1} x_{1} \mathbf{u}_{1}+\sigma_{2} x_{2} \mathbf{u}_{2}+\cdots+\sigma_{r} x_{r} \mathbf{u}_{r}  \tag{9.73}\\
& =y_{1} \mathbf{u}_{1}+y_{2} \mathbf{u}_{2}+\cdots+y_{r} \mathbf{u}_{r}, \quad\left(y_{j}=\sigma_{j} x_{j}\right)
\end{align*}
\]

So, we have
\[
\begin{align*}
y_{j}=\sigma_{j} x_{j} & \Longleftrightarrow x_{j}=\frac{y_{j}}{\sigma_{j}} \\
\sum_{j=1}^{n} x_{j}^{2}=1 \text { (sphere) } & \Longleftrightarrow \sum_{j=1}^{r} \frac{y_{j}^{2}}{\sigma_{j}^{2}}=\alpha \leq 1 \text { (ellipsoid) } \tag{9.74}
\end{align*}
\]

Example 9.37. We build the set \(A\left(\mathcal{S}^{n-1}\right)\) by multiplying one factor of \(A=\) \(U \Sigma \bar{V}^{-}\)at a time. Assume for simplicity that \(A \in \mathbb{R}^{2 \times 2}\) and nonsingular. Let
\[
\begin{aligned}
A & =\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]=U \Sigma V^{T} \\
& =\left[\begin{array}{rr}
-0.8649 & 0.5019 \\
0.5019 & 0.8649
\end{array}\right]\left[\begin{array}{cc}
4.1306 & 0 \\
0 & 0.9684
\end{array}\right]\left[\begin{array}{rr}
-0.7497 & 0.6618 \\
0.6618 & 0.7497
\end{array}\right]
\end{aligned}
\]

Then, for \(\mathrm{x} \in \mathcal{S}^{1}\),
\[
A \mathbf{x}=U \Sigma V^{T} \mathbf{x}=U\left(\Sigma\left(V^{T} \mathbf{x}\right)\right)
\]



In general,
- \(V^{T}: \mathcal{S}^{n-1} \rightarrow \mathcal{S}^{n-1}\) (rotation in \(\mathbb{R}^{n}\) )
- \(\Sigma: \mathbf{e}_{j} \mapsto \sigma_{j} \mathbf{e}_{j}\) (scaling from \(\mathcal{S}^{n-1}\) to \(\mathbb{R}^{n}\) )
- \(U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\) (rotation)

\subsection*{9.3.2. Properties of the SVD}

Theorem 9.38. Let \(A \in \mathbb{R}^{m \times n}\) with \(m \leq n\). Let \(A=U \Sigma V^{T}\) be the \(S V D\) of \(A\), with
\[
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{n}=0
\]

Then,
\[
\left\{\begin{align*}
\operatorname{rank}(A) & =r  \tag{9.75}\\
\operatorname{Null}(A) & =\operatorname{Span}\left\{\mathbf{v}_{r+1}, \cdots, \mathbf{v}_{n}\right\} \\
\operatorname{Range}(A) & =\operatorname{Span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{r}\right\} \\
A & =\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
\end{align*}\right.
\]
and
\[
\begin{cases}\|A\|_{2} & =\sigma_{1} \quad(\text { See Exercise 9.3.) }  \tag{9.76}\\ \|A\|_{F}^{2} & =\sigma_{1}^{2}+\cdots+\sigma_{r}^{2} \quad \text { (See Exercise 9.4.) } \\ \min _{\mathbf{x} \neq \mathbf{0}} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} & =\sigma_{n} \quad(m \geq n)\end{cases}
\]

Theorem 9.39. Let \(A \in \mathbb{R}^{m \times n}\) with \(\operatorname{rank}(A)=r>0\). Let \(A=U \Sigma V^{T}\) be the SVD of \(A\), with singular values
\[
\sigma_{1} \geq \cdots \geq \sigma_{r}>0
\]

Define, for \(k=1, \cdots, r-1\),
\[
\begin{equation*}
A_{k}=\sum_{j=1}^{k} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} \quad \text { (sum of rank-1 matrices). } \tag{9.77}
\end{equation*}
\]

Then, \(\operatorname{rank}\left(A_{k}\right)=k\) and
\[
\begin{align*}
& \left\|A-A_{k}\right\|_{2}=\min \left\{\|A-B\|_{2} \mid \operatorname{rank}(B) \leq k\right\}=\sigma_{k+1},  \tag{9.78}\\
& \left\|A-A_{k}\right\|_{F}^{2}=\min \left\{\|A-B\|_{F}^{2} \mid \operatorname{rank}(B) \leq k\right\}=\sigma_{k+1}^{2}+\cdots+\sigma_{r}^{2} .
\end{align*}
\]

That is, of all matrices of rank \(\leq k, A_{k}\) is closest to \(A\).

Note: The matrix \(A_{k}\) in (9.77) can be written as
\[
\begin{equation*}
A_{k}=\sum_{j=1}^{k} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}=U \Sigma_{k} V^{T} \tag{9.79}
\end{equation*}
\]
where \(\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right)\).

\subsection*{9.3.3. Computation of the SVD}

For \(A \in \mathbb{R}^{m \times n}\), the procedure is as follows.
1. Form \(A^{T} A\), the covariance matrix of \(A\).
2. Find the eigen-decomposition of \(A^{T} A\) by orthogonalization process, i.e., \(\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)\),
\[
\begin{equation*}
A^{T} A=V \Lambda V^{T} \tag{9.80}
\end{equation*}
\]
where \(V=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]\) is orthogonal, i.e., \(V^{T} V=I\).
3. Sort the eigenvalues according to their magnitude and let
\[
\begin{equation*}
\sigma_{j}=\sqrt{\lambda_{j}}, \quad j=1,2, \cdots, n \tag{9.81}
\end{equation*}
\]
4. Form the \(U\) matrix as follows \((\operatorname{rank}(A)=k)\),
\[
\begin{equation*}
\mathbf{u}_{j}=\frac{1}{\sigma_{j}} A \mathbf{v}_{j}, \quad j=1,2, \cdots, k \tag{9.82}
\end{equation*}
\]

\section*{Note:}
- Note that \(\mathbf{u}_{j}\) are eigenvectors of \(A A^{T}\), as shown in (9.69). The alternative computation of \(\left\{\mathbf{u}_{j}\right\}\) in (9.82) is more efficient.
- If necessary, pick up the remaining columns of \(U\) so it becomes orthogonal. These additional columns must be in \(\operatorname{Null}\left(A A^{T}\right)\).

Example 9.40. Find the \(S V D\) for \(A=\left[\begin{array}{rr}1 & 2 \\ -2 & 1 \\ 3 & 2\end{array}\right]\).

\section*{Solution.}
1. \(A^{T} A=\left[\begin{array}{rr}14 & 6 \\ 6 & 9\end{array}\right]\).
2. Solving \(\operatorname{det}\left(A^{T} A-\lambda I\right)=0\) gives the eigenvalues of \(A^{T} A\)
\[
\lambda_{1}=18 \text { and } \lambda_{2}=5,
\]
of which corresponding eigenvectors are
\[
\widetilde{\mathbf{v}}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \widetilde{\mathbf{v}}_{2}=\left[\begin{array}{r}
-2 \\
3
\end{array}\right] . \Longrightarrow V=\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]
\]
3. \(\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{18}=3 \sqrt{2}, \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{5}\). So
\[
\Sigma=\left[\begin{array}{cc}
\sqrt{18} & 0 \\
0 & \sqrt{5}
\end{array}\right]
\]
4. \(\mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{\sqrt{18}} A\left[\begin{array}{c}\frac{3}{\sqrt{13}} \\ \frac{2}{\sqrt{13}}\end{array}\right]=\frac{1}{\sqrt{18}} \frac{1}{\sqrt{13}}\left[\begin{array}{r}7 \\ -4 \\ 13\end{array}\right]=\left[\begin{array}{c}\frac{7}{\sqrt{234}} \\ -\frac{4}{\sqrt{234}} \\ \frac{13}{\sqrt{234}}\end{array}\right]\)
\(\mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}=\frac{1}{\sqrt{5}} A\left[\begin{array}{c}\frac{-2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}}\end{array}\right]=\frac{1}{\sqrt{5}} \frac{1}{\sqrt{13}}\left[\begin{array}{l}4 \\ 7 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{4}{\sqrt{65}} \\ \frac{7}{\sqrt{65}} \\ 0\end{array}\right]\).
5. \(A=U \Sigma V^{T}=\left[\begin{array}{cc}\frac{7}{\sqrt{234}} & \frac{4}{\sqrt{65}} \\ -\frac{4}{\sqrt{234}} & \frac{7}{\sqrt{65}} \\ \frac{13}{\sqrt{234}} & 0\end{array}\right]\left[\begin{array}{cc}\sqrt{18} & 0 \\ 0 & \sqrt{5}\end{array}\right]\left[\begin{array}{cc}\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}\end{array}\right]\)

Computer implementation [8, 9]


Figure 9.1: A two-phase procedure for the SVD: \(A=U \Sigma V^{T}\).
Algorithm 9.41. (Golub and Reinsch, 1970) [9]. Let \(A \in \mathbb{R}^{m \times n}\).
- Phase 1: It constructs two finite sequences of Householder transformations to find an upper bidiagonal matrix:
\[
\begin{equation*}
P_{n} \cdots P_{1} A Q_{1} \cdots Q_{n-2}=B \tag{9.83}
\end{equation*}
\]
- Phase 2: It is to iteratively diagonalize \(B\) using the \(\mathbf{Q R}\) algorithm.

\section*{Golub-Reinsch SVD algorithm}
- It is extremely stable.
- Computational complexity:
- Computation of \(U, V\), and \(\Sigma: 4 m^{2} n+8 m n^{2}+9 n^{3}\).
- Computation of \(V\) and \(\Sigma: 4 m n^{2}+8 n^{3}\).
- Phases \(1 \& 2\) take \(\mathcal{O}\left(m n^{2}\right)\) and \(\mathcal{O}\left(n^{2}\right)\) flops, respectively. (when Phase 2 is done with \(\mathcal{O}(n)\) iterations)
- Python: U,S,V = numpy.linalg.svd(A)
- Matlab/Maple: [U, S, V] = svd(A)
- Mathematica: \(\{\mathrm{U}, \mathrm{S}, \mathrm{V}\}=\) SingularValueDecomposition[A]

\section*{Numerical rank.}

In the absence of round-off errors and uncertainties in the data, the SVD reveals the rank of the matrix. Unfortunately the presence of errors makes rank determination problematic. For example, consider
\[
A=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 2 / 3  \tag{9.84}\\
2 / 3 & 2 / 3 & 4 / 3 \\
1 / 3 & 2 / 3 & 3 / 3 \\
2 / 5 & 2 / 5 & 4 / 5 \\
3 / 5 & 1 / 5 & 4 / 5
\end{array}\right]
\]
- Obviously \(A\) is of rank 2, as its third column is the sum of the first two.
- Matlab "svd" (with IEEE double precision) produces
\[
\sigma_{1}=2.5987, \quad \sigma_{2}=0.3682, \quad \text { and } \sigma_{3}=8.6614 \times 10^{-17}
\]
- What is the rank of \(A, 2\) or 3 ? What if \(\sigma_{3}\) is in \(\mathcal{O}\left(10^{-13}\right)\) ?
- For this reason we must introduce a threshold \(T\). Then we say that \(A\) has numerical rank \(r\) if \(A\) has \(r\) singular values larger than \(T\), that is,
\[
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>T \geq \sigma_{r+1} \geq \cdots \tag{9.85}
\end{equation*}
\]

\section*{In Matlab}
- Matlab has a "rank" command, which computes the numerical rank of the matrix with a default threshold
\[
\begin{equation*}
T=2 \max \{m, n\} \epsilon\|A\|_{2} \tag{9.86}
\end{equation*}
\]
where \(\epsilon\) is the unit round-off error.
- In Matlab, the unit round-off error can be found from the parameter "eps"
\[
\mathrm{eps}=2^{-52}=2.2204 \times 10^{-16}
\]
- For the matrix \(A\) in (9.84),
\[
T=2 \cdot 5 \cdot \mathrm{eps} \cdot 2.5987=5.7702 \times 10^{-15}
\]
and therefore \(\operatorname{rank}(A)=2\).
See Exercise 9.5.

\subsection*{9.3.4. Application of the SVD for LS problems}

Recall: (Definition 8.9, p. 291): Let \(A \in \mathbb{R}^{m \times n}, m \geq n\), and \(\mathbf{b} \in \mathbb{R}^{m}\). The least-squares problem is to find \(\widehat{\mathbf{x}} \in \mathbb{R}^{n}\) which minimizes \(\|A \mathbf{x}-\mathbf{b}\|_{2}\) :
\[
\begin{align*}
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}, \\
& \text { or, equivalently },  \tag{9.87}\\
\widehat{\mathbf{x}}= & \arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2},
\end{align*}
\]
where \(\widehat{\mathbf{x}}\) called a least-squares solution of \(A \mathrm{x}=\mathbf{b}\).
Note: When \(A^{T} A\) is invertible, the equation \(A \mathrm{x}=\mathrm{b}\) has a unique LS solution for each \(b \in \mathbb{R}^{m}\) (Theorem 8.14). It can be solved by the method of normal equations; the unique \(L S\) solution \(\widehat{x}\) is given by
\[
\begin{equation*}
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} . \tag{9.88}
\end{equation*}
\]

Definition 9.42. \(\left(A^{T} A\right)^{-1} A^{T}\) is called the pseudoinverse of \(A\). Let \(A=U \Sigma V^{T}\) be the SVD of \(A\). Then
\[
\begin{equation*}
\left(A^{T} A\right)^{-1} A^{T}=V \Sigma^{-1} U^{T} \xlongequal{\text { def }} A^{+} . \tag{9.89}
\end{equation*}
\]

Example 9.43. Find the pseudoinverse of \(A=\left[\begin{array}{rr}1 & 2 \\ -2 & 1 \\ 3 & 2\end{array}\right]\).
Solution. From Example 9.40, we have
\[
A=U \Sigma V^{T}=\left[\begin{array}{cc}
\frac{7}{\sqrt{234}} & \frac{4}{\sqrt{65}} \\
-\frac{4}{\sqrt{234}} & \frac{7}{\sqrt{65}} \\
\frac{13}{\sqrt{234}} & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{18} & 0 \\
0 & \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\
-\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]
\]

Thus,
\[
\begin{aligned}
A^{+} & =V \Sigma^{-1} U^{T}=\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{18}} & 0 \\
0 & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{7}{\sqrt{234}} & -\frac{4}{\sqrt{234}} & \frac{13}{\sqrt{234}} \\
\frac{4}{\sqrt{65}} & \frac{7}{\sqrt{65}} & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
-\frac{1}{30} & -\frac{4}{15} & \frac{1}{6} \\
\frac{11}{45} & \frac{13}{45} & \frac{1}{9}
\end{array}\right]
\end{aligned}
\]

\section*{Solving LS Problems by the SVD}

Let \(A \in \mathbb{R}^{m \times n}, m>n\), with \(\boldsymbol{\operatorname { r a n k }}(\boldsymbol{A})=\boldsymbol{k} \leq \boldsymbol{n}\).
- Suppose that the SVD of \(A\) is given, that is,
\[
A=U \Sigma V^{T}
\]
- Since \(U\) and \(V\) are \(\ell^{2}\)-norm preserving, we have
\[
\begin{equation*}
\|A \mathbf{x}-\mathbf{b}\|=\left\|U \Sigma V^{T} \mathbf{x}-\mathbf{b}\right\|=\left\|\Sigma V^{T} \mathbf{x}-U^{T} \mathbf{b}\right\| \tag{9.90}
\end{equation*}
\]
- Define \(\mathbf{z}=V^{T} \mathbf{x}\) and \(\mathbf{c}=U^{T} \mathbf{b}\). Then
\[
\begin{equation*}
\|A \mathbf{x}-\mathbf{b}\|=\left(\sum_{i=1}^{k}\left(\sigma_{i} z_{i}-c_{i}\right)^{2}+\sum_{i=k+1}^{n} c_{i}^{2}\right)^{1 / 2} \tag{9.91}
\end{equation*}
\]
- Thus the norm is minimized when \(z\) is chosen with
\[
z_{i}= \begin{cases}c_{i} / \sigma_{i}, & \text { when } i \leq k  \tag{9.92}\\ \text { arbitrary, } & \text { otherwise }\end{cases}
\]
- After determining z , one can find the solution as
\[
\begin{equation*}
\widehat{\mathbf{x}}=V \mathbf{z} \tag{9.93}
\end{equation*}
\]

Then the least-squares error reads
\[
\begin{equation*}
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|=\left(\sum_{i=k+1}^{n} c_{i}^{2}\right)^{1 / 2} \tag{9.94}
\end{equation*}
\]

Strategy 9.44. When z is obtained as in (9.92), it is better to choose zero for the "arbitrary" part:
\[
\begin{equation*}
\mathbf{z}=\left[c_{1} / \sigma_{1}, c_{2} / \sigma_{2}, \cdots, c_{k} / \sigma_{k}, 0, \cdots, 0\right]^{T} . \tag{9.95}
\end{equation*}
\]

In this case, z can be written as
\[
\begin{equation*}
\mathbf{z}=\Sigma_{k}^{+} \mathbf{c}=\Sigma_{k}^{+} U^{T} \mathbf{b} \tag{9.96}
\end{equation*}
\]
where
\[
\begin{equation*}
\Sigma_{k}^{+}=\left[1 / \sigma_{1}, 1 / \sigma_{2}, \cdots, 1 / \sigma_{k}, 0, \cdots, 0\right]^{T} \tag{9.97}
\end{equation*}
\]

Thus the corresponding LS solution reads
\[
\begin{equation*}
\widehat{\mathbf{x}}=V \mathbf{z}=V \Sigma_{k}^{+} U^{T} \mathbf{b} \tag{9.98}
\end{equation*}
\]

Note that \(\widehat{x}\) involves no components of the null space of \(A\); \(\widehat{x}\) is unique in this sense.

\section*{Remark 9.45.}
- When \(\operatorname{rank}(A)=k=n\) : It is easy to see that
\[
\begin{equation*}
V \Sigma_{k}^{+} U^{T}=V \Sigma^{-1} U^{T} \tag{9.99}
\end{equation*}
\]
which is the pseudoinverse of \(A\).
- When \(\operatorname{rank}(\boldsymbol{A})=\boldsymbol{k}<\boldsymbol{n}: A^{T} A\) not invertible. However,
\[
\begin{equation*}
A_{k}^{+}:=V \Sigma_{k}^{+} U^{T} \tag{9.100}
\end{equation*}
\]
plays the role of the pseudoinverse of \(A\). Thus we will call it the \(k\)-th pseudoinverse of \(A\).

Note: For some LS applications, although \(\operatorname{rank}(A)=n\), the \(k\)-th pseudoinverse \(A_{k}^{+}\), with a small \(k<n\), may give more reliable solutions.

\subsection*{9.4. Principal Component Analysis}
- Principal component analysis (PCA) (a.k.a. orthogonal linear transformation) was invented in 1901 by K. Pearson [19], as an analogue of the principal axis theorem in mechanics; it was later independently developed and named by H. Hotelling in the 1930s [11, 12].
- The PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of linearly uncorrelated variables called the principal components.
- The orthogonal axes of the new subspace can be interpreted as the directions of maximum variance given the constraint that the new feature axes are orthogonal to each other:


Figure 9.2: Principal components.
- The PCA directions are highly sensitive to data scaling. Thus we may need to standardize the entries of data matrix (features) prior to the PCA, particularly when the features were measured on different scales and we want to assign equal importance to all features.

\subsection*{9.4.1. Computation of principal components}
- Consider a data matrix \(X \in \mathbb{R}^{N \times d}\) :
- each of the \(N\) rows represents a different data point,
- each of the \(d\) columns gives a particular kind of feature, and
- each column has zero empirical mean (e.g., after standardization).
- Our goal is to find an orthogonal weight matrix \(W \in \mathbb{R}^{d \times d}\) such that
\[
\begin{equation*}
Z=X W, \tag{9.101}
\end{equation*}
\]
where \(Z \in \mathbb{R}^{N \times d}\) is call the score matrix. Columns of \(Z\) represent principal components of \(X\).

\section*{First weight vector \(w_{1}\) : the first column of \(\boldsymbol{W}\)}

In order to maximize variance of \(\mathbf{z}_{1}\), the first weight vector \(\mathrm{w}_{1}\) should satisfy
\[
\begin{align*}
\mathbf{w}_{1} & =\arg \max _{\|\mathbf{w}\|=1}\left\|\mathbf{z}_{1}\right\|^{2}=\arg \max _{\|\mathbf{w}\|=1}\|X \mathbf{w}\|^{2} \\
& =\arg \max _{\|\mathbf{w}\|=1} \mathbf{w}^{T} X^{T} X \mathbf{w}=\arg \max _{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} X^{T} X \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} \tag{9.102}
\end{align*}
\]
where the quantity to be maximized can be recognized as a Rayleigh quotient.

Theorem 9.46. For a positive semidefinite matrix (such as \(X^{T} X\) ), the maximum of the Rayleigh quotient is the same as the largest eigenvalue of the matrix, which occurs when w is the corresponding eigenvector, i.e.,
\[
\begin{equation*}
\mathbf{w}_{1}=\arg \max _{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} X^{T} X \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \quad\left(X^{T} X\right) \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, \tag{9.103}
\end{equation*}
\]
where \(\lambda_{1}\) is the largest eigenvalue of \(X^{T} X \in \mathbb{R}^{d \times d}\).

\section*{Further weight vectors \(\mathrm{w}_{\boldsymbol{k}}\) :}

The \(k\)-th weight vector can be found by (1) subtracting the first \((k-1)\) principal components from \(X\) :
\[
\begin{equation*}
\widehat{X}_{k}:=X-\sum_{i=1}^{k-1} X \mathbf{w}_{i} \mathbf{w}_{i}^{T} \tag{9.104}
\end{equation*}
\]
and then (2) finding the weight vector which extracts the maximum variance from this new data matrix
\[
\begin{equation*}
\mathbf{w}_{k}=\arg \max _{\|\mathbf{w}\|=1}\left\|\widehat{X}_{k} \mathbf{w}\right\|^{2} \tag{9.105}
\end{equation*}
\]

Thus \(\mathbf{w}_{k}\) is an eigenvector of \(\widehat{X}_{k}^{T} \widehat{X}_{k}\) and therefore an eigenvector of \(X^{T} X\).
Summary 9.47. The transformation matrix \(W\) is the stack of eigenvectors of \(\bar{X}^{T} X\), i.e.,
\[
\begin{equation*}
W=\left[\mathbf{w}_{1}\left|\mathbf{w}_{2}\right| \cdots \mid \mathbf{w}_{d}\right], \quad\left(X^{T} X\right) \mathbf{w}_{j}=\lambda_{j} \mathbf{w}_{j}, \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=\delta_{i j} \tag{9.106}
\end{equation*}
\]
where \(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0\).
With \(W\) found, a data vector x is transformed to a \(d\)-dimensional row vector of principal components
\[
\begin{equation*}
\mathbf{z}=\mathbf{x} W \tag{9.107}
\end{equation*}
\]
of which components \(z_{j}, j=1,2, \cdots, d\), are decorrelated.

Remark 9.48. The principal components transformation is closely related with the SVD of \(X\) :
\[
\begin{equation*}
X=U \Sigma V^{T} \tag{9.108}
\end{equation*}
\]
where
\(U: n \times d\) orthogonal (the left singular vectors of \(X\).)
\(\Sigma: d \times d\) diagonal (the singular values of \(X\).)
\(V: d \times d\) orthogonal (the right singular vectors of \(X\).)
- The matrix \(\Sigma\) explicitly reads
\[
\begin{equation*}
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{d}\right) \tag{9.109}
\end{equation*}
\]
where \(\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{d} \geq 0\).
- In terms of this factorization, the matrix \(X^{T} X\) reads
\[
\begin{equation*}
X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} . \tag{9.110}
\end{equation*}
\]
- Comparing with the eigenvector factorization of \(X^{T} X\), we have
- the right singular vectors \(V \cong\) the eigenvectors of \(X^{T} X \Rightarrow V \cong W\)
- the square of singular values of \(X\) are equal to the eigenvalues of \(X^{T} X\) \(\Rightarrow \sigma_{j}^{2}=\lambda_{j}, j=1,2, \cdots, d\).

Claim 9.49. While the weight matrix \(W \in \mathbb{R}^{d \times d}\) is the collection of eigenvectors of \(X^{T} X\), the score matrix \(Z \in \mathbb{R}^{N \times d}\) is the stack of eigenvectors of \(X X^{T}\), scaled by the square-root of eigenvalues:
\[
\begin{equation*}
Z=\left[\sqrt{\lambda_{1}} \mathbf{u}_{1}\left|\sqrt{\lambda_{2}} \mathbf{u}_{2}\right| \cdots \mid \sqrt{\lambda_{d}} \mathbf{u}_{d}\right], \quad\left(X X^{T}\right) \mathbf{u}_{j}=\lambda_{j} \mathbf{u}_{j}, \quad \mathbf{u}_{i}^{T} \mathbf{u}_{j}=\delta_{i j} \tag{9.111}
\end{equation*}
\]

See (9.114).

\subsection*{9.4.2. Dimensionality reduction: Data compression}

The transformation \(Z=X W\) maps a data vector \(\mathbf{x}^{(i)} \in \mathbb{R}^{d}\) to a new space of \(d\) variables which are now uncorrelated. However, not all the principal components need to be kept.
Keeping only the first \(k\) principal components, produced by using only the first \(k\) eigenvectors of \(X^{T} X(k \ll d)\), gives the truncated transformation:
\[
\begin{equation*}
Z_{k}=X W_{k}: \mathbf{x}^{(i)} \in \mathbb{R}^{d} \mapsto \mathbf{z}^{(i)} \in \mathbb{R}^{k}, \tag{9.112}
\end{equation*}
\]
where \(Z_{k} \in \mathbb{R}^{N \times k}\) and \(W_{k} \in \mathbb{R}^{d \times k}\). Let
\[
\begin{equation*}
X_{k}:=Z_{k} W_{k}^{T} . \tag{9.113}
\end{equation*}
\]

Quesitons. How can we choose \(k\) ? \&
Is the difference \(\left\|X-X_{k}\right\|\) (that we truncated) small?

\section*{Analysis using the SVD}
- Let \(X=U \Sigma V^{T}\). Then the score matrix \(Z\) reads
\[
\begin{equation*}
Z=X W=U \Sigma V^{T} W=U \Sigma \tag{9.114}
\end{equation*}
\]
and therefore each column of \(Z\) is given by one of the left singular vectors of \(X\) multiplied by the corresponding singular value. This form is also the polar decomposition of \(Z\). See (9.111).
- As with the eigen-decomposition, the SVD, the truncated score matrix \(Z_{k} \in \mathbb{R}^{N \times k}\) can be obtained by considering only the first \(k\) largest singular values and their singular vectors:
\[
\begin{equation*}
Z_{k}=X W_{k}=U \Sigma V^{T} W_{k}=U \Sigma_{k}, \tag{9.115}
\end{equation*}
\]
where
\[
\begin{equation*}
\Sigma_{k}:=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right) \tag{9.116}
\end{equation*}
\]
- Now, using (9.115), the truncated data matrix reads
\[
\begin{equation*}
X_{k}=Z_{k} W_{k}^{T}=U \Sigma_{k} W_{k}^{T}=U \Sigma_{k} W^{T}=U \Sigma_{k} V^{T} \tag{9.117}
\end{equation*}
\]

Claim 9.50. It follows from (9.108) and (9.117) that
\[
\begin{align*}
\left\|X-X_{k}\right\| & =\left\|U \Sigma V^{T}-U \Sigma_{k} V^{T}\right\| \\
& =\left\|U\left(\Sigma-\Sigma_{k}\right) V^{T}\right\|  \tag{9.118}\\
& =\left\|\Sigma-\Sigma_{k}\right\|=\sigma_{k+1}
\end{align*}
\]
where \(\|\cdot\|\) is the induced matrix \(L^{2}\)-norm.

Remark 9.51. Efficient algorithms exist to calculate the SVD of \(X\) without having to form the matrix \(X^{T} X\); see \(\S 9.3 .3\). Computing the SVD is now the standard way to carry out the PCA [10, 26].

\section*{Exercises for Chapter 9}
9.1. Prove (c) in Theorem 9.5. Hint: Let \(A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, i=1,2\), and \(\lambda_{1} \neq \lambda_{2}\). Consider \(\mathbf{v}_{1}^{T} A \mathbf{v}_{2}\) and \(\mathbf{v}_{2}^{T} A \mathbf{v}_{1}\).
9.2. Let \(A=Q R\) be a QR factorization of \(A\). Suppose a single diagonal entry of \(R, r_{j j}\), is negative. Suggest a strategy to transform the QR factorization so that all diagonal entries of \(R\) are nonnegative. Hint: Let \(N_{j}\) be a perturbation of \(I\) where the \((j, j)\)-th entry is -1 . Then \(N_{j}^{2}=I\).
9.3. Let \(A \in \mathbb{R}^{m \times n}\). Prove that \(\|A\|_{2}=\sigma_{1}\), the largest singular value of \(A\). Hint: Use the following
\[
\frac{\left\|A \mathbf{v}_{1}\right\|_{2}}{\left\|\mathbf{v}_{1}\right\|_{2}}=\frac{\sigma_{1}\left\|\mathbf{u}_{1}\right\|_{2}}{\left\|\mathbf{v}_{1}\right\|_{2}}=\sigma_{1} \Longrightarrow\|A\|_{2} \geq \sigma_{1}
\]
and arguments around Equations (9.73) and (9.74) for the opposite directional inequality.
9.4. Recall that the Frobenius matrix norm is defined by
\[
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}, \quad A \in \mathbb{R}^{m \times n}
\]

Show that \(\|A\|_{F}=\left(\sigma_{1}^{2}+\cdots+\sigma_{k}^{2}\right)^{1 / 2}\), where \(\sigma_{j}\) are nonzero singular values of \(A\). Hint: You may use the norm-preserving property of orthogonal matrices. That is, if \(U\) is orthogonal, then \(\|U B\|_{2}=\|B\|_{2}\) and \(\|U B\|_{F}=\|B\|_{F}\).
9.5. C Use Matlab to generate a random matrix \(A \in \mathbb{R}^{8 \times 6}\) with rank 4. For example,
\(\mathrm{A}=\operatorname{randn}(8,4)\);
\(A(:, 5: 6)=A(:, 1: 2)+A(:, 3: 4)\);
\([\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\operatorname{randn}(6))\);
\(\mathrm{A}=\mathrm{A} * \mathrm{Q}\);
(a) Print out \(A\) on your computer screen. Can you tell by looking if it has (numerical) rank 4?
(b) Use Matlab's "svd" command to obtain the singular values of \(A\). How many are "large?" How many are "tiny?" (You may use the command "format short e" to get a more accurate view of the singular values.)
(c) Use Matlab's "rank" command to confirm that the numerical rank is 4.
(d) Use the "rank" command with a small enough threshold that it returns the value 6. (Type "help rank" for information about how to do this.)

\section*{(Continued on the next page)}
9.6. C] Let \(A=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 4 & -2 \\ 0 & -1 & -2 & 4\end{array}\right]\). Use indicated methods to approximate eigenvalues and their associated eigenvectors of \(A\) within to \(10^{-12}\) accuracy.
(a) The power method, the largest eigenvalue.
(b) The inverse power method, the smallest eigenvalue.
(c) The inverse power method, an eigenvalue near \(q=3\).
(d) Repeat the above with their symmetric versions.
9.7. Find a reflector that maps the vector \(\mathbf{x}=[-4,1,2,-2]^{T}\) to a vector of the form \(\mathbf{y}=\) \([-\tau, 0,0,0]^{T}\). Write \(Q\) in two ways: (a) in the form of \(I-\gamma \mathbf{u u}^{T}\) and (b) as a completely assembled matrix.
9.8. Let \(A=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\). Find QR decompositions for by using
(a) the Gram-Schmidt process
(b) Householder reflectors.
(You have to show your solutions step-by-step in detail.)
9.9. C This problem revisits Exercise 8.3, p. 310. Consider the same data
\begin{tabular}{l|cccccccccc}
\hline\(x_{i}\) & 0.2 & 0.4 & 0.6 & 0.8 & 1. & 1.2 & 1.4 & 1.6 & 1.8 & 2. \\
\(y_{i}\) & 1.88 & 2.13 & 1.76 & 2.78 & 3.23 & 3.82 & 6.13 & 7.22 & 6.66 & 9.07 \\
\hline
\end{tabular}
(a) Plot the data (scattered point plot) and decide which curve fits the data best.
(b) Construct an algebraic system of the form \(X \boldsymbol{\beta}=\mathbf{y}\), where \(X \in \mathbb{R}^{m \times n}, n<m=10\).
(c) Use the LS code (you have implemented for Exercise 8.3) to find the curve.
(d) Use \(\mathbf{Q R}\) decomposition to find \(\widehat{\boldsymbol{\beta}}\) and the curve.
(You do not have to implement a code for QR or the SVD.)
Clue: Let \(X=Q R\). Then \(X \boldsymbol{\beta}=\mathrm{y}\) can be written as \(R \boldsymbol{\beta}=Q^{T} \mathbf{y}\).
(e) Use the SVD to find \(\widehat{\boldsymbol{\beta}}\) and the curve.
(f) Plot the curves superposed over the point plot, and compre them. Are they the same?
9.10. Left signular vectors \(\mathbf{u}_{j}\) of \(A\) are eigenvectors of \(A A^{T}\), as shown in (9.69). However, it can be alternatively and more effeciently computed as in (9.82):
\[
\mathbf{u}_{j}=\frac{1}{\sigma_{j}} A \mathbf{v}_{j}, \quad j=1,2, \cdots, k
\]

Prove \(\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\delta_{i j}\).

\section*{Chapter 10}

\section*{Machine Learning}

In This Chapter: You will see key ideas in machine learning (ML).
\begin{tabular}{|l|l|}
\hline Topics & Applications/Properties \\
\hline \hline \begin{tabular}{l} 
Machine Learning \\
What is it?
\end{tabular} & \\
\hline \begin{tabular}{l} 
Binary Classifiers \\
Perceptron, Adaline \\
Logistic Regression
\end{tabular} & Simplest neural networks \\
\hline \begin{tabular}{l} 
Support Vector Machine \\
Linear SVM \\
Nonlinear SVM \\
Sequential Minimal Optimization
\end{tabular} & \begin{tabular}{l} 
Maximizes the margin \\
Method of Lagrange multipliers
\end{tabular} \\
\hline \begin{tabular}{l} 
Neural Networks \\
MNIST data
\end{tabular} \\
\hline Stochastic Gradient Descent
\end{tabular}\(\quad\)\begin{tabular}{l} 
Deep Learning \\
Convolutional Neural Networks
\end{tabular}

\section*{Contents of Chapter 10}
10.1.What is Machine Learning? ..... 364
10.2.Binary Classifiers ..... 369
10.3.Support Vector Machine ..... 376
10.4.Neural Networks ..... 396
10.5.Deep Learning: Convolutional Neural Networks ..... 405
Exercises for Chapter 10 ..... 414

\subsection*{10.1. What is Machine Learning?}

\section*{Definition 10.1. Machine learning (ML)}
- ML algorithms are algorithms that can learn from data (input) and produce functions/models (output).
- Machine learning is the science of getting machines to act, without functions/models being explicitly programmed to do so.

Example 10.2. There are three different types of ML:
- Supervised learning: e.g., classification, regression
- Labeled data
- Direct feedback
- Preduct outcome/future
- Unsupervised learning: e.g., clustering
- No labels
- No feedback
- Find hidden structure in data
- Reinforcement learning: e.g., chess engine
- Decision process
- Reward system
- Learn series of actions

Note: The most popular type is supervised learning.

\subsection*{10.1.1. Supervised learning}

Assumption. Given a data set \(\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}\), where \(y_{i}\) are labels, there exists a relation \(f: X \rightarrow Y\).

\section*{Supervised learning:}
\(\left\{\begin{array}{l}\text { Given: A training data }\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid i=1, \cdots, N\right\} \\ \text { Find: } \widehat{f}: X \rightarrow Y \text {, a good approximation to } f\end{array}\right.\)


Figure 10.1: Supervised learning and prediction.


Figure 10.2: Classification and regression.

\section*{Why is ML not Always Simple?}

\section*{Major Issues in ML}
1. Overfitting: Fitting training data too tightly
- Difficulties: Accuracy drops significantly for test data
- Remedies:
- More training data (often, impossible)
- Early stopping; feature selection
- Regularization; ensembling (multiple classifiers)



2. Curse of Dimensionality: The feature space becomes increasingly sparse for an increasing number of dimensions (of a fixedsize training dataset)
- Difficulties: Larger error, more computation time;

Data points appear equidistant from all the others
- Remedies
- More training data (often, impossible)
- Dimensionality reduction (e.g., Feature selection, PCA)


c) \(30-64\) regions


\section*{3. Multiple Local Minima Problem}

Training often invovles minimizing an objective function.
- Difficulties: Larger error, unrepeatable
- Remedies
- Gaussian sailing; regularization
- Careful access to the data (e.g., mini-batch)
4. Interpretability:

Although ML has come very far, researchers still don't know exactly how some algorithms (deep nets) work.
- If we don't know how training nets actually work, how do we make any real progress?
5. One-Shot Learning:

We still haven't been able to achieve one-shot learning. Traditional gradient-based networks need a huge amount of data, and are often in the form of extensive iterative training.
- Instead, we should find a way to enable neural networks to learn, using just a few examples.

\subsection*{10.1.2. Unsupervised learning}

\section*{Note:}
- In supervised learning, we know the right answer beforehand when we train our model, and in reinforcement learning, we define a measure of reward for particular actions by the agent.
- In unsupervised learning, however, we are dealing with unlabeled data or data of unknown structure. Using unsupervised learning techniques, we are able to explore the structure of our data to extract meaningful information, without the guidance of a known outcome variable or reward function.
- Clustering is an exploratory data analysis technique that allows us to organize a pile of information into meaningful subgroups (clusters) without having any prior knowledge of their group memberships.


Figure 10.3: Clustering.

\subsection*{10.2. Binary Classifiers}

A binary classifier is a function which can decide whether or not an input vector belongs to some specific class (e.g., spam/ham).
- Binary classification often refers to those classification tasks that have two class labels. (two-class classification)
- It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function.
- Linear classifiers are artificial neurons.

Examples: Perceptron [20], Adaline, Logistic Regression, Support Vector Machine [3]

Remark 10.3. Neurons are interconnected nerve cells, involved in the processing and transmitting of chemical and electrical signals. Such a nerve cell can be described as a simple logic gate with binary outputs;
- multiple signals arrive at the dendrites,
- they are integrated into the cell body,
- and if the accumulated signal exceeds a certain threshold, an output signal is generated that will be passed on by the axon.


Figure 10.4: A schematic description of a neuron.

Definition \(\}\) 10.4. Let \(\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}\) be labeled data, with \(\mathrm{x}^{(i)} \in \mathbb{R}^{d}\) and \(y^{(i)} \in\{0,1\}\). A binary classifier finds a hyperplane in \(\mathbb{R}^{d}\) that separates data points \(X=\left\{\mathbf{x}^{(i)}\right\}\) to two classes; see Figure 10.2, p. 365.

Observation 10.5. Let's consider the following to interpret binary classifiers in a unified manner.
- The labels ( 0 and 1 ) are chosen for simplicity.
- A hyperplane can be formulated by a normal vector \(\mathbf{w} \in \mathbb{R}^{d}\) and a shift (bias) \(b\) :
\[
\begin{equation*}
z=\mathbf{w}^{T} \mathbf{x}+b \tag{10.2}
\end{equation*}
\]

In ML, \(z\) is called the net input.
- The net input can go very high in magnitude for some x .
- It is a weighted sum (linear combination) of input features \(x\).
- Activation function: In order (a) to keep the net input restricted to a certain limit as per our requirement and, more importantly, (b) to add nonlinearity to the network; we apply an activation function \(\phi(z)\).
- To learn w and \(b\), you may formulate a cost function to minimize, as the Sum of Squared Errors (SSE):
\[
\begin{equation*}
\mathcal{J}(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y^{(i)}-\phi\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right)\right)^{2} \tag{10.3}
\end{equation*}
\]

However, in order to get them more effectively, we must formulate the cost function more meaningfully.

Thus, an important task in ML is on the choice of effective
- activation functions and
- cost functions.

\section*{Activation functions:}
\[
\begin{array}{ll}
\text { Perceptron } & : \phi(z)= \begin{cases}1, & \text { if } z \geq \theta \\
0, & \text { otherwise }\end{cases} \\
\text { Adaline } & : \phi(z)=z \tag{10.4}
\end{array} \text { Logistic Regression }: \phi(z)=\sigma(z):=\frac{1}{1+e^{-z}}, l
\]
where "Adaline" stands for ADAptive LInear NEuron. The activation function \(\sigma(z)\) called the standard logistic sigmoid function or simply the sigmoid function.

\section*{Remark 10.6. (The standard logistic sigmoid function)}
\[
\begin{equation*}
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{1+e^{x}} \tag{10.5}
\end{equation*}
\]
- The standard logistic function is the solution of the simple firstorder non-linear ordinary differential equation
\[
\begin{equation*}
\frac{d}{d x} y=y(1-y), \quad y(0)=\frac{1}{2} \tag{10.6}
\end{equation*}
\]
- It can be verified easily as
\[
\begin{equation*}
\sigma^{\prime}(x)=\frac{e^{x}\left(1+e^{x}\right)-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=\sigma(x)(1-\sigma(x)) . \tag{10.7}
\end{equation*}
\]
- \(\sigma^{\prime}\) is even: \(\sigma^{\prime}(-x)=\sigma^{\prime}(x)\).
- Rotational symmetry about \((0,1 / 2)\) :
\[
\begin{equation*}
\sigma(x)+\sigma(-x)=\frac{1}{1+e^{-x}}+\frac{1}{1+e^{x}}=\frac{2+e^{x}+e^{-x}}{2+e^{x}+e^{-x}} \equiv 1 . \tag{10.8}
\end{equation*}
\]
- \(\int \sigma(x) d x=\int \frac{e^{x}}{1+e^{x}} d x=\ln \left(1+e^{x}\right)\), which is known as the softplus function in artificial neural networks. It is a smooth approximation of the the rectifier (an activation function) defined as
\[
\begin{equation*}
f(x)=x^{+}=\max (x, 0) . \tag{10.9}
\end{equation*}
\]



Figure 10.5: Popular activation functions: (left) The standard logistic sigmoid function and (right) the rectifier and softplus function.

\subsection*{10.2.1. Adaline}

\section*{Algorithm 10.7. Adaline Learning:}

From data \(\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}\), learn the weights \(\mathbf{w}\) and bias \(b\), with
- Activation function: \(\phi(z)=z\) (i.e., identity activation)
- Cost function: the SSE
\[
\begin{equation*}
\mathcal{J}(\mathbf{w}, b)=\frac{1}{2} \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right)^{2} . \tag{10.10}
\end{equation*}
\]
where \(z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}+b\) and \(\phi=I\), the identity.
The dominant algorithm for the minimization of the cost function is the the Gradient Descent Method.

Algorithm 10.8. The Gradient Descent Method uses \(-\nabla \mathcal{J}\) for the search direction (update direction):
\[
\begin{align*}
& \mathbf{w}=\mathbf{w}+\Delta \mathbf{w}=\mathbf{w}-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b),  \tag{10.11}\\
& b=b+\Delta b=b-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b),
\end{align*}
\]
where \(\eta>0\) is the step length (learning rate).

\section*{Computation of \(\nabla \mathcal{J}\) for Adaline :}

The partial derivatives of the cost function \(\mathcal{J}\) w.r.to \(w_{j}\) and \(b\) read
\[
\begin{align*}
& \frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}}=-\sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) x_{j}^{(i)} \\
& \frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial b}=-\sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \tag{10.12}
\end{align*}
\]

Thus, with \(\phi=I\),
\[
\begin{align*}
& \Delta \mathbf{w}=-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \mathbf{x}^{(i)}, \\
& \Delta b=-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left(y^{(i)}-\phi\left(z^{(i)}\right)\right) \tag{10.13}
\end{align*}
\]

\section*{Hyperparameters}

Definition 10.9. In ML, a hyperparameter is a parameter whose value is set before the learning process begins. Thus it is an algorithmic parameter. Examples are
- The learning rate ( \(\eta\) )
- The number of maximum epochs/iterations (n_iter)


Figure 10.6: Well-chosen learning rate vs. a large learning rate

Note: There are effective searching schemes to set the learning rate \(\eta\) automatically.

\subsection*{10.2.2. Logistic Regression}

\section*{Algorithm 10.10. Logistic Regression Learning:}

From data \(\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}\), learn the weights \(\mathbf{w}\) and bias \(b\), with
- Activation function: \(\phi(z)=\sigma(z)\), the logistic sigmoid function
- Cost function: The likelihood is maximized.

Based on the log-likelihood, we define the logistic cost function to be minimized:
\[
\begin{equation*}
\mathcal{J}(\mathbf{w}, b)=\sum_{i}\left[-y^{(i)} \ln \left(\phi\left(z^{(i)}\right)\right)-\left(1-y^{(i)}\right) \ln \left(1-\phi\left(z^{(i)}\right)\right)\right], \tag{10.14}
\end{equation*}
\]
where \(z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}+b\).

\section*{Computation of \(\nabla \mathcal{J}\) for Logistic Regression:}

Let's start by calculating the partial derivative of the logistic cost function with respect to the \(j\)-th weight, \(w_{j}\) :
\[
\begin{equation*}
\frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}}=\sum_{i}\left[-y^{(i)} \frac{1}{\phi\left(z^{(i)}\right)}+\left(1-y^{(i)}\right) \frac{1}{1-\phi\left(z^{(i)}\right)}\right] \frac{\partial \phi\left(z^{(i)}\right)}{\partial w_{j}} \tag{10.15}
\end{equation*}
\]
where, using \(z^{(i)}=\mathbf{w}^{T} \mathbf{x}^{(i)}\) and (10.7),
\[
\frac{\partial \phi\left(z^{(i)}\right)}{\partial w_{j}}=\phi^{\prime}\left(z^{(i)}\right) \frac{\partial z^{(i)}}{\partial w_{j}}=\phi\left(z^{(i)}\right)\left(1-\phi\left(z^{(i)}\right)\right) x_{j}^{(i)}
\]

Thus, if follows from the above and (10.15) that
\[
\begin{aligned}
\frac{\partial \mathcal{J}(\mathbf{w}, b)}{\partial w_{j}} & =\sum_{i}\left[-y^{(i)}\left(1-\phi\left(z^{(i)}\right)\right)+\left(1-y^{(i)}\right) \phi\left(z^{(i)}\right)\right] x_{j}^{(i)} \\
& =-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
\]
and therefore
\[
\begin{equation*}
\nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w})=-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \mathbf{x}^{(i)} \tag{10.16}
\end{equation*}
\]

Similarly, one can get
\[
\begin{equation*}
\nabla_{b} \mathcal{J}(\mathbf{w})=-\sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] . \tag{10.17}
\end{equation*}
\]

Algorithm 10.11. Gradient descent learning for Logistic Regression is formulated as
\[
\begin{equation*}
\mathbf{w}:=\mathbf{w}+\Delta \mathbf{w}, \quad b:=b+\Delta b, \tag{10.18}
\end{equation*}
\]
where \(\eta>0\) is the step length (learning rate) and
\[
\begin{align*}
& \Delta \mathbf{w}=-\eta \nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] \mathbf{x}^{(i)}, \\
& \Delta b=-\eta \nabla_{b} \mathcal{J}(\mathbf{w}, b)=\eta \sum_{i}\left[y^{(i)}-\phi\left(z^{(i)}\right)\right] . \tag{10.19}
\end{align*}
\]

Note: The above gradient descent rule for Logistic Regression is of the same form as that of Adaline; see (10.13) on p.373. Only the difference is the activation function \(\phi\).

\subsection*{10.3. Support Vector Machine}

Observation 10.12. ML algorithms such as Perceptron, Adaline, and Logistic Regression would stop the iteration, when the linear seperator becomes one of hyperplanes (lines) shown in the left of Figure 10.7.


Figure 10.7: (left) Converged linear separators and (right) the one that maximizes the margin.

\subsection*{10.3.1. Linear SVM}
- Support Vector Machine (SVM), developed in 1995 by CortesVapnik [3], can be considered as an extension of the Perceptron/Adaline, which maximizes the margin.
- The rationale behind having decision boundaries with large margins is that they tend to have a lower generalization error, whereas models with small margins are more prone to overfitting.

\section*{Computation of the Optimal Hyperplane:}
- To find an optimal hyperplane that maximizes the margin, let's begin with considering the positive and negative hyperplanes that are parallel to the decision boundary:
\[
\begin{align*}
w_{0}+\mathbf{w}^{T} \mathbf{x}_{+}= & 1, \\
w_{0}+\mathbf{w}^{T} \mathbf{x}_{-} & =-1 \tag{10.20}
\end{align*}
\]
where \(\mathbf{w}=\left[w_{1}, w_{2}, \cdots, w_{d}\right]^{T}\).
- If we subtract those two linear equations from each other, then we have
\[
\mathbf{w} \cdot\left(\mathbf{x}_{+}-\mathbf{x}_{-}\right)=2
\]
and therefore
\[
\begin{equation*}
\frac{\mathbf{w}}{\|\mathrm{w}\|} \cdot\left(\mathrm{x}_{+}-\mathrm{x}_{-}\right)=\frac{2}{\|\mathbf{w}\|} \tag{10.21}
\end{equation*}
\]
- Note \(\mathbf{w}=\left[w_{1}, w_{2}, \cdots, w_{d}\right]^{T}\) is a normal vector to the decision boundaries (hyperplanes); the left side of (10.21) is the distance between the positive and negative hyperplanes.
- Maximizing the distance (margin) is equivalent to minimizing its reciprocal \(\frac{1}{2}\|\mathbf{w}\|\), or minimizing \(\frac{1}{2}\|\mathbf{w}\|^{2}\).

Problem 10.13. The linear SVM is formulated as
\[
\begin{align*}
& \min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2}, \quad \text { subject to } \\
& \qquad \begin{array}{ll}
w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)} \geq 1 & \text { if } y^{(i)}=1, \\
w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)} \leq-1 & \text { if } y^{(i)}=-1 .
\end{array} \tag{10.22}
\end{align*}
\]

Remark 10.14. The constraints in Problem 10.13 can be written as
\[
\begin{equation*}
y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1 \geq 0, \quad \forall i . \tag{10.23}
\end{equation*}
\]
- The beauty of the linear SVM is that if the data is linearly separable, there is a unique global minimum value.
- An ideal SVM analysis should produce a hyperplane that completely separates the vectors (cases) into two non-overlapping classes.
- However, perfect separation may not be possible, in practice.

Note: Constrained optimization problems such as (10.22) are typically solved using the method of Lagrange multipliers.

\subsection*{10.3.2. The method of Lagrange multipliers}

In this subsection, we briefly consider Lagrange's method to solve the problem of the form
\[
\begin{equation*}
\min / \max _{\mathbf{x}} f(\mathbf{x}) \quad \text { subj.to } \quad g(\mathbf{x})=c . \tag{10.24}
\end{equation*}
\]



Figure 10.8: The method of Lagrange multipliers in \(\mathbb{R}^{2}: \underline{\nabla f / / \nabla g \text {, at optimum. }}\)

Strategy 10.15. (Method of Lagrange multipliers). For the maximum and minimum values of \(f(x)\) subject to \(g(x)=c\),
(a) Find \(x\) and \(\lambda\) such that
\[
\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x}) \text { and } g(\mathbf{x})=c
\]
(b) Evaluate \(f\) at all these points, to find the maximum and minimum.

Self-study 10.16. Use the method of Lagrange multipliers to find the extreme values of \(f(x, y)=x^{2}+2 y^{2}\) on the circle \(x^{2}+y^{2}=1\).
Hint: \(\nabla f=\lambda \nabla g \Longrightarrow\left[\begin{array}{l}2 x \\ 4 y\end{array}\right]=\lambda\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]\). Therefore, \(\left\{\begin{array}{l}2 x=2 x \lambda \\ 4 y=2 y \lambda \\ x^{2}+y^{2}=1\end{array}\right.\)
From (1), \(x=0\) or \(\lambda=1\).

\section*{Lagrange multipliers - Dual variables}


Figure 10.9: \(\min _{x} x^{2}\) subj.to \(x \geq 1\).

For simplicity, consider
\[
\begin{equation*}
\min _{x} x^{2} \quad \text { subj.to } x \geq 1 \tag{10.25}
\end{equation*}
\]

Rewriting the constraint
\[
x-1 \geq 0,
\]
introduce Lagrangian (objective):
\[
\begin{equation*}
\mathcal{L}(x, \alpha)=x^{2}-\alpha(x-1) . \tag{10.26}
\end{equation*}
\]

Now, consider
\[
\begin{equation*}
\min _{x} \max _{\alpha} \mathcal{L}(x, \alpha) \text { subj.to } \alpha \geq 0 \tag{10.27}
\end{equation*}
\]

Claim 10.17. The minimization problem (10.25) is equivalent to the max-min problem (10.27).

Proof. (1) Let \(x>1 . \Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=0\) and \(\alpha^{*}=0\). Thus,
\[
\mathcal{L}(x, \alpha)=x^{2} . \text { (original objective) }
\]
(2) Let \(x=1 . \Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=0\) and \(\alpha\) is arbitrary. Thus, again,
\[
\mathcal{L}(x, \alpha)=x^{2} . \text { (original objective) }
\]
(3) Let \(x<1\). \(\Rightarrow \max _{\alpha \geq 0}\{-\alpha(x-1)\}=\infty\). However, \(\min _{x}\) won't make this happen! ( \(\min _{x}\) is fighting \(\max _{\alpha}\) ) That is, when \(x<1\), the objective \(\mathcal{L}(x, \alpha)\) becomes huge as \(\alpha\) grows; then, \(\min _{x}\) will push \(x \nearrow 1\) or increase it to become \(x \geq 1\). In other words, \(\min _{x}\) forces \(\max _{\alpha}\) to behave, so constraints will be satisfied.

Now, the goal is to solve (10.27). In the following, we will define the dual problem of (10.27), which is equivalent to the primal problem.

Recall: The min-max problem in (10.27), which is equivalent to the (original) primal problem:
\[
\begin{equation*}
\min _{x} \max _{\alpha} \mathcal{L}(x, \alpha) \quad \text { subj.to } \quad \alpha \geq 0, \quad \text { (Primal) } \tag{10.28}
\end{equation*}
\]
where
\[
\mathcal{L}(x, \alpha)=x^{2}-\alpha(x-1)
\]

Definition 10.18. The dual problem of (10.28) is formulated by swapping \(\min _{x}\) and \(\max _{\alpha}\) as follows:
\[
\begin{equation*}
\max _{\alpha} \min _{x} \mathcal{L}(x, \alpha) \quad \text { subj.to } \quad \alpha \geq 0, \quad \text { (Dual) } \tag{10.29}
\end{equation*}
\]

The term \(\min _{x} \mathcal{L}(x, \alpha)\) is called the Lagrange dual function and the Lagrange multiplier \(\alpha\) is also called the dual variable.

How to solve it. For the Lagrange dual function \(\min _{x} \mathcal{L}(x, \alpha)\), the minimum occurs where the gradient is equal to zero.
\[
\begin{equation*}
\frac{d}{d x} \mathcal{L}(x, \alpha)=2 x-\alpha=0 \Rightarrow x=\frac{\alpha}{2} \tag{10.30}
\end{equation*}
\]

Plugging this to \(\mathcal{L}(x, \alpha)\), we have
\[
\mathcal{L}(x, \alpha)=\left(\frac{\alpha}{2}\right)^{2}-\alpha\left(\frac{\alpha}{2}-1\right)=\alpha-\frac{\alpha^{2}}{4} .
\]

We can rewrite the dual problem (10.29) as
\[
\begin{equation*}
\max _{\alpha \geq 0}\left[\alpha-\frac{\alpha^{2}}{4}\right] . \tag{Dual}
\end{equation*}
\]
\(\Rightarrow\) the maximum is 1 when \(\alpha^{*}=2\) (for the dual problem).
Plugging \(\alpha=\alpha^{*}\) into (10.30) to get \(x^{*}=1\). Or, using the Lagrangian objective, we have
\[
\begin{equation*}
\mathcal{L}(x, \alpha)=x^{2}-2(x-1)=(x-1)^{2}+1 . \tag{10.32}
\end{equation*}
\]
\(\Rightarrow\) the minimum is 1 when \(x^{*}=1\) (for the primal problem).

\subsection*{10.3.3. Solution of the linear SVM}

Recall: The linear SVM formulated in Problem 10.13:
\[
\begin{align*}
& \min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2}, \quad \text { subj.to } \\
& y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1 \geq 0, \quad \forall i . \quad \text { (Primal) }
\end{align*}
\]

To solve the problem, let's begin with its Lagrangian:
\[
\begin{equation*}
\mathcal{L}\left(\left[\mathbf{w}, w_{0}\right], \boldsymbol{\alpha}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1\right], \tag{10.34}
\end{equation*}
\]
where \(\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right]^{T}\), the dual variable (Lagrange multipliers).
Definition 10.19. In optimization, the Karush-Kuhn-Tucker (KKT) conditions [14, 16] are first derivative tests (a.k.a. first-order necessary conditions) for a solution in nonlinear programming to be optimized, provided that some regularity conditions are satisfied.

Note: Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints.

Writing the KKT conditions, starting with Lagrangian stationarity, where we need to find the first-order derivatives w.r.t. w and \(w_{0}\) :
\[
\begin{array}{cl}
\nabla_{\mathbf{w}} \mathcal{L}\left(\left[\mathbf{w}, w_{0}\right], \boldsymbol{\alpha}\right)=\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}=0 \Rightarrow \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)} \\
\frac{\partial}{\partial w_{0}} \mathcal{L}\left(\left[\mathbf{w}, w_{0}\right], \boldsymbol{\alpha}\right)=-\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0 \quad \Rightarrow \sum_{i=1}^{N} \alpha_{i} y^{(i)}=0 \\
\alpha_{i} \geq 0, & \text { (dual feasibility) } \\
\alpha_{i}\left[y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1\right]=0, & \text { (complementary slackness) } \\
y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1 \geq 0 . & \text { (primal feasibility) }
\end{array}
\]

Using the KKT conditions (10.35), we can simplify the Lagrangian:
\[
\begin{align*}
\mathcal{L}\left(\left[\mathbf{w}, w_{0}\right], \boldsymbol{\alpha}\right) & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i} y^{(i)} w_{0}-\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)}+\sum_{i=1}^{N} \alpha_{i} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-0-\mathbf{w}^{T} \mathbf{w}+\sum_{i=1}^{N} \alpha_{i}  \tag{10.36}\\
& =-\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i} .
\end{align*}
\]

Again using the first KKT condition, we can rewrite the first term.
\[
\begin{align*}
-\frac{1}{2}\|\mathbf{w}\|^{2} & =-\frac{1}{2}\left(\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}\right) \cdot\left(\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(j)}\right)  \tag{10.37}\\
& =-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}
\end{align*}
\]

Plugging (10.37) into the (simplified) Lagrangian (10.36), we see that the Lagrangian now depends on \(\alpha\) only.

Problem 10.20. The dual problem of (10.33) is formulated as
\[
\begin{align*}
\max _{\boldsymbol{\alpha}} & {\left[\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right], \quad \text { subj.to } }  \tag{10.38}\\
& {\left[\begin{array}{l}
\alpha_{i} \geq 0, \quad \forall i, \\
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
\end{array}\right.}
\end{align*}
\]

\section*{Remark 10.21. (Solving the dual problem).}
- We can solve the dual problem (10.38), by using either a generic quadratic programming solver or the Sequential Minimal Optimization (SMO), which we will discuss in § 10.3.6, p. 394.
- For now, assume that we solved it to have \(\boldsymbol{\alpha}^{*}=\left[\alpha_{1}^{*}, \cdots, \alpha_{n}^{*}\right]^{T}\).
- Then we can plug it into the first KKT condition to get
\[
\begin{equation*}
\mathbf{w}^{*}=\sum_{i=1}^{N} \alpha_{i}^{*} y^{(i)} \mathbf{x}^{(i)} \tag{10.39}
\end{equation*}
\]
- We still need to get \(w_{0}^{*}\).

Remark 10.22. The objective function \(\mathcal{L}(\boldsymbol{\alpha})\) in (10.38) is a linear combination of the dot products of data samples \(\left\{\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right\}\), which will be used when we generalize the SVM for nonlinear decision boundaries; see § 10.3.5.

\section*{Support vectors}

Assume momentarily that we have \(w_{0}^{*}\). Consider the complementary slackness KKT condition along with the primal and dual feasibility conditions:
\[
\begin{align*}
& \alpha_{i}^{*}\left.y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}^{(i)}\right)-1\right]=0 \\
& \quad \Rightarrow\left\{\begin{array}{l}
\alpha_{i}^{*}>0 \Rightarrow y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}^{(i)}\right)=1 \\
\alpha_{i}^{*}<0 \quad(\text { can't happen }) \\
y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1>0 \Rightarrow \alpha_{i}^{*}=0 \\
y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1<0 \quad \text { (can't happen). }
\end{array}\right. \tag{10.40}
\end{align*}
\]

We define the optimal (scaled) scoring function:
\[
\begin{equation*}
f^{*}\left(\mathbf{x}^{(i)}\right)=w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}^{(i)} . \tag{10.41}
\end{equation*}
\]

Then
\[
\begin{cases}\alpha_{i}^{*}>0 & \Rightarrow y^{(i)} f^{*}\left(\mathbf{x}^{(i)}\right)=\text { scaled margin }=1,  \tag{10.42}\\ y^{(i)} f^{*}\left(\mathbf{x}^{(i)}\right)>1 & \Rightarrow \alpha_{i}^{*}=0\end{cases}
\]

Definition 10.23. The examples in the first category, for which the scaled margin is 1 and the constraints are active, are called support vectors. They are the closest to the decision boundary.

\section*{Finding the optimal value of \(w_{0}\)}

To get \(w_{0}^{*}\), use the primal feasibility condition:
\[
y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}^{(i)}\right) \geq 1 \quad \text { and } \quad \min _{i} y^{(i)}\left(w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}^{(i)}\right)=1 .
\]

If you take a positive support vector \(\left(y^{(i)}=1\right)\), then
\[
\begin{equation*}
w_{0}^{*}=1-\min _{i: y^{(i)}=1} \mathbf{w}^{* T} \mathbf{x}^{(i)} \tag{10.43}
\end{equation*}
\]

Here, you'd better refer to Summary of SVM in Algorithm 10.26, p. 389.

\subsection*{10.3.4. The inseparable case: soft-margin classification}

When the dataset is inseparable, there would be no separating hyperplane; there is no feasible solution to the linear SVM.


Figure 10.10: Slack variable: \(\xi_{i}\).

Let's fix our SVM so it can accommodate the inseparable case.
- The new formulation involves the slack variable; it allows some instances to fall off the margin, but penalize them.
- So we are allowed to make mistakes now, but we pay a price.

Note: The motivation for introducing the slack variable \(\boldsymbol{\xi}\) was that the linear constraints need to be relaxed for nonlinearly separable data to allow the convergence of the optimization in the presence of misclassifications, under appropriate cost penalization. Such strategy of SVM is called the soft-margin classification.

Recall: The linear SVM formulated in Problem 10.13:
\[
\begin{align*}
& \min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2}, \quad \text { subj.to } \\
& y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1 \geq 0, \quad \forall i . \quad \text { (Primal) }
\end{align*}
\]

Let's change it to this new primal problem:
Problem 10.24. (Soft-margin classification). The SVM with the slack variable is formulated as
\[
\begin{align*}
\min _{\mathbf{w}, w_{0}, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \quad \text { subj.to }  \tag{Primal}\\
& {\left[\begin{array}{l}
y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right.} \tag{10.45}
\end{align*}
\]

Via the variable \(C\), we can then control the penalty for misclassification. Large values of \(C\) correspond to large error penalties, whereas we are less strict about misclassification errors if we choose smaller values for \(C\). We can then use the \(C\) parameter to control the width of the margin and therefore tune the bias-

Figure 10.11: Bias-variance trade-off, via \(C\).

The constraints allow some slack of size \(\xi_{i}\), but we pay a price for it in the objective. That is,
if \(y^{(i)} f\left(\mathbf{x}^{(i)}\right) \geq 1\), then \(\xi_{i}=0\) and penalty is 0 . Otherwise, \(y^{(i)} f\left(\mathbf{x}^{(i)}\right)=1-\xi_{i}\) and we pay price \(\xi_{i}>0\)

\section*{Going on a bit for soft-margin classification}

We rewrite the penalty another way:
\[
\xi_{i}=\left\{\begin{array}{ll}
0, & \text { if } y^{(i)} f\left(\mathbf{x}^{(i)}\right) \geq 1 \\
1-y^{(i)} f\left(\mathbf{x}^{(i)}\right), & \text { otherwise }
\end{array}\right\}=\left[1-y^{(i)} f\left(\mathbf{x}^{(i)}\right)\right]_{+}
\]

Thus the objective function for soft-margin classification becomes
\[
\begin{equation*}
\min _{\mathbf{w}, w_{0}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N}\left[1-y^{(i)} f\left(\mathbf{x}^{(i)}\right)\right]_{+} . \tag{10.46}
\end{equation*}
\]

\section*{The Dual for soft-margin classification}

Form the Lagrangian of (10.45):
\[
\begin{align*}
\mathcal{L}\left(\left[\mathbf{w}, w_{0}\right], \boldsymbol{\xi}, \boldsymbol{\alpha}, \mathbf{r}\right)= & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} r_{i} \xi_{i} \\
& -\sum_{i=1}^{N} \alpha_{i}\left[y^{(i)}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}^{(i)}\right)-1+\xi_{i}\right], \tag{10.47}
\end{align*}
\]
where \(\alpha_{i}\) 's and \(r_{i}\) 's are Lagrange multipliers (constrained to be \(\geq 0\) ). After some work, the dual turns out to be

Problem 10.25. The dual problem of (10.44) is formulated as
\[
\begin{align*}
\max _{\alpha} & {\left[\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right], \quad \text { subj.to } }  \tag{10.48}\\
& {\left[\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \forall i, \\
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
\end{array}\right.}
\end{align*}
\]

So the only difference from the original problem's Lagrangian (10.38) is that \(0 \leq \alpha_{i}\) was changed to \(0 \leq \alpha_{i} \leq C\). Neat!

See § 10.3.6, p. 394, for the solution of (10.48), using the SMO algorithm.

\section*{Algebraic expression for the dual problem:}

Let
\[
Z=\left[\begin{array}{c}
y^{(1)} \mathbf{x}^{(1)} \\
y^{(2)} \mathbf{x}^{(2)} \\
\vdots \\
y^{(N)} \mathbf{x}^{(N)}
\end{array}\right] \in \mathbb{R}^{N \times m}, \quad \mathbf{1}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \in \mathbb{R}^{N} .
\]

Then dual problem (10.48) can be written as
\[
\begin{equation*}
\max _{0 \leq \boldsymbol{\alpha} \leq C}\left[\boldsymbol{\alpha} \cdot \mathbf{1}-\frac{1}{2} \boldsymbol{\alpha}^{T} Z Z^{T} \boldsymbol{\alpha}\right] \quad \text { subj.to } \quad \boldsymbol{\alpha} \cdot \mathbf{y}=0 \tag{10.49}
\end{equation*}
\]

Note:
- \(G=Z Z^{T} \in \mathbb{R}^{N \times N}\) is called the Gram matrix. That is,
\[
\begin{equation*}
G_{i j}=y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \tag{10.50}
\end{equation*}
\]
- The optimization problem in (10.48) or (10.49) is a typical form of quadratic programming (QP) problems.
- The dual problem (10.49) admits a unique solution.

\section*{Algorithm 10.26. (Summary of SVM)}

\section*{- Training}
- Compute Gram matrix: \(G_{i j}=y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\)
- Solve for \(\boldsymbol{\alpha}^{*}\) (QP or the SMO in § 10.3.6)
- Compute the weights: \(\mathbf{w}^{*}=\sum_{i=1}^{N} \alpha_{i}^{*} y^{(i)} \mathbf{x}^{(i)} \quad\) (10.39)
- Compute the intercept: \(w_{0}^{*}=1-\min _{i: y^{(i)}=1} \mathbf{w}^{* T} \mathbf{x}^{(i)}\) (10.43)
- Classification (for a new sample \(x\) )
- Compute \(k_{i}=\mathbf{x} \cdot \mathbf{x}^{(i)}\) for support vectors \(\mathbf{x}^{(i)}\)
- Compute \(f(\mathbf{x})=w_{0}^{*}+\sum_{i} \alpha_{i} y^{(i)} k_{i}\left(:=w_{0}^{*}+\mathbf{w}^{* T} \mathbf{x}\right)\)
- Test \(\operatorname{sign}(f(\mathbf{x}))\).

\section*{Why are SVMs popular in ML?}
- Margins
- to reduce overfitting
- to enhance classification accuracy
- Feature expansion
- mapping to a higher-dimension
- to classify inseparable datasets
- Kernel trick
- to avoid writing out high-dimensional feature vectors

\subsection*{10.3.5. Nonlinear SVM and kernel trick}

Note: A reason why SVMs enjoy high popularity among machine learning practitioners is that it can be easily kernelized to solve nonlinear classification problems incorporating linearly inseparable data. The basic idea behind kernel methods is to create nonlinear combinations of the original features to project them onto a higher-dimensional space via a mapping \(\phi\) where it becomes linearly separable.

For example, for the inseparable data set in Figure 10.12, we define
\[
\phi\left(x_{1}, x_{2}\right)=\left(z_{1}, z_{2}, z_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)
\]


Figure 10.12: Inseparable dataset, feature expansion, and kernel SVM.

To solve a nonlinear problem using an SVM, we would a transform the training data onto a higher-dimensional feature space via a mapping \(\phi\) and (b) train a linear SVM model to classify the data in this new feature space. Then, we can © use the same mapping function \(\phi\) to transform new, unseen data to classify it using the linear SVM model.

\section*{Kernel trick}

Recall: the dual problem to the soft-margin SVM given in (10.48):
\[
\begin{align*}
\max _{\alpha} & {\left[\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right], \quad \text { subj.to } }  \tag{10.51}\\
& {\left[\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \forall i, \\
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0 .
\end{array}\right.}
\end{align*}
\]

Observation 10.27. The objective is a linear combination of dot products \(\left\{\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right\}\). Thus,
- If the kernel SVM transforms the data samples through \(\phi\), the dot product \(\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\) in the objective must be replaced by \(\phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)\).
- The dot product \(\phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)\) is performed in a higher-dimension, which may be costly.

Definition 10.28. In order to save the expensive step of explicit computation of this dot product (in a higher-dimension), we define a so-called kernel function:
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right) \approx \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right) . \tag{10.52}
\end{equation*}
\]

One of the most widely used kernels is the Radial Basis Function (RBF) kernel or simply called the Gaussian kernel:
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}\right), \tag{10.53}
\end{equation*}
\]
where \(\gamma=1 /\left(2 \sigma^{2}\right)\). Occasionally, the parameter \(\gamma\) plays an important role in controlling overfitting.

Note: Roughly speaking, the term kernel can be interpreted as a similarity function between a pair of samples. The minus sign inverts the distance measure into a similarity score, and, due to the exponential term, the resulting similarity score will fall into a range between 1 (for exactly similar samples) and 0 (for very dissimilar samples).

This is the big picture behind the kernel trick.
(Kernel SVM algorithm): It can be summarized as in Algorithm 10.26, p. 389; only the difference is that dot products \(\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\) and \(\mathbf{x} \cdot \mathbf{x}^{(i)}\) are replaced by \(\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)\) and \(\mathcal{K}\left(\mathbf{x}, \mathbf{x}^{(i)}\right)\), respectively.

\section*{Common kernels}
- Polynomial of degree exactly \(k\) (e.g. \(k=2\) ):
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right)^{k} \tag{10.54}
\end{equation*}
\]
- Polynomial of degree up to \(k\) : for some \(c>0\),
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(c+\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right)^{k} \tag{10.55}
\end{equation*}
\]
- Sigmoid:
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(a \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}+b\right) \tag{10.56}
\end{equation*}
\]
- Gaussian RBF:
\[
\begin{equation*}
\mathcal{K}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right) \tag{10.57}
\end{equation*}
\]
- And many others: Fisher kernel, graph kernel, string kernel, ... very active area of research!

Example 10.29. (Quadratic kernels). \(\mathcal{K}(\mathbf{x}, \mathbf{z})=(c+\mathbf{x} \cdot \mathbf{z})^{2}\)
\[
\begin{align*}
(c+\mathbf{x} \cdot \mathbf{z})^{2} & =\left(c+\sum_{j=1}^{m} x_{j} z_{j}\right)\left(c+\sum_{\ell=1}^{m} x_{\ell} z_{\ell}\right) \\
& =c^{2}+2 c \sum_{j=1}^{m} x_{j} z_{j}+\sum_{j=1}^{m} \sum_{\ell=1}^{m} x_{j} z_{j} x_{\ell} z_{\ell}  \tag{10.58}\\
& =c^{2}+\sum_{j=1}^{m}\left(\sqrt{2 c} x_{j}\right)\left(\sqrt{2 c} z_{j}\right)+\sum_{j, \ell=1}^{m}\left(x_{j} x_{\ell}\right)\left(z_{j} z_{\ell}\right) .
\end{align*}
\]

So, the corresponding feature expansion is given by
\[
\begin{equation*}
\phi\left(\left[x_{1}, \cdots, x_{m}\right]\right)=\left[x_{1}^{2}, x_{1} x_{2}, \cdots, x_{m} x_{m-1}, x_{m}^{2}, \sqrt{2 c} x_{1}, \cdots, \sqrt{2 c} x_{m}, c\right], \tag{10.59}
\end{equation*}
\]
which is in \(\mathbb{R}^{m^{2}+m+1}\). \(\boldsymbol{Q}\) : How is this feature expansion meaningful?
Although not expressible by \(\phi(\mathbf{x}) \cdot \phi(\mathbf{z})\) [ever, or in finite dimensions], the kernel \(\mathcal{K}(\mathbf{x}, \mathbf{z})\) must be formulated meaningfully!

\section*{Summary: Linear classifiers \& their variants}
- Perceptrons are a simple, popular way to learn a classifier
- They suffer from inefficient use of data, overfitting, and lack of expressiveness
- SVMS can fix these problems using (1) margins and (2) feature expansion (mapping to a higher-dimension)
- In order to make feature expansion computationally feasible, we need the (3) kernel trick, which avoids writing out highdimensional feature vectors
- SVMs are popular classifiers because they usually achieve good error rates and can handle unusual types of data

\subsection*{10.3.6. Solving the dual problem with SMO}

SMO (Sequential Minimal Optimization) is a type of coordinate ascent algorithm, but adapted to SVM so that the solution always stays within the feasible region.

Recall: The dual problem of the slack variable primal, formulated in (10.48):
\[
\begin{align*}
\max _{\alpha} & {\left[\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right], \quad \text { subj.to } }  \tag{10.60}\\
& {\left[\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \forall i, \\
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
\end{array}\right.}
\end{align*}
\]

Quesiton. Start with (10.60). Let's say you want to hold \(\alpha_{2}, \cdots, \alpha_{N}\) fixed and take a coordinate step in the first direction. That is, change \(\alpha_{1}\) to maximize the objective in (10.60). Can we make any progress? Can we get a better feasible solution by doing this?

Turns out, no. Let's see why. Look at the constraint in (10.60), \(\sum_{i=1}^{N} \alpha_{i} y^{(i)}=\) 0 . This means
\[
\alpha_{1} y^{(1)}=-\sum_{i=2}^{N} \alpha_{i} y^{(i)} \quad \Rightarrow \quad \alpha_{1}=-y^{(1)} \sum_{i=2}^{N} \alpha_{i} y^{(i)} .
\]

So, since \(\alpha_{2}, \cdots, \alpha_{N}\) are fixed, \(\alpha_{1}\) is also fixed.
Thus, if we want to update any of the \(\alpha_{i}\) 's, we need to update at least 2 of them simultaneously to keep the solution feasible (i.e., to keep the constraints satisfied).
- Start with a feasible vector \(\alpha\).
- Let's update \(\alpha_{1}\) and \(\alpha_{2}\), holding \(\alpha_{3}, \cdots, \alpha_{N}\) fixed. What values of \(\alpha_{1}\) and \(\alpha_{2}\) are we allowed to choose?
- The constraint is: \(\alpha_{1} y^{(1)}+\alpha_{2} y^{(2)}=-\sum_{i=3}^{N} \alpha_{i} y^{(i)}=: \xi\).


Figure 10.13
- We are only allowed to choose \(\alpha_{1}\) and \(\alpha_{2}\) on the line; when we pick \(\alpha_{2}\), we get \(\alpha_{1}\) automatically from
\[
\begin{equation*}
\alpha_{1}=\frac{1}{y^{(1)}}\left(\xi-\alpha_{2} y^{(2)}\right)=y^{(1)}\left(\xi-\alpha_{2} y^{(2)}\right) \tag{10.61}
\end{equation*}
\]
- (Optimization for \(\alpha_{2}\) ): The other constraints in (10.60) says \(0 \leq\) \(\alpha_{1}, \alpha_{2} \leq C\). Thus, \(\alpha_{2}\) needs to be within \([L, H]\) on the figure \(\left(\because \alpha_{1} \in\right.\) \([0, C])\). To do the coordinate ascent step, we will optimize the objective over \(\alpha_{2}\), keeping it within \([L, H]\). Using (10.61), (10.60) becomes
\[
\begin{equation*}
\max _{\alpha_{2} \in[L, H]}\left[y^{(1)}\left(\xi-\alpha_{2} y^{(2)}\right)+\alpha_{2}+\sum_{i=3}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}\right], \tag{10.62}
\end{equation*}
\]
of which the objective is quadratic in \(\alpha_{2}\). This means we can just set its derivative to 0 to optimize it, and to get \(\alpha_{2}\).
- Move to the next iteration of SMO.

Note: There are heuristics to choose the order of \(\alpha_{i}\) 's chosen to update.

\subsection*{10.4. Neural Networks}

Recall: The Perceptron (or, Adaline, Logistic Regression) is the simplest artificial neuron that makes decisions by weighting up evidence.


Figure 10.14: A simplest artificial neuron.

\section*{Complex Neural Networks}
- Obviously, a simple artificial neuron is not a complete model of human decision-making!
- However, they can be use as building blocks for more complex neural networks.


Figure 10.15: A complex neural network.

\subsection*{10.4.1. A simple network to classify handwritten digits}
- The problem of recognizing handwritten digits has two components: segmentation and classification.
\[
504 / 92 \Rightarrow 504192
\]

Figure 10.16: Segmentation.
- We'll focus on algorithmic components for the classification of individual digits.

\section*{MNIST data set:}

A modified subset of two data sets collected by NIST (US National Institute of Standards and Technology):
- Its first part contains 60,000 images (for training)
- The second part is 10,000 images (for test), each of which is in \(28 \times 28\) grayscale pixels

\section*{A Simple Neural Network}


Figure 10.17: A sigmoid network having a single hidden layer.

\section*{What the Neural Network Will Do}
- Let's concentrate on the first output neuron, the one that is trying to decide whether or not the input digit is a \(\mathbf{0}\).
- It does this by weighing up evidence from the hidden layer of neurons.
- What are those hidden neurons doing?
- Let's suppose for the sake of argument that the first neuron in the hidden layer may detect whether or not an image like the following is present

It can do this by heavily weighting input pixels which overlap with the image, and only lightly weighting the other inputs.
- Similarly, let's suppose that the second, third, and fourth neurons in the hidden layer detect whether or not the following images are present

- As you may have guessed, these four images together make up the 0 image that we saw in the line of digits shown in Figure 10.16:

0
- So if all four of these hidden neurons are firing, then we can conclude that the digit is a 0 .

\section*{Learning with Gradient Descent}
- Data set \(\left\{\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right)\right\}, i=1,2, \cdots, N\)
(e.g., if an image \(\mathbf{x}^{(k)}\) depicts a 2, then \(\mathbf{y}^{(k)}=(0,0,1,0,0,0,0,0,0,0)^{T}\).)

\section*{- Cost function}
\[
\begin{equation*}
C(\boldsymbol{W}, B)=\frac{1}{2 N} \sum_{i}\left\|\mathbf{y}^{(i)}-\mathbf{a}\left(\mathbf{x}^{(i)}\right)\right\|^{2}, \tag{10.63}
\end{equation*}
\]
where \(\boldsymbol{W}\) denotes the collection of all weights in the network, \(B\) all the biases, and \(\mathbf{a}\left(\mathbf{x}^{(i)}\right)\) is the vector of outputs from the network when \(\mathbf{x}^{(i)}\) is input.
- Gradient descent method
\[
\left[\begin{array}{c}
\boldsymbol{W}  \tag{10.64}\\
B
\end{array}\right] \leftarrow\left[\begin{array}{c}
\boldsymbol{W} \\
B
\end{array}\right]+\left[\begin{array}{c}
\Delta \boldsymbol{W} \\
\Delta B
\end{array}\right],
\]
where
\[
\left[\begin{array}{c}
\Delta \boldsymbol{W} \\
\Delta B
\end{array}\right]=-\eta\left[\begin{array}{l}
\nabla_{\boldsymbol{W}} C \\
\nabla_{B} C
\end{array}\right] .
\]

Note: To compute the gradient \(\nabla C\), we need to compute the gradients \(\nabla C_{\mathbf{x}^{(i)}}\) separately for each training input, \(\mathbf{x}^{(i)}\), and then average them:
\[
\begin{equation*}
\nabla C=\frac{1}{N} \sum_{i} \nabla C_{\mathbf{x}^{(i)}} . \tag{10.65}
\end{equation*}
\]

Unfortunately, when the number of training inputs is very large, it can take a long time, and learning thus occurs slowly. An idea called stochastic gradient descent can be used to speed up learning.

\section*{Stochastic Gradient Descent}

The idea is to estimate the gradient \(\nabla C\) by computing \(\nabla C_{\mathbf{x}^{(i)}}\) for a small sample of randomly chosen training inputs. By averaging over this small sample, it turns out that we can quickly get a good estimate of the true gradient \(\nabla C\); this helps speed up gradient descent, and thus learning.
- Pick out a small number of randomly chosen training inputs \((m \ll N)\) :
\[
\widetilde{\mathbf{x}}^{(1)}, \widetilde{\mathbf{x}}^{(2)}, \cdots, \widetilde{\mathbf{x}}^{(m)},
\]
which we refer to as a mini-batch.
- Average \(\nabla C_{\tilde{\mathbf{x}}^{(k)}}\) to approximate the gradient \(\nabla C\). That is,
\[
\begin{equation*}
\frac{1}{m} \sum_{k=1}^{m} \nabla C_{\widetilde{\mathbf{x}}^{(k)}} \approx \nabla C \xlongequal{\text { def }} \frac{1}{N} \sum_{i} \nabla C_{\mathbf{x}^{(i)}} \tag{10.66}
\end{equation*}
\]
- For classification of handwritten digits for the MNIST data set, you may choose: batch_size = 10 .

Note: In practice, you can implement the stochastic gradient descent as follows. For an epoch,
- Shuffle the data set
- For each \(m\) samples (selected from the beginning), update ( \(\boldsymbol{W}, B\) ) using the approximate gradient (10.66).

\subsection*{10.4.2. Implementing a network to classify digits [18]}
```

"""
network.py (by Michael Nielsen)

~~~~~~~~~~
A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network. Gradients are calculated
using backpropagation. """
#### Libraries
# Standard library
import random
# Third-party libraries
import numpy as np
class Network(object):
    def __init__(self, sizes):
        """The list '`sizes`' contains the number of neurons in the
        respective layers of the network. For example, if the list
        was [2, 3, 1] then it would be a three-layer network, with the
        first layer containing 2 neurons, the second layer 3 neurons,
        and the third layer 1 neuron. """
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)
                    for x, y in zip(sizes[:-1], sizes[1:])]
    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a
    def SGD(self, training_data, epochs, mini_batch_size, eta,
        test_data=None):
        """Train the neural network using mini-batch stochastic
        gradient descent. The ``training_data`` is a list of tuples
        `'(x, y)`' representing the training inputs and the desired
        outputs. """
        if test_data: n_test = len(test_data)
        n = len(training_data)
        for j in xrange(epochs):
            random.shuffle(training_data)
            mini_batches = [
                training_data[k:k+mini_batch_size]
```
```
            for k in xrange(0, n, mini_batch_size)]
        for mini_batch in mini_batches:
            self.update_mini_batch(mini_batch, eta)
        if test_data:
            print "Epoch {0}: {1} / {2}".format(
                j, self.evaluate(test_data), n_test)
        else:
            print "Epoch {0} complete".format(j)
def update_mini_batch(self, mini_batch, eta):
    """Update the network's weights and biases by applying
    gradient descent using backpropagation to a single mini batch.
    The '`mini_batch`` is a list of tuples `'(x, y)``, and ``eta``
    is the learning rate."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
        delta_nabla_b, delta_nabla_w = self.backprop(x, y)
        nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
        nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [w-(eta/len(mini_batch))*nw
                for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
                for b, nb in zip(self.biases, nabla_b)]
def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. '`nabla_b`` and
    ``nabla_w'` are layer-by-layer lists of numpy arrays, similar
    to `'self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] #list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases, self.weights):
        z = np.dot(w, activation)+b
        zs.append(z)
        activation = sigmoid(z)
        activations.append(activation)
    # backward pass
    delta = self.cost_derivative(activations[-1], y) * \
        sigmoid_prime(zs[-1])
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose())
```
```
    for l in xrange(2, self.num_layers):
        z = zs[-l]
        sp = sigmoid_prime(z)
        delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
        nabla_b[-l] = delta
        nabla_w[-l] = np.dot(delta, activations[-1-1].transpose())
        return (nabla_b, nabla_w)
    def evaluate(self, test_data):
    test_results = [(np.argmax(self.feedforward(x)), y)
        for (x, y) in test_data]
    return sum(int(x == y) for (x, y) in test_results)
    def cost_derivative(self, output_activations, y):
    """Return the vector of partial derivatives \partial C_x /
    \partial a for the output activations."""
    return (output_activations-y)
#### Miscellaneous functions
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))
```

\section*{The code is executed using}
```
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
import network
n_neurons = 20
net = network.Network([784 , n_neurons, 10])
n_epochs, batch_size, eta = 30, 10, 3.0
net.SGD(training_data , n_epochs, batch_size, eta, test_data = test_data)
```
len(training_data) \(=50000\), len(validation_data) \(=10000\), len(test_data) \(=10000\)

\section*{Validation Accuracy}
```
Epoch 0: 9006 / 10000
Epoch 1: 9128 / 10000
Epoch 2: 9202 / 10000
Epoch 3: 9188 / 10000
Epoch 4: 9249 / 10000
Epoch 25: 9356 / 10000
Epoch 26: 9388 / 10000
Epoch 27: 9407 / 10000
Epoch 28: 9410 / 10000
Epoch 29: 9428 / 10000
```

\section*{Accuracy Comparisons}
- scikit-learn's SVM classifier using the default settings: 9435/10000
- A well-tuned SVM: \(\approx 98.5 \%\)
- Well-designed Convolutional NN (CNN): 9979/10000 (only 21 missed!)

Note: For well-designed neural networks, the performance is close to human-equivalent, and is arguably better, since quite a few of the MNIST images are difficult even for humans to recognize with confidence, e.g.,


Figure 10.18: MNIST images difficult even for humans to recognize.

\section*{Moral of the Neural Networks}
- Let all the complexity be learned, automatically, from data
- Simple algorithms can perform well for some problems:
(sophisticated algorithm) \(\leq\) (simple learning algorithm + good training data)

\subsection*{10.5. Deep Learning: Convolutional Neural Networks}

In this section, we will consider deep neural networks; the focus is on understanding core fundamental principles behind them, and applying those principles in the simple, easy-to-understand context of the MNIST problem.

Example 10.30. Consider neural networks for the classification of handwritten digits, as shown in the following images:
\[
504192
\]

Figure 10.19: A few images in the MNIST data set.

A neural network can be built, with three hidden layers, as follows:


Figure 10.20
- Let each hidden layers have 30 neurons:
- n_weights \(=28^{2} \cdot 30+30 \cdot 30+30 \cdot 30+30 \cdot 10=25,620\)
- n_biases \(=30+30+30+10=100\)
- Optimization is difficult
- The number of parameters to teach is huge (low efficiency)
- Multiple local minima problem (low solvability)
- Adding hidden layers is not necessarily improving accuracy

In fully-connected networks, deep neural networks have been hardly practical, except for some special applications.

\subsection*{10.5.1. Introducing convolutional networks}

Remarks] 10.31. The neural network exemplified in Figure 10.20 can produce a classification accuracy better than \(\mathbf{9 8 \%}\), for the MNIST handwritten digit data set. But upon reflection, it's strange to use networks with fully-connected layers to classify images.
- The network architecture does not take into account the spatial structure of the images.
- For instance, it treats input pixels which are far apart and close together, on exactly the same footing.

What if, instead of starting with a network architecture which is tabula rasa (blank mind), we used an architecture which tries to take advantage of the spatial structure? Could it be better than \(\mathbf{9 9 \%}\) ?

Here, we will introduce convolutional neural networks (CNN), which use a special architecture which is particularly well-adapted to classify images.
- The architecture makes convolutional networks fast to train.
- This, in turn, helps train deep, many-layer networks.
- Today, deep CNNs or some close variants are used in most neural networks for image recognition.
- CNNs use three basic ideas:
(a) local receptive fields,
(b) shared weights and biases, \&
(c) pooling.

\section*{(a) Local Receptive Fields}


Figure 10.21: An illustration for local receptive fields.
- In CNNs, the geometry of neurons (units) in the input layer is exactly the same as that of images (e.g., \(28 \times 28\) ). (rather than a vertical line of neurons as in fully-connected networks)
- As per usual, we'll connect the input neurons (pixels) to a layer of hidden neurons.
- But we will not connect fully from every input pixel to every hidden neuron.
- Instead, we only make connections in small, localized regions of the input image.
- For example: Each neuron in the first hidden layer will be connected to a small region of the input neurons, say, a \(5 \times 5\) region (Figure 10.21).
- That region in the input image is called the local receptive field for the hidden neuron.
- We slide the local receptive field across the entire input image.
- For each local receptive field, there is a different hidden neuron in the first hidden layer.


Figure 10.22: Two of local receptive fields, starting from the top-left corner. (Geometry of neurons in the first hidden layer is \(24 \times 24\).)

Note: We have seen that the local receptive field is moved by one pixel at a time (stride_length=1).
- In fact, sometimes a different stride length is used.
- For instance, we might move the local receptive field 2 pixels to the right (or down).
- Most software gives a hyperparameter for the user to set the stride length.

\section*{(b) Shared Weights and Biases}

Recall that each hidden neuron has a bias and \(5 \times 5\) weights connected to its corresponding local receptive field.
- In CNNs, we use the same weights and bias for each of the \(24 \times 24\) hidden neurons. In other words, for the \((j, k)\)-th hidden neuron, the output is:
\[
\begin{equation*}
\sigma\left(b+\sum_{p=0}^{4} \sum_{q=0}^{4} w_{p, q} a_{j+p, k+q}\right), \tag{10.67}
\end{equation*}
\]
where \(\sigma\) is the neural activation function (e.g., the sigmoid function), \(b\) is the shared value for the bias, and \(w_{p, q}\) is a \(5 \times 5\) array of shared weights.
- The weighting in (10.67) is just a form of convolution; we may rewrite it as
\[
\begin{equation*}
\mathbf{a}^{1}=\sigma\left(b+\mathbf{w} * \mathbf{a}^{0}\right) . \tag{10.68}
\end{equation*}
\]
- So the network is called a convolutional network.
- We sometimes call the map, from the input layer to the hidden layer, a feature map.
- Suppose the weights and bias are such that the hidden neuron can pick out a feature (e.g., a vertical edge) in a particular local receptive field.
- That ability is also likely to be useful at other places in the image.
- And therefore it is useful to apply the same feature detector everywhere in the image.
- We call the weights and bias defining the feature map the shared weights and the shared bias, respectively.
- A set of the shared weights and bias defines clearly a kernel or filter.

To put it in slightly more abstract terms, CNNs are well adapted to the translation invariance of images. \({ }^{a}\)

\section*{Remark 10.32. Multiple feature maps.}
- The network structure we have considered so far can detect just a single localized feature.
- To do more effective image recognition, we'll need more than one feature map.
- Thus, a complete convolutional layer consists of several different feature maps:


Figure 10.23: A convolutional network, consisting of 3 feature maps.

Modern CNNs are often built with 10 to 50 feature maps, each associated to a \(r \times r\) local receptive field: \(r=3 \sim 9\).


Figure 10.24: The 20 images corresponding to 20 different feature maps, which are actually learned when classifying the MNIST data set ( \(r=5\) ).

\section*{The number of parameters to learn}

A big advantage of sharing weights and biases is that it greatly reduces the number of parameters involved in a convolutional network.
- Convolutional networks: \((5 \times 5+1) * 20=520\)
- Fully-connected networks: \((28 \times 28+1) * 20=15,700\)

\section*{(c) Pooling}
- CNNs also contain pooling layers, in addition to the convolutional layers just mentioned.
- Pooling layers are usually used right after convolutional layers.
- What they do is to simplify the information in the output from the convolutional layer.
hidden neurons (output from feature map)


Figure 10.25: Pooling: summarizing a region of \(2 \times 2\) neurons in the convolutional layer.

From Figure 10.23: Since we have \(24 \times 24\) neurons output from the convolutional layer, after pooling we will have \(12 \times 12\) neurons for each feature map:


Figure 10.26: A convolutional network, consisting of 3 feature maps and pooling.

\section*{Types of pooling}
1. max-pooling: simply outputs the maximum activation in the \(2 \times 2\) input neurons.
2. \(L^{2}\)-pooling: outputs the \(L^{2}\)-average of the \(2 \times 2\) input neurons.

\subsection*{10.5.2. CNNs, in practice}


Figure 10.27: A simple CNN of three feature maps, to classify MNIST digits.
- To form a complete CNN by putting all these ideas, we need to add some extra layers, below the convolution-pooling layers.
- Figure 10.27 shows a CNN that involves an extra layer of 10 output neurons, for the 10 possible values for MNIST digits ('0', '1', '2', etc.).
- The final layer of connections is a fully-connected layer. For example:
- Let filter_shape \(=(20,1,5,5)\), poolsize \(=(2,2)\) ( 20 feature maps; \(1 \times 5 \times 5\) kernel; \(2 \times 2\) pooling)
- Then, the number of parameters to teach:
\(\left(5^{2}+1\right) \cdot 20+\left(20 \cdot 12^{2}\right) \cdot 10=29,300\).
- Classification accuracy for the MNIST data set \(\lesssim 99 \%\)
- Add a second convolution-pooling layer:
- Its input is the output of the first convolution-pooling layer.
- Let filter_shape \(=(40,20,5,5)\), poolsize \(=(2,2)\)
- The output of the second convolution-pooling layer: \(40 \times 5 \times 5\)
- Then, the number of parameters to teach:
\(\left(5^{2}+1\right) \cdot 20+\left(5^{2}+1\right) \cdot 40+\left(40 \cdot 5^{2}\right) \cdot 10=11,560\)
- Classification accuracy for the MNIST data set \(\gtrsim \mathbf{9 9 \%}\)
- Add a fully-connected layer (up the output layer):
- Let choose 40 neurons: \(\Longrightarrow 41,960\) parameters
- Classification accuracy \(\approx 99.5 \%\)
- Use an ensemble of networks
- Using 5 CNNs, classification accuracy \(=99.67 \%\) (33 missed!)


Figure 10.28: The images missed by an ensemble of 5 CNNs. The label in the top right is the correct classification, while in the bottom right is the label classified output.

\section*{Remarks 10.33. Intuitively speaking:}
- (Better representation). The use of translation invariance by the convolutional layer will reduce the number of parameters it needs to get the same performance as the fully-connected model.
- (Convolution kernels). The filters try to detect localized features, producing feature maps.
- (Efficiency). Pooling simplifies the information in the output from the convolutional layer.
- That, in turn, will result in faster training for the convolutional model, and, ultimately, will help us build deep networks using convolutional layers.
- Fully-connected hidden layers try to collect information for more widely formed features.

\section*{Exercises for Chapter 10}
10.1. (Designing a deep network). First, download a CNN code (including the MNIST data set) by accessing to
https://github.com/mnielsen/neural-networks-and-deep-learning.git
or 'git clone' it. In the 'src' directory, there are 8 python source files:
```
conv.py mnist_average_darkness.py mnist_svm.py network2.py
expand_mnist.py mnist_loader.py network.py network3.py
```
(a) Save Run_network.py in Section 10.4.2 in the 'src' directory to run. Edit to see how its performance changes.
CNN: On lines 16-22 in Figure 10.29 below, I put a design of a CNN model, which involved 2 hidden layers, one for a convolution-pooling layer and the other for a fully-connected layer. Its test accuracy becomes approximately \(98.8 \%\) in 30 epochs.
(b) Set 'GPU = False' in network3.py, if you are NOT using a GPU. (Default: ‘GPU = True', set on line 50-some of network3.py)
(c) Modify Run_network3.py appropriately to design a CNN model as accurate as possible. Can your network achieve an accuracy better than \(99.5 \%\) ? Hint: You may keep using the SoftmaxLayer for the final layer. ReLU (Rectified Linear Units) seems comparable with the sigmoid function (default) for activation. The default p_dropout=0.0. You should add some more layers, meaningful, and tune well all of hyperparameters: the number of feature maps for convolutional layers, the number of fully-connected neurons, \(\eta\), p_dropout, etc..

Report your experiences.
```
""" Run_network3.py:
    A CNN model, for the MNIST data set,
    which uses network3.py written by Michael Nielsen.
    The source code can be downloaded from
        https://github.com/mnielsen/neural-networks-and-deep-learning.git
    or 'git clone' it
"""
import network3
from network3 import Network, ReLU
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
training_data, validation_data, test_data = network3.load_data_shared()
mini_batch_size = 10
net = Network([
    ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
        filter_shape=(20, 1, 5, 5),
        poolsize=(2, 2), activation_fn=ReLU),
    FullyConnectedLayer(
        n_in=20*12*12, n_out=100, activation_fn=ReLU, p_dropout=0.0),
    SoftmaxLayer(n_in=100, n_out=10, p_dropout=0.5)], mini_batch_size)
n_epochs, eta = 30, 0.1
net.SGD(training_data, n_epochs, mini_batch_size, eta, \
    validation_data, test_data)
```

Figure 10.29: Run_network3.py

\section*{Chapter 11}

\section*{Boundary-Value Problems of One Variable}

\author{
In This Chapter:
}

\section*{Contents of Chapter 11}
11.1.The Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
11.2.Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
11.3.Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
11.4.FDMs for Non-constant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

\subsection*{11.1. The Shooting Method}

Problem 11.1. The two-point Boundary-Value Problems (BVPs) involve a second-order differential equation of the form
\[
\begin{gather*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a \leq a \leq b \\
y(a)=\alpha, \quad y(b)=\beta \tag{11.1}
\end{gather*}
\]

\section*{Theorem 11.2. (Existence and Uniqueness)}

Let
\[
D=\left\{\left(x, y, y^{\prime}\right) \mid a \leq a \leq b, \text { with }-\infty<y<\infty,-\infty<y^{\prime}<\infty\right\} .
\]

For the \(B V P\) of the form in (11.1), if the functions \(f, f_{y}, f_{y^{\prime}}\) are continuous on \(D\) and satisfy
(i) \(f_{y}\left(x, y, y^{\prime}\right)>0\), for all \(\left(x, y, y^{\prime}\right) \in D\)
(ii) there is a constant \(M\) such that
\[
\left|f_{y^{\prime}}\left(x, y, y^{\prime}\right)\right| \leq M, \quad \text { for all }\left(x, y, y^{\prime}\right) \in D
\]
then the BVP has a unique solution.
Example 11.3. Show that the following BVP has a unique solution.
\[
\begin{gathered}
y^{\prime \prime}+e^{-x y}+\sin \left(y^{\prime}\right)=0, \quad 1 \leq x \leq 2 \\
y(1)=0, \quad y(2)=0
\end{gathered}
\]

Solution.

\section*{Linear Boundary-Value Problems}

Definition 11.4. The differential equation \(y^{\prime \prime}=f\left(x, y, y^{\prime}\right)\) is linear if \(f\) can be expressed as a linear combination of \(y\) and \(y^{\prime}\), that is,
\[
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)=p(x) y^{\prime}+q(x) y+r(x), \tag{11.2}
\end{equation*}
\]
for some \(p, q, r\).

Corollary 11.5. Suppose the linear BVP
\[
\begin{gather*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)=p(x) y^{\prime}+q(x) y+r(x), \quad a \leq a \leq b  \tag{11.3}\\
y(a)=\alpha, \quad y(b)=\beta
\end{gather*}
\]
satisfies
(i) \(p(x), q(x), r(x)\) are continuous on \([a, b]\)
(ii) \(q(x)>0\) on \([a, b]\)
then the linear BVP has a unique solution.

\section*{The Linear Shooting Method}
1. To approximate the unique solution to the linear BVP (11.3), we first solve the problem twice, with two different initial conditions, obtaining solutions \(y_{1}\) and \(y_{2}\), say,
\[
\begin{cases}y_{1}(a)=\alpha, & y_{1}^{\prime}(a)=z_{1}  \tag{11.4}\\ y_{2}(a)=\beta, & y_{2}^{\prime}(a)=z_{2}\end{cases}
\]
(We will choose \(z_{1}\) and \(z_{2}\) appropriately later.)
2. Then we form a linear combination of \(y_{1}\) and \(y_{2}\) :
\[
\begin{equation*}
y(x)=\lambda y_{1}(x)+(1-\lambda) y_{2}(x) \tag{11.5}
\end{equation*}
\]
where \(\lambda\) is a parameter. We can easily verify that \(y(a)=\alpha\).
3. Thus the remained requirement is to satisfy \(y(b)=\beta\). We select \(\lambda\) such that
\[
\begin{equation*}
y(b)=\lambda y_{1}(b)+(1-\lambda) y_{2}(b)=\beta \tag{11.6}
\end{equation*}
\]
which reads
\[
\begin{equation*}
\lambda=\frac{\beta-y_{2}(b)}{y_{1}(b)-y_{2}(b)}, \tag{11.7}
\end{equation*}
\]
provided that \(y_{1}(b) \neq y_{2}(b)\).
4. Note that \(z_{1}\) and \(z_{2}\) can be chosen arbitrarily, \(z_{1} \neq z_{2}\); however, the most common choice is \(z_{1}=0\) and \(z_{2}=1\).

Claim 11.6. If the linear BVP (11.3) has a solution, then either
\[
\left\{\begin{array}{l}
y \equiv y_{1}, \quad \text { or }  \tag{11.8}\\
y_{1}(b) \neq y_{2}(b)
\end{array}\right.
\]

For the later case, the solution is a linear combination (11.5) with (11.7).

\section*{Summary 11.7. Summary of the Linear Shooting Method}
1. Solve two BVPs for \(y_{1}\) and \(y_{2}\) :
\[
\left\{\begin{array} { l } 
{ y ^ { \prime \prime } = f ( x , y , y ^ { \prime } ) }  \tag{11.9}\\
{ y ( a ) = \alpha , y ^ { \prime } ( a ) = 0 }
\end{array} \quad \left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \\
y(a)=\alpha, y^{\prime}(a)=1
\end{array}\right.\right.
\]
where \(f\left(x, y, y^{\prime}\right)=p(x) y^{\prime}+q(x) y+r(x)\).
2. Compute
\[
\begin{equation*}
\lambda=\frac{\beta-y_{2}(b)}{y_{1}(b)-y_{2}(b)}, \tag{11.10}
\end{equation*}
\]
3. Get the solution of the linear BVP (11.3) as a linear combination of \(y_{1}\) and \(y_{2}\) :
\[
\begin{equation*}
y(x)=\lambda y_{1}(x)+(1-\lambda) y_{2}(x) . \tag{11.11}
\end{equation*}
\]

Remark 11.8. Each of the problems in the first step can be solved by applying an ODE solver for systems. For example, the second problem equivalently reads as a system of differential equations:
\[
\begin{cases}y^{\prime}=u, & y(a)=\alpha  \tag{11.12}\\ u^{\prime}=p u+q y+r, & u(a)=1\end{cases}
\]
which can be solved efficiently by using an ODE solver. See Section 5.2, p. 179, and Section 5.3 p. 188.

Here we state one of the most popular ODE solvers, the Fourth-order Runge-Kutta method (RK4).

\section*{Algorithm 11.9. (RK4: Algorithm 5.19, p. 191)}
\[
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) \tag{11.13}
\end{equation*}
\]
where
\[
\begin{aligned}
K_{1} & =f\left(x_{n}, y_{n}\right) \\
K_{2} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h K_{1}\right) \\
K_{3} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h K_{2}\right) \\
K_{4} & =f\left(x_{n}+h, y_{n}+h K_{3}\right)
\end{aligned}
\]

Note: The local truncation error for the above RK4 can be derived as
\[
\begin{equation*}
\frac{h^{5}}{5!} y^{(5)}\left(\xi_{n}\right) \tag{11.14}
\end{equation*}
\]
for some \(\xi_{n} \in\left[x_{n}, x_{n+1}\right]\). Thus the global error reads, for some \(\xi \in\left[x_{0}, T\right]\),
\[
\begin{equation*}
\frac{\left(T-x_{0}\right) h^{4}}{5!} y^{(5)}(\xi) \tag{11.15}
\end{equation*}
\]

RK4SYSTEM.mw
```
RK4SYSTEM := proc(a,b,nt,X,F,x0,xn)
    local h,hh,t,m,n,j,w,K1,K2,K3,K4;
    #### initial setting
    with(LinearAlgebra):
    m := Dimension(Vector(F));
    W :=Vector(m);
    K1:=Vector(m); K2:=Vector(m);
    K3:=Vector(m); K4:=Vector(m);
    h:=(b-a)/nt; hh:=h/2;
    t :=a; w:=x0;
    for j from 1 by 1 to m do
        xn[0, j]:=x0[j];
    end do;
    #### RK4 marching
    for n from 1 by 1 to nt do
        K1:=Vector(eval(F,[x=t,seq(X[i+1]=xn[n-1,i],i=1..m)]));
        K2:=Vector(eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K1[i],i=1..m)]));
        K3:=Vector (eval(F,[x=t+hh,seq(X[i+1]=xn[n-1,i]+hh*K2[i],i=1..m)]));
        t:=t+h;
        K4:=Vector(eval(F,[x=t,seq(X [i+1]=xn[n-1,i]+h*K3[i], i=1..m)]));
        W:=W+(h/6.)*(K1+2*K2+2*K3+K4);
        for j from 1 by 1 to m do
        xn[n,j]:=evalf(w[j]);
        end do
    end do
end proc:
```

Example 11.10. Use the RK4SYSTEM to solve
\[
\left\{\begin{array}{l}
y^{\prime \prime}-2 y^{\prime}+2 y=e^{2 x} \sin (x), \quad 0 \leq x \leq 1  \tag{11.16}\\
y(0)=-0.4, \quad y^{\prime}(0)=-0.6
\end{array}\right.
\]

\section*{Solution. The IVP (11.16) reads}
\[
\begin{cases}y^{\prime}=u, & y(0)=-0.4  \tag{11.17}\\ u^{\prime}=2 u-2 y+e^{2 x} \sin (x), & u(0)=-0.6\end{cases}
\]

Run
```
m := 2:
F := [yp, exp ( \(2 * x\) ) \(* \sin (x)-2 * y+2 * y p]:\)
\(\mathrm{X}:=[\mathrm{x}, \mathrm{y}, \mathrm{yp}]:\)
\(\mathrm{XO}:=\langle-0.4,-0.6\rangle:\)
a := 0: b := 1:
nt := 10:
Xn := Array (0 .. nt, 1 .. m):
RK4SYSTEM (a, b, nt, X, F, XO, Xn):
DE := diff(y(x),x,x) - 2*diff(y(x),x) + 2*y(x) = exp(2*x)*sin(x);
IC := y(0) = -0.4, D(y)(0) = -0.6;
dsolve(\{DE, IC\}, y(x));
\(y(x)=-\frac{1}{5}(\sin (x)-2 \cos (x)) \exp (2 x)\)
```
Result
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline n & y_n & y (x_n) & \(y^{\prime}\) _n & \(y^{\prime}\left(\mathrm{x} \_\mathrm{n}\right)\) & err (y) & err (y') \\
\hline 0 & -0.40000 & -0.40000 & -0.60000 & -0.60000 & 0 & 0 \\
\hline 1 & -0.46173 & -0.46173 & -0.63163 & -0.63163 & \(3.72 \mathrm{e}-07\) & \(1.91 \mathrm{e}-07\) \\
\hline 2 & -0.52556 & -0.52556 & -0.64015 & -0.64015 & 8.36e-07 & \(2.84 \mathrm{e}-07\) \\
\hline 3 & -0.58860 & -0.58860 & -0.61366 & -0.61366 & \(1.39 \mathrm{e}-06\) & \(1.99 \mathrm{e}-07\) \\
\hline 4 & -0.64661 & -0.64661 & -0.53658 & -0.53658 & \(2.02 \mathrm{e}-06\) & \(1.68 \mathrm{e}-07\) \\
\hline 5 & -0.69357 & -0.69356 & -0.38874 & -0.38874 & \(2.71 \mathrm{e}-06\) & \(9.58 \mathrm{e}-07\) \\
\hline 6 & -0.72115 & -0.72115 & -0.14438 & -0.14438 & \(3.41 \mathrm{e}-06\) & \(2.35 \mathrm{e}-06\) \\
\hline 7 & -0.71815 & -0.71815 & 0.22900 & 0.22899 & \(4.06 \mathrm{e}-06\) & 4.59e-06 \\
\hline 8 & -0.66971 & -0.66971 & 0.77199 & 0.77198 & \(4.55 \mathrm{e}-06\) & \(7.97 \mathrm{e}-06\) \\
\hline 9 & -0.55644 & -0.55644 & 1.53478 & 1.53477 & \(4.77 \mathrm{e}-06\) & 1.29e-05 \\
\hline 10 & -0.35340 & -0.35339 & 2.57877 & 2.57875 & \(4.50 \mathrm{e}-06\) & \(1.97 \mathrm{e}-05\) \\
\hline
\end{tabular}

Example 11.11. Use the shooting method to approximate the solution of
\[
\left\{\begin{array}{l}
y^{\prime \prime}=\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y-3 x^{2}, \quad 1 \leq x \leq 2 \\
y(1)=0, \quad y(2)=2
\end{array}\right.
\]

\section*{Solution.}
```
m := 2:
F := [yp, -2*yp/x + 2*y/x^2 - 3*x^2]:
X := [x, y, yp]:
a := 1: b := 2:
al := 0: be := 2:
N := 5:
Y := Array(0..2*N, 1..2):
for k to 2 do
    nt := 2^(k-1)*N;
    Y1 := Array(0..nt, 1..m);
    Y2 := Array(0..nt, 1..m);
    X0 := <al, 0>; RK4SYSTEM(a, b, nt, X, F, X0, Y1);
    X0 := <al, 1>; RK4SYSTEM(a, b, nt, X, F, X0, Y2);
    lam := (be - Y2[nt, 1])/(Y1[nt, 1] - Y2[nt, 1]);
    for i from 0 to nt do
        Y[i, k] := lam*Y1[i, 1] + (1 - lam)*Y2[i, 1];
        end do:
end do:
## The exact solution & Error analysis
DE := diff(y(x), x, x) = -2*diff(y(x), x)/x + 2*y(x)/x^2 - 3*x^2;
BC := y(1) = 0, y(2) = 2;
dsolve({BC, DE}, y(x));
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 52 & & & 4 & & 37 & \\
\hline \(y\) (x) & -- & & & & + & & \\
\hline & 2 & 6 & 6 & & & 14 & \\
\hline
\end{tabular}
```

Result
\begin{tabular}{|rrrrr|}
\hline & \(\mathrm{h}=1 / 5\) & \multicolumn{2}{c}{ error } & \multicolumn{1}{c}{\(\mathrm{h}=1 / 10\)} \\
x=1.00 & 0.0000000000 & 0 & 0.0000000000 & error \\
\(\mathrm{x}=1.20\) & 1.1056335076 & 0.000618 & 1.1062189010 & \(3.3 \mathrm{e}-005\) \\
\(\mathrm{x}=1.40\) & 1.7958326514 & 0.000538 & 1.7963419934 & \(2.89 \mathrm{e}-005\) \\
\(\mathrm{x}=1.60\) & 2.1686944799 & 0.000348 & 2.1690241106 & \(1.87 \mathrm{e}-005\) \\
\(\mathrm{x}=1.80\) & 2.2431240407 & 0.000162 & 2.2432777718 & \(8.77 \mathrm{e}-006\) \\
\(\mathrm{x}=2.00\) & 2.0000000000 & 0 & 2.0000000000 & 0 \\
\hline
\end{tabular}

\subsection*{11.2. Finite Difference Methods}

Recall: A linear BVP (11.3) has the form
\[
\begin{gather*}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x), \quad a \leq a \leq b  \tag{11.18}\\
y(a)=\alpha, \quad y(b)=\beta
\end{gather*}
\]

In order to develop finite difference methods (FDM) for the solution of the problem in more general environments, we in this section consider differential equations of the following form
\[
\left\{\begin{array}{c}
-y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), \quad a \leq a \leq b  \tag{11.19}\\
y(a)=\alpha, \quad y^{\prime}(b)=\beta
\end{array}\right.
\]

\section*{Recall:}

Theorem 11.12. (Theorem 1.22: Taylor's Theorem with Lagrange Remainder): Suppose \(f \in C^{n}[a, b]\), \(f^{(n+1)}\) exists on \((a, b)\), and \(x_{0} \in[a, b]\). Then, for every \(x \in[a, b]\),
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\mathcal{R}_{n}(x), \quad \mathcal{R}_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \tag{11.20}
\end{equation*}
\]
for some \(\xi\) between \(x\) and \(x_{0}\).

\section*{Remark 1.25: Alternative Form of Taylor's Theorem}

Remark 11.13. Suppose \(f \in C^{n}[a, b], f^{(n+1)}\) exists on \((a, b)\). Then, for every \(x, x+h \in[a, b]\),
\[
\begin{equation*}
f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+\mathcal{R}_{n}(h), \quad \mathcal{R}_{n}(h)=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} \tag{11.21}
\end{equation*}
\]
for some \(\xi\) between \(x\) and \(x+h\). In detail,
\[
\begin{equation*}
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots+\frac{f^{(n)}(x)}{n!} h^{n}+\mathcal{R}_{n}(h) . \tag{11.22}
\end{equation*}
\]

Note: The FD discretization procedure consists of four steps:
1. Partitioning
2. FD approximations
3. System of difference equations
4. Assembly

\subsection*{11.2.1. The FD discretization procedure}

Step 1: Partitioning
Let, for some \(n>0\),
\[
\begin{equation*}
x_{i}=a+i h, \quad h=\frac{b-a}{n}, i=0,1, \cdots, n . \tag{11.23}
\end{equation*}
\]

Define \(g_{i}=g\left(x_{i}\right)\), for \(g=y, p, q, f\); for example,
\[
\begin{equation*}
y_{i}=y\left(x_{i}\right) . \tag{11.24}
\end{equation*}
\]

The objective with finite difference methods is to approximate \(\left\{y_{i}\right\}_{i=0}^{n}\), the solution at discrete nodal points.

\section*{Step 2: FD approximations}
- Expanding \(y\) in the Taylor series about \(x=x_{i}\) evaluated at \(x_{i+1}=\) \(x_{i}+h\) and \(x_{i-1}=x_{i}-h\), we have
(a) \(y_{i+1}=y\left(x_{i}\right)+y^{\prime}\left(x_{i}\right) h+\frac{y^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\frac{y^{\prime \prime \prime}\left(x_{i}\right)}{3!} h^{3}+\frac{y^{(4)}\left(x_{i}\right)}{4!} h^{4}\)
\[
\begin{equation*}
+\frac{y^{(5)}\left(x_{i}\right)}{5!} h^{5}+\frac{y^{(6)}\left(x_{i}\right)}{6!} h^{6}+\cdots \tag{11.25}
\end{equation*}
\]
(b) \(y_{i-1}=y\left(x_{i}\right)-y^{\prime}\left(x_{i}\right) h+\frac{y^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}-\frac{y^{\prime \prime \prime}\left(x_{i}\right)}{3!} h^{3}+\frac{y^{(4)}\left(x_{i}\right)}{4!} h^{4}\)
\[
-\frac{y^{(5)}\left(x_{i}\right)}{5!} h^{5}+\frac{y^{(6)}\left(x_{i}\right)}{6!} h^{6}-\cdots
\]
- Approximation of \(y^{\prime \prime}\left(x_{i}\right)\) : Adding (11.25)(a) and (11.25)(b) gives
\[
\begin{equation*}
y_{i+1}+y_{i-1}=2 y_{i}+2 \frac{y^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+2 \frac{y^{(4)}\left(x_{i}\right)}{4!} h^{4}+2 \frac{y^{(6)}\left(x_{i}\right)}{6!} h^{6}+\cdots \tag{11.26}
\end{equation*}
\]
- Solving for \(y^{\prime \prime}\left(x_{i}\right)\) reads
\[
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}-2 \frac{y^{(4)}\left(x_{i}\right)}{4!} h^{2}-2 \frac{y^{(6)}\left(x_{i}\right)}{6!} h^{4}-\cdots \tag{11.27}
\end{equation*}
\]
- Approximation of \(y^{\prime}\left(x_{i}\right)\) : Subtracting (11.25)(b) from (11.25)(a) gives
\[
\begin{equation*}
y_{i+1}-y_{i-1}=2 y^{\prime}\left(x_{i}\right) h+2 \frac{y^{\prime \prime \prime}\left(x_{i}\right)}{3!} h^{3}+2 \frac{y^{(5)}\left(x_{i}\right)}{5!} h^{5}+\cdots \tag{11.28}
\end{equation*}
\]
- Solving for \(y^{\prime}\left(x_{i}\right)\) reads
\[
\begin{equation*}
y^{\prime}\left(x_{i}\right)=\frac{y_{i+1}-y_{i-1}}{2 h}-\frac{y^{\prime \prime \prime}\left(x_{i}\right)}{3!} h^{2}-\frac{y^{(5)}\left(x_{i}\right)}{5!} h^{4}-\cdots \tag{11.29}
\end{equation*}
\]

\section*{Step 3: System of Difference Equations}
- Differential Equation: Using these central FD schemes for the DE
\[
-y^{\prime \prime}+p y^{\prime}+q y=f
\]
at \(x_{i}\) results in
\[
\begin{equation*}
-\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}+p_{i} \cdot \frac{y_{i+1}-y_{i-1}}{2 h}+q_{i} \cdot y_{i}+K_{2} h^{2}+\mathcal{O}\left(h^{4}\right)=f_{i}, \tag{11.30}
\end{equation*}
\]
where
\[
K_{2}=\frac{1}{12}\left(y^{(4)}\left(x_{i}\right)-2 p_{i} y^{\prime \prime \prime}\left(x_{i}\right)\right) .
\]
- Note that \(y_{0}=y(a)=\alpha\); (11.30) is defined only for \(i=1,2, \cdots, n\).
- When \(i=n\), (11.30) reads
\[
\begin{equation*}
\frac{-y_{n-1}+2 y_{n}-y_{n+1}}{h^{2}}+p_{n} \cdot \frac{y_{n+1}-y_{n-1}}{2 h}+q_{n} \cdot y_{n}+K_{2} h^{2}+\mathcal{O}\left(h^{4}\right)=f_{n} \tag{11.31}
\end{equation*}
\]

Note: The unknowns are \(\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}\); the ghost grid value \(y_{n+1}\) must be eliminated appropriately and accurately.
- Boundary Condition: The boundary condition \(y^{\prime}(b)=\beta\) can be written as follows. Since \(n=x_{n}\),
\[
\begin{equation*}
\frac{y_{n+1}-y_{n-1}}{2 h}-\frac{y^{\prime \prime \prime}(b)}{3!} h^{2}+\mathcal{O}\left(h^{4}\right)=\beta . \tag{11.32}
\end{equation*}
\]

The second-order FDM for the model (11.19) follows from (11.30), (11.31), and (11.32), truncating the terms involving \(h^{2}\) and higherorders of \(h\).
- Let \(v_{i}\) denote the second-order approximation of \(y_{i}\). Then, the secondorder FDM for (11.19) reads
\[
\begin{equation*}
\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}+p_{i} \cdot \frac{v_{i+1}-v_{i-1}}{2 h}+q_{i} \cdot v_{i}=f_{i}, \quad i=1,2, \cdots, n, \tag{11.33}
\end{equation*}
\]
where \(v_{0}=\alpha\) and \(v_{n+1}=v_{n-1}+2 h \beta\).

\section*{Step 4: Assembly}
- Assembly is to build an algebraic system from (11.33).
- Multiplying (11.33) with \(h^{2}\) and simplifying the result reads
\[
\begin{equation*}
-c_{i} v_{i-1}+\left(2+h^{2} q_{i}\right) v_{i}-d_{i} v_{i+1}=h^{2} f_{i}, \quad i=1,2, \cdots, n \tag{11.34}
\end{equation*}
\]
where
\[
\begin{equation*}
c_{i}=1+\frac{h p_{i}}{2} \quad \text { and } \quad d_{i}=1-\frac{h p_{i}}{2} . \tag{11.35}
\end{equation*}
\]
- Using \(v_{0}=\alpha\) and \(v_{n+1}=v_{n-1}+2 h \beta\), obtained from the boundary conditions, we present the details of algebraic equations as follows.
\[
\begin{align*}
\left(2+h^{2} q_{1}\right) v_{1}-d_{1} v_{2} & & h^{2} f_{1}+c_{1} \cdot \alpha, & \\
-c_{i} v_{i-1}+\left(2+h^{2} q_{i}\right) v_{i}-d_{i} v_{i+1} & =h^{2} f_{i}, & & i=2, \cdots, n-1 \\
-2 v_{n-1}+\left(2+h^{2} q_{n}\right) v_{n} & =h^{2} f_{n}+d_{n} \cdot 2 h \beta, & & i=n \tag{11.36}
\end{align*}
\]
- The corresponding algebraic system reads
\[
\begin{equation*}
A \mathbf{v}=\mathbf{b} \tag{11.37}
\end{equation*}
\]
where
\[
\begin{align*}
& A=\left[\begin{array}{cccc}
2+h^{2} q_{1} & -d_{1} \\
-c_{2} & 2+h^{2} q_{2} & -d_{2} & \\
& \ddots & \ddots & \ddots \\
& & -c_{n-1} & 2+h^{2} q_{n-1} \\
& -d_{n-1} \\
& & \begin{array}{c}
2 \\
\mathbf{v}
\end{array} \\
\mathbf{v} & =\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n-1} \\
v_{n}
\end{array}\right], & \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
h^{2} f_{1} \\
h^{2} f_{2} \\
\vdots \\
h^{2} f_{n-1} \\
h^{2} f_{n}
\end{array}\right]+\left[\begin{array}{c}
c_{1} \cdot \alpha \\
0 \\
\vdots \\
0 \\
d_{n} \cdot 2 h \beta
\end{array}\right],
\end{array} .\right. \tag{11.38}
\end{align*}
\]

\subsection*{11.2.2. Existence and uniqueness of the FDM solution}

Theorem 11.14. Suppose that \(p, q\) and \(f\) are continuous on \([a, b]\). If
\[
\begin{equation*}
0 \leq q(x), \quad \forall x \in[a, b], \tag{11.39}
\end{equation*}
\]
then the linear system (11.37) has unique solution provided that
\[
\begin{equation*}
c_{i}, \quad d_{i}>0, \quad i=1,2, \cdots, n . \tag{11.40}
\end{equation*}
\]

Proof. When the two conditions are satisfied, the matrix \(A\) diagonally dominant, i.e.,
\[
\begin{equation*}
a_{i i} \geq \sum_{j \neq i}\left|a_{i j}\right|=: \Lambda_{i}, \quad \forall i=1,2, \cdots, n . \tag{11.41}
\end{equation*}
\]

Indeed,
\[
\begin{align*}
a_{11} & =2+h^{2} q_{1} \geq 2>d_{1}=\Lambda_{1} \\
a_{i i} & =2+h^{2} q_{i} \geq 2=\Lambda_{i}, \quad i=2, \cdots, n \tag{11.42}
\end{align*}
\]

Since \(A\) is clearly irreducible, it is irreducibly diagonally dominant. Thus, \(A\) is nonsingular and therefore the linear system has a unique solution. Because all the diagonal entries of are in addition positive real, real parts of eigenvalues of are all positive.

Remark 11.15. Let \(L=\max _{x \in[a, b]}|p(x)|\). Then the conditions in (11.40) are equivalent to
\[
\begin{equation*}
\frac{1}{2} h L<1 . \tag{11.43}
\end{equation*}
\]

That is, \(h\) must be chosen small enough to satisfy the inequality.

Example 11.16. Use the second-order FDM to approximate the solution of
\[
\begin{align*}
& y^{\prime \prime}=\frac{1}{x} y^{\prime}+\frac{3}{x^{2}} y-4 x^{2}, \quad x \in[1,2]  \tag{11.44}\\
& y(1)=0, y^{\prime}(2)=-2
\end{align*}
\]
with \(h=1 / 5\) and \(h=1 / 10\).
Note: The differential equation can be written as
\[
\begin{equation*}
-y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{3}{x^{2}} y=4 x^{2}, \quad x \in[1,2] . \tag{11.45}
\end{equation*}
\]

Thus, \(q(x)=3 / x^{2}>0\) and \(L=\max |p(x)|=\max |1 / x|=1\) and therefore \(h L / 2=h / 2<1\). Its exact solution becomes
\[
\begin{equation*}
y(x)=-8 /(7 * \mathrm{x})+(68 / 35) * \mathrm{x}^{3}-(4 / 5) * \mathrm{x}^{4} . \tag{11.46}
\end{equation*}
\]

\section*{Solution.}
get_Ab_pqf.m
```
function [A,b] = get_Ab_pqf(X,p,q,f,BC,IBC)
m = size(X,1);
A=zeros(m,m); b=zeros(m,1);
h=X(2) - X(1); h2 = h~2; hh=h/2;
P=p(X); Q = q(X); F=f(X);
C = 1+hh*P; D = 1-hh*P;
%%
for i=1:m
    A(i,i) = 2+h2*Q(i);
    b(i) = h2*F(i);
end
for i=2:m-1,
    A(i,i-1) = -C(i);
    A(i,i+1) = -D(i);
end
```
```
%--- left-end ---------
i=1;
if IBC(1) == 1 % Dirichlet
    A(i,i) = 1; b(i) = BC(1);
else % Neumann
    A(i,i+1) = -2;
    b(i) = b(i) +D(i)*2*h*BC(1);
end
%--- right-end --------
i=m;
if IBC(2) == 1
    A(i,i) = 1; b(i) = BC(2);
else
    A(i,i-1) = -2;
    b(i) = b(i) +D(i)*2*h*BC(2);
end
```
                                    FDM_1D.m
```
\(\mathrm{p}=\) @(x) 1./x;
\(q=@(x) 3 . / x . \wedge 2 ;\)
\(\mathrm{f}=@(\mathrm{x}) 4 * \mathrm{x} .{ }^{\wedge} 2\);
\(\mathrm{y}=@(\mathrm{x})-8 . /(7 * \mathrm{x})+(68 / 35) * \mathrm{x} .{ }^{\wedge} 3-(4 / 5) * \mathrm{x} .{ }^{\wedge} 4\);
al \(=0 ;\) be \(=-2\);
Int \(=[1,2] ; \mathrm{n} 0=5\);
ngrid =5;
\(Y=\operatorname{cell}(n g r i d, 1) ; V=c e l l(n g r i d, 1) ;\)
\(\mathrm{W}=\operatorname{cell}(\) ngrid-1,1);
\(\% \mathrm{BC}=[\mathrm{y}(1), \mathrm{y}(2)] ; \operatorname{IBC}=[1,1] ; \quad \%\) Dirichlet-Dirichlet
\(B C=[y(1), b e] ; \quad I B C=[1,2] ; \quad \%\) Dirichlet-Neumann
\(\% \%--Y\) \& V
for i=1:ngrid
```
```
    \(\mathrm{n}=\mathrm{n} 0 * 2^{\wedge}(\mathrm{i}-1) ; \mathrm{X}=\operatorname{linspace}(\operatorname{Int}(1), \operatorname{Int}(2), \mathrm{n}+1)^{\prime} ;\)
    \(P=p(X) ; Q=q(X) ; F=f(X) ;\)
\(Y\{i\}=y(X) ;\)
\([A, b]=\) get_Ab_pqf(X,p,q,f,BC,IBC);
\(\mathrm{V}\{\mathrm{i}\}=\mathrm{A} \backslash \mathrm{b}\);
fprintf(' \(\mathrm{n}=\% 2 \mathrm{~d}\); L8-Error \(=\%\). \(\left.8 \mathrm{f}^{\prime}, \mathrm{n}, \operatorname{norm}(\mathrm{Y}\{\mathrm{i}\}-\mathrm{V}\{\mathrm{i}\}, i n f)\right)\)
if \(i==1\),
    fprintf('\n');
else
    \(W\{i-1\}=(4 * V\{i\}(1: 2:\) end \()-V\{i-1\}) / 3 ;\)
    fprintf('; Richardson \(\left.=\% .4 \mathrm{~g} \backslash \mathrm{n}^{\prime}, \operatorname{norm}(\mathrm{Y}\{\mathrm{i}-1\}-W\{i-1\}, i n f)\right)\)
end
end
```

\section*{Result}
```
n = 5; L8-Error = 0.10740412
n = 10; L8-Error = 0.02688154; Richardson = 4.068e-05
n = 20; L8-Error = 0.00672220; Richardson = 2.413e-06
n = 40; L8-Error = 0.00168066; Richardson = 1.486e-07
n = 80; L8-Error = 0.00042017; Richardson = 9.248e-09
```


Remark 11.17. The Richardson extrapolation is a numerical procedure that produces a numerical solution of a higher-order accuracy, when two numerical solutions are available from a mesh and its refined one. See § 4.2, p. 141, for details.

\subsection*{11.3. Finite Element Methods}
- To describe the finite element method (FEM), we consider approximating the solution to a linear two-point boundary-value problem of the form
\[
\text { (D) }\left\{\begin{array}{c}
-\frac{d}{d x}\left(p(x) \frac{d u}{d x}\right)=f(x), \quad x \in[0,1],  \tag{11.47}\\
u(0)=0, u(1)=0,
\end{array}\right.
\]
for which we assume \(p \in C^{1}[0,1]\) and there is a constant \(\delta>0\) such that
\[
\begin{equation*}
p(x) \geq \delta>0, \quad x \in[0,1] . \tag{11.48}
\end{equation*}
\]
- The FEM is formulated with the so-called variational principle.

\subsection*{11.3.1. Variational formulation \\ DoiNg HeRe}

\subsection*{11.3.2. Formulation of FEMs}

\subsection*{11.4. FDMs for Non-constant Diffusion}

\section*{Chapter 12 \\ Numerical Solutions to Partial Differential Equations}

\author{
In This Chapter:
}

\section*{Contents of Chapter 12}
12.1.Parabolic PDEs in One Spatial Variable ..... 438
12.2.Parabolic PDEs in Two Spatial Variables ..... 439
12.3.Elliptic PDEs in Two Dimensions ..... 440

\subsection*{12.1. Parabolic PDEs in One Spatial Variable}
12.2. Parabolic PDEs in Two Spatial Variables

\subsection*{12.3. Elliptic PDEs in Two Dimensions}

\section*{Chapter 13 \\ Projects}

Finally we add projects.

\section*{Contents of Projects}
P.1. Applications of Richardson Extrapolation for PDEs . . . . . . . . . . . . . . . . . . . . 442

\section*{P.1. Applications of Richardson Extrapolation for PDEs}

\begin{abstract}
Problem P.1. The Richardson extrapolation studied in Section 4.2 is a numerical procedure that produces a numerical solution of a higher-order accuracy, when two numerical solutions are available from a mesh and its refined one. By applying extrapolation recursively, the Richardson extrapolation becomes a sequence acceleration method that improves the rate of convergence of a sequence.
\end{abstract}
- The Issue: The Richardson extrapolation can compute the solution of a higher-order accuracy only on the course mesh.
- Various multiple coarse grid (MCG) updating strategies have been considered in the literature [5].
- An MCG updating method can be expensive computationally.
- The extrapolated solutions often show a desired order of accuracy, when they compared with each other. However, their error can be larger than that of the numerical solution obtained using the original high-order scheme.

Quesiton. Can we get higher-order solutions on finer meshes, without using a multiple coarse grid updating method?

\section*{What to do}

Implement a code for Example P. 2 and Algorithm P.6; report your code and results.

Example P.2. Consider
\[
\begin{gather*}
-u^{\prime \prime}(x)=\pi^{2} \sin (\pi x), \quad x \in(0,1)  \tag{P.1.1}\\
u(0)=0, \quad u(1)=2,
\end{gather*}
\]
for which the exact solution is \(u(x)=\sin (\pi x)+2 x\).
(a) Partition \([0,1]\) into \(n\) equal subintervals. That is,
\[
h=\frac{1}{n} ; \quad x_{i}=i \cdot h, \quad i=0,1, \cdots, n .
\]

Let \(\mathbf{u}_{h}\) be such that \(\mathbf{u}_{h}[i]=u\left(x_{i}\right)\).
(b) Approximate \(-u^{\prime \prime}\left(x_{i}\right)\) by using the formula: For each \(i=1,2, \cdots, n-1\),
\[
\begin{equation*}
-u^{\prime \prime}\left(x_{i}\right)=\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}+K_{2} h^{2}+K_{4} h^{4}+\cdots=f_{i} . \tag{P.1.2}
\end{equation*}
\]
where
\[
\begin{equation*}
K_{j}=2 \cdot \frac{u^{(j+2)}\left(x_{i}\right)}{(j+2)!}, \quad j=2,4, \cdots \tag{P.1.3}
\end{equation*}
\]
(c) Assemble the above for an algebraic system to solve:
\[
\begin{equation*}
A \mathbf{v}_{h}=\mathbf{b} \tag{P.1.4}
\end{equation*}
\]
(d) Find \(\mathbf{v}_{h}, \mathbf{v}_{h / 2}\), and \(\mathbf{v}_{h / 4}\).
(e) Apply the Richardson Extrapolation and measure the errors.

Remark P.3. In Example P.2:
- Solutions of a fourth-order accuracy can be obtained on the meshes of grid sizes \(h\) and \(h / 2\).
- Solutions of a sixth-order accuracy can be computed only on the coarsest mesh of grid size \(h\).

Challenge P.4. Solutions of a sixth-order accuracy on the mid mesh of grid size \(h / 2\).

Remark P.5. Equation (P.1.2) can be rewritten as
\[
\begin{equation*}
u_{i}=\frac{u_{i-1}+u_{i+1}}{2}+\frac{h^{2}}{2}\left(f_{i}-K_{2} h^{2}\right)-\frac{1}{2} K_{4} h^{6}-\cdots, \tag{P.1.5}
\end{equation*}
\]
where
\[
\begin{equation*}
K_{2}=\frac{u^{(4)}\left(x_{i}\right)}{12} \quad \text { and } \quad K_{4}=\frac{u^{(6)}\left(x_{i}\right)}{360} . \tag{P.1.6}
\end{equation*}
\]

Since \(u^{(4)}=-f^{\prime \prime}\), for example, \(K_{2}\) is approximated as
\[
\begin{equation*}
K_{2}=\frac{u^{(4)}\left(x_{i}\right)}{12}=-\frac{1}{12} f^{\prime \prime}\left(x_{i}\right)=-\frac{1}{12} \frac{f_{i-1}-2 f_{i}+f_{i+1}}{h^{2}}+\mathcal{O}\left(h^{2}\right), \tag{P.1.7}
\end{equation*}
\]
and therefore
\[
\begin{equation*}
f_{i}-K_{2} h^{2}=\frac{1}{12}\left(f_{i-1}+10 f_{i}+f_{i+1}\right)+\mathcal{O}\left(h^{4}\right), \tag{P.1.8}
\end{equation*}
\]
from which we have
\[
\begin{equation*}
u_{i}=\frac{u_{i-1}+u_{i+1}}{2}+\frac{h^{2}}{24}\left(f_{i-1}+10 f_{i}+f_{i+1}\right)+\mathcal{O}\left(h^{6}\right) . \tag{P.1.9}
\end{equation*}
\]

Algorithm P.6. In order to get a sixth-order solution on the mid mesh, we first should have meaningful fourth-order solutions on the mid and fine meshes.
1. Let \(\mathbf{w}_{h}=\frac{1}{3}\left(4 \mathbf{v}_{h / 2}-\mathbf{v}_{h}\right)\), Richardson extrapolation on the course mesh.
2. Let \(\widetilde{\mathbf{w}}_{h / 2}\) be its expansion on the mid mesh: \(\widetilde{\mathbf{w}}_{h / 2}[0: 2:\) end \(]=\mathbf{w}_{h}\).
3. Then, you should determine values \(\widetilde{\mathbf{w}}_{h / 2}[1: 2:\) end \(]\) to complete the expansion. Using (P.1.9), if \(i \in[1: 2: 2 * \mathrm{n}-1]\), we have
\[
\begin{equation*}
\widetilde{\mathbf{w}}_{h / 2}(i)=\frac{\widetilde{\mathbf{w}}_{h / 2}(i-1)+\widetilde{\mathbf{w}}_{h / 2}(i+1)}{2}+\frac{(h / 2)^{2}}{24}\left(f_{i-1}+10 f_{i}+f_{i+1}\right), \tag{P.1.10}
\end{equation*}
\]
where \(f_{i}=f(i \cdot(h / 2))\).
4. Repeat the above, starting with \(\mathbf{w}_{h / 2}\), to get its expansion \(\widetilde{\mathbf{w}}_{h / 4}\).
5. Then a sixth-order solution on the mid mesh is
\[
\begin{equation*}
\frac{1}{15}\left(16 * \widetilde{\mathbf{w}}_{h / 4}[0: 2: \text { end }]-\widetilde{\mathbf{w}}_{h / 2}\right) \tag{P.1.11}
\end{equation*}
\]

Check the error.

\section*{How to find the accuracy order of a numerical scheme:}
- For given \(h\), you can measure the error: that is,
\[
\begin{equation*}
\left\|\mathbf{u}_{h}-\mathbf{v}_{h}\right\|_{\infty}=E_{h} . \tag{P.1.12}
\end{equation*}
\]
- If the accuracy order is \(\alpha\), we may write
\[
\begin{equation*}
E_{h}=\mathcal{O}\left(h^{\alpha}\right)=C \cdot h^{\alpha}, \tag{P.1.13}
\end{equation*}
\]
for some constant \(C>0\).
- If you compute the numerical solution with \(h / 2\), then you can measure the error to be \(E_{h / 2}\), which can be written as
\[
\begin{equation*}
E_{h / 2}=\mathcal{O}\left((h / 2)^{\alpha}\right)=C \cdot(h / 2)^{\alpha}, \tag{P.1.14}
\end{equation*}
\]
- Dividing (P.1.13) by (P.1.14) reads
\[
\frac{h^{\alpha}}{(h / 2)^{\alpha}}=\frac{E_{h}}{E_{h / 2}} \Rightarrow \quad 2^{\alpha}=\frac{E_{h}}{E_{h / 2}} .
\]
- Now, applying the natural log to the equation results in
\[
\begin{equation*}
\alpha=\frac{\ln \left(E_{h} / E_{h / 2}\right)}{\ln 2} \tag{P.1.15}
\end{equation*}
\]

If you use Matlab, you may start with
```
                        get_A_b.m
function [A,b] = get_A_b(interval,n,f,u)
A=zeros(n+1,n+1);
b=zeros(n+1,1);
h=(interval(2)-interval(1))/n;
%%
for i=2:n
    A(i,i-1) = -1;
    A(i,i) = 2;
    A(i,i+1) = -1;
```
```
    b(i) = h^2*f( interval(1)+(i-1)*h );
    end
A(1,1)=1; A(n+1,n+1)=1;
b(1)=u(interval(1)); b(n+1)=u(interval (2));
```
```
                    Part of Richardson_extrapolation.m
\(u=@(x) \sin (p i * x)+2 * x ;\)
\(\mathrm{f}=@(\mathrm{x}) \mathrm{pi}{ }^{\wedge} 2 * \sin (\mathrm{pi} * \mathrm{x})\);
interval=[0,1]; n0 = 10;
\(\mathrm{U}=\operatorname{cell}(3,1) ; \mathrm{V}=\operatorname{cell}(3,1)\);
\(W=\operatorname{cell}(2,2) ; W T=\operatorname{cell}(3,1)\);
\(\% \%--\quad\) U \& V
for \(i=1: 3\)
    \(\mathrm{n}=\mathrm{n} 0 * 2^{\wedge}(\mathrm{i}-1) ; \mathrm{X}=\operatorname{linspace}(0,1, \mathrm{n}+1)^{\prime}\);
    \(\mathrm{U}\{\mathrm{i}\}=\mathrm{u}(\mathrm{X})\);
    [A,b] = get_A_b(interval,n,f,u);
    \(\mathrm{V}\{\mathrm{i}\}=\mathrm{A} \backslash \mathrm{b}\);
end
\%\%-- Richardson
for \(i=1: 2\)
    \(W\{i, 1\}=(1 / 3) *(4 * V\{i+1\}(1: 2:\) end \()-V\{i\}) ;\)
end
\(W\{1,2\}=(1 / 15) *(16 * W\{2,1\}(1: 2:\) end \()-W\{1,1\}) ;\)
\(\% \%-\) Expansion: WT\{i\}, \(i=2,3\), from \(W\{i-1,1\}\)
```

\section*{Bibliography}
[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. EiJkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: Building blocks for iterative methods, SIAM, Philadelphia, 1994. The postscript file is free to download from http://www.netlib.org/templates/ along with source codes.
[2] O. ChUM and J. Matas, Matching with prosac-progressive sample consensus, in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol. 1, IEEE, 2005, pp. 220-226.
[3] C. Cortes and V. N. VApnik, Support-vector networks, Machine Learning, 20 (1995), pp. 273-297.
[4] G. DAHLQUIST, A special stability problem for linear multistep methods, BIT, 3 (1963), pp. 27-43.
[5] R. DAI, Richardson extrapolation-based high accuracy high efficiency computation for partial differential equations, Theses and Dissertations - Computer Science 20, University of Kentucky, Lexington, KY 40506, 2014.
[6] M. Fischler and R. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24 (1981), pp. 381-395.
[7] S. Gerschgorin, Über die abgrenzung der eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat., 7 (1931), pp. 746-754.
[8] F. Golub and C. V. Loan, Matrix Computations, 3rd Ed., The Johns Hopkins University Press, Baltimore, 1996.
[9] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math., 14 (1970), pp. 403-420.
[10] B. Grosser and B. Lang, An \(\imath\left(n^{2}\right)\) algorithm for the bidiagonal svd, Lin. Alg. Appl., 358 (2003), pp. 45-70.
[11] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24 (1933), pp. 417-441 and 498-520.
[12] _-, Relations between two sets of variates, Biometrika, 28 (1936), pp. 321-377.
[13] C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, New York, New Rochelle, Melbourne, Sydney, 1987.
[14] W. KaRUSh, Minima of functions of several variables with inequalities as side constraints, M.Sc. Dissertation, Department of Mathematics, Univ. of Chicago, Chicago, Illinois, 1939.
[15] C. KELLY, Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995.
[16] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in Proceedings of 2nd Berkeley Symposium, Berkeley, CA, USA, 1951, University of California Press., pp. 481-492.
[17] P. C. Niedfeldt and R. W. Beard, Recursive ransac: multiple signal estimation with outliers, IFAC Proceedings Volumes, 46 (2013), pp. 430-435.
[18] M. Nielsen, Neural networks and deep learning. (The online book can be found at http://neuralnetworksanddeeplearning.com), 2013.
[19] K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical Magazine, 2 (1901), pp. 559-572.
[20] F. Rosenblatt, The Perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, (1958), pp. 65-386.
[21] Y. SaAd And M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856-869.
[22] P. Stein and R. L. Rosenberg, On the solution of linear simultaneous equations by iteration, Journal of the London Mathematical Society, s1-23 (1948), pp. 111-118.
[23] O. Taussky, Bounds for characteristic roots of matrices, Duke Math. J., 15 (1948), pp. 1043-1044.
[24] P. H. Torr and A. Zisserman, Mlesac: A new robust estimator with application to estimating image geometry, Computer vision and image understanding, 78 (2000), pp. 138-156.
[25] R. Varga, Matrix Iterative Analysis, 2nd Ed., Springer-Verlag, Berlin, Heidelberg, 2000.
[26] P. R. Willems, B. Lang, and C. Vömel, Computing the bidiagonal SVD using multiple relatively robust representations, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 907-926.

\section*{Index}
( \(n+1\) )-point difference formula, 138
\(\ell^{2}\)-norm, 39, 242
\(\ell^{\infty}\)-norm, 242
ABM.mw, 199
absolute error, 26
activation function, 370
activation function, why?, 370
activation functions, popular, 372
Adaline, 371, 372
Adams-Bashforth method, 198
Adams-Bashforth-Moulton method, 198
Adams-Moulton method, 198
adaptive mechanism, 106
adaptive method, 193
algebraic system, 429
algorithm, 27
algorithmic parameter, 373
angle, between two vectors, 14, 241
antiderivative, 7
approximation, 290
Arnoldi iteration, 277, 279
artificial neurons, 369
assembly, 429
augmented matrix, 15
augmented system, 15
average slope, 188
back substitution, 225
backward Euler method, 208
backward-difference, 136
Bairstow's method, 73
Bairstow, Leonard, 74
best approximation, 287
big Oh, 29, 30
binary classifier, 369,370
binary-search method, 42
bisect.m, 47
bisection method, 42
Bonnet's recursion formula, 165
boundary-value problem, 283
boundary-value problems, 418
cardinal functions, 90
Cauchy-Schwarz Inequality, 242
central point, 139
CG method, 272
change of variables, 169, 170, 299
characteristic equation, 21, 245
characteristic polynomial, 21, 245
Chebyshev, 97
Chebyshev polynomials, 97, 164
clamped cubic spline, 123, 132
classification problem, 301
closed formula, 171
closed Newton-Cotes formulas, 155
closest point, 287
clustering, 368
CNN, 404, 406
coefficients, 67
cofactor, 20
cofactor expansion, 20
complementary slackness, 382
composite error, 150
composite Simpson's rule, 154
composite Simpson's three-eights rule, 155
Composite Trapezoid rule, 157
composite trapezoid rule, 149
computation of \(A^{-1}, 237\)
condition number, 25,244
conditionally stable, 27
conjugate, 272
conjugate gradient method, 272
continuity, 2
continuous, 2
contractive mapping, 54
convergence of Newton's method, 58
convergence of oeder \(\alpha, 28\)
convergent, 252
convergent matrix, 248
convolution, 409
convolutional network, 409
convolutional neural networks, 406
correction term, 56
cost function, 370
covariance matrix, 347
Crank-Nicolson method, 211
cubic spline, 120
curse of dimensionality, 366
data compression, 358
data matrix, 355
deep learning, 405
deep neural networks, 405
definite matrix, 255
deflation, 77
dense matrix, 230
derivative, 3
design matrix, 296
determinant, 19, 20, 324
diagonal dominance, 268
diagonalizable, 314
Diagonalization Theorem, 314
difference formula, \((n+1)\)-point, 138
difference formula, five-point, 138
difference formula, three-point, 138
difference formula, two-point, 136
differentiable, 3
differentiation, 3
dimensionality reduction, 358
direct algebraic solver, 218
directed graph, 264
Dirichlet boundary condition, 222
discretization, FD, 426
distance, 13, 240
divided difference, the \(k\) th, 102
divided difference, the first, 102
divided difference, the second, 102
divided difference, the zeroth, 102
divided differences, 87, 101
dot product, 13, 240
dual feasibility, 382
dual problem, 380, 383, 387, 391, 394
dual variable, 380
dyadic decomposition, 343
eigenvalue, 21, 245
eigenvalue locus theorem, 266
eigenvector, 21,245
elementary matrix, 15,226
elementary row operations, 15,226
elementary Simpson's rule, 151, 163
Euclidean norm, 13, 23, 240, 242
Euler method, 179, 180
Euler.mw, 184
Euler.py, 209
Euler_T3.mw, 187
existence and uniqueness of fixed points, 50
exponential growth of error, 27
extended Newton divided difference, 112
Extreme Value Theorem, 5
false position method, 65
FD approximation, 427
FD scheme, 220
FDM, 425
FDM_1D.m, 432
feature expansion, 393
feature map, 409, 410
FEM, 434
fine grid, 146, 172
finite difference, 220
finite difference method, 425
finite element method, 434
first divided difference, 102
first-degree spline accuracy, 116
first-order necessary conditions, 381
five-point difference formula, 138
fixed point, 49
fixed-point iteration, 51, 58, 212
Fixed-Point Theorem, 53
floating point operation, 230
flop, 230
for loop, 37
forward elimination, 224
forward Euler method, 208
forward substitution, 224
forward-difference, 136
Fourth-order Runge-Kutta method, 191, 421
Frobenius norm, 24, 243
FTC, 7
full rank, 322
fully-connected networks, 405
function, 37
fundamental period of the motion, 194
Fundamental Theorem of Algebra, 67
Fundamental Theorem of Calculus, 7, 181

Gauss elimination, 226
Gauss elimination with partial pivoting, 234
Gauss integration), 166, 171
Gauss-integration.mw, 167
Gauss-Lobatto integration, 171
Gauss-Seidel method, 259
Gaussian elimination with complete pivoting, 235
Gaussian elimination with partial pivoting, 235
Gaussian kernel, 391
Gaussian quadrature, 163
Gaussian-Quadrature.mw, 170
GD method, 271
GECP, 235
generalized minimum residuals, 277
generalized Richardson method, 255
Generalized Rolle's Theorem, 6
GEPP, 235
get_A_b.m, 447
get_Ab_pqf.m, 431
ghost grid value, 220, 428
global error, 190, 191, 421
GMRES, 277, 282
Golub-Reinsch SVD algorithm, 349
gradient, 271
gradient descent method, 271, 372, 399
Gram matrix, 388

Gram-Schmidt process, 277, 278, 288, 322, 323
Gram-Schmidt process, normalized, 289
graph theory, 264
guidepoints, 128
Hermite interpolation, 110
Hermite Interpolation Theorem, 111
Hermite polynomial, 111
Hessenberg matrix, 277
Hessian, 271
Heun's method, 190
higher-order Taylor methods, 185
Horner's method, 68, 86
horner.m, 70
Householder matrix, 326
Householder reflector, 326
Householder reflectors, 322
Householder transformation, 349
hyperparameter, 373
hyperplane, 370
implicit ordinary differential equation, first-order, 212
induced matrix norm, 24,243
infinity-norm, 23, 241
initial conditions, 419
initial value problem, \(176,179,188\)
inliers, 301
inner product, 13, 14, 240, 241
Intermediate Value Theorem, 3
interpolating polynomials in Newton form, 84
interpolation, 290
Interpolation Error Theorem, 93, 137
Interpolation Error Theorem, Chebyshev nodes, 99
interpretability, 367
interval-halving method, 42
inverse power method, 319
inverse-power.mw, 320
invertible matrix, 17, 219, 249
invertible matrix theorem, 18, 219, 250
involution, 327
IODE-1, 212

IODE1.py, 213
irreducible matrix, 264
irreducibly diagonally dominant, 430
iteration, 36
iteration matrix, 251
iterative algebraic solver, 218, 239, 251
IVP, 176
IVT, 3
Jacobi method, 257
Jacobi polynomials, 164
Jacobian, 61
Jacobian matrix, 73
Karush-Kuhn-Tucker conditions, 381
Kepler's equation, 79
kernel function, 391
kernel method, 390
kernel SVM, 390
kernel trick, 391, 393
KKT conditions, 381
knots, 115
Kronecker delta, 90
Krylov matrix, 280
Krylov subspace, 280
Krylov subspace method, 270
\(1^{2}\)-norm, 242
\(1^{\infty}\)-norm, 242
L2-pooling, 411
Lagrange dual function, 380
Lagrange form of interpolating polynomial, 90
Lagrange interpolating polynomial, 90, 147
Lagrange interpolation, 110
Lagrange multipliers, 378
Lagrange polynomial, 111, 136
Lagrangian, 381
Lagrangian (objective), 379
Laguerre polynomials, 164
leading principal submatrix, 228
learning rate, 372
least-squares (LS) problem, 290
least-squares error, 292
least-squares line, 295
least-squares problem, 291, 351
least-squares solution, 291, 351
left singular vectors, 340,357
Legendre orthogonal polynomials, 164
Legendre polynomials, 164, 165
length, 13, 240
Leonard Bairstow, 74
limit, 2
linear approximation, 11
linear boundary-value problems, 419
linear convergence, 28
linear function, 118, 121
linear growth of error, 27
linear shooting method, 419
linear spline, 115
linear spline accuracy, 116
linear SVM, 377, 381, 386
linearization, 299
linspace, in Matlab, 35
Lipschitz condition, 176, 182
little oh, 29, 30
local receptive field, 407
local truncation error, 190, 191, 421
localization of roots, 67
logistic cost function, 374
Logistic Regression, 371, 374
lower-triangular matrix, 223
lower-triangular system, 223
LS problem, 291, 351
LU decomposition theorem, 228
LU factorization, 227
LU factorization algorithm, 227
M-matrix, 269
m-step method, 197
machine learning, 363, 364
machine learning algorithm, 364
Maclaurin series expansion, 307
maple, 4
Matlab, 33
matrix norm, 24,243
matrix splitting, 256
matrix transformation, 310
max-pooling, 411
maximum-norm, 23, 241

MCG, 442
Mean Value Theorem, 4, 10
Mean Value Theorem on Integral, 8
mesh points, 179
method of false position, 65
method of Lagrange multipliers, 377, 378
method of normal equations, 293, 351
method of undetermined coefficients, 162 , 164, 166
mini-batch, 400
MLESAC, 305
MNIST data, 397
Modified Euler method, 190
multi-step methods, 197
multiple coarse grid, 442
multiple local minima problem, 367
MVT, 4, 53
mysum.m, 37
natural cubic spline, \(122,125,132\)
natural cubic splines, optimality theorem, 125
nested multiplication, 68, 86, 87
net input, 370
network.py, 401
Neumann Series Theorem, 244
neuron, 369
Neville's Method, 106
Newton form of interpolating polynomials, 84
Newton form of the Hermite polynomial, 111
Newton's Divided Difference Formula, 103
Newton's method, 56
Newton-Cotes formula, 147
Newton-Raphson method, 56
newton_horner.m, 71
NewtonRaphsonSYS.mw, 62
nodal point, 264
nodes, 115
nonlinear regression, 299
nonlinear SVM, 390
nonsingular matrix, 17, 219, 249
norm, 13, 23, 240, 241
normal equations, 293, 298
normal matrix, 24, 243
NR.mw, 59
numerical differentiation, 136
numerical discretization, 220
numerical integration, 147
numerical rank, 350
objects, 33
observation vector, 296
Octave, 33
one-shot learning, 367
open formula, 171
operator norm, 24, 243
optimal \(\omega\) for SOR, 263
optimal step length, 272
order of convergence, 195, 196
orthogonal, 14, 240
orthogonal basis, 288, 289, 323
orthogonal decomposition, 326
orthogonal decomposition theorem, 286
orthogonal linear transformation, 354
orthogonal matrix, \(316,322,330\)
orthogonal polynomials, 165
orthogonal projection, 286, 287, 326
orthonormal basis, 281, 288, 289, 310
outer bordering, 221
outliers, 301
overfitting, 366
p-norms, 23, 241
Padé approximation, 306, 308
Padé rational function, 306
parameter estimation problem, 301
parameter vector, 296
parametric curves, 126
partition, 115
partitioning, 426
PCA, 354
PCG, 276
Perceptron, 371
permutation matrix, 233, 264
piecewise cubic Hermite interpolating polynomial, 132
piecewise cubic Hermite polynomial, 127, 128
plot, in Matlab, 34
polar decomposition, 358
Polynomial Interpolation Error Theorem, 93, 104, 131
Polynomial Interpolation Theorem, 83
polynomial of degree \(n, 67,72\)
pooling, 411
pooling layers, 411
positive definite, 270
positive semidefinite matrix, 355
power iteration, 312
power method, 312
power-method.mw, 315
preconditioned CG method, 276
primal feasibility, 382
principal component analysis, 354
principal components, 355
programming, 33
PROSAC, 305
pseudocode, 27
pseudoinverse, 351, 353
pseudoinverse, the \(k\)-th, 353
Pythagorean Theorem, 14, 240
Pythagorean theorem, 287
QR algorithm, 337, 349
QR decomposition, 361
QR factorization, 322
QR factorization by Gram-Schmidt process, 323
QR factorization by reflectors, 333
QR Factorization Theorem, 322
qr_algorithm.m, 338
quadratic convergence, 28
quadratic programming, 388
quadratic spline, 117, 132
quotient, 72
R-RANSAC, 305
radial basis function, 391
random sample consensus, 303
RANSAC, 303
rational function, 306
Rayleigh quotient, 279, 355
rectified linear units, 414
rectifier, 371
recurrence relation, 74
recursive Trapezoid rule, 157, 158
reduced echelon form, 15
reducible matrix, 264
regression analysis, 295
regression coefficients, 295
regression line, 295
regular splitting, 269
relative error, 26
relaxation methods, 256
ReLU, 414
remainder, 72
Remainder Theorem, 68
repetition, 33, 36
reusability, 37
reusable, 33
Richardson extrapolation, 141, 142, 159, 433, 442
Richardson method, 254
Richardson's method, 271
Richardson_extrapolation.m, 447
Riemann integral, 7
right singular vectors, 340,357
RK2, 189, 190
RK3, 212
RK4, 191, 421
RK4.mw, 192
RK4SYS.mw, 203
RK4SYSTEM.mw, 206, 422
RKF45, 193
Rolle's Theorem, 3, 6
Romberg algorithm, 159
Romberg integration, 157, 159
rotational symmetry, 371
Run_network.py, 403
Run_network3.py, 415
Runge's phenomenon, 114
Runge-Kutta method, third-order, 212
Runge-Kutta methods, 188
Runge-Kutta-Fehlberg method, 193
scaling factor, 255
scene analysis, 301
Schur decomposition, 337
score matrix, 355
search direction, 270, 372
secant method, 63
second divided difference, 102
second-derivative midpoint formula, 139
second-order FDM, 428
Second-order Runge-Kutta method, 189, 190
Sequential Minimal Optimization, 383
sequential minimal optimization, 394
shared bias, 409
shared weights, 409
sigmoid function, 371
significant digits, 26
similarity function, 391
Simpson's rule, 151
Simpson's three-eights rule, 155
singular value decomposition, 340
singular values, 340, 357
skew-symmetric, 39
slack variable, 385
SMO, 383, 394
smoothing assumption, 301
soft-margin classification, 385
SoftmaxLayer, 414
softplus function, 371
SOR, 256, 261
SOR, optimal \(\omega, 263\)
sparse matrix, 230
spectral radius, 247
Spectral Theorem, 316
spline of degree \(k, 115\)
spring-mass system, 194
square root, 59
SSE, 370
stable, 27
standard logistic sigmoid function, 371
steepest descent method, 271
step length, 270, 372, 375
step-by-step methods, 178
stochastic gradient descent, 400
stopping criterion, 46
stride length, 408
strongly connected, 265
submatrix, 20
subordinate norm, 24, 243
successive over relaxation, 256,261
successive under relaxation, 263
Sum of Squared Errors, 370
summary of SVM, 389
super-convergence, 59
superlinear convergence, 28
supervised learning, 365
Support Vector Machine, 376
support vectors, 384
SUR, 263
SVD, 357, 361
SVD theorem, 340
SVD, algebraic interpretation, 342
SVD, geometric interpretation, 344
SVM, 376
SVM summary, 389
SVM, nonlinear, 390
symmetric, 249
symmetric inverse power method, 321
symmetric positive definite, 270
symmetric-inverse-power.mw, 321
symmetric-power-method.mw, 317
synthetic division, 68
systems of nonlinear equations, 60
tangent line, 57
tangent plane approximation, 11
Taylor method of order \(m, 185,214\)
Taylor series, 139, 146, 179, 220, 427
Taylor's series formula, 141
Taylor's Theorem, 9, 153
Taylor's Theorem for Two Variables, 11
Taylor's Theorem with Integral Remainder, 10
Taylor's Theorem with Lagrange Remainder, \(9,94,425\)
Taylor's Theorem, Alternative Form of, 11, 425
Taylor-series methods, 179
three-point difference formula, 138
three-point endpoint formulas, 138
three-point midpoint formula, 138
three-point midpoint formulas, 141
three-term recurrence relation, 165
training data, 365
translation invariance, 409, 413
transpose, 249
trapezoid method, 211
Trapezoid quadrature, 157
trapezoid rule, 148
triangular systems, 223
truncated score matrix, 358
two-point difference formula, 136
unique inverse, 17, 219, 249
unit lower triangular matrix, 227
unit lower-triangular matrix, 230
unit round-off error, 350
unit vector, 326
unstable, 27
unsupervised learning, 368
update direction, 372
upper bidiagonal matrix, 349
upper Hessenberg matrix, 277
upper triangular matrix, 322, 330
upper-triangular matrix, 223, 230
upper-triangular system, 225
variational principle, 434
vector norm, 23,241
volume scaling factor, 19
Weierstrass approximation theorem, 82, 114
weight matrix, 301
weighted least-squares method, 301
Weighted Mean Value Theorem on Integral, \(8,148,153\)
weighted normal equations, 302
weighted sum, 147
WMVT, 8
x-intercept, 57
zero-over-zero, 112
zeroth divided difference, 102~~~~~~~~~~


[^0]:    ${ }^{1}$ The mark ${ }^{\text {C }}$ indicates that you should solve the problem via computer programming. Attach hard copies of your code and results. For other problems, if you like and doable, you may try to solve them with computer programming.

