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Prologue

In organizing this lecture note, I am indebted by Demmel [7], Golub and Van Loan [10], Varga [24], and
Watkins [26], among others. Currently the lecture note is not fully grown up; other useful techniques
would be soon incorporated. Any questions, suggestions, comments will be deeply appreciated.
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2 Chapter 1. Introduction to Matrix Analysis

1.1. Basic Algorithms and Notation

1.1.1. Matrix notation

Let R be the set of real numbers. We denote the vector space of all m× n
matrices by Rm×n:

A ∈ Rm×n ⇔ A = (aij) =

 a11 · · · a1n
... ...
am1 · · · amn

 , aij ∈ R. (1.1)

The subscript ij refers to the (i, j) entry.

1.1.2. Matrix operations

• transpose (Rm×n → Rn×m)

C = AT ⇒ cij = aji

• addition (Rm×n × Rm×n → Rm×n)

C = A+B ⇒ cij = aij + bij

• scalar-matrix multiplication (R× Rm×n → Rm×n)

C = αA ⇒ cij = α aij

• matrix-matrix multiplication (Rm×p × Rp×n → Rm×n)

C = AB ⇒ cij =

p∑
k=1

aikbkj

These are the building blocks of matrix computations.
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1.1.3. Vector notation

Let Rn denote the vector space of real n-vectors:

x ∈ Rn ⇔ x =

 x1
...
xn

 , xi ∈ R. (1.2)

We refer to xi as the ith component of x. We identify Rn with Rn×1 so that the
members of Rn are column vectors. On the other hand, the elements of R1×n

are row vectors:
y ∈ R1×n ⇔ y = (y1, · · · , yn).

If x ∈ Rn, then y = xT is a row vector.

1.1.4. Vector operations

Assume a ∈ R and x, y ∈ Rn.

• scalar-vector multiplication

z = a x ⇒ zi = a xi

• vector addition
z = x+ y ⇒ zi = xi + yi

• dot product (or, inner product)

c = xTy(= x · y) ⇒ c =
n∑
i=1

xiyi

• vector multiply (or, Hadamard product)

z = x. ∗ y ⇒ zi = xiyi

• saxpy (“scalar a x plus y"): a LAPACK routine

z = a x+ y ⇒ zi = a xi + yi
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1.1.5. Matrix-vector multiplication & “gaxpy"

• gaxpy (“generalized saxpy"): a LAPACK routine

z = Ax+ y ⇒ zi =
n∑
j=1

aijxj + yi

1.1.6. The colon notation

A handy way to specify a column or row of a matrix is with the “colon" nota-
tion. Let A ∈ Rm×n. Then,

A(i, :) = [ai1, · · · , ain], A(:, j) =

 a1j
...
amj


Example 1.1. With these conventions, the gaxpy can be written as

for i=1:m
z(i)=y(i)+A(i,:)x

end
(1.3)

or, in column version,
z=y
for j=1:n

z=z+x(j)A(:,j)
end

(1.4)

Matlab-code 1.2. The gaxpy can be implemented as simple as

z=A*x+y; (1.5)
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1.1.7. Flops

A flop (floating point operation) is any mathematical operation (such as +, -,
∗, /) or assignment that involves floating-point numbers Thus, the gaxpy (1.3)
or (1.4) requires 2mn flops.

The following will be frequently utilized in counting flops:
n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

n∑
k=1

k3 =
( n∑
k=1

k
)2

=
n2(n+ 1)2

4
.

(1.6)
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1.2. Vector and Matrix Norms

1.2.1. Vector norms

Definition 1.3. A norm (or, vector norm) on Rn is a function that as-
signs to each x ∈ Rn a nonnegative real number ‖x‖, called the norm of x,
such that the following three properties are satisfied: for all x, y ∈ Rn and
λ ∈ R,

‖x‖ > 0 if x 6= 0 (positive definiteness)

‖λx‖ = |λ| ‖x‖ (homogeneity)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

(1.7)

Example 1.4. The most common norms are

‖x‖p =
(∑

i

|xi|p
)1/p

, 1 ≤ p <∞, (1.8)

which we call the p-norms, and

‖x‖∞ = max
i
|xi|, (1.9)

which is called the infinity-norm or maximum-norm.

Two of frequently used p-norms are

‖x‖1 =
∑

i |xi|, ‖x‖2 =
(∑

i |xi|2
)1/2

The 2-norm is also called the Euclidean norm, often denoted by ‖ · ‖.

Remark 1.5. One may consider the infinity-norm as the limit of p-norms,
as p→∞; see Homework 1.
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Theorem 1.6. (Cauchy-Schwarz inequality) For all x, y ∈ Rn,∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ ( n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

(1.10)

Note: (1.10) can be rewritten as

|x · y| ≤ ‖x‖ ‖y‖ (1.11)

which is clearly true.

Example 1.7. Given a positive definite matrix A ∈ Rn×n, define the A-norm
on Rn by

‖x‖A = (xTAx)1/2

Note: When A = I, the A-norm is just the Euclidean norm. The A-norm is
indeed a norm; see Homework 2.

Lemma 1.8. All p-norms on Rn are equivalent to each other. In particular,

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞

(1.12)

Note: For all x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 ≤ n ‖x‖∞ (1.13)
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1.2.2. Matrix norms

Definition 1.9. A matrix norm on m× n matrices is a vector norm on
the mn-dimensional space, satisfying

‖A‖ ≥ 0, and ‖A‖ = 0 ⇔ A = 0 (positive definiteness)

‖λA‖ = |λ| ‖A‖ (homogeneity)

‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

(1.14)

Example 1.10.

• max
i,j
|aij| is called the maximum norm.

• ‖A‖F ≡
(∑

i,j

|aij|2
)1/2

is called the Frobenius norm.

Definition 1.11. Let ‖ · ‖m×n be a matrix norm on m× n matrices. The
norms are called mutually consistent if

‖AB‖m×p ≤ ‖A‖m×n · ‖B‖n×p (1.15)

Definition 1.12. Lat A ∈ Rm×n and ‖ · ‖n̂ is a vector norm on Rn. Then

‖A‖m̂n̂ = max
x∈Rn, x6=0

‖Ax‖m̂
‖x‖n̂

(1.16)

is called an operator norm or induced norm or subordinate norm.
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Lemma 1.13. Let A ∈ Rm×n and B ∈ Rn×p.

1. An operator norm of A is a matrix norm.
2. For all operator norms and the Frobenius norm,

‖Ax‖ ≤ ‖A‖ ‖x‖

‖AB‖ ≤ ‖A‖ ‖B‖
(1.17)

3. For the induced 2-norm and the Frobenius norm,

‖PAQ‖ = ‖A‖ (1.18)

when P and Q are orthogonal, i.e., P−1 = P T and Q−1 = QT .
4. The max norm and the Frobenius norm are not operator norms.

5. ‖A‖1 ≡ max
x 6=0

‖Ax‖1

‖x‖1
= max

j

∑
i

|aij|

6. ‖A‖∞ ≡ max
x 6=0

‖Ax‖∞
‖x‖∞

= max
i

∑
j

|aij|

7. ‖A‖2 ≡ max
x 6=0

‖Ax‖2

‖x‖2
=
√
λmax(ATA),

where λmax denotes the largest eigenvalue.
8. ‖A‖2 = ‖AT‖2.
9. ‖A‖2 = max

i
|λi(A)|, when ATA = AAT (normal).
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Lemma 1.14. Let A ∈ Rn×n. Then

1√
n
‖A‖2 ≤ ‖A‖1 ≤

√
n ‖A‖2

1√
n
‖A‖2 ≤ ‖A‖∞ ≤

√
n ‖A‖2

1

n
‖A‖∞ ≤ ‖A‖1 ≤ n ‖A‖∞

‖A‖1 ≤ ‖A‖F ≤
√
n ‖A‖2

(1.19)

Example 1.15. Let u, v ∈ Rn and let A = uvT . This is a matrix of rank one.
Let’s prove

‖A‖2 = ‖u‖2 ‖v‖2 (1.20)

Proof.
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1.2.3. Condition numbers

Definition 1.16. Let A ∈ Rn×n. Then

κ(A) ≡ ‖A‖ ‖A−1‖

is called the condition number of A, associated to the matrix norm.

Lemma 1.17.

1. κ(A) = κ(A−1)

2. κ(cA) = κ(A) for any c 6= 0.
3. κ(I) = 1 and κ(A) ≥ 1, for any induced matrix norm.

Theorem 1.18. If A is nonsingular and

‖δA‖
‖A‖

≤ 1

κ(A)
, (1.21)

then A+ δA is nonsingular.
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Theorem 1.19. Let A ∈ Rn×n be nonsingular, and x and x̂ = x+ δx be the
solutions of

Ax = b and A x̂ = b+ δb,

respectively. Then
‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

. (1.22)

Proof. The equations

Ax = b and A(x+ δx) = b+ δb

imply Aδx = δb, that is, δx = A−1δb. Whatever vector norm we have chosen,
we will use the induced matrix norm to measure matrices. Thus

‖δx‖ ≤ ‖A−1‖ ‖δb‖ (1.23)

Similarly, the equation b = Ax implies ‖b‖ ≤ ‖A‖ ‖x‖, or equivalently

1

‖x‖
≤ ‖A‖ 1

‖b‖
. (1.24)

The claim follows from (1.23) and (1.24).
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Example 1.20. Let A =

 1 2 −2
0 4 1
1 −2 2

. Then, we have

A−1 =
1

20

 10 0 10
1 4 −1
−4 4 4

 and ATA =

 2 0 0
0 24 −4
0 −4 9

 .
1. Find ‖A‖1, ‖A‖∞, and ‖A‖2.

2. Compute the `1-condition number κ1(A).

Solution.
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Remark 1.21. Numerical analysis involving the condition number is a
useful tool in scientific computing. The condition number has been involved
in analyses of

• Accuracy, due to the error involved in the data
• Stability of algebraic systems
• Convergence speed of iterative algebraic solvers

The condition number is one of most frequently-used measurements for
matrices.



1.3. Numerical Stability 15

1.3. Numerical Stability

Sources of error in numerical computation:
Example: Evaluate a function f : R→ R at a given x.

• x is not exactly known

– measurement errors
– errors in previous computations

• The algorithm for computing f(x) is not exact

– discretization (e.g., it uses a table to look up)
– truncation (e.g., truncating a Taylor series)
– rounding error during the computation

The condition of a problem: sensitivity of the solution with respect to er-
rors in the data

• A problem is well-conditioned if small errors in the data produce small
errors in the solution.

• A problem is ill-conditioned if small errors in the data may produce large
errors in the solution
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1.3.1. Stability in numerical linear algebra

Theorem 1.22. (Revisit of Theorem 1.19) Let A ∈ Rn×n be nonsingular, and
x and x̂ = x+ δx be the solutions of

Ax = b and A x̂ = b+ δb,

respectively. Then
‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

, (1.25)

where κ(A) ≡ ‖A‖ ‖A−1‖.
Example 1.23. Let

A =
1

2

[
1 1

1 + 10−10 1− 10−10

]
.

Then
A−1 =

[
1− 1010 1010

1 + 1010 −1010

]
.

• Solution for b = (1, 1)T is x = (1, 1)T .

• If we change b to b+ ∆b, then the change in the solution is

∆x = A−1∆b =

[
∆b1 − 1010(∆b1 −∆b2)

∆b1 + 1010(∆b1 −∆b2)

]
.

Small ∆b may lead to an extremely large ∆x

• The condition number κ(A) = 2× 1010 + 1.
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1.3.2. Stability in numerical ODEs/PDEs

Physical Definition: A (FD) scheme is stable if a small change in the initial
conditions produces a small change in the state of the system.

• Most aspects in the nature are stable.

• Some phenomena in the nature can be represented by differential equa-
tions (ODEs and PDEs), while they may be solved through difference
equations.

• Although ODEs and PDEs are stable, their approximations (finite differ-
ence equations) may not be stable. In this case, the approximation is a
failure.

Definition: A differential equation is

• stable if for every set of initial data, the solution remains bounded as
t→∞.

• strongly stable if the solution approaches zero as t→∞.
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Exercises for Chapter 1

1.1. This problem proves that the infinite-norm is the limit of the p-norms as p→∞.

(a) Verify that
lim
p→∞

(1 + xp)1/p = 1, for each |x| ≤ 1

(b) Let x = (a, b)T with |a| ≥ |b|. Prove

lim
p→∞
‖x‖p = |a| (1.26)

Equation (1.26) implies lim
p→∞
‖x‖p = ‖x‖∞ for x ∈ R2.

(c) Generalize the above arguments to prove that

lim
p→∞
‖x‖p = ‖x‖∞ for x ∈ Rn (1.27)

1.2. Let A ∈ Rn×n be a positive definite matrix, and R be its Cholesky factor so that A = RTR.

(a) Verify that
‖x‖A = ‖Rx‖2 for all x ∈ Rn (1.28)

(b) Using the fact that the 2-norm is indeed a norm on Rn, prove that the A-norm is a
norm on Rn.

1.3. Prove (1.13).

1.4. Let A, B ∈ Rn×n and C = AB. Prove that the Frobenius norm is mutually consistent,
i.e.,

‖AB‖F ≤ ‖A‖F ‖B‖F (1.29)

Hint: Use the definition cij =
∑

k aikbkj and the Cauchy-Schwarz inequality.

1.5. The rank of a matrix is the dimension of the space spanned by its columns. Prove that
A has rank one if and only if A = uvT for some nonzero vectors u, v ∈ Rn.

1.6. A matrix is strictly upper triangular if it is upper triangular with zero diagonal ele-
ments. Show that if A ∈ Rn×n is strictly upper triangular, then An = 0.

1.7. Let A = diagn(d−1, d0, d1) denote the n-dimensional tri-diagonal matrix with ai,i−k = dk
for k = −1, 0, 1. For example,

diag4(−1, 2,−1) =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 .
Let B = diag10(−1, 2,−1). Use a computer software to solve the following.

(a) Find condition number κ2(B).
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(b) Find the smallest (λmin) and the largest eigenvalues (λmax) of B to compute the ratio
λmax

λmin

.

(c) Compare the above results.
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CHAPTER 2
Gauss Elimination and Its Variants

One of the most frequently occurring problems in all areas of scientific en-
deavor is that of solving a system of n linear equations in n unknowns. The
main subject of this chapter is to study the use of Gauss elimination to solve
such systems. We will see that there are many ways to organize this funda-
mental algorithm.
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2.1. Systems of Linear Equations

Consider a system of n linear equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

(2.1)

Given the coefficients aij and the source bi, we wish to find x1, x2, · · · , xn which
satisfy the equations.

Since it is tedious to write (2.1) again and again, we generally prefer to write
it as a single matrix equation

Ax = b, (2.2)

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...
an1 an2 · · · ann

 , x =


x1

x2
...
xn

 , and b =


b1

b2
...
bn

 .
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Solvers for Linear Systems

• Direct algebraic solvers

– LU , LLT , LDLT , QR, SV D, SuperLU, · · ·
– A is modified (factorized)
– Harder to optimize and parallelize
– Numerically robust, but higher algorithmic complexity

• Iterative algebraic solvers

– Stationary and Nonstationary methods
(Jacobi, Gauss-Seidel, SOR, SSOR,
CG, MINRES, GMRES, BiCG, QMR, · · · )

– A is not changed (read-only)
– Easier to optimize and parallelize
– Low algorithmic complexity, but may not converge
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2.1.1. Nonsingular matrices

Definition 2.1. A square matrix A ∈ Rn×n is invertible (nonsingular) if
there is a matrix B ∈ Rn×n such that AB = BA = I. The matrix B is called
the inverse of A and denoted by A−1.

Theorem 2.2. (Invertible Matrix Theorem) Let A ∈ Rn×n. Then the
following are equivalent.

1. A−1 exists, i.e., A is invertible.

2. There is a matrix B such that AB = I

3. There is a matrix C such that CA = I

4. Ay = 0 implies that y = 0.

5. Given any vector b, there is exactly one vector x such that Ax = b.

6. The columns of A are linearly independent.

7. The rows of A are linearly independent.

8. det(A) 6= 0.

9. Zero (0) is not an eigenvalue of A.

10. A is a product of elementary matrices.
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Example 2.3. Let A ∈ Rn×n and eigenvalues of A be λi, i = 1, 2, · · · , n. Show
that

det(A) =
n∏
i=1

λi. (2.3)

Thus we conclude that A is singular if and only if 0 is an eigenvalue of A.

Hint: Consider the characteristic polynomial of A, φ(λ) = det(A − λI), and
φ(0).
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2.1.2. Numerical solutions of differential equations

Consider the following differential equation:

(a) −uxx + cu = f, x ∈ (ax, bx),
(b) −ux + βu = g, x = ax,
(c) ux + βu = g, x = bx.

(2.4)

where
c ≥ 0 and β ≥ 0 (c+ β > 0).

Select nx equally spaced grid points on the interval [ax, bx]:

xi = ax + ihx, i = 0, 1, · · · , nx, hx =
bx − ax
nx

.

Let ui = u(xi). It follows from the Taylor’s series expansion that

−uxx(xi) =
−ui−1 + 2ui − ui+1

h2
x

+
uxxxx(xi)

12
h2
x + · · · .

Thus the central second-order finite difference (FD) scheme for uxx at xi reads

−uxx(xi) ≈
−ui−1 + 2ui − ui+1

h2
x

. (2.5)
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Apply the FD scheme for (2.4.a) to have

−ui−1 + (2 + h2
xc)ui − ui+1 = h2

xfi, i = 0, 1, · · · , nx. (2.6)

However, we will meet ghost grid values at the end points. For example, at
the point ax = x0, the formula becomes

−u−1 + (2 + h2
xc)u0 − u1 = h2

xf0. (2.7)

Here the value u−1 is not defined and we call it a ghost grid value.

Now, let’s replace the value by using the boundary condition (2.4.b). The cen-
tral FD scheme for ux at x0 can be formulated as

ux(x0) ≈
u1 − u−1

2hx
, Trunc.Err = −uxxx(x0)

6
h2
x + · · · . (2.8)

Thus the equation (2.4.b), −ux + βu = g, can be approximated (at x0)

u−1 + 2hxβu0 − u1 = 2hxg0. (2.9)

Hence it follows from (2.7) and (2.9) that

(2 + h2
xc+ 2hxβ)u0 − 2u1 = h2

xf0 + 2hxg0. (2.10)

The same can be considered for the algebraic equation at the point xn.
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The problem (2.4) is reduced to finding the solution u satisfying

Au = b, (2.11)

where A ∈ R(nx+1)×(nx+1),

A =


2 + h2

xc+ 2hxβ −2
−1 2 + h2

xc −1
. . . . . . . . .

−1 2 + h2
xc −1

−2 2 + h2
xc+ 2hxβ

 ,

and

b =


h2
xf0

h2
xf1
...

h2
xfnx−1

h2
xfnx

+


2hxg0

0
...
0

2hxgnx

 .
Such a technique of removing ghost grid values is called outer bordering.
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Dirichlet Boundary Condition: When the boundary values of the DE are
known (Dirichlet boundary condition), the algebraic system does not have to
include rows corresponding to the nodal points. However, it is more reusable
if the algebraic system incorporates rows for all nodal points.

For example, consider

(a) −uxx + cu = f, x ∈ (ax, bx),
(b) −ux + βu = g, x = ax,
(c) u = ud, x = bx.

(2.12)

Then, the corresponding algebraic system can be formulated as

A′ u = b′, (2.13)

where A′ ∈ R(nx+1)×(nx+1),

A′ =


2 + h2

xc+ 2hxβ −2
−1 2 + h2

xc −1
. . . . . . . . .

−1 2 + h2
xc −1

0 1

 ,

and

b′ =


h2
xf0

h2
xf1
...

h2
xfnx−1

ud

+


2hxg0

0
...
0
0

 .
Note: The system of linear equations (2.13) can be reformulated involving an
nx × nx matrix
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2.2. Triangular Systems

Definition 2.4.

1. A matrix L = (`ij) ∈ Rn×n is lower triangular if

`ij = 0 whenever i < j.

2. A matrix U = (uij) ∈ Rn×n is upper triangular if

uij = 0 whenever i > j.

Theorem 2.5. LetG be a triangular matrix. ThenG is nonsingular if and only if
gii 6= 0 for i = 1, · · · , n.
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2.2.1. Lower-triangular systems

Consider the n× n system
Ly = b (2.14)

where L is a nonsingular, lower-triangular matrix (`ii 6= 0). It is easy to see
how to solve this system if we write it in detail:

`11 y1 = b1

`21 y1 + `22 y2 = b2

`31 y1 + `32 y2 + `33 y3 = b3
... ...

`n1 y1 + `n2 y2 + `n3 y3 + · · ·+ `nn yn = bn

(2.15)

The first equation involves only the unknown y1, which can be found as

y1 = b1/`11.

With y1 just obtained, we can determine y2 from the second equation:

y2 = (b2 − `21 y1)/`22.

Now with y2 known, we can solve the third equation for y3, and so on. In gen-
eral, once we have y1, y2, · · · , yi−1, we can solve for yi using the ith equation:

yi = (bi − `i1 y1 − `i2 y2 − · · · − `i,i−1 yi−1)/`ii

=
1

`ii

(
bi −

i−1∑
j=1

`ij yj

) (2.16)
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Algorithm 2.6. (Forward Substitution)

for i=1:n
for j=1:i-1

b(i) = b(i)-L(i,j)*b(j)
end
if L(i,i)==0, set error flag, exit
b(i) = b(i)/L(i,i)

end

(2.17)

The result is y.

Computational complexity: For each i, the forward substitution requires
2(i− 1) + 1 flops. Thus the total number of flops becomes

n∑
i=1

{2(i− 1) + 1} =
n∑
i=1

{2i− 1} = n(n+ 1)− n = n2. (2.18)
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2.2.2. Upper-triangular systems

Consider the system
U x = y (2.19)

where U = (uij) ∈ Rn×n is nonsingular, upper-triangular. Writing it out in
detail, we get

u11 x1 + u12 x2 + · · ·+ u1,n−1 xn−1 + u1,n xn = y1

u22 x2 + · · ·+ u2,n−1 xn−1 + u2,n xn = y2
... =

...
un−1,n−1 xn−1 + un−1,n xn = yn−1

un,n xn = yn

(2.20)

It is clear that we should solve the system from bottom to top.

Algorithm 2.7. (Back Substitution) A Matlab code:

for i=n:-1:1
if(U(i,i)==0), error(’U: singular!’); end
x(i)=b(i)/U(i,i);
b(1:i-1)=b(1:i-1)-U(1:i-1,i)*x(i);

end

(2.21)

Computational complexity: n2 +O(n) flops.
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2.3. Gauss Elimination
— a very basic algorithm for solving Ax = b

The algorithms developed here produce (in the absence of rounding errors)
the unique solution of Ax = b whenever A ∈ Rn×n is nonsingular.

Our strategy: Transform the system Ax = b to a equivalent system Ux = y,
where U is upper-triangular.

It is convenient to represent Ax = b by an augmented matrix [A|b]; each
equation in Ax = b corresponds to a row of the augmented matrix.

Transformation of the system: By means of three elementary row oper-
ations applied on the augmented matrix.
Definition 2.8. Elementary row operations.

Replacement: Ri ← Ri + αRj (i 6= j)
Interchange: Ri ↔ Rj

Scaling: Ri ← βRi (β 6= 0)
(2.22)
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Proposition 2.9.

1. If [Â | b̂] is obtained from [A |b] by elementary row operations (EROs),
then systems [A |b] and [Â | b̂] represent the same solution.

2. Suppose Â is obtained from A by EROs. Then Â is nonsingular if and only
if A is.

3. Each ERO corresponds to left-multiple of an elementary matrix.

4. Each elementary matrix is nonsingular.

5. The elementary matrices corresponding to “Replacement" and “Scaling"
operations are lower triangular.
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2.3.1. Gauss elimination without row interchanges

Let E1, E2, · · · , Ep be the p elementary matrices which transform A to an
upper-triangular matrix U , that is,

EpEp−1 · · ·E2E1A = U (2.23)

Assume: No “Interchange" is necessary to apply. Then

• EpEp−1 · · ·E2E1 is lower-triangular and nonsingular

• L ≡ (EpEp−1 · · ·E2E1)
−1 is lower-triangular.

• In this case,
A = (EpEp−1 · · ·E2E1)

−1U = LU. (2.24)
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Example 2.10. Let A =

2 1 1
2 2 −1
4 −1 6

 and b =

 9
9
16

.

1. Perform EROs to obtain an upper-triangular system.

2. Identity elementary matrices for the EROs.

3. What are the inverses of the elementary matrices?

4. Express A as LU .
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Theorem 2.11. (LU Decomposition Theorem) The following are equiva-
lent.

1. All leading principal submatrices of A are nonsingular. (The jth leading
principal submatrix is A(1 : j, 1 : j).)

2. There exists a unique unit lower triangular L and nonsingular upper-
triangular U such that A = LU .

Proof. (2) ⇒ (1): A = LU may also be written[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
(2.25)

where A11 is a j × j leading principal submatrix. Thus

det(A11) = det(L11U11) = 1 · det(U11) =

j∏
k=1

(U11)kk 6= 0.

Here we have used the assumption that U is nonsingular and so is U11.

(1) ⇒ (2): It can be proved by induction on n.
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2.3.2. Solving linear systems by LU factorization

A =


1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1


︸ ︷︷ ︸

L


� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 � ∗
0 0 0 0 0


︸ ︷︷ ︸

U

Let A ∈ Rn×n be nonsingular. If A = LU , where L is a unit lower triangular
matrix and U is an upper triangular matrix, then

Ax = b⇐⇒ (LU)x = L(Ux) = b⇐⇒
{
Ly = b
Ux = y

In the following couple of examples, LU is given.
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Example 2.12. Let A =

 1 4 −2
2 5 −3
−3 −18 16

, b =

−12
−14
64

.

A = LU
∆
=

 1 0 0
2 1 0
−3 2 1

 1 4 −2
0 −3 1
0 0 8


Use the LU factorization of A to solve Ax = b.
Solution. Since

Ax = b⇐⇒ (LU)x = L(Ux) = b⇐⇒
{
Ly = b
Ux = y

there are two steps:

(1) Solve Ly = b for y;
(2) Solve Ux = y for x.

(1) Solve Ly = b for y by row reduction

[L
... b] =

 1 0 0
... −12

2 1 0
... −14

−3 2 1
... 64

→
 1 0 0

... −12

0 1 0
... 10

0 0 1
... 8



So y =

−12
10
8


(2) Solve Ux = y for x by row reduction

[U
... y] =

 1 4 −2
... −12

0 −3 1
... 10

0 0 8
... 8

→
 1 0 0

... 2

0 1 0
... −3

0 0 1
... 1



x =

 2
−3
1


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Example 2.13. Let

A =


5 4 −2 −3

15 13 2 −10
−5 −1 28 3
10 10 8 −8

 , b =


−10
−29
30
−22

 .

A = LU
∆
=


1 0 0 0
3 1 0 0
−1 3 1 0

2 2 −2 1




5 4 −2 −3
0 1 8 −1
0 0 2 3
0 0 0 6


Use the LU factorization of A to solve Ax = b.
Solution.
(1) Solve Ly = b for y

[L
... b] =


1 0 0 0

... −10

3 1 0 0
... −29

−1 3 1 0
... 30

2 2 −2 1
... −22

→


1 0 0 0
... −10

0 1 0 0
... 1

0 0 1 0
... 17

0 0 0 1
... 30



So y =


−10

1
17
30


(2) Solve Ux = y for x

[U
... y] =


5 4 −2 −3

... −10

0 1 8 −1
... 1

0 0 2 3
... 17

0 0 0 6
... 30

→


1 0 0 0
... 3

0 1 0 0
... −2

0 0 1 0
... 1

0 0 0 1
... 5


So

x =


3
−2
1
5


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LU Factorization Algorithm

• A is reduced to REF⇐⇒ EpEp−1 · · ·E2E1A = U .

• A = (EpEp−1 · · ·E2E1)
−1U = LU .

• L = (EpEp−1 · · ·E2E1)
−1

How can we get L by row reduction?

EpEp−1 · · ·E2E1L = I ⇐⇒ L
row replacement−−−−−−−−−−−→ I

EpEp−1 · · ·E2E1A = U ⇐⇒ A
row replacement−−−−−−−−−−−→ U

The row operation sequences are the same!

Algorithm for an LU Factorization:

A
row replacement−−−−−−−−−−−→ U (REF)

L
row replacement−−−−−−−−−−−→ I
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Remark 2.14.

• To get L, theoretically we reduce I to L (I → L) by using the row op-
erations used in A → U in BOTH reverse order and reverse operation
(different from finding A−1).

• If the size of A ∈ Rm×n and A = LU , then L must be an m×m unit
lower triangular matrix, and U is the REF of A by using only row
replacement operations. A ∼ U . The size of U is m× n.

• To reduce the round-off errors, practical implementations also use par-
tial pivoting, where interchange operations may be used.

• In practice, to save storage, we can store L and U to the array of A.
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

A

=


1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1


︸ ︷︷ ︸

L


� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 � ∗
0 0 0 0 0


︸ ︷︷ ︸

U
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Example 2.15. Find the LU factorization of A =

 3 −1 1
9 1 2
−6 5 −5

.

Solution.

A =

 3 −1 1
9 1 2
−6 5 −5

 R2←R2−3R1−−−−−−−→
R3←R3+2R1

 3 −1 1
0 4 −1
0 3 −3


R3←R3−3

4R2−−−−−−−→

 3 −1 1
0 4 −1
0 0 −9

4

 = U

A→ U : R2 ← R2−3R1 =⇒ R3 ← R3+2R1 =⇒ R3 ← R3−3
4R2

E3E2E1A = U =⇒ A = (E3E2E1)
−1U

L = (E3E2E1)
−1I = E−1

1 E−1
2 E−1

3 I

E−1
1 E−1

2 E−1
3 I = L =⇒ E3E2E1L = I

I → L : R3 ← R3+
3
4R2 =⇒ R3 ← R3−2R1 =⇒ R2 ← R2+3R1

Each step happens “simultaneously"

A→ U : R2 ← R2−3R1 =⇒ R3 ← R3+2R1 =⇒ R3 ← R3−3
4R2

A =

 3 −1 1
9 1 2
−6 5 −5

→
 3 −1 1

0 4 −1
0 0 −9

4

 = U

I → L : R3 ← R3+
3
4R2 =⇒ R3 ← R3−2R1 =⇒ R2 ← R2+3R1

I =

 1 0 0
0 1 0
0 0 1

 R3←R3+3
4R2−−−−−−−→

 1 0 0
0 1 0
0 3

4 1


R2←R2+3R1−−−−−−−→
R3←R3−2R1

 1 0 0
3 1 0
−2 3

4 1

 = L
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Example 2.16. Find the LU factorization of A =

 3 −1 1
9 1 2
−6 5 −5

.

Solution. (Practical Implementation):

A =

 3 −1 1
9 1 2
−6 5 −5

 R2←R2−3R1−−−−−−−→
R3←R3+2R1

 3 −1 1
3 4 −1

-2 3 −3


R3←R3− 3

4R2−−−−−−−→

 3 −1 1
3 4 −1

-2 3
4 −9

4



L =

 1 0 0
3 1 0
−2 3

4 1

 , U =

 3 −1 1
0 4 −1
0 0 −9

4

 .
Note: it is easy to verify that A = LU .
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Example 2.17. Find the LU factorization of

A =


2 −1
6 5

−10 3
12 −2

.

Solution.
2 −1
6 5

−10 3
12 −2

 R2←R2−3R1−−−−−−−→
R3←R3+5R1
R4←R4−6R1


2 −1
3 8
−5 −2

6 4

 R3←R3+1
4R2−−−−−−−→

R4←R4−1
2R2


2 −1
3 8
−5 −1

4

6 1
2



L =


1 0 0 0
3 1 0 0
−5 −1

4 1 0
6 1

2 0 1


4×4

, U =


2 −1
0 8
0 0
0 0


4×2

.

Note: U has the same size as A, that is, its size is 4× 2. L is a square matrix
and is a unit lower triangular matrix.
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Numerical Notes: For an n × n dense matrix A (with most entries nonzero)
with n moderately large.

• Computing an LU factorization of A takes about 2n3/3 flops† (∼ row re-
ducing [A b]), while finding A−1 requires about 2n3 flops.

• Solving Ly = b and Ux = y requires about 2n2 flops, because any n × n
triangular system can be solved in about n2 flops.

• Multiplying b by A−1 also requires about 2n2 flops, but the result may
not as accurate as that obtained from L and U (due to round-off errors in
computing A−1 & A−1b).

• If A is sparse (with mostly zero entries), then L and U may be sparse, too.
On the other hand, A−1 is likely to be dense. In this case, a solution of
Ax = b with LU factorization is much faster than using A−1.

† A flop is +, −, × or ÷.
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Further Comments: LU Algorithms with row interchange operations

1. To reduce the round-off errors. 3 −1 1

9 1 2
−6 5 −5


︸ ︷︷ ︸

A

→

 9 1 2
3 −1 1
−6 5 −5

→ · · · →


9 1 2

0 17
3

−11
3

0 0 − 9
17


︸ ︷︷ ︸

U

P ∗ A = L ∗ U, P =

0 1 0
0 0 1
1 0 0

 , L =

 1 0 0
−2

3
1 0

1
3
− 4

17
1


For partial pivoting, a pivot in a pivot column is chosen from the
entries with largest magnitude.

2. Pivoting is needed if the pivot position entry is 0 0 2 5
1 3 0
6 2 −7

 R1↔R3−−−−→

 6 2 −7
1 3 0
0 2 5


MATLAB: [L,U ] = lu(A) stores an upper triangular matrix in U and a “psy-
chologically lower triangular matrix" (i.e. a product of lower triangular and
permutation matrices) in L, so that A = L∗U . A can be rectangular. [L,U, P ] =

lu(A) returns unit lower triangular matrix L, upper triangular matrix U , and
permutation matrix P so that P ∗ A = L ∗ U .
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2.3.3. Gauss elimination with pivoting

Definition 2.18. A permutation matrix is a matrix that has exactly one 1

in each row ans in each column, all other entries being zero.

Example 2.19. Show that if P is permutation matrix, then P TP = PP T = I.
Thus P is nonsingular and

P−1 = P T .

Proof. (Self study)

Lemma 2.20. Let P and Q be n× n permutation matrices and A ∈ Rn×n.
Then

1. PA — A with its rows permuted
AP — A with its columns permuted.

2. det(P ) = ±1.

3. PQ is also a permutation matrix.
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Example 2.21. LetA ∈ Rn×n, and let Â be a matrix obtained from scrambling
the rows. Show that there is a unique permutation matrix P ∈ Rn×n such that
Â = PA.

Hint: Consider the row indices in the scrambled matrix Â, say {k1, k2, · · · , kn}.
(This means that for example, the first row of Â is the same as the k1-th row
of A.) Use the index set to define a permutation matrix P .

Proof. (Self study)
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Theorem 2.22. Gauss elimination with partial pivoting, applied toA ∈ Rn×n,
produces a unit lower-triangular matrix L with |`ij| ≤ 1, an upper-triangular
matrix U , and a permutation matrix P such that

Â = PA = LU

or, equivalently,
A = P TLU (2.26)

Note: If A is singular, then so is U .

Algorithm 2.23. Solving Ax = b using GE.

1. Factorize A into A = P TLU , where
P = permutation matrix,
L = unit lower triangular matrix

(i.e., with ones on the diagonal),
U = nonsingular upper-triangular matrix.

2. Solve P TLUx = b

(a) LUx = Pb (permuting b)

(b) Ux = L−1(Pb) (forward substitution)

(c) x = U−1(L−1Pb) (back substitution)

In practice:

Ax = b ⇐⇒ P T (LU)x = b
⇐⇒ L(Ux) = Pb

}
⇐⇒

{
Ly = Pb
Ux = y
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Theorem 2.24. If A is nonsingular, then there exist permutations P1 and P2,
a unit lower triangular matrix L, and a nonsingular upper-triangular matrix
U such that

P1AP2 = LU.

Only one of P1 and P2 is necessary.

Remark 2.25. P1A reorders the rows of A, AP2 reorders the columns, and
P1AP2 reorders both. Consider

P ′1AP
′
2 =

[
a11 A12

A21 A22

]
=

[
1 0
L21 I

] [
u11 U12

0 Ã22

]
=

[
u11 U12

L21u11 L21U12 + Ã22

]
(2.27)

We can choose P ′2 = I and P ′1 so that a11 is the largest entry in absolute value
in its column, which implies L21 = A21

a11
has entries bounded by 1 in modulus.

More generally, at step k of Gaussian elimination, where we are computing the
kth column of L, we reorder the rows so that the largest entry in the column is
on the pivot. This is called “Gaussian elimination with partial pivoting”,
or GEPP for short. GEPP guarantees that all entries of L are bounded by one
in modulus.
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Remark 2.26. We can choose P1 and P2 so that a11 in (2.27) is the largest
entry in modulus in the whole matrix. More generally, at step k of Gaussian
elimination, we reorder the rows and columns so that the largest entry in the
matrix is on the pivot. This is called “Gaussian elimination with complete
pivoting”, or GECP for short.

Algorithm 2.27. Factorization with pivoting

for i = 1 to n− 1
apply permutations so aii 6= 0

/* compute column i of L (L21 in (2.27))*/
for j = i+ 1 to n

lji = aji/aii
end for

/* compute row i of U (U12 in (2.27) */
for j = i to n

uij = aij
end for

/* update A22 (to get Ã22 = A22 − L21U12 in (2.27) */
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − lji ∗ uik

end for
end for

end for



54 Chapter 2. Gauss Elimination and Its Variants

Algorithm 2.28. LU factorization with pivoting, overwriting L and U on A:

for i = 1 to n− 1
apply permutations
for j = i+ 1 to n

aji = aji/aii
end for
for j = i+ 1 to n

for k = i+ 1 to n
ajk = ajk − aji/aik

end for
end for

end for

Computational Cost: The flop count of LU is done by replacing loops by
summations over the same range, and inner loops by their flop counts:

n−1∑
i=1

( n∑
j=i+1

1 +
n∑

j=i+1

n∑
k=i+1

2
)

=
n−1∑
i=1

[
(n− i) + 2(n− i)2

]
=

2n3

3
+O(n2) (2.28)

The forward and back substitutions with L and U to complete the solution of
Ax = b cost O(n2).

Thus overall solving Ax = b with Gaussian elimination costs
2n3

3
+ O(n2)

flops.
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Example 2.29. Find the LU factorization of A =

 3 −1 1
9 1 2
−6 5 −5


Solution. (Without pivoting)

A =

 3 −1 1
9 1 2
−6 5 −5

 R2←R2−3R1−−−−−−−→
R3←R3+2R1

 3 −1 1
3 4 −1

-2 3 −3


R3←R3− 3

4
R2−−−−−−−−→

 3 −1 1
3 4 −1

-2 3
4
−9

4



L =

 1 0 0
3 1 0
−2 3

4
1

 , U =

 3 −1 1
0 4 −1
0 0 −9

4

 .
(With partial pivoting)

A =

 3 −1 1
9 1 2
−6 5 −5

 R1↔R2−−−−−→

 9 1 2
3 −1 1
−6 5 −5


R2←R2− 1

3
R1−−−−−−−−→

R3←R3+ 2
3
R1

 9 1 2
1
3
−4

3
1
3

−2
3

17
3
−11

3

 R2↔R3−−−−−→

 9 1 2

−2
3

17
3
−11

3
1
3
−4

3
1
3


R3←R3+ 4

17
R2−−−−−−−−→

 9 1 2

−2
3

17
3

−11
3

1
3
− 4

17
− 9

17

 , I
R1↔R2−−−−−→ E

R2↔R3−−−−−→ P

PA = LU

P =

0 1 0
0 0 1
1 0 0

 , L =

 1 0 0
−2

3
1 0

1
3
− 4

17
1

 , U =


9 1 2

0 17
3

−11
3

0 0 − 9
17


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2.3.4. Calculating A−1

The program to solve Ax = b can be used to calculate the inverse of a matrix.
LettingX = A−1, we have AX = I. This equation can be written in partitioned
form:

A[x1 x2 · · · xn] = [e1 e2 · · · en] (2.29)

where x1, x2, · · · , xn and e1, e2, · · · , en are columns of X and I, respectively.

Thus AX = I is equivalent to the n equations

Axi = ei, i = 1, 2, · · · , n. (2.30)

Solving these n systems by Gauss elimination with partial pivoting, we obtain
A−1.
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Computational complexity
A naive flop count:

LU -factorization of A:
2

3
n3 +O(n2)

Solve for n equations in (2.30): n · 2n2 = 2n3

Total cost:
8

3
n3 +O(n2)

A modification: The forward-substitution phase requires the solution of

Lyi = ei, i = 1, 2, · · · , n. (2.31)

Some operations can be saved by exploiting the leading zeros in ei. (For each
i, the portion of L to be accessed is triangular.) With these savings, one can
conclude that A−1 can be computed in 2n3 +O(n2) flops; see Homework 4.
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2.4. Special Linear Systems

2.4.1. Symmetric positive definite (SPD) matrices

Definition 2.30. A real matrix is symmetric positive definite (s.p.d.) if
A = AT and xTAx > 0, ∀x 6= 0.

Proposition 2.31. Let A ∈ Rn×n be a real matrix.

1. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.

2. If A is s.p.d and H is any principal submatrix of A (H = A(j : k, j : k) for
some j ≤ k), then H is s.p.d.

3. If X is nonsingular, then A is s.p.d. if and only if XTAX is s.p.d.

4. If A is s.p.d., then all aii > 0, and maxij |aij| = maxi aii > 0.

5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT .

The decomposition A = LLT is called the Cholesky factorization of A, and
L is called the Cholesky factor of A.
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Algorithm 2.32. Cholesky algorithm:

for j = 1 to n

ljj =
(
ajj −

j−1∑
k=1

l2jk

) 1
2

for i = j + 1 to n

lij =
(
aij −

j−1∑
k=1

likljk

)
/ljj

end for
end for

Derivation: See Homework 2.

Remark 2.33. The Cholesky factorization is mainly used for the numerical
solution of linear systems Ax = b.

• For symmetric linear systems, the Cholesky decomposition (or its LDLT

variant) is the method of choice, for superior efficiency and numerical
stability.

• Compared with the LU -decomposition, it is roughly twice as efficient
(O(n3/3) flops).
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Algorithm 2.34.
(Cholesky: Gaxpy Version) [10, p.144]

for j = 1 : n
if j > 1

A(j : n, j) = A(j : n, j)
−A(j : n, 1 : j − 1)A(j, 1 : j − 1)T

end
A(j : n, j) = A(j : n, j)/

√
A(j, j)

end

(Cholesky: Outer Product Version)

for k = 1 : n

A(k, k) =
√
A(k, k)

A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k)
for j = k + 1 : n

A(j : n, j) = A(j : n, j)− A(j : n, k)A(j, k)
end

end

• Total cost of the Cholesky algorithms: O(n3/3) flops.

• L overwrites the lower triangle of A in the above algorithms.
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Stability of Cholesky Process

•

A = LLT =⇒ l2ij ≤
i∑

k=1

l2ik = aii, ||L||22 = ||A||2

• If x̂ is the computed solution to Ax = b, obtained via any of Cholesky
procedures, then x̂ solves the perturbed system (A+ E)x̂ = b

• Example: [10] If Cholesky algorithm is applied to the s.p.d. matrix

A =

 100 15 .01
15 2.26 .01
.01 .01 1.00


For round arithmetic, we get

l̂11 = 10, l̂21 = 1.5, l̂31 = .001,

and
l̂22 = (a22 − l̂21

2)1/2 = .00

The algorithm then breaks down trying to compute l32.

By the way: The Cholesky factor of A is

L =

 10.0000 0 0
1.5000 0.1000 0
0.0010 0.0850 0.9964


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Symmetric Positive Semidefinite Matrices

• A matrix is said to be symmetric positive semidefinite (SPS) if A = AT

and xTAx ≥ 0 for all x ∈ Rn.

• Cholesky Algorithm for SPS matrices

for k = 1 : n
if A(k, k) > 0

A(k, k) =
√
A(k, k)

A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k)
for j = k + 1 : n

A(j : n, j) = A(j : n, j)− A(j : n, k)A(j, k)
end

end
end

• It breaks down if A(k, k) ≤ 0.
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2.4.2. LDLT and Cholesky factorizations

• LDMT Factorization: If all the leading principal submatrices of A ∈ Rn×n are

nonsingular, then there exist unique unit lower triangular matrices L and M , and a

unique diagonal matrix D = diag(d1, · · · , dn), such that A = LDMT .

• Symmetric LDMT Factorization: If A is a nonsingular symmetric
matrix and has the factorization A = LDMT , where L and M are unit
lower triangular matrices and D is a diagonal matrix, then L = M .

• LDLT Algorithm: If A ∈ Rn×n is symmetric and has an LU factoriza-
tion, then this algorithm computes a unit lower triangular matrix L and
a diagonal matrix D = diag(d1, · · · , dn), so A = LDLT . The entry aij is
overwritten with lij if i > j and with di if i = j.

• Total cost of LDLT : O(n3/3) flops, about half the number of flops in-
volved in GE.

Remark 2.35. Let A = L0L
T
0 be the Cholesky factorization. Then the

Cholesky factor L0 can be decomposed as

L0 = LD0, (2.32)

where L is the unit Cholesky factor and D0 is diagonal:

L(:, j) = L0(:, j)/L0(j, j) and D0 = diag(L0)

Then, for the LDLT variant, we set D = D0D
T
0 = D0

2.
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LDLT Factorization
To implement the LDLT algorithm, define v(1 : j) by the first j-th components
of DLTej (j-th column of DLT or j-th row of LD). Then

v(1 : j) =


d(1)L(j, 1)

d(2)L(j, 2)
...

d(j − 1)L(j, j − 1)
d(j)


Note that v = A(j, j) − L(j, 1 : j − 1)v(1 : j − 1) can be derived from the j-th
equation in

L(1 : j, 1 : j)v = A(1 : j, j).


a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44


︸ ︷︷ ︸

A

=


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1


︸ ︷︷ ︸

L


d1 d1l21 d1l31 d1l41

0 d2 d2l32 d2l42

0 0 d3 d3l43

0 0 0 d4


︸ ︷︷ ︸

DLT
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Algorithm 2.36. (LDLT Algorithm)

for j = 1 : n
%% Compute v(1 : j)
for i = 1 : j − 1

v(i) = A(j, i)A(i, i)
end
v(j) = A(j, j)− A(j, 1 : j − 1)v(1 : j − 1);
%% Store d(j) and compute L(j + 1 : n, j)
A(j, j) = v(j)
A(j + 1 : n, j) = (A(j + 1 : n, j)

−A(j + 1 : n, 1 : j − 1)v(1 : j − 1))/v(j)
end

Example 2.37.

A =

 2 6 8
6 23 34
8 34 56

 =

 1 0 0
3 1 0
4 2 1

 2 0 0
0 5 0
0 0 4

 1 3 4
0 1 2
0 0 1


So, when LDLT decomposition is applied, A can be overwritten as

A =

 2 6 8
3 5 34
4 2 4


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Recall the theorem: If A ∈ Rn×n is s.p.d., then there exists a unique lower
triangular matrix L ∈ Rn×n with positive diagonal entries such that A = LLT .

The Cholesky factorization can be easily transformed to the LDLT form; see
Remark 2.35 on page 63.

Example 2.38. (From Cholesky to LDLT )[
2 −2
−2 5

]
=

[ √
2 0

−
√

2
√

3

] [ √
2 −
√

2

0
√

3

]

=

[
1 0
−1 1

][ √
2 0

0
√

3

] [ √
2 0

0
√

3

][
1 −1
0 1

]

=

[
1 0
−1 1

] [
2 0
0 3

] [
1 −1
0 1

]

Matlab:

• “chol": Cholesky factorization

• “ldl": LDLT factorization
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2.4.3. M-matrices and Stieltjes matrices

Definition 2.39.

1. A matrix A = [aij] ∈ Rn×n with aij ≤ 0 for all i 6= j is an M-matrix if A is
nonsingular and A−1 ≥ O.

2. A matrix A = [aij] ∈ Rn×n with aij ≤ 0 for all i 6= j is a Stieltjes matrix if
A is symmetric and positive definite.

Remark 2.40.

• A Stieltjes matrix is an M -matrix.

• In the simulation of PDEs, many applications involve M -matrices.

• Consider an algebraic system: Ax = b with A−1 ≥ 0. Then the solution

x = A−1b

must be nonnetative for all nonnegative sources b.

We will deal with these matrices in detail, when we study iterative methods
for linear algebraic systems.
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Exercises for Chapter 2

2.1. Consider the finite difference method on uniform meshes to solve
(a) −uxx + u = (π2 + 1) cos(πx), x ∈ (0, 1),
(b) u(0) = 1 and ux(1) = 0.

(2.33)

(a) Implement a function to construct algebraic systems in the full matrix form, for
general nx ≥ 1.

(b) Use a direct method (e.g., A\b) to find approximate solutions for nx = 25, 50, 100.
(c) The actual solution for (2.33) is u(x) = cos(πx). Measure the maximum errors for

the approximate solutions.
(d) Now, save the coefficient matrices exploring the Matlab built-in functions sparse

and/or spdiags; see, for example, matlabtutorials.com/howto/spdiags.
(e) Then, solve the linear systems and compare the elapsed times with those of the

full-matrix solve. (You may check the elapsed time using tic ... toc.

2.2. Derive the details of the Cholesky algorithm 2.32 on page 59.
Hint: You may first set

L =


`11 0 0 · · · 0
`21 `22 0 · · · 0
... . . . ...
`n1 `n2 · · · `nn

 (2.34)

and then try to compare entries of LLT with those of A.

2.3. Let L = [`ij] and M = [mij] be lower-triangular matrices.

(a) Prove that LM is lower triangular.
(b) Prove that the entries of the main diagonal of LM are

`11m11, `22m22, · · · , `nnmnn

Thus the product of two unit lower-triangular matrices is unit lower triangular.

2.4. Consider the savings explained with equation (2.31) for the computation of A−1. Taking
those savings into account, show that A−1 can be computed in 2n3 +O(n2) flops.

2.5. Use LU decomposition obtained with partial pivoting to solve the system Ax = b, where

A =


1 −2 −1 3
1 −2 0 1
−3 −2 1 7

0 −2 8 5

 and b =


−12
−5
−14
−7

 .
2.6. Let A be a nonsingular symmetric matrix and have the factorization A = LDMT , where

L and M are unit lower triangular matrices and D is a diagonal matrix. Show that
L = M .

Hint: You may use the uniqueness argument, the first claim in Section 2.4.2.



CHAPTER 3
The Least-Squares Problem

In this chapter, we study the least-squares problem, which arises frequently
in scientific and engineering computations. After describing the problem, we
will develop tools to solve the problem:

• normal equation

• reflectors and rotators

• the Gram-Schmidt orthonormalization process

• the QR decomposition

• the singular value decomposition (SV D)
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3.1. The Discrete Least-Squares Problem

Definition 3.1. Let A ∈ Rm×n and b ∈ Rm. The linear least-squares
problem is to find x ∈ Rn which minimizes

||Ax− b||2 or, equivalently, ||Ax− b||22

Remark 3.2.

• The error ||r||2 ≡ ||Ax− b||2 is the distance between b and the vector

Ax = x1a1 + x2a2 + · · ·+ xnan (3.1)

• If x̂ is the LS solution, then Ax̂ = ProjCol(A)b:
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Methods Solving LS problems

1. normal equation

2. QR decomp.

3. SVD

4. transform to a lin-
ear system

• It is the fastest but least accurate; it is adequate
when the condition number is small.

• QR decomposition is the standard one and costs
up to twice as much as the first method.

• SVD is of most use on an ill-conditioned problem,
i.e., when A is not of full rank; it is several times
more expensive.

• The last method lets us do iterative refinement
and improve the solution when the problem is ill-
conditioned.

• All methods but the 3rd can be adapted to work with sparse matrices.

• We will assume rank(A) = n in method 1 and 2.
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3.1.1. Normal equations

• Normal Equation:
ATAx = ATb (3.2)

• Derivation: Goal: Minimize

||Ax− b||22 = (Ax− b)T (Ax− b)

0 = lim
e→0

||A(x + e)− b||22 − ||Ax− b||22
||e||2

= lim
e→0

2eT (ATAx− ATb) + eTATAe

||e||2

2nd Term:
∣∣∣∣eTATAe

||e||22

∣∣∣∣ =
||Ae||22
||e||2

≤ ||A||
2
2 · ||e||22
||e||2

= ||A||22 · ||e||2

=⇒ eTATAe

||e||22
→ 0, as e→ 0.

Thus, if we look for x where the gradient of ||Ax − b||22 vanishes, then
ATAx = ATb.
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Remark 3.3.

• Why x is the minimizer of ||Ax− b||22
∆
= f(x)?

∂f(x)

∂x
= ∇xf(x) =

∂
(
(Ax− b)T (Ax− b)

)
∂x

=
∂
(
xTATAx− 2xTATb

)
∂x

= 2ATAx− 2ATb

Hf (x) =
∂

∂x

(
∂f(x)

∂x

)
= 2ATA positive definite

(under the assumption that rank(A) = n)

So the function f is strictly convex, and any critical point is a global
minimum.1

• For A ∈ Rm×n, if rank(A) = n, then ATA is SPD; indeed,

– ATA is symmetric since (ATA)T = AT (AT )T = ATA.

– Since rank(A) = n, m ≥ n, and the columns of A are linearly indepen-
dent.
So Ax = 0 has only the trivial solution.
Hence, for any x ∈ Rn, if x 6= 0, then Ax 6= 0.

– For any 0 6= x ∈ Rn, xTATAx = (Ax)T (Ax) = ||Ax||22 > 0.

So the normal equationATAx = ATb has a unique solution x = (ATA)−1ATb.

1Hf (x) is called Hessian matrix of f .
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• If let x′ = x+e, where x is the minimizer, one can easily verify the follow-
ing

||Ax′ − b||22 = ||Ax− b||22 + ||Ae||22 ≥ ||Ax− b||22 (3.3)

(See Homework 1.) Note that since A is of full-rank, Ae = 0 if and only if
e = 0; which again proves the uniqueness of the minimizer x.

• Numerically, normal equation can be solved by the Cholesky factoriza-
tion. Total cost:

n2m+
1

3
n2 +O(n2) flops.

Since m ≥ n, the term n2m dominates the cost.
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Example 3.4. Solve the following least-squares problem
x1 + 3x2 − 2x3 = 5

3x1 + x3 = 4
2x1 x2 + x3 = 3
2x1 x2 + x3 = 2
x1 − 2x2 + 3x3 = 1

Solution. Let the coefficient matrix be denoted by A and the RHS by b. Then

A =


1 3 −2
3 0 1
2 1 1
2 1 1
1 −2 3

 , b =


5
4
3
2
1


⇒ ATA =

 19 5 8
5 15 −10
8 −10 16

 , ATb =

28
18
2



Solving the normal equation ATAx = ATb gives

x =
[7

5
,

3

5
, −1

5

]T
.
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3.2. LS Solution by QR Decomposition

3.2.1. Gram-Schmidt process

Given a basis {x1,x2, · · · ,xp} for a nonzero subspace W ⊆ Rn, define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

...
vp = xp −

xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − · · · −

xp · vp−1

vp−1 · vp−1
vp−1

Then {v1,v2, · · · ,vp} is an orthogonal basis for W .

In addition,

span{v1,v2, · · · ,vk} = span{x1,x2, · · · ,xk}, 1 ≤ k ≤ p
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Example 3.5. Let x1 =


1

0

−1

1

, x2 =


1

1

0

1

, x3 =


0

1

2

1

, and {x1,x2,x3} be a

basis for a subspace W of R4. Construct an orthogonal basis for W .

Solution. Let v1 = x1. Then W1 = Span{x1} = Span{v1}.

v2 = x2 −
x2 · v1

v1 · v1
v1 =


1

1

0

1

− 2

3


1

0

−1

1

 =


1
3

1
2
3
1
3

 =
1

3


1

3

2

1

 ,

v2 ⇐ 3v2 =


1

3

2

1

 (for convenience)

Then,

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2 =


0

1

1

1

− −1

3


1

0

−1

1

− 8

15


1

3

2

1

 =
1

5


−1

−3

3

4

 ,

v3 ⇐ 5v3 =


−1

−3

3

4



Then {v1,v2,v3} is an orthogonal basis for W .
Note: Replacing v2 with 3v2, v3 with 5v3 does not break orthogonality.
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Definition 3.6. An orthonormal basis is an orthogonal basis {v1,v2, · · · ,vp}
with ||vi|| = 1, for all i = 1, 2 · · · , p. That is vi · vj = δij.

Example 3.7. Let v1 =

 1

0

−1

, v2 =

 3

3

3

, W = Span{v1,v2}. Construct an

orthonormal basis for W .

Solution. It is easy to see that v1 · v2 = 0. So {v1,v2} is an orthogonal basis
for W . Rescale the basis vectors to form a orthonormal basis {u1,u2}:

u1 =
1

||v1||
v1 =

1√
2

 −1

0

1

 =

 −
1√
2

0
1√
2


u2 =

1

||v2||
v2 =

1

3
√

3

 3

3

3

 =


1√
3

1√
3

1√
3


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3.2.2. QR decomposition, by Gram-Schmidt process

Theorem 3.8. (QR Decomposition) Let A ∈ Rm×n with m ≥ n. Suppose A
has full column rank (rank(A) = n). Then there exist a unique m× n orthog-
onal matrix Q (QTQ = In) and a unique n × n upper triangular matrix R
with positive diagonals rii > 0 such that A = QR.

Proof. (Sketch) Let A = [a1 · · · an].

1. Construct an orthonormal basis {q1,q2, · · · ,qn} for W = Col(A) by Gram-
Schmidt process, starting from {a1, · · · , an}

2. Q = [q1 q2 · · ·qn].

Span{a1, a2, · · · , ak} = Span{q1,q2, · · · ,qk}, 1 ≤ k ≤ n

ak = r1kq1 + r2kq2 + · · ·+ rkkqk + 0 · qk+1 + · · ·+ 0 · qn
Note: If rkk < 0, multiply both rkk and qk by −1.

3. Let rk = [r1k r2k · · · rkk 0 · · · 0]T . Then ak = Qrk for k = 1, 2, · · · , n. Let
R = [r1 r2 · · · rn].

4. A = [a1 · · · an] = [Qr1 Qr2 · · · Qrn] = QR.
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Example 3.9. Let A be a 2× 2 matrix:

A =

[
a11 a12

a21 a22

]
=
[

a1 a2

]

The GS method:

r11 = ||a1||2
q1 = a1/r11

r12 = q1 · a2

q2 = a2 − r12q1

r22 = ||q2||2
q2 = q2/r22

QR Decomposition for a 2× 2 matrix.



3.2. LS Solution by QR Decomposition 81

Algorithm 3.10. (QR Decomposition). Let

A = [a1 · · · an].

In Gram-Schmidt, qi ← vi/||vi||, then

a1 = (q1 · a1)q1

a2 = (q1 · a2)q1 + (q2 · a2)q2

a3 = (q1 · a3)q1 + (q2 · a3)q2 + (q3 · a3)q3

...

an =
n∑
j=1

(qj · an)qj

Thus,
A = [a1 a2 · · · an] = QR,

where

Q = [q1 q2 · · · qn]

R =


q1 · a1 q1 · a2 q1 · a3 · · · q1 · an

0 q2 · a2 q2 · a3 · · · q2 · an
0 0 q3 · a3 · · · q3 · an
... ... ... . . . ...
0 0 0 · · · qn · an


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Algorithm 3.11. Classical Gram-Schmidt (CGS).

R(1, 1) = ||A(:, 1)||2
Q(:, 1) = A(:, 1)/R(1, 1)
for k = 2 : n

R(1 : k − 1, k) = Q(1 : m, 1 : k − 1)TA(1 : m, k)
z = A(1 : m, k)−Q(1 : m, 1 : k − 1)R(1 : k − 1, k)
R(k, k) = ||z||2
Q(1 : m, k) = z/R(k, k)

end

• For A ∈ Rm×n, if rank(A) = n,

qk =

(
ak −

k−1∑
i=1

rikqi

)
/rkk, zk = ak −

k−1∑
i=1

rikqi,

where rik = qTi ak, i = 1 : k − 1 and
zk ∈ Span{q1, · · · ,qk−1}⊥.
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Algorithm 3.12. Modified Gram-Schmidt (MGS)

for k = 1 : n
R(k, k) = ||A(1 : m, k)||2
Q(1 : m, k) = A(1 : m, k)/R(k, k)
for j = k + 1 : n

R(k, j) = Q(1 : m, k)TA(1 : m, j)
A(1 : m, j) = A(1 : m, j)−Q(1 : m, k)R(k, j)

end
end

• Let A(k) ∈ Rm×(n−k+1). Then it is defined by

A−
k−1∑
i=1

qir
T
i =

n∑
i=k

qir
T
i [0 A(k)], A(k) = [ z B ]

1 n− k

Then rkk = ||z||2, qk = z/rkk and (rk,k+1 · · · rkn) = qTkB. Then compute
the outer product A(k+1) = B − qk(rk,k+1 · · · rkn). ...
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Algorithm 3.13. The classical Gram-Schmidt (CGS) and modified Gram-
Schmidt (MGS) Algorithms for factoring A = QR:

for i=1 to n /* compute ith columns of Q and R */
qi = ai
for j = 1 to i− 1 /*subtract components in qj direction from ai*/{

rji = qTj ai CGS
rji = qTj qi MGS

qi = qi − rjiqj
end for
rii = ||qi||2
if rii = 0 /* ai is linearly dependent on a1, · · · , ai−1 */

quit
else if

qi = qi/rii
end for

Note: The two formulas for rij in the above algorithm are mathematically
equivalent.
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Example 3.14. Use the CGS process to find a QR decomposition of

A =


1 1 0
0 1 1
−1 0 2

1 1 1

 .

Solution. Let A ≡ [x1 x2 x3]. Then, it follows from Example 3.5 on page 77
that {v1,v2,v3}, where

v1 =


1

0

−1

1

 , v2 =


1

3

2

1

 , v3 =


−1

−3

3

4

 ,
is an orthogonal basis of Col(A), the column space of A.
Normalize the basis vectors, we get

q1 =
v1

||v1||
=


1√
3

0

− 1√
3

1√
3

 ,q2 =
v2

||v2||
=


1√
15
3√
15
2√
15
1√
15

 ,q3 =
v3

||v3||
=


− 1√

35

− 3√
35
3√
35
4√
35

 .
Then,

r11 = q1 · x1 =
√

3, r12 = q1 · x2 = 2√
3
, r13 = q1 · x3 = − 1√

3

r22 = q2 · x2 = 5√
15
, r23 = q2 · x3 = 8√

15
,

r33 = q3 · x3 = 7√
35

Thus,

Q =


1√
3

1√
15
− 1√

35

0 3√
15
− 3√

35

− 1√
3

2√
15

3√
35

1√
3

1√
15

4√
35

 , R =


√

3 2√
3
− 1√

3

0 5√
15

8√
15

0 0 7√
35

 . (3.4)

It is easy to check that A = QR.



86 Chapter 3. The Least-Squares Problem

Example 3.15. Find a QR decomposition of A =


1 1 1
1 0 −1
0 1 −1
0 0 1

 by MGS.

Solution. Let A ≡ [a1 a2 a3].
k = 1:

r11 = ||a1||2 =
√

2, a1 ← a1/r11 =

√
2

2


1

1

0

0


r12 = aT1 a2 =

√
2

2
,

r13 = aT1 a3 = 0,

 a2 ← a2 − r12a1 =


1

0

1

0

− 1

2


1

1

0

0

 =
1

2


1

−1

2

0



a3 ← a3 − r13a1 = a3 − 0 =


1

−1

−1

1



k = 2:

r22 = ||a2||2 =

√
6

2
, a2 ← a2/r22 =

√
6

6


1

−1

2

0



r23 = aT2 a3 = 0, a3 ← a3 − r23a2 = a3 − 0 =


1

−1

−1

1


k = 3:

r33 = ||a3||2 = 2, a3 ← a3/r33 =
1

2


1

−1

−1

1


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So we get the QR decomposition result:

A = QR =


√

2
2

√
6

6
1
2√

2
2 −

√
6

6 −1
2

0 2
√

6
6 −1

2

0 0 1
2



√

2
√

2
2 0

0
√

6
2 0

0 0 2


Note: In the above process, we use matrix A to store Q, and R is stored in
another array.
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Remark 3.16.

• CGS (classical Gram-Schmidt) method has very poor numerical proper-
ties in that there is typically a severe loss of orthogonality among the
computed qi.

• MGS (Modified Grad-Schmidt) method yields a much better computa-
tional result by a rearrangement of the calculation.

• CGS is numerically unstable in floating point arithmetic when the columns
of A are nearly linearly dependent. MGS is more stable but may still re-
sult in Q being far from orthogonal when A is ill-conditioned.

• Both CGS and MGS requireO(2mn2) flops to compute a QR factorization
of A ∈ Rm×n.
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3.2.3. Application to LS solution

• Let A ∈ Rm×n withm ≥ n. Ifm > n, we can choosem−nmore orthonormal
vectors Q̃ so that [Q, Q̃] is a square orthogonal matrix. So

||Ax− b||22 = ||[Q, Q̃]T (Ax− b)||22 =

∣∣∣∣∣
∣∣∣∣∣
[
QT

Q̃T

]
(QRx− b)

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣
[

In×n

O(m−n)×n

]
Rx−

[
QTb

Q̃Tb

]∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣
[
Rx−QTb

−Q̃Tb

]∣∣∣∣∣
∣∣∣∣∣
2

2

=
[
(Rx−QTb)T − (Q̃Tb)T

] [ Rx−QTb

−Q̃Tb

]
= ||Rx−QTb||22 + ||Q̃Tb||22 ≥ ||Q̃Tb||22

• Since rank(A) = rank(R) = n, R is nonsingular.
So x = R−1QTb is the solution for Rx = QTb, and

min
x
||Ax− b||22 = ||Q̃Tb||22
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• Second Derivation:

Ax− b = QRx− b = QRx− (QQT + I −QQT )b

= Q(Rx−QTb)−(I −QQT )b.

Since (
Q(Rx−QTb)

)T (
(I −QQT )b

)
= (Rx−QTb)TQT (I −QQT )b = (Rx−QTb)T [0]b = 0,

the vectorsQ(Rx−QTb) and (I−QQT )b are orthogonal. So by Pythagorean
theorem,

||Ax− b||22 = ||Q(Rx−QTb)||22 + ||(I −QQT )b||22
= ||Rx−QTb||22 + ||(I −QQT )b||22

• Third Derivation:

x = (ATA)−1ATb

= (RTQTQR)−1RTQTb = (RTR)−1RTQTb

= R−1R−TRTQTb = R−1QTb
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Example 3.17. Solve the LS problem minx ||Ax− b||22 when

A =

 2 −1
0 1.e− 6
0 0

 , b =

 0

2.e− 6

2

 .
Solution. (1. Normal equation): The normal equation ATAx = ATb reads[

4 −2
−2 1 + 10−12

] [
x1

x2

]
=

[
0

2.e− 12

]
Solution: x1 = 1, x2 = 2.

(Round-off issue): The arrays ATA and ATb, when rounded to 10 digits,
read

ATA
.
=

[
4 −2
−2 1

]
, ATb

.
=

[
0

2.e− 12

]
No solution (singular matrix)

(2. QR decomposition): Factor A = QR as

Q =

 1 0
0 1
0 0

 , R =

[
2 −1
0 1.e− 6

]
.

Solution of Rx = QTb =

[
0

2.e− 6

]
: x1 = 1, x2 = 2.

Conclusion: QR is better in numerical stability.
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3.3. Orthogonal Matrices

Approaches for orthogonal decomposition:

1. Classical Gram-Schmidt (CGS) and
Modified Gram-Schmidt (MGS) process (§ 3.2.2)

2. Householder reflection (reflector)

3. Givens rotation (rotator)

This section studies Householder reflection and Givens rotation in detail, in
the use for QR decomposition.
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3.3.1. Householder reflection

The Householder reflection is also called “reflector". In order to introduce the
reflector, let’s begin with the projection.
Definition 3.18. Let a, b ∈ Rn. The projection of a onto {b} is the vector
defined by

proj ba =
a · b
b · b

b (3.5)

Pictorial interpretation:

• proj ba = a1

• ‖a1‖ = ‖a‖ cos θ

• a = a1 + a2 is called an orthogonal de-
composition of a.
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Householder reflection (or, Householder transformation, Elementary re-
flector) is a transformation that takes a vector and reflects it about some plane
or hyperplane. Let u be a unit vector which is orthogonal to the hyperplane.
Then, the reflection of a point x about this hyperplane is

x− 2 proj ux = x− 2(x · u)u. (3.6)

Note that
x− 2(x · u)u = x− 2(uuT )x = (I − 2uuT )x.
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Definition 3.19. Let u ∈ Rn with ‖u‖ = 1. Then the matrix P = I − 2uuT is
called a Householder matrix (or, Householder reflector).

Proposition 3.20. Let P = I − 2uuT with ‖u‖ = 1.

1. Pu = −u

2. Pv = v, if u · v = 0

3. P = P T (P is symmetric)

4. P T = P−1 (P is orthogonal)

5. P−1 = P (P is an involution)

6. PP T = P 2 = I.

Indeed,

PP T = (I − 2uuT )(I − 2uuT ) = I − 4uuT + 4uuTuuT = I
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Example 3.21. Let u =

[
.6

.8

]
, P = I − 2uuT , x =

[
−2

4

]
. Then Px is

reflection of x about the line through the origin ⊥ u.

Solution. Px =

[
.28 −.96
−.96 −.28

] [
−2
4

]
=

[
−4.4

.8

]
One can easily see that

||Px||2 = ||x||2 =
√

20.

Claim 3.22. For a nonzero vector v ∈ Rn, define

P = I − β vvT , β =
2

‖v‖2
2

.

• Then P is a reflector, which satisfies all the properties in Proposition 3.20.

• Any nonzero constant multiple of v will generate the same reflector.
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Theorem 3.23. Let x, y be two vectors in Rn with x 6= y but ||x||2 = ||y||2.
Then there exists a unique reflector P such that Px = y.

Proof. (Existence) Let v = x− y and P = I − β vvT , where β = 2/‖v‖2
2. Note

that
x =

1

2
(x− y) +

1

2
(x + y). (3.7)

Then
P (x− y) = −(x− y). (3.8)

Since (x− y) · (x + y) = ||x||22 − ||y||22 = 0, by Proposition 3.20, we have

P (x + y) = (x + y). (3.9)

It follows from (3.7), (3.8), and (3.9) that Px = y.

(Uniqueness) It will be a good exercise to prove the uniqueness of the reflec-
tor; see Homework 2.

Summary: Let x 6= ±y but ||x||2 = ||y||2. Then the reflector P : x 7→ ±y

can be formulated by

1. v = x− (±y) = x∓ y.

2. P = I − β vvT , where β = 2/‖v‖2
2.
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Example 3.24. Let x =

 −2

1

2

, y =

 −3

0

0

. Find the Householder matrix

P so Px = y.

Solution. Let

v = x− y =

 −2

1

2

−
 −3

0

0

 =

 1

1

2

 , ||v|| = √6

P = I − 2

6
vvT

=

 1 0 0
0 1 0
0 0 1

− 2

6

 1

1

2

 [ 1 1 2
]

=


2
3 −

1
3 −

2
3

−1
3

2
3 −

2
3

−2
3 −

2
3 −

1
3



Now, it is a simple matter to check Px =

 −3

0

0

 = y.
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Claim 3.25. For an arbitrary vector x, suppose we want to find a House-
holder reflection P in order to zero out all but the first entry of x, i.e.,

Px = [c 0 · · · 0]T = c · e1.

Then, the reflector can be defined as follows.

1. Set c = ±‖x‖2 (||x||2 = ||Px||2 = |c|)
2. Set v = x− c · e1 such that v 6= 0.

3. Get P = I − β vvT , where β = 2/‖v‖2
2.

Remarks:

• In the first step of Claim 3.25, we often set

c = −sign(x1)‖x‖2 (3.10)

so that

v = x− c · e1 =


x1 + sign(x1)‖x‖2

x2
...
xn

 , with u =
v

||v||2
, (3.11)

which may avoid cancellation (v = 0).
Definition: We write (3.11) as u = House(x) .

• Using the arguments in the proof of Theorem 3.23, one can check

Px =


c
0
...
0

 =


−sign(x1)‖x‖2

0
...
0

 .
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Example 3.26. Let x =

 −2

1

2

. Find the Householder reflector so that all

but the first entry of the reflection of x are zero.

Solution. ||x||2 =
√

(−2)2 + 12 + 22 =
√

9 = 3. x1 = −2.

v =

 x1 + sign(x1)||x||2
x2

x3

 =

 −2− 3

1

2

 =

 −5

1

3

 ,
=⇒ ||v|| =

√
30

P = I − βvvT

=

 1 0 0
0 1 0
0 0 1

− 2

30

 −5

1

2

 [ −5 1 2
]

=

 −
2
3

1
3

2
3

1
3

14
15 −

2
15

2
3 −

2
15

11
15


Thus,

Px =

 −sign(x1)||x||2
0

0

 =

 3

0

0


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Question: What if we set v =


x1 − ||x||2

x2
...
xn

, for x1 > 0?

Answer. To avoid cancellation, instead of computing x1 − ||x||2 directly, we
may use

x1 − ||x||2 =
x2

1 − ||x||22
x1 + ||x||2

=
−(x2

2 + x2
3 + · · ·+ x2

n)

x1 + ||x||2
≡ −σ
x1 + µ

where σ = x2
2 + x2

3 + · · ·+ x2
n and µ = ||x||2.

Then,
||v||22 = σ +

( −σ
x1 + µ

)2

and
P = I − βvvT , β =

2

||v||22
; Px = ||x||2 e1.
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Algorithm 3.27. (house(x)) Given x ∈ Rn, the function house(x) computes
v ∈ Rn with v(1) = 1 and β ∈ R, such that

P = In − βvvT , Px = ||x||2 e1,

where P is a reflector. Total cost of house(x): 3n flops.

function [v, β] = house(x)
n = length(x);
σ = x(2 : n)Tx(2 : n); (∼ 2n flops)
v = [1; x(2 : n)]T ;
if σ = 0;

β = 0;
else

µ =
√

x(1)2 + σ; // = ||x||2
if x(1) ≤ 0

v(1) = x(1)− µ;
else

v(1) = −σ/(x(1) + µ);
end
β = 2v(1)2/(σ + v(1)2);
v = v/v(1); (∼ n flops)

end

The feature of v(1) = 1 is important in the computation of PA when m is
small, and in the computation of AP when n is small.
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Application of reflectors to a matrix A ∈ Rm×n

• If P = I − βvvT ∈ Rm×m, then

PA = (I − βvvT )A = A− vwT (3.12)

where w = βATv.

• If P = I − βvvT ∈ Rn×m, then

AP = A(I − βvvT ) = A−wvT (3.13)

where w = βAvT .

• An m-by-n Householder update cost: 4mn flops
= {a matrix-vector multiplication} + {an outer product update}.

• Householder updates never require the explicit formation of the House-
holder matrix.
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3.3.2. QR decomposition by reflectors

Example 3.28. Compute the QR decomposition of a 5 × 3 matrix A using
Householder Reflection.

Solution.
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


︸ ︷︷ ︸

A

P1−→


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

A1=P1A

P2−→


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗
0 0 ∗


︸ ︷︷ ︸
A2=P2P1A

P3−→


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0
0 0 0


︸ ︷︷ ︸
A3=P3P2P1A

where

P2 =

[
1 0

0 P ′2

]
, P3 =

[
I2 0

0 P ′3

]
,

P1, P ′2, P
′
3 are Householder matrices.

Let R̃ ≡ A3. Then
A = P T

1 P
T
2 P

T
3 R̃ = QR,

where
Q = P T

1 P
T
2 P

T
3 = P1P2P3,

and R is the first 3 rows of A3.
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Algorithm 3.29. (QR Factorization Using Reflectors)

for i = 1 to min(m− 1, n)

ui = House(A(i : m, i))

P ′i = I − 2uiu
T
i

A(i : m, i : n) = P ′iA(i : m, i : n) (†)
end

The computation in (†):

(I − 2uiu
T
i )A(i : m, i : n) = A(i : m, i : n)− 2ui

(
uTi A(i : m, i : n)

)
(‡)

costs much less than the matrix-matrix multiplication.

Computational complexity: In Algorithm 3.29, the computations are mainly
in (†) or (‡).

2(m− i)(n− i) for uTi A(i : m, i : n)
(m− i)(n− i) for ui(∗)
(m− i)(n− i) for subtractions: A(i : m, i : n)− 2ui(∗)

Thus

total =
n∑
i=1

4(m− i)(n− i) = 4
n∑
i=1

(
mn− i(m+ n) + i2

)
= 4mn2 − 4(m+ n)

n(n+ 1)

2
+ 4 · n(n+ 1)(2n+ 1)

6

∼ 2mn2 − 2n3

3



106 Chapter 3. The Least-Squares Problem

Algorithm 3.30. (Householder QR) [10] Given A ∈ Rm×n with m ≥ n,
the following algorithm finds Householder matrices H1, · · · , Hn such that if
Q = H1 · · ·Hn, then QTA = R is upper triangular.

The upper triangular part of A is overwritten by the upper triangular part
of R and components j + 1 : m of the j-th Householder vector are stored in
A(j + 1 : m, j), j < m.

for j = 1 : n
[v, β] = house(A(j : m, j))
A(j : m, j : n) = (Im−j+1 − βvvT )A(j : m, j : n)
if j < m

A(j + 1 : m, j) = v(2 : m− j + 1)
end

end
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How A is overwritten in QR [10, p.225]

v(j) =



0
...
0
1

v
(j)
j+1
...
v

(j)
m


← j ; A =



r11 r12 r13 r14 r15 r16

v
(1)
2 r22 r23 r24 r25 r26

v
(1)
3 v

(2)
3 r33 r34 r35 r36

v
(1)
4 v

(2)
4 v

(3)
4 r44 r45 r46

v
(1)
5 v

(2)
5 v

(3)
5 v

(4)
5 r55 r56

v
(1)
6 v

(2)
6 v

(3)
6 v

(4)
6 v

(5)
6 r66



Upon completion, the upper triangular part of A is overwritten by R, and the
other part by Householder vectors.

• If it quires the computation of

Q = (Hn · · ·H1)
T = H1 · · ·Hn,

then it can be accumulated using (3.12), or (3.13). This accumulation
requires 4(m2n−mn2 + n3/3) flops.
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Example 3.31. LetA =

[
0.70000 0.70711
0.70001 0.70711

]
.Compute the factorQ by House-

holder reflection and MGS, and test orthogonality of Q. Round the intermedi-
ate results to 5 significant digits.

Solution. (MGS) The classical and modified Gram-Schmidt algorithms are
identical in the 2× 2 case.

r11 = .98996, q1 = a1/r11 =

[
.70000/.98996

.70001/.98996

]
=

[
.70710

.70711

]
r12 = qT1 a2 = .70710 ∗ .70711 + .70711 ∗ .70711 = 1.0000

q2 = a1 − r12q1 =

[
.70711

.70711

]
−

[
.70710

.70711

]
=

[
.00001

.00000

]
,

Q =

[
.70710 1.0000
.70711 .0000

]
, ||QTQ− I2|| ≈ 0.70710

So the Q matrix is not close to any orthogonal matrix!

(Householder reflection) Solution by Householder.

a1 =

[
.70000

.70001

]
, a2 =

[
.70711

.70711

]
, ||a1||2 = r11 ≈ .98996.

v =

[
.70000 + .98996.

.70001

]
=

[
1.6900

.70001

]
,

P1 = I2 − 2vvT/||v||22, P1a2 = a2 −
2vTa2

||v||22
v

⇒ Q = P T
1 =

[
−.70710 −.70711
−.70711 .70710

]
||QTQ− I2|| = 5.0379e− 6

So Householder reflection is more stable than MGS.
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3.3.3. Solving LS problems by Householder reflectors

• To solve the LS problem min ||Ax−b||22 using A = QR, we need to compute

QTb and Rx = QTb.

Since A→ PnPn−1 · · ·P1A = R, Q = (PnPn−1 · · ·P1)
T ,

QTb = PnPn−1 · · ·P1b.

So we can apply exactly the same steps that were applied to A in the
Householder QR algorithm:
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• (Computing QTb)

for i = 1 to n
γ = −2 · uTi b(i : m)
b(i : m) = b(i : m) + γui

end for

• (Solving Rx = QTb)

R̃ ≡ [R QTb]
for k = n : −1 : 1

R̃(k, n+ 1) = R̃(k, n+ 1)/R̃(k, k);
if k 6= 1

R̃(1 : k − 1, n+ 1) = R̃(1 : k − 1, n+ 1)− R̃(1 : k − 1, k)R̃(k, n+ 1);
end if

end for

(Solution x overwrites the (n+ 1)-th column of R̃.)

• Total cost in solving the LS problem:

2mn2 −
2n3

3



3.3. Orthogonal Matrices 111

3.3.4. Givens rotation

Definition 3.32. A Givens rotation

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
rotates any vector x ∈ R2 counter-clockwise by θ:

Linear Transformation: T : R2 → R2, with standard matrix A = R(θ).
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Givens Rotation:

Any vector x ∈ R2, we can al-
ways write

x = ||x||2

[
cosφ

sinφ

]

• Thus,

y = R(θ)x =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
||x||2

[
cosφ

sinφ

]

= ||x||2

[
cos θ cosφ− sin θ sinφ

sin θ cosφ+ cos θ sinφ

]
= ||x||2

[
cos(θ + φ)

sin(θ + φ)

]

• R(θ) is an orthogonal matrix, i.e., R(θ)TR(θ) = I
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• Q(θ) =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
is a reflection matrix. That is, y = Q(θ)x is a

reflection of x across the line θ
2.

y =Q(θ)x

=||x||2

[
cos(θ − φ)

sin(θ − φ)

]

• Let

R(i, j, θ) =



1
1

. . .
cos θ − sin θ

. . .
sin θ cos θ

. . .
1

1



← i

← j

↑ ↑
i j

Then, for any vector x ∈ Rn, y = R(i, j, θ)x is a rotation of x counter-
clockwise by θ. The matrix R(i, j, θ) is sometimes called a plane rotator.
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• For any vector x ∈ R2, y = R(i, j, θ)x rotates x counter-clockwise by θ.

yk =


cxi − sxj, k = i,
sxi + cxj, k = j,
xk, k 6= i, j

R(i, j, θ)x just effects two rows (i and j rows) of x. In order to transform
yj to zero, we let

c = cos θ =
xi√
x2
i + x2

j

, s = sin θ =
−xj√
x2
i + x2

j

,

Then [
cos(θ) − sin(θ)
sin(θ) cos(θ)

][
xi

xj

]
=

[ √
x2
i + x2

j

0

]
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Algorithm 3.33. (Givens Rotation Algorithm) Given scalars a and b, the
following function computes c = cos θ and s = sin θ.[

c −s
s c

] [
a

b

]
=

[
r

0

]

where r =
√
a2 + b2.

function [c, s] = givens(a, b)

if b = 0

c = 1; s = 0;

else

if |b| > |a|

τ = −a
b

; s =
1√

1 + τ 2
; c = sτ ;

else

τ = − b
a

; c =
1√

1 + τ 2
; s = cτ ;

end

end

Note: It does not compute θ and it does not involve inverse trig. functions.
Total cost: 5 flops and a single square root.
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Example 3.34. Compute R(2,4, θ)x, where x =


1

2

3

4

.

Solution. Since

cos θ =
2√

22 + 42
=

1√
5

and sin θ =
−4√

22 + 42
=
−2√

5
,

we have

R(2,4, θ)x =


1 0 0 0
0 1√

5
0 2√

5

0 0 1 0
0 − 2√

5
0 1√

5




1

2

3

4

 =


1√

20

3

0

 .



3.3. Orthogonal Matrices 117

3.3.5. QR factorization by Givens rotation

Graphical Interpretation
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


︸ ︷︷ ︸

A

(3,4)−−→


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸
R(3,4,θ)A=A1

(2,3)−−→


∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸
R(2,3,θ)A1=A2

(1,2)−−→


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸
R(1,2,θ)A2=A3

(3,4)−−→


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗


︸ ︷︷ ︸
R(3,4,θ)A3=A4

(2,3)−−→


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗


︸ ︷︷ ︸
R(2,3,θ)A4=A5

(3,4)−−→


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


︸ ︷︷ ︸
R(3,4,θ)A5=A6

• Note: R(2, 3, θ)’s and R(3, 4, θ)’s in different steps are different since they
depend on different xi’s and xj ’s.
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Algorithm 3.35. (Givens rotation: Row operations)

A([i, k], :) =

[
c −s
s c

]
A([i, k], :)

This requires just 6n flops:

for j = 1 : n

τ1 = A(i, j);

τ2 = A(k, j);

A(i, j) = cτ1 − sτ2;

A(k, j) = sτ1 + cτ2;

end

• Recall that
A← R(i, k, θ)A effects i-th and k-th rows only.
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Algorithm 3.36. (Givens QR Algorithm)
Given A ∈ Rm×n with m ≥ n, the following algorithm overwrites A with R(=

QTA), where R is the upper triangular and Q is orthogonal.

for j = 1 : n ← n steps
for i = m : −1 : j + 1 ← m− j steps

[c, s] = givens(A(i− 1, j), A(i, j)) ← 6 flops

A(i− 1 : i, j : n) =

[
c −s
s c

]
A(i− 1 : i, j : n) ← 6(n− j) flops

end
end

Computational complexity:
n∑
j=1

(m− j)[6(n− j) + 6] = 6
n∑
j=1

[
mn− (m+ n)j + j2

]
= 6

[
mn2 − (m+ n)

n∑
j=1

j +
n∑
j=1

j2

]
= 3mn2 − n3 − 3mn+ n = O(3mn2 − n3).

Note: For the notation Ri,j = R(i, j, θ),

Rn,n+1 · · ·Rm−1,m︸ ︷︷ ︸
last column

· · ·R2,3 · · ·Rm−1,m︸ ︷︷ ︸
2nd column

R1,2 · · ·Rm−1,m︸ ︷︷ ︸
1st column

A = R

Thus,
Q = (Rn,n+1 · · ·Rm−1,m · · ·R2,3 · · ·Rm−1,mR1,2 · · ·Rm−1,m)T
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3.3.6. Error propagation

Lemma 3.37. Let P be an exact Householder (or Givens) transformation,
and P̃ be its floating point approximation. Then

float(P̃A) = P (A+ E), ||E||2 = O(ε) · ||A||2
float(AP̃ ) = (A+ F )P, ||F ||2 = O(ε) · ||A||2

In words, this says that applying a single orthogonal matrix is backward sta-
ble.

Proof. Apply the usual formula

float(a ◦ b) = (a ◦ b)(1 + ε)

to the formulas for computing and applying P̃ .

Definition 3.38. Let alg(x) be a computational algorithm of f(x), including
effects of round-off. The algorithm alg(x) is said to be backward stable if for
all x there is a “small" δx such that alg(x) = f(x + δx), where δx is called the
backward error.

When our employed algorithm is backward stable, we say informally that we
get the exact answer (f(x+ δx)) for a slightly wrong problem (x+ δx).
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Theorem 3.39. Consider applying a sequence of orthogonal transformations
to A0. Then the computed product is an exact orthogonal transformation of
A0 + δA, where ||δA||2 = O(ε)||A||2. In other words, the entire computation is
backward stable:

float(P̃jP̃j−1 · · · P̃1A0Q̃1Q̃2 · · · Q̃j) = Pj · · ·P1(A0 + E)Q1 · · ·Qj

with ||E||2 = j · O(ε) · ||A||2. Here, as in Lemma 3.37, P̃i and Q̃i are floating
orthogonal matrices and Pi and Qi are exact orthogonal matrices.
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Why Orthogonal Matrices?

• float(X̃A) = XA+ E = X(A+X−1E) ≡ X(A+ F ),
where ||E||2 ≤ O(ε)||X||2 · ||A||2

• ||F ||2 = ||X−1E||2 ≤ ||X−1||2 · ||E||2 ≤ O(ε) · κ2(X) · ||A||2.
• The error ||E||2 is magnified by the condition number κ2(X) ≥ 1.

• In a larger product X̃k · · · X̃1AỸ1 · · · Ỹk, the error would be magnified by

Πiκ2(Xi) · κ2(Yi).

• This factor is minimized if and only if all Xi and Yi are orthogonal (or
scalar multiples of orthogonal matrices); the factor is one.
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Exercises for Chapter 3

3.1. Verify (3.3) on page 74. (You may have to use the normal equation (3.2).)

3.2. Prove the uniqueness part of Theorem 3.23. Hint: Let P, Q be reflectors such that
Px = y and Qx = y. Then, use properties in Proposition 3.20 to conclude P = Q.

3.3. Consider the matrix in Example 3.14. Implement codes to find its QR decomposition by
using

(a) the modified Gram-Schmidt process,
(b) the Householder reflection, and
(c) the Givens rotation.

Then, compare your results with the decomposition in (3.4).

3.4. For a given data set
x 1 2 3 4 5
y 0.8 2.1 3.3 4.1 4.7

we would like to find the best-fitting line y = a0 + a1x.

(a) Construct the algebraic system of the form Av = y, where A ∈ R5×2, v = [a0, a1]T ,
and y is a column vector including y-values in the data set.

(b) Solve the least-squares problem by

i. Normal equation
ii. QR factorization operated by the classical Gram-Schmidt process.

(c) Find the corresponding errors.
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CHAPTER 4
Singular Value Decomposition (SVD)

The QR decomposition is a fine tool for the solution of least-squares problems
when the matrix is known to have full rank. However, if the matrix does not
have full rank, or if the rank is not known, a more powerful tool is required.
Such more powerful tools (for rank-deficient cases) are

• The QR decomposition with column pivoting

• Singular value decomposition (SVD)

SVD may be the most important matrix decomposition of all, for both theoret-
ical and computational purposes.

Contents of Chapter 4
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125
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4.1. Introduction to the SVD

Rank-deficient case: We begin with a discussion on rank-deficient algebraic
problems.
Definition 4.1. Let A ∈ Rm×n, m ≥ n. The matrix A is called rank-
deficient if rank(A) = k < n.

Theorem 4.2. Let A ∈ Rm×n, m ≥ n, with rank(A) = k > 0. Then there exist
matrices Â, Q, and R such that

Â = QR, (4.1)

where Â is obtained fromA by permuting its columns, Q ∈ Rm×m is orthogonal,
and

R =

[
R11 R12

0 0

]
∈ Rm×n,

R11 ∈ Rk×k is nonsingular and upper triangular.

Proposition 4.3. (Rank-deficient LS problems) Let A ∈ Rm×n, m ≥ n,
with rank(A) = k < n. Then there exists an (n− k)-dimensional set of vectors
x that minimize

||Ax− b||2.

Proof. Let Az = 0. Then if x minimize ||Ax−b||2, so does x+z. dim(Null(A)) =

n− rank(A) = n− k by the Rank Theorem.
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Singular Value Decomposition (SVD)

Theorem 4.4. (SVD Theorem) Let A ∈ Rm×n with m ≥ n. Then we can
write

A = U ΣV T , (4.2)

where U ∈ Rm×n and satisfies UTU = I, V ∈ Rn×n and satisfies V TV = I, and
Σ = diag(σ1, σ2, · · · , σn), where

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Remark 4.5. The matrices are illustrated pictorially as A

 =

 U


 Σ

 V T



U is m× n orthogonal (the left singular vectors of A.)
Σ is n× n diagonal (the singular values of A.)
V is n× n orthogonal (the right singular vectors of A.)

• For some k ≤ n, the singular values may satisfy

σ1 ≥ σ2 ≥ · · · ≥ σk︸ ︷︷ ︸
nonzero singular values

> σk+1 = · · · = σn = 0.

In this case, rank(A) = k.

• If m < n, the SVD is defined by considering AT .
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Proof. (of Theorem 4.4) Use induction on m and n: we assume that the SV D exists
for (m− 1)× (n− 1) matrices, and prove it for m×n. We assume A 6= 0; otherwise we can take
Σ = 0 and let U and V be arbitrary orthogonal matrices.

• The basic step occurs when n = 1 (m ≥ n). We let A = UΣV T with U = A/||A||2, Σ = ||A||2,
V = 1.

• For the induction step, choose v so that

||v||2 = 1 and ||A||2 = ||Av||2 > 0.

• Let u = Av
||Av||2 , which is a unit vector. Choose Ũ , Ṽ such that

U = [u Ũ ] ∈ Rm×n and V = [v Ṽ ] ∈ Rn×n

are orthogonal.
• Now, we write

UTAV =

[
uT

ŨT

]
· A · [v Ṽ ] =

[
uTAv uTAṼ

ŨTAv ŨTAṼ

]
Since

uTAv =
(Av)T (Av)

||Av||2
=
||Av||22
||Av||2

= ||Av||2 = ||A||2 ≡ σ,

ŨTAv = ŨTu||Av||2 = 0,

we have

UTAV =

[
σ 0
0 U1Σ1V

T
1

]
=

[
1 0
0 U1

] [
σ 0
0 Σ1

] [
1 0
0 V1

]T
,

or equivalently

A =

(
U

[
1 0
0 U1

])[
σ 0
0 Σ1

](
V

[
1 0
0 V1

])T
. (4.3)

Equation (4.3) is our desired decomposition.
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4.1.1. Algebraic Interpretation of the SVD

Let the SVD of A be A = U ΣV T , with

U = [u1 u2 · · · un],
Σ = diag(σ1, σ2, · · · , σn),
V = [v1 v2 · · · vn],

and σk be the smallest positive singular value. Since

A = U ΣV T ⇔ AV = UΣV TV = UΣ,

we have

AV = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn]

= [u1 · · · uk · · · un]


σ1

. . .
σk

. . .
0


= [σ1u1 · · · σkuk 0 · · · 0]
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Therefore,

A = U ΣV T ⇔
{
Avj = σjuj, j = 1, 2, · · · , k
Avj = 0, j = k + 1, · · · , n (4.4)

Similarly, starting from AT = V ΣUT ,

AT = V ΣUT ⇔
{
ATuj = σjvj, j = 1, 2, · · · , k
ATuj = 0, j = k + 1, · · · , n (4.5)

Summary 4.6. It follows from (4.4) and (4.5) that

• {σ2
j}, j = 1, 2, · · · , k, are positive eigenvalues of ATA.

ATAvj = AT (σjuj) = σ2
jvj, j = 1, 2, · · · , k. (4.6)

So, the singular values play the role of eigenvalues.

• Equation (4.6) gives how to find the singular values and the right singular
vectors, while (4.4) shows a way to compute the left singular vectors.

• (Dyadic decomposition) The matrix A ∈ Rm×n, with rank(A) = k ≤ n,
can be expressed as

A =
k∑
j=1

σjujv
T
j . (4.7)

This property has been utilized for various approximations and applica-
tions, e.g., by dropping singular vectors corresponding to small singular
values.
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4.1.2. Geometric Interpretation of the SVD

The matrix A maps an orthonormal basis

B1 = {v1,v2, · · · ,vn}

of Rn onto a new “scaled” orthogonal basis

B2 = {σ1u1, σ2u2, · · · , σkuk}

for a subspace of Rm.

B1 = {v1,v2, · · · ,vn}
A−→ B2 = {σ1u1, σ2u2, · · · , σkuk} (4.8)

Consider a unit sphere Sn−1 in Rn:

Sn−1 =
{

x
∣∣∣ n∑
j=1

x2
j = 1

}
.

Then, ∀x ∈ Sn−1,

x = x1v1 + x2v2 + · · ·+ xnvn

Ax = σ1x1u1 + σ2x2u2 + · · ·+ σkxkuk

= y1u1 + y2u2 + · · ·+ ykuk, (yj = σjxj)

(4.9)

So, we have

yj = σjxj ⇐⇒ xj =
yj
σj

n∑
j=1

x2
j = 1 (sphere) ⇐⇒

k∑
j=1

y2
j

σ2
j

= α ≤ 1 (ellipsoid)
(4.10)
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Example 4.7. We build the setA·Sn−1 by multiplying one factor ofA = UΣV T

at a time. Assume for simplicity that A ∈ R2×2 and nonsingular. Let

A =

[
3 −2
−1 2

]
= UΣV T

=

[
−0.8649 0.5019

0.5019 0.8649

] [
4.1306 0

0 0.9684

] [
−0.7497 0.6618

0.6618 0.7497

]
Then, for x ∈ S1,

Ax = UΣV Tx = U
(
Σ(V Tx)

)

In general,

• V T : Sn−1 → Sn−1 (rotation in Rn)

• Σ : ej 7→ σjej (scaling from Sn−1 to Rn)

• U : Rn → Rm (rotation)
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4.1.3. Properties of the SVD

Theorem 4.8. Let A ∈ Rm×n and p = min(m,n). Let A = UΣV T be the SVD
of A, with

σ1 ≥ · · · ≥ σk > σk+1 = · · · = σp = 0.

Then,

1.



rank(A) = k

Null(A) = Span{vk+1, · · · ,vn}
Range(A) = Span{u1, · · · ,uk}

A =
k∑
i=1

σiuiv
T
i

2.



||A||2 = σ1 (See HW 1.)
||A||2F = σ2

1 + · · ·+ σ2
k (See HW 2.)

min
x 6=0

||Ax||2
||x||2

= σn (m ≥ n)

κ2(A) = ||A||2 · ||A−1||2 =
σ1

σn
( when m = n,& ∃A−1)
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Theorem 4.9. Let A ∈ Rm×n with m ≥ n. Then,

||ATA||2 = ||A||22
κ2(A

TA) = κ2(A)2. (when A−1 exists)
(4.11)

Proof. Use the SVD of A to deduce the SVD of ATA.

Theorem 4.10. Let A ∈ Rm×n, m ≥ n, rank(A) = n, with singular values

σ1 ≥ σ2 ≥ · · ·σn > 0.

Then
||(ATA)−1||2 = σ−2

n ,

||(ATA)−1AT ||2 = σ−1
n ,

||A(ATA)−1||2 = σ−1
n ,

||A(ATA)−1AT ||2 = 1.

(4.12)

Definition 4.11. (ATA)−1AT is called the pseudoinverse ofA, whileA(ATA)−1

is called the pseudoinverse of AT . Let A = UΣV T be the SVD of A. Then

(ATA)−1AT = V Σ−1UT ≡ A+. (4.13)
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Theorem 4.12. Let A ∈ Rm×n with rank(A) = r > 0. Let A = UΣV T be the
SVD of A, with singular values

σ1 ≥ · · · ≥ σr > 0.

Define, for k = 1, · · · , r − 1, the truncated SVD

Ak =
k∑
j=1

σjujv
T
j (sum of rank-1 matrices). (4.14)

Then, rank(Ak) = k and

||A− Ak||2 = min{||A−B||2
∣∣ rank(B) ≤ k}

= σk+1,

||A− Ak||2F = min{||A−B||2F
∣∣ rank(B) ≤ k}

= σ2
k+1 + · · ·+ σ2

r .

(4.15)

That is, of all matrices of rank ≤ k, Ak is closest to A.

Note: The truncated matrix Ak can be written as

Ak = UΣkV
T , (4.16)

where Σk = diag(σ1, · · · , σk, 0, · · · , 0).

Corollary 4.13. Suppose A ∈ Rm×n has full rank. Thus rank(A) = p, where
p = min(m,n). Let σ1 ≥ · · · ≥ σp be the singular values of A. Let B ∈ Rm×n

satisfy
||A−B||2 < σp.

Then B also has full rank.
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Full SVD

• For A ∈ Rm×n,
A = UΣV T ⇐⇒ UTAV = Σ,

where U ∈ Rm×n and Σ, V ∈ Rn×n.

• Expand
U → Ũ = [U U2] ∈ Rm×m, (orthogonal)

Σ → Σ̃ =

[
Σ

O

]
∈ Rm×n,

where O is an (m− n)× n zero matrix.

• Then,

ŨΣ̃V T = [U U2]

[
Σ

O

]
V T = UΣV T = A (4.17)
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Proposition 4.14. There are important relation between the SVD of a ma-
trix A and the Schur decompositions of the symmetric matrices

ATA, AAT , and
[
O AT

A O

]
.

Let A ∈ Rm×n, m ≥ n. If UTAV = diag(σ1, · · · , σn) is the SV D of A, then

V T (ATA)V = diag(σ2
1, · · · , σ2

n) ∈ Rn×n

UT (AAT )U = diag(σ2
1, · · · , σ2

n, 0 · · · , 0︸ ︷︷ ︸
m−n

) ∈ Rm×m

Separate U as

U = [ U1︸︷︷︸
n

U2︸︷︷︸
m−n

],

and define

Q ≡ 1√
2

[
V V O

U1 −U1

√
2U2

]
∈ R(m+n)×(m+n).

Then,
QT

[
O AT

A O

]
Q = diag(σ1, · · · , σn,−σ1, · · · ,−σn, 0 · · · , 0︸ ︷︷ ︸

m−n

) (4.18)
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Theorem 4.15. Let A = UΣV T be the SV D of A ∈ Rm×n (m ≥ n).

1. (m = n) Suppose that A is symmetric, with eigenvalues λi and or-
thonormal e-vectors ui. In other words,

A = UΛUT

is an eigendecomposition, with Λ = diag(λ1, · · · , λn). Then an SVD of
A is A = UΣV T , where

σi = |λi| and vi = sign(λi)ui, where sign(0) = 1.

2. The eigenvalues of the symmetric matrix ATA are σ2
i . The right singular

vectors vi are corresponding orthonormal eigenvectors.

3. The eigenvalues of the symmetric matrix AAT are σ2
i and m − n zeros.

The left singular vectors ui are corresponding orthonormal eigenvectors
for the e-values σ2

i . One can take any m − n other orthogonal vectors as
eigenvectors for the eigenvalue 0.

4. Let H =

[
0 AT

A 0

]
. A is square and A = UΣV T is the SV D of A. Σ =

diag(σ1, · · · , σn), U = [u1 u2 · · · un], and V = [v1 v2 · · · vn]. Then the 2n

e-values of H are ±σi, with e-vectors 1√
2

[
vi

±ui

]
.

5. If A has full rank, the solution of minx ||Ax− b||2 is x = V Σ−1UTb.
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4.1.4. Computation of the SVD

For A ∈ Rm×n, the procedure is as follows.

1. Form ATA (ATA – covariance matrix of A).

2. Find the eigendecomposition of ATA by orthogonalization process, i.e.,
Λ = diag(λ1, · · · , λn),

ATA = V ΛV T ,

where V = [v1 · · · vn] is orthogonal, i.e., V TV = I.

3. Sort the eigenvalues according to their magnitude and let

σj =
√
λj, j = 1, 2, · · · , n.

4. Form the U matrix as follows,

uj =
1

σj
Avj, j = 1, 2, · · · , r.

If necessary, pick up the remaining columns of U so it is orthogonal.
(These additional columns must be in Null(AAT ).)

5. A = UΣV T = [u1 · · · ur · · · un] diag(σ1, · · · , σr, 0, · · · , 0)

 vT1
...

vTn



Lemma 4.16. Let A ∈ Rn×n be symmetric. Then (a) all the eigenvalues
of A are real and (b) eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Proof. See Homework 3.
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Example 4.17. Find the SV D for A =

 1 2
−2 1

3 2

.

Solution.

1. ATA =

[
14 6
6 9

]
.

2. Solving det(ATA− λI) = 0 gives the eigenvalues of ATA

λ1 = 18 and λ2 = 5,

of which corresponding eigenvectors are

ṽ1 =

[
3

2

]
, ṽ2 =

[
−2

3

]
. =⇒ V =

[
3√
13
− 2√

13
2√
13

3√
13

]

3. σ1 =
√
λ1 =

√
18 = 3

√
2, σ2 =

√
λ2 =

√
5. So

Σ =

[√
18 0

0
√

5

]

4. u1 = 1
σ1
Av1 = 1√

18
A

[
3√
13
2√
13

]
= 1√

18
1√
13

 7

−4

13

 =


7√
234

− 4√
234
13√
234


u2 = 1

σ2
Av2 = 1√

5
A

[
−2√

13
3√
13

]
= 1√

5
1√
13

 4

7

0

 =


4√
65
7√
65

0

 .

5. A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0

[√18 0

0
√

5

][ 3√
13

2√
13

− 2√
13

3√
13

]
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Example 4.18. Find the pseudoinverse of A,

A+ = (ATA)−1AT = V Σ−1UT ,

when A =

 1 2
−2 1

3 2

.

Solution. From Example 4.17, we have

A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0

[√18 0

0
√

5

] [ 3√
13

2√
13

− 2√
13

3√
13

]

Thus,

A+ = V Σ−1UT =

[
3√
13
− 2√

13
2√
13

3√
13

][
1√
18

0

0 1√
5

][
7√
234
− 4√

234
13√
234

4√
65

7√
65

0

]

=

[
− 1

30 −
4
15

1
6

11
45

13
45

1
9

]
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Computer implementation [10]

• Algorithm is extremely stable.

• The SV D of A ∈ Rm×n (m ≥ n) is A = UΣV T :

– Computation of U , V and Σ: 4m2n+ 8mn2 + 9n3.
– Computation of V , and Σ: 4mn2 + 8n3.

• Matlab: [U,S,V] = svd(A)
• Mathematica:

{U, S, V} = SingularValueDecomposition[A]
• Lapack: dgelss
• Eigenvalue problems.
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4.1.5. Numerical rank

In the absence of roundoff errors and uncertainties in the data, the SVD re-
veals the rank of the matrix. Unfortunately the presence of errors makes rank
determination problematic. For example, consider

A =


1/3 1/3 2/3
2/3 2/3 4/3
1/3 2/3 3/3
2/5 2/5 4/5
3/5 1/5 4/5

 (4.19)

• Obviously A is of rank 2, as its third column is the sum of the first two.

• Matlab “svd" (with IEEE double precision) produces

σ1 = 2.5987, σ2 = 0.3682, and σ3 = 8.6614× 10−17.

• What is the rank of A, 2 or 3?
What if σ3 is in O(10−13)?

• For this reason we must introduce a threshold T . Then we say that A
has numerical rank k if A has k singular values larger than T , that is,

σ1 ≥ σ2 ≥ · · · ≥ σk > T ≥ σk+1 ≥ · · · (4.20)
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Matlab

• Matlab has a “rank" command, which computes the numerical rank of
the matrix with a default threshold

T = 2 max{m,n} ε ||A||2 (4.21)

where ε is the unit roundoff error.

• In Matlab, the unit roundoff error can be found from the parameter “eps"

eps = 2−52 = 2.2204× 10−16.

• For the matrix A in (4.19),

T = 2 · 5 · eps · 2.5987 = 5.7702× 10−15

and therefore rank(A)=2.

See Homework 4 for an exercise with Matlab.



4.2. Applications of the SVD 145

4.2. Applications of the SVD

• Solving (rank-deficient) LS problems
(pseudoinverse A+ = V Σ+UT , when A = UΣV T )

• Low-rank matrix approximation

– Image/Data compression
– Denoising

• Signal processing [1, 2, 4]

• Other applications

– Principal component analysis
(e.g., signal processing and pattern recognition)

– Numerical weather prediction
– Reduced order modeling [25]
– Inverse problem theory [20]
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4.2.1. Image compression

• A ∈ Rm×n is a sum of rank-1 matrices:

V = [v1, · · · ,vn], U = [u1, · · · ,un],

A = UΣV T =
n∑
i=1

σiuiv
T
i .

• The approximation

Ak = UΣkV
T =

k∑
i=1

σiuiv
T
i

is closest to A among matrices of rank≤ k, and

||A− Ak||2 = σk+1.

• It only takes m · k + n · k = (m + n) · k words to store u1 through uk, and
σ1v1 through σkvk, from which we can reconstruct Ak.

• We use Ak as our compressed images, stored using (m+ n) · k words.
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• Matlab code to demonstrate the SVD compression of images:
img = imread('Peppers.png'); [m,n,d]=size(img);
[U,S,V] = svd(reshape(im2double(img),m,[]));
%%---- select k <= p=min(m,n)
k = 20;
img_k = U(:,1:k)*S(1:k,1:k)*V(:,1:k)';
img_k = reshape(img_k,m,n,d);
figure, imshow(img_k)

The “Peppers" image is in [270, 270, 3] ∈ R270×810.

Image compression using k singular values

Original (k = 270) k = 1 k = 10

k = 20 k = 50 k = 100
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Peppers: Singular values

Peppers: Compression quality

PSNR (dB) =



13.7 when k = 1,
20.4 when k = 10,
23.7 when k = 20,
29.0 when k = 50,
32.6 when k = 100,
37.5 when k = 150,

where PSNR is “Peak Signal-to-Noise Ratio."

Peppers: Storage: It requires (m+ n) · k words. For example, when k = 50,

(m+ n) · k = (270 + 810) · 50 = 54,000 , (4.22)

which is approximately a quarter the full storage space

270× 270× 3 = 218,700 .
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4.2.2. Rank-deficient least-squares problems

The LS problem: For the system of equations

Ax = b, (4.23)

where A ∈ Rm×n and b ∈ Rm, find the best-fitting solution x̂ as a solution of

min
x∈Rn
||Ax− b||2. (4.24)

• If m > n, then the system (4.23) is overdetermined, and we cannot expect
to find an exact solution. The solution can be obtained through the LS
problem (4.24).

• The solution of the LS problem is sometimes not unique, for example,
when

rank(A) = r < min{m,n}.

In this case, we may consider the following additional problem:

Of all the x ∈ Rn that minimizes ||Ax−b||2, find the one for which
||x||2 is minimized.

This problem always has a unique solution, the minimum-norm solu-
tion.
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Proposition 4.19. (Rank-deficient LS problems, Proposition 4.3 on
page 126). Let A ∈ Rm×n, m ≥ n, with rank(A) = k < n. Then there exists an
(n− k)-dimensional set of vectors x that minimize

||Ax− b||2.

Proposition 4.20. Let σmin = σmin(A), the smallest singular value of A.
Assume σmin > 0. Then

1. If x minimize ||Ax − b||2, then ||x||2 ≥ |uTnb|/σmin, where un is the last
column of U in A = UΣV T .

2. Changing b to b + δb can change x to x + δx, where ||δx||2 is as large as
||δb||2/σmin.

In other words, if A is nearly rank deficient (σmin is small), then the solution x

is ill-conditioned and possibly very large.

Proof. Part 1:
x = A+b = V Σ−1UTb.

So
||x||2 = ||Σ−1UTb||2 ≥ |

(
Σ−1UTb

)
n
| = |uTnb|/σmin.

Part 2: choose δb parallel to un.
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Proposition 4.21. When A ∈ Rm×n is exactly singular, then

x = arg min
x∈Rn
||Ax− b||2

can be characterized as follows.

Let A = UΣV T have rank r < n, and write the SVD of A as

A = [U1 U2]

[
Σ1 0
0 0

]
[V1 V2] = U1Σ1V

T
1 , (4.25)

where Σ1 is r × r and nonsingular and U1 and V1 have r columns. Let σ =

σmin(Σ1), the smallest nonzero singular value of A. Then

1. All solutions x can be written

x = V1Σ
−1
1 UT

1 b + V2z (= A+b), (4.26)

where z is an arbitrary vector.

2. The solution x has a minimal norm ||x||2 precisely when z = 0, in which
case

x = V1Σ
−1
1 UT

1 b and ||x||2 ≤ ||b||2/σ. (4.27)

3. Changing b to b + δb can change the minimal norm solution x by at most
||δb||2/σ.

In other words, the norm and condition number of the unique minimal norm
solution x depend on the smallest nonzero singular value of A.
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Solving LS problems by the SVD:
Let A ∈ Rm×n, m ≥ n, have rank r ≤ n. Let A = UΣV T be the SVD of A.

• Because U is orthogonal,

||Ax− b||2 = ||UT (Ax− b)||2 = ||Σ(V Tx)− UTb||2.

• Letting c = UTb and y = V Tx, we have

||Ax− b||22 = ||Σy − c||22 =
r∑
j=1

|σjyj − cj|2 +
m∑

j=r+1

|cj|2 (4.28)

It is clear that (4.28) is minimized when and only when

yj =
cj
σj
, j = 1, · · · , r. (4.29)

• (When r < n): It is clear to see that ||y||2 is minimized when and only
when

yr+1 = · · · = yn = 0.

• Since x = V y, we have ||x||2 = ||y||2. Thus ||x||2 is minimized when
and only when ||y||2 is. This proves that the LS problem has exactly one
minimum-norm solution.
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Solving LS problems by the SVD:
It is useful to repeat the development using partitioned matrices. Let A ∈
Rm×n, m ≥ n, have rank r ≤ n. Let A = UΣV T be the SVD of A given as in
(4.25):

A = [U1 U2]

[
Σ1 0
0 0

]
[V1 V2] = U1Σ1V

T
1 , (4.30)

where Σ1 is r × r and nonsingular and U1 and V1 have r columns.

• Let, with the corresponding partitioning,

c = UTb =

[
c1

c2

]
and y = V Tx =

[
y1

y2

]
.

• Then,

Σy − c =

[
Σ1 0
0 0

][
y1

y2

]
−

[
c1

c2

]
=

[
Σ1y1 − c1

−c2

]
.

• So
||Ax− b||22 = ||Σy − c||22 = ||Σ1y1 − c1||22 + ||c2||22. (4.31)

• Equation (4.31) is minimized when and only when

y1 = Σ−1
1 c1. (4.32)

• For the minimum-norm solution, take y2 = 0.
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Summary 4.22. (Solving LS problems by the SVD). For solving the LS
problem

min
x∈Rn
||Ax− b||2, A ∈ Rm×n,

we summarize the above SVD procedure as follows.

1. Find the SVD of A: A = UΣV T and rank(A) = r.

2. Calculate

[
c1

c2

]
= c = UTb, where c1 ∈ Rr.

3. Let y1 = Σ−1
1 c1, where Σ1 = Σ(1 : r, 1 : r).

4. If r < n, choose y2 ∈ Rn−r arbitrarily.
(For minimum-norm solution, take y2 = 0.)

5. Let y =

[
y1

y2

]
∈ Rn.

6. Let x = V y ∈ Rn.

Note:

• The above procedure is equivalent to solve the LS problem by the pseu-
doinverse of A, particular when A has full rank.

• The minimum-norm solution reads: x = V1 y1.
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Example 4.23. Use the pseudoinverse to solve the LS problem min ||Ax−b||2,
where

A =

 1 2
−1 1

1 2

 and b =

 1

2

3

 .
Solution. The eigenvalues of ATA are

λ1 = 3(2 +
√

2), λ2 = 3(2−
√

2).

If v1 and v2 are the corresponding eigenvectors of ATA, then

uj =
1

σj
Avj =

1√
λj
Avj, j = 1, 2.

The SVD of A reads

A = UΣV T =


1+
√

2
2
√

3
1−
√

2
2
√

3
√

2−1√
6

√
2+1√

6

1+
√

2
2
√

3
1−
√

2
2
√

3

[√λ1 0
0
√
λ2

] √
2−1√

4−2
√

2
−

√
2+1√

4+2
√

2
1√

4−2
√

2

1√
4+2
√

2


Thus

A+ = V Σ−1UT =

[
1
6 −

2
3

1
6

1
6

1
3

1
6

]
and therefore

x = A+b =

[
1
6 −

2
3

1
6

1
6

1
3

1
6

] 1

2

3

 =

[
−2

3
4
3

]

The corresponding least L2-error is
√

2, that is,

||Ax− b||2 = min
y
||Ay − b||2 =

√
2.
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4.2.3. Principal component analysis (PCA)

Definition 4.24. Principal component analysis is a statistical procedure
for data (a set of observations) that

(a) uses an orthogonal transformation and

(b) converts data of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components.

PCA

• #{principal components} < #{original variables}.

• The transformation is defined in such a way that

– the first principal component has the largest possible variance,
– and each succeeding component has the highest variance possible un-

der the constraint that it is orthogonal to (i.e., uncorrelated with) the
preceding components.

• Principal components are guaranteed to be independent if the data set is
jointly normally distributed.
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In other words:

• PCA is a mathematical algorithm that reduces the dimensionality of
the data while retaining most of the variation in the data set.

• It accomplishes this reduction by identifying directions, called princi-
pal components, along which the variation in the data is maximal.

• By using a few components, each sample can be represented by relatively
few numbers instead of by values for thousands of variables.
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Example 4.25. Figure 4.1 below indicates an oil-split zone. Find the semi-
axes of the minimum-volume enclosing ellipsoid (MVEE) or equal-volume
fitting ellipsoid (EVFE) of the oil-splitting.

Figure 4.1: An oil-split zone.

Solution. Let the acquired data set (scattered points) be

vk = (vk,1, vk,2), k = 1, · · · ,m.

Let the center of the data points be

c = (c1, c2) =
1

m
(v1 + · · ·+ vm).

Then, the direction of the major semi-axis must be the solution of

max
x∈R2

m∑
k=1

|(vk − c) · x|2, ||x||2 = 1. (4.33)

This constrained optimization problem can be solved by applying the method
of Lagrange multipliers.

∇f(x) = λ∇g(x), (4.34)

where

f(x) =
m∑
k=1

|(vk − c) · x|2, g(x) = ||x||22.

Note that

f(x) =
m∑
k=1

(
(vk,1 − c1)x1 + (vk,2 − c2)x2

)2
, (4.35)
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where x = (x1, x2). Thus it follows from (4.34) that

Ax = λx, (4.36)

where A = (aij) ∈ R2×2 with

aij =
m∑
k=1

(vk,i − ci)(vk,j − cj), i, j = 1, 2.

The direction of the major semi-axis of the ellipsoid can be found from the
eigenvector of the matrix A corresponding to the larger eigenvalue.

Definition 4.26. Let us collect x- and y-components separately from the
data:

X = (v1,1, v2,1, · · · , vm,1),
Y = (v1,2, v2,2, · · · , vm,2).

Then, the matrix A in (4.36) can be rewritten as

A =

[
Var(X) Cov(X, Y )

Cov(X, Y ) Var(Y )

]
, (4.37)

called the covariance matrix of the data points (X, Y ).
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Semi-axes of the ellipsoid:

In order to find the minor semi-axis, the maximization problem (4.33) can
be replaced with the corresponding minimization problem. This would be re-
duced to the same eigenvalue problem given in (4.36). Thus, both major and
minor semi-axes of the ellipsoid can be found from the eigenvalue problem.

Theorem 4.27. Let A be the covariance matrix with

Ax` = λ`x`, ||x`||2 = 1.

Then the semi-axes of the MVEE in Rn are found as

η
√
λ` x`, ` = 1, · · · , n, (4.38)

where η > 0 is a scaling constant given by

η2 = max
k

(vk − c)TA−1(vk − c),

provided that c is the real center.
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Example 4.28. A data set of scattered points can be produced and analyzed
by

close all; %clear all;
n = 100; h=10/n; P = 1:n;
X = h*P+randn(1,n); Y = h*P+randn(1,n);
%%-------------------------------------------
plot(X,Y,'ko');
title('Scattered Points & Their Principal Components',...

'fontsize',13)
%%-------------------------------------------
A = zeros(n,2);
A(:,1) = X;
A(:,2) = Y;
[U,S,V]= svd(A);
k=1; PC1 = U(:,k)*S(k,k)*V(:,k)';
k=2; PC2 = U(:,k)*S(k,k)*V(:,k)';
hold
plot(PC1(:,1),PC1(:,2),'b*');
plot(PC2(:,1),PC2(:,2),'rs');
legend('Scattered Points','PC-1','PC-2','fontsize',12);
%%-------------------------------------------
C = cov(X,Y);
[V2,D] = eig(C);
[D,order] = sort(diag(D),'descend');
V2 = V2(:,order); L2 = sqrt(D);
hold
Cntr = [mean(X) mean(Y)];
arrow(Cntr,Cntr+1.5*L2(1)*V2(:,1)','width',3);
arrow(Cntr,Cntr+1.5*L2(2)*V2(:,2)','width',3);
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Results:

SVD Analysis Covariance Analysis

S =


82.9046 0

0 8.9832
0 0
... ...
0 0

 L2 =

[
4.27206 0

0 0.9021

]

V =

[
0.6882 0.7255
0.7255 −0.6882

]
V2 =

[
0.6826 −0.7308
0.7308 0.6826

]

• The small mismatch may be due to an approximate setting for the center,
for covariance analysis.

• In general, they have different interpretations.

• Look at the ratio of the two singular/eigen- values.
(Covariance analysis is more geometrical, for this example.)
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4.2.4. Image denoising

Now, in this subsection, let’s apply the SVD for image denoising. We will see
soon that the attempt is a total failure. However, we will learn some important
aspects of the SVD through the exercise.

(a) (b)

Figure 4.2: Lena: (a) The original image and (b) a noisy image perturbed by Gaussian noise
of PSNR=25.7.

In this exercise, each column of the image is viewed as an observation. As in
§ 4.2.1, we first compute the SVD of the image array A,

A = UΣV T ,

and for the denoised image, we consider the low-rank approximation

Ak = UΣkV
T =

k∑
i=1

σiuiv
T
i .
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Numerical results
(k = 30; PSNR=26.5) (k = 50; PSNR=27.4)

(k = 70; PSNR=27.2) (k = 100; PSNR=26.6)

Figure 4.3: Lena: Denoised.

This is a total failure!!
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Why a total failure?

TV (uiv
T
i ) σi · TV (uiv

T
i )

• Singular vectors are more oscillatory for larger singular values.

• The noise is not localized for certain singular values.

• Columns of an image are not those to be considered as correlated, in the
first place.
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Exercises for Chapter 4

4.1. Let A ∈ Rm×n. Prove that ||A||2 = σ1, the largest singular value of A. Hint: Use the
following

||Av1||2
||v1||2

=
σ1||u1||2
||v1||2

= σ1 =⇒ ||A||2 ≥ σ1

and arguments around Equations (4.9) and (4.10) for the opposite directional inequality.

4.2. Recall that the Frobenius matrix norm is defined by

||A||F =
( m∑
i=1

n∑
j=1

|aij|2
)1/2

, A ∈ Rm×n.

Show that ||A||F = (σ2
1 + · · · + σ2

k)
1/2, where σj are nonzero singular values of A. Hint:

First show that if B = UC, where U is orthogonal, then ||B||F = ||C||F .

4.3. Prove Lemma 4.16. Hint: For (b), let Avi = λivi, i = 1, 2, and λ1 6= λ2. Then

(λ1v1) · v2 = (Av1) · v2 = v1 · (Av2)︸ ︷︷ ︸
∵ A is symmetric

= v1 · (λ2v2).

For (a), you may use a similar argument, but with the dot product being defined for
complex values, i.e.,

u · v = uT v,

where v is the complex conjugate of v.

4.4. Use Matlab to generate a random matrix A ∈ R8×6 with rank 4. For example,

A = randn(8,4);
A(:,5:6) = A(:,1:2)+A(:,3:4);
[Q,R] = qr(randn(6));
A = A*Q;

(a) Print out A on your computer screen. Can you tell by looking if it has (numerical)
rank 4?

(b) Use Matlab’s “svd" command to obtain the singular values of A. How many are
“large?" How many are “tiny?" (You may use the command “format short e" to get a
more accurate view of the singular values.)

(c) Use Matlab’s “rank" command to confirm that the numerical rank is 4.
(d) Use the “rank" command with a small enough threshold that it returns the value

6. (Type “help rank" for information about how to do this.)

4.5. Let A ∈ R2×2 with singular values σ1 ≥ σ2 > 0. Show the set {Ax | ||x||2 = 1} (the image
of the unit circle) is an ellipse in R2 whose major and minor semiaxes have lengths σ1

and σ2 respectively.
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4.6. Work this homework problem using pencil and paper (and exact arithmetic). Let

A =

1 2
2 4
3 6

 , b =

 1

1

1

 .
(a) Find the SVD of A. You may use the condensed form given in (4.30).

(b) Calculate the pseudoinverse of A, A+.

(c) Calculate the minimum-norm solution of the least-squares problem for the overde-
termined system Ax = b.

(d) Find a basis for Null(A).

(e) Find all solutions of the least-squares problem.
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CHAPTER 5
Eigenvalue Problems

For eigenvalue problems, we will begin with basic definitions in matrix alge-
bra, including Jordan/Schur canonical forms and diagonalization. Then, we
will study perturbation theory in order to understand effects of errors in both
data acquisition and computation. After considering Gershgorin’s theorem
and its applicability, we will work on nonsymmetric eigenvalue problems and
finally symmetric eigenvalue problems.
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5.1. Definitions and Canonical Forms

• For an n× n matrix A, if a scalar λ and a nonzero vector x satisfies

Ax = λx,

we call λ is a eigenvalue and x a eigenvector of A. (λ, x) is called an
eigenpair of A.

• λ is an eigenvalue of A
⇐⇒ There ∃x 6= 0 s.t. Ax = λx

⇐⇒ (A− λI)x = 0 has nontrivial solutions
⇐⇒ p(λ) = det(A− λI) = 0.

p(λ) is called characteristic polynomial of A.

• If A has n linearly independent eigenvectors

x1, x2, · · · ,xn,

then A ∼ Λ (similar) and has an EigenValue Decomposition (EVD):

A = XΛX−1 ≡ [x1 x2 · · · xn]


λ1

λ2

. . .
λn

 [x1 x2 · · · xn]−1
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When A is Diagonalizable

• An n× n matrix A is called diagonalizable if A ∼ Λ, a diagonal matrix.
Otherwise it is called defective.

• The algebraic multiplicity of λj:
the multiplicity of the root λj in the characteristic equation det(A− λI) =

0.

• The geometric multiplicity of λj:
the dimension of the eigenspace for λj
= dim(Null(A− λjI)).

* algebraic multiplicity ≥ geometric multiplicity

• Let A is an n× n matrix. Λ = diag(λ1, · · ·λn).

A is diagonalizable
⇐⇒ A has n lin. indep. e-vectors
⇐⇒ ∀λj, algebraic multiplicity = geometric multiplicity
⇐⇒ S−1AS = Λ (⇐⇒ A = S ΛS−1)
⇐⇒ AS = SΛ; col. of S are the right e-vectors of A
⇐⇒ S−1A = ΛS−1; col. of (S−1)∗ are left e-vectors of A

• Let S = [x1 · · · xn], the matrix of right e-vectors of A. Then S−1 =

[y∗1/y
∗
1x1 y∗2/y

∗
2x2 · · · y∗n/y

∗
nxn]

T .
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Jordan Canonical Forms

• The eigenvector x is also called right eigenvector. A nonzero vector y

satisfying y∗A = λy∗ is called left eigenvector of A. (Recall that y∗ =

yH = (ȳ)T is the conjugate transpose of y.)

• Jordan Canonical Forms Given a square matrix A, there exists a non-
singular S such that

S−1AS = J, (5.1)

where J is in Jordan canonical form. This means that J is block diag-
onal, with

J = diag(Jn1(λ1), Jn2(λ2), · · · , Jnk(λk))

and

Jnj(λj) =


λj 1

λj 1
. . . . . .

. . . 1
λj


nj×nj

(Jordan block for λj)
nj=algebraic multiplicity

J is unique, up to permutations of its diagonal blocks.
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Schur Canonical Forms

• For an n × n matrix A, there exists a unitary matrix Q and an upper
triangular matrix T such that

Q∗AQ = T. (5.2)

The eigenvalues of A are the diagonal entries of T .

• Real Schur Canonical Forms. If A is real, there exists a real orthog-
onal matrix V such that

V TAV = T is quasi-upper triangular.

This means that T is block upper triangular with 1 × 1 and 2 × 2 blocks
on the diagonal.

Its eigenvalues are the eigenvalues of its diagonal blocks. The 1×1

blocks correspond to real eigenvalues, and the 2 × 2 blocks to complex
conjugate pairs of eigenvalues.

Theorem 5.1. (Fundamental Theorem of Algebra). Every nonconstant
polynomial has at least one root (possibly, in the complex field).

Polynomial Factorization: If P is a nonconstant polynomial of real coeffi-
cients, then it can be factorized as a multiple of linear and quadratic factors
of which coefficients are all real.
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Computing E-vectors from Schur Form

• Let Q∗AQ = T be the Schur form of A. Then if λ is an eigenvalue of T ,
Tx = λx.

AQx = QTx = Q(λx) = λQx

So Qx is an eigenvector of A.

• To find eigenvectors of A, it suffices to find eigenvectors of T .
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5.2. Perturbation Theory: Bauer-Fike Theorem

Theorem 5.2. Let λ be a simple eigenvalue of A with right eigenvector x

and left eigenvector y, normalized so that ||x||2 = ||y||2 = 1. Let λ + δλ be the
corresponding eigenvalue of A+ δA. Then

δλ =
y∗δAx

y∗x
+O(||δA||2), or

|δλ| ≤ ||δA||
|y∗x|

+O(||δA||2) = sec Θ(y,x)||δA||+O(||δA||2)
(5.3)

where Θ(y,x) is the acute angle between y and x.

Note that sec Θ(y,x) = 1/|y∗x| ≡ c(λ) is the condition number of the eigen-
value λ. [s(λ) = |y∗x| in other texts.]

Note: The perturbation on the eigenvalue (due to a matrix perturbation) is
proportional to the condition number of the eigenvalue.

Corollary 5.3. Let A be be symmetric (or, more generally, normal: AA∗ =

A∗A). Then
|δλ| ≤ ||δA||+O(||δA||2). (5.4)
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Note: Theorem 5.2 is useful only for sufficiently small ||δA||. We can remove
the O(||δA||2) term and get a simple theorem true for any size perturbation
||δA||, at the cost of increasing the condition number of the eigenvalue by a
factor of n.

Theorem 5.4. (Bauer-Fike Theorem). Let A have all simple eigenvalues
(i.e., be diagonalizable). Call them λi, with right and left e-vectors xi and yi,
normalized so ||xi||2 = ||yi||2 = 1. Then the e-values of A + δA lie in disks Bi,
where Bi has center λi and radius n ||δA|||y∗i xi|.

Theorem 5.5. (Bauer-Fike Theorem). If µ is an eigenvalue of A+E ∈ Cn×n

and
X−1AX = D = diag(λ1, · · · , λn),

then
min
λ∈σ(A)

|λ− µ| ≤ ||X||p · ||X−1||p · ||E||p = κp(X) ||E||p (5.5)

where || · ||p denotes any of the p-norms. [10, Theorem 7.2.2].
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Theorem 5.6. Let λ be a simple e-value of A, with unit right and left e-
vectors x and y and condition number c = 1/|y∗x|. Then ∃ δA such that
A+ δA has a multiple e-value at λ, and

||δA||2
||A||2

≤ 1√
c2 − 1

.

If c � 1, i.e., the e-value is ill-conditioned, then the upper bound on the dis-
tance is 1√

c2−1
≈ 1

c , the reciprocal of the condition number.

Note: Multiple eigenvalues have infinite condition numbers; see Homework 1.
Being “close to singular" implies ill-conditioning.
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Example 5.7. Let A =

 1 2 3
0 4 5
0 0 4.001

 , E =

 0 0 0
0 0 0
.001 0 0

 . Then

σ(A) = {1, 4, 4.001},
σ(A+ E) ≈ {1.0001, 4.0582, 3.9427}.

The reciprocals of the condition numbers are

s(1) ≈ .8,
s(4) ≈ .2e− 3,
s(4.001) ≈ .2e− 3,

and
||E||2
||A||2

=
0.001

8.0762
≈ 0.00012 < .2e− 3

See Theorem 5.6.
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Note: If any eigenvalue has a large condition number, then the matrix of
eigenvectors has to have an approximately equally large condition number.

Theorem 5.8. Let A be diagonalizable with e-values λi and right and left
e-vectors xi, yi, respectively, normalized so ||xi|| = ||yi|| = 1. Suppose that S
satisfies

S−1AS = Λ = diag(λ1, · · · , λn).

Then
κ2(S) ≡ ||S||2 · ||S−1||2 ≥ max

i

1

|y∗ixi|
. (5.6)

If we choose S = [x1, · · · ,xn], then

κ2(S) ≤ n ·max
i

1

|y∗ixi|
. (5.7)

That is, the condition number of S, κ2(S), is within a factor of n of its smallest
value.
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5.3. Gerschgorin’s Theorem

Theorem 5.9. (Gerschgorin’s Theorem [9]). Let B be an arbitrary ma-
trix. Then the eigenvalues λ ofB are located in the union of the n disks defined
by

|λ− bii| ≤ ri ≡
∑
j 6=i

|bij|, for i = 1, · · · , n. (5.8)

Proof. Let Bx = λx, x 6= 0. By scaling x if necessary, we may assume that

||x||∞ = xk = 1, for some k.

Then
n∑
j=1

bkjxj = λxk = λ

and therefore

|λ− bkk| =
∣∣∣∑
j 6=k

bkjxj

∣∣∣ ≤∑
j 6=k

|bkjxj| ≤
∑
j 6=k

|bkj|. (5.9)

For other eigenvalues, one can derive a similar inequality as in (5.9).
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Gerschgorin Circle

Example 5.10. Let A =

 1 0 −1
−2 7 1
−1 1 −2

 . Find the Gerschgorin circles.

Solution. From the Gerschgorin’s theorem,

C1 = {z : |z − 1| ≤ 1},
C2 = {z : |z − 7| ≤ 3},
C3 = {z : |z + 2| ≤ 2}.

The eigenvalues of A are 7.1475, 1.1947, and −2.3422.
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Example 5.11. The following matrix comes from modeling the heat flow in
a long, thin rod, or mechanical vibrations.

A =



a1 −c1 0 0 · · · 0
−b2 a2 −c2 0 · · · 0
0 −b3 a3 −c3 · · · 0
... ... . . . . . . . . . ...
0 0 · · · −bn−1 an−1 −cn−1

0 0 · · · 0 −bn an


where ai > 0, bi > 0 and ci > 0. The matrix A is strictly diagonally dominant,
that is,

|bi|+ |ci| < |ai|, for i = 1, 2, · · · , n.

We may assume that |bi| + |ci| = 1 < ai, for i = 1, 2, · · · , n. (let b1 = cn = 0).
Show that all the e-values of A are positive and hence A is nonsingular.

Proof. By Gerschgorin’s theorem, every eigenvalue λ of A = (aij)n×n satisfies:

|λ− aii| ≤
∑
j 6=i
|aij|, i = 1, 2, · · · , n

|λ− ai| ≤ |bi|+ |ci| = 1, i = 1, 2, · · · , n
0 < −1 + ai < λ < 1 + ai

So all the e-values of A are positive and hence A is nonsingular.
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5.4. Taussky’s Theorem and Irreducibility

Theorem 5.12. (Taussky [22, 1948]) Let B = [bij] be an irreducible n× n
complex matrix. Assume that λ, an eigenvalue of B, is a boundary point of the
union of the disks |z − bii| ≤ ri. Then, all the n circles |z − bii| = ri must pass
through the point λ, i.e.,

|λ− bii| = ri for all 1 ≤ i ≤ n.

Definition 5.13. A permutation matrix is a square matrix in which each
row and each column has one entry of unity, all others zero.

Definition 5.14. For n ≥ 2, an n× n complex-valued matrix A is reducible
if there is a permutation matrix P such that

PAP T =

[
A11 A12

0 A22

]
,

where A11 and A22 are respectively r × r and (n − r) × (n − r) submatrices,
0 < r < n. If no such permutation matrix exists, then A is irreducible.
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Geometrical interpretation of irreducibility

Figure 5.1: The directed paths for nonzero aii and aij.

Figure 5.2: The directed graph G(A) for A in (5.10).

• Given A = (aij) ∈ Cn×n, consider n distinct points

P1, P2, · · · , Pn

in the plane, which we will call nodes or nodal points.

• For any nonzero entry aij of A, we connect Pi to Pj by a path
−→
PiPj, di-

rected from the node Pi to the node Pj; a nonzero aii is joined to itself by a
directed loop, as shown in Figure 5.1.

• In this way, every n×n matrix A can be associated a directed graph G(A).
For example, the matrix

A =

 2 −1 0
−1 2 −1

0 −1 2

 (5.10)

has a directed graph shown in Figure 5.2.
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Definition 5.15. A directed graph is strongly connected if, for any ordered
pair of nodes (Pi, Pj), there is a directed path of a finite length

−→
PiPk1,

−→
Pk1Pk2, · · · ,

−→
Pkr−1Pkr=j,

connecting from Pi to Pj.

The theorems to be presented in this subsection can be found in [24] along
with their proofs.

Theorem 5.16. An n× n complex-valued matrix A is irreducible if and only
if its directed graph G(A) is strongly connected.

It is obvious that the matrices obtained from FD/FE methods of the Poisson
equation are strongly connected. Therefore the matrices are irreducible.
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Example 5.17. Find the eigenvalue loci for the matrix

A =

 2 −1 0
−1 2 −1

0 −1 2

 .
Solution. The matrix A is irreducible, first of all, and

r1 = 1, r2 = 2, and r3 = 1.

Since aii = 2, for i = 1, 2, 3, the union of the three disks reads

{z : |z − 2| ≤ 2} ≡ Ω.

Note r1 = r3 = 1 and their corresponding disks do not touch the boundary of
Ω. So, using the Taussky theorem, we have

|λ− 2| < 2 (5.11)

for all eigenvalues λ of A. Furthermore, since A is symmetric, its eigenvalues
must be real. Thus we conclude

0 < λ < 4. (5.12)
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5.5. Nonsymmetric Eigenvalue Problems

Residual and Rayleigh Quotient

• Let (λ,x) be an approximation to an eigenpair of A. Then, the residual
is defined as

r = Ax− λx.

• If x is an approximation to an e-vector of A, then
the Rayleigh quotient

λ̃ =
x∗Ax

x∗x

is an approximation to the corresponding e-value.

• Rayleigh quotient minimizes ||r|| = ||Ax− λx||.
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5.5.1. Power method

Given A ∈ Cn×n, let
X−1AX = diag(λ1, · · · , λn),

where
X = [x1, · · · ,xn], and |λ1|>|λ2| ≥ · · · ≥ |λn|.

The power method produces a sequence of vectors {q(k)} as follows,

choose q(0) ∈ Cn such that ||q(0)||2 = 1

for k = 1, 2, · · ·
z = Aq(k−1) apply A

q(k) = z/||z||2 normalize → q

λ(k) =
[
q(k)
]∗
Aq(k) Rayleigh quotient → λ1

end

(5.13)

Note: q(k) → q = ±x1/||x1|| as k →∞, where x1 is the eigenvector correspond-
ing to λ1.
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Convergence of power method

Note Akxj = λkjxj. Let

q(0) = α1x1 + α2xn + · · ·+ αnxn, α1 6= 0.

Then

Akq(0) =
n∑
j=1

αjA
kxj = α1λ

k
1

(
x1 +

n∑
j=2

αj
α1

(
λj
λ1

)k
xj

)
Since q(k) ∈ Span

{
Akq(0)

}
,

dist
(

Span{q(k)},Span{x1}
)

= O
( ∣∣∣∣λ2

λ1

∣∣∣∣k ).
Thus, we obtain ∣∣∣λ1 − λ(k)

∣∣∣ = O
( ∣∣∣∣λ2

λ1

∣∣∣∣k ). (5.14)



190 Chapter 5. Eigenvalue Problems

Error estimates for the power method

• The estimate of the error |λ(k) − λ1| can be obtained by applying Bauer-
Fike theorem, more specifically, Theorem 5.2 on p. 175.

Let r(k) = Aq(k) − λ(k)q(k). Observe that

(A+ E(k))q(k) = λ(k)q(k), for E(k) = −r(k)
(
q(k)
)∗
. (5.15)

Thus λ(k) is an e-value of A+ E(k), and∣∣∣λ(k) − λ1

∣∣∣ ≈ ||E(k)||2
s(λ1)

=
||r(k)||2
s(λ1)

where s(λ1) is the reciprocal of the condition number of λ1.

• If we use the power method to generate approximate right/left dominant
e-vectors, then it is possible to obtain an estimate of s(λ1). In particular,
if w(k) is a unit 2-norm in the direction of (A∗)kw(0), then

s(λ1) ≈ |(w(k))∗q(k)|. (5.16)
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Example 5.18. Let A =

 −31 −35 16
−10 −8 4
−100 −104 49

, then σ(A) = {9, 3,−2}. Apply-

ing the power method with q(0) = [1, 0, 0]T .

Solution. We have
k λ(k)

1 7.6900
2 9.6377
3 8.9687
4 9.0410
5 9.0023
6 9.0033
7 9.0005
8 9.0003
9 9.0001

10 9.0000

Power method converges at k = 10
(correct to 4 decimal places).

Computed result:

eigenvalue: λ(10) = 9.000,

eigenvector: x = q(10) =

 −0.3714

−0.0000

−0.9285


residual: ||r(10)|| = 9.1365e− 06.
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Remark 5.19. Power iteration is of limited use due to several reasons.

• It converges to the eigenpair only for the eigenvalue with largest abso-
lute magnitude.

• The usefulness of the power method depends upon the ratio |λ2|/|λ1|. The
smaller the ratio, the faster the convergence. But if there are two largest
eigenvalue are close in magnitude, the convergence will be very slow.

• For example, if A is real and the largest eigenvalue is complex, then there
will be two complex conjugate e-values with the same largest absolute
magnitude |λ1| = |λ2|. In this case, the power method will not converge.
And it won’t work in the extreme case of an orthogonal matrix with all
the eigenvalues the same absolute value.

• Overall, the method is useful when A is large and sparse, and when
there is a big gap between |λ1| and |λ2|.
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5.5.2. Inverse power method

To overcome the drawbacks of power method, we may apply it to (A − σI)−1

instead of A, where σ is called a shift. Then it will converge to the e-value
closest to σ, rather than just λ1.

It is called inverse iteration or inverse power iteration.

Algorithm 5.20. (Inverse Power Iteration).

input x0; initial guess
i = 0;
do repeat

solve (A− σI)yi+1 = xi
xi+1 = yi+1/||yi+1||2; approx. e-vector
ηi+1 = xTi+1Axi+1; approx. e-value
i = i+ 1;

until convergence

(5.17)
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Convergence of Inverse Iterations

• Let A = SΛS−1. Then

A− σI = S(Λ− σI)S−1

and therefore
(A− σI)−1 = S(Λ− σI)−1S−1.

Thus (A− σI)−1 has the same e-vectors sj as A with e-values (λj − σ)−1.

• If |λk − σ| < |λi − σ| for all i 6= k, then

max
i6=k

λk − σ
λi − σ

< 1.

Let x0 =
∑

i αisi. Then,

(A− σI)−jx0 = (S(Λ− σI)−jS−1)S


α1

α2

...
αn



= S


α1(λ1 − σ)−j

α2(λ2 − σ)−j

...
αn(λn − σ)−j



= αk(λk − σ)−jS



α1

αk
(λk−σ
λ1−σ )j

...
1
...

αn

αk
(λk−σ
λn−σ )j


→ βSek = βsk

ηj = xTj Axj → λk

(5.18)
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Convergence of Inverse Iterations (2)

• Inverse iteration can be used in conjunction with the QR algorithm as
follows [10, p.363].

* Compute the Hessenberg decomposition

UT
0 AU0 = H,

where UT
0 U0 = I and H = [hij] is a Hessenberg matrix, i.e., hij = 0 for

i > j + 1.
* Apply the double implicit shift Francis QR iteration to H with-

out accumulating transformations. (See [10, § 7.5.5].)
* For each computed e-value λ whose corresponding e-vector is sought,

apply the inverse power iteration, Algorithm 5.20, with A = H and
σ = λ to produce a vector z such that

Hz ≈ σz.

* Set x = U0z.

• Inverse iteration with H is very economical because
* we do not have to accumulate transformations during double Francis

iteration,
* we can factor matrices of the form H − λI in O(n2) flops, and
* only one iteration is typically required to produce an adequate ap-

proximate e-vector.
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5.5.3. Orthogonal/Subspace iteration

Orthogonal iteration (or subspace iteration, or simultaneous itera-
tion) – converges to a (p > 1)-dimensional invariant subspace, rather than
one eigenvector at a time [10, p.363].

Definition 5.21. An invariant subspace of A is a subspace X of Rn, with
the property that x ∈ X implies that Ax ∈ X. We also write this as

AX ⊆ X. (5.19)

Algorithm 5.22. (Orthogonal iteration).

Z0 — an n× p orthogonal matrix
i = 0
do repeat

Yi+1 = AZi
factor Yi+1 = Zi+1Ri+1 using QR

// Zi+1 spans an approx. invariant subsp.

i = i+ 1
until convergence

(5.20)

• If p = 1, the orthogonal iteration becomes the power iteration.
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Convergence of the orthogonal iteration

Theorem 5.23. Consider running orthogonal iteration on matrix A with
p = n and Z0 = I. If all the e-values of A have distinct absolute values and if
all the principal submatrices S(1 : j, 1 : j) have full rank, then Ai ≡ ZT

i AZi
converges to the Schur form of A, i.e., an upper triangular matrix with the
e-values on the diagonal. The e-values will appear in decreasing order of
absolute value.

Proof. (Sketch). Zi is a square orthogonal matrix, so A and Ai = ZT
i AZi are

similar. Write Zi = [Z1i, Z2i], where Z1i has p columns, so

Ai = ZT
i AZi =

[
ZT

1iAZ1i ZT
1iAZ2i

ZT
2iAZ1i ZT

2iAZ2i

]
Since Span{Z1i} converges to an invariant subspace of A, Span{AZ1i} con-
verges to the same subspace. Thus, ZT

2iAZ1i converges to ZT
2iZ1i = 0. This

is true for all p < n, every subdiagonal entry of Ai converges to zero, so Ai

converges to upper triangular form, i.e., Schur form.
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Remarks :

• In Theorem 5.23, S(1 : j, 1 : j) must be nonsingular. Suppose that A is
diagonal with the eigenvalues not in decreasing order. Then orthogonal
iteration yields Zi = diag(±1) and Ai = A for all i, so the eigenvalues do
not move into decreasing order.

• Theorem 5.23 also requires that the e-values of A must be distinct in
absolute values. If A is orthogonal and all its e-values have absolute
value 1, then the algorithm leaves Ai essentially unchanged. (The rows
and columns may be multiplied by −1.)
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5.5.4. QR iteration

Algorithm 5.24. (QR iteration — without shifts).

A0 — original matrix

i = 0
do repeat

factor Ai = QiRi — QR decomp. of Ai
Ai+1 = RiQi — Combine Q & R reversely

i = i+ 1
until convergence

(5.21)

• Note that
Ai+1 = RiQi = QT

i (QiRi)Qi = QT
i AiQi.

Thus, Ai+1 and Ai are orthogonally similar.

• Lemma 5.25. Ai = ZT
i AZi, where Zi is the matrix computed from or-

thogonal iteration (Algorithm 5.22). Thus Ai converges to Schur form if
all the e-values have different absolute values.
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Speedup of QR iteration

Algorithm 5.26. (QR iteration with a shift).

A0 (original n× n matrix)
i = 0
do repeat

choose a shift σi near an e-value of A
factor Ai − σiI = QiRi

Ai+1 = RiQi + σiI
i = i+ 1

until convergence

(5.22)

• Note that
Ai+1 = RiQi + σiI = QT

i (QiRi)Qi + σiQ
T
i Qi

= QT
i (QiRi + σiI)Qi = QT

i AiQi.

Thus, Ai+1 ∼ Ai orthogonally.

• If Ri is nonsingular,

Ai+1 = RiQi + σiI = RiQiRiR
−1
i + σiRiR

−1
i

= Ri(QiRi + σiI)R−1
i = RiAiR

−1
i

• The QR iteration is still too expensive.

• We may choose σi = Ai(n, n), for a faster convergence.
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QR and Orthogonal Iterations, in Matlab
QR_Orthogonal.m

1 lambda = [1 2 4 8 32];
2 n = 5;
3 X = randn(n);
4 A = X*diag(lambda)*inv(X)
5 itmax = 100; tol = 1.e-12;
6

7 %--------------------------------
8 [T,iter] = qr_iteration(A,itmax,tol);
9 fprintf('QR-Iteration:\n')

10 T,iter
11

12 %--------------------------------
13 [T,iter] = qr_iteration_shift(A,itmax,tol);
14 fprintf('QR-Iteration-with-Shift:\n')
15 T,iter
16

17 %--------------------------------
18 [Q,iter] = orthogonal_iteration(A,itmax,tol);
19 fprintf('Orthogonal-Iteration:\n')
20 Schur = Q'*A*Q, iter

OUT
1 A =
2 -31.1300 -98.4723 25.9829 -26.0856 -56.8437
3 23.3689 68.1640 -13.6507 15.2984 34.0583
4 -0.6924 -2.7223 2.7794 0.6017 -0.8296
5 13.7263 33.0531 -4.7360 11.0045 16.8833
6 -9.6383 -20.4111 -0.9314 -2.4357 -3.8179
7

8 QR-Iteration:
9 T =

10 32.0000 -7.6229 -12.7664 -9.5433 -150.4702
11 0.0000 8.0000 0.7922 8.7506 11.1408
12 0.0000 0.0000 4.0000 1.2222 -3.4860
13 -0.0000 -0.0000 -0.0000 2.0000 -2.2486
14 0.0000 -0.0000 0.0000 0.0000 1.0000
15 iter = 40
16

17 QR-Iteration-with-Shift:
18 T =
19 32.0000 -7.6229 -12.7664 -9.5433 150.4702
20 0.0000 8.0000 0.7922 8.7506 -11.1408
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21 0.0000 0.0000 4.0000 1.2222 3.4860
22 -0.0000 -0.0000 -0.0000 2.0000 2.2486
23 -0.0000 0.0000 -0.0000 -0.0000 1.0000
24 iter = 27
25

26 Orthogonal-Iteration:
27 Schur =
28 32.0000 -7.6229 12.7664 9.5433 150.4702
29 -0.0000 8.0000 -0.7922 -8.7506 -11.1408
30 -0.0000 -0.0000 4.0000 1.2222 -3.4860
31 0.0000 0.0000 -0.0000 2.0000 -2.2486
32 0.0000 0.0000 0.0000 0.0000 1.0000
33 iter = 43

qr_iteration.m
1 function [T,iter] = qr_iteration(A,itmax,tol)
2

3 T = A; n = size(T,1);
4 tnn0 =T(n,n);
5

6 for iter = 1:itmax,
7 [Q,R] = qr(T);
8 T = R*Q;
9 tnn1 = T(n,n);

10 if abs(tnn1-tnn0)<tol, break
11 else, tnn0=tnn1; end
12 end

qr_iteration_shift.m
1 function [T,iter] = qr_iteration_shift(A,itmax,tol)
2

3 T = A; n = size(T,1);
4 tnn0 =T(n,n);
5

6 for iter = 1:itmax,
7 shift = T(n,n)/2;
8 [Q,R] = qr(T - shift*eye(n));
9 T = R*Q + shift*eye(n);

10 tnn1 = T(n,n);
11 if abs(tnn1-tnn0)<tol, break
12 else, tnn0=tnn1; end
13 end
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orthogonal_iteration.m
1 function [Q,iter] = orthogonal_iteration(A,itmax,tol)
2

3 Q = eye(size(A,1));
4 ynn0 = 1.e20;
5

6 for iter = 1:itmax
7 Y = A*Q;
8 [Q,R] = qr(Y);
9 ynn1 = Y(end,end);

10 if abs(ynn1-ynn0)<tol, break
11 else, ynn0=ynn1; end
12 end
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5.5.5. Making QR iteration practical

• “Practical” QR Algorithm [23, Part V, p.212]

(Q(0))TA(0)Q(0) = A (A(0) is a tridiag. of A)
for k = 1, 2, · · ·

pick a shift µ(k) (e.g. µ(k) = A
(k−1)
nn )

factor A(k−1) − µ(k)I = Q(k)R(k)

A(k) = R(k)Q(k) + µ(k)I

if A(k)
j, j+1 → 0

set Aj, j+1 = Aj+1, j = 0 to obtain[
A1 0
0 A2

]
= A(k)

and now apply the QR to A1, A2

end if
end for

(5.23)
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Making QR iteration more practical

• Issues:

– The convergence of the algorithm is slow.
– The the iteration is very expensive. At each step, the QR decompo-

sition costs O(n3) flops. To find n eigenvalues, we need to have O(n4)

flops.

• Improvement:

– Reduce the matrix to upper Hessenberg form. Apply QR implic-
itly. Cost is reduced from O(n4) to O(n3).

– Simultaneous shifts for complex e-values.
– Convergence occurs when subdiagonal entries ofAi are “small enough”.

Details will be described in later subsections.
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5.5.6. Hessenberg reduction

Similarity transforms :

Definition 5.27. Two matrices A, B ∈ Cn×n are similar if there is a nonsin-
gular matrix S ∈ Cn×n such that

B = S−1AS. (5.24)

Equation (5.24) is called a similarity transformation and S is called the
transforming matrix.

Theorem 5.28. Similar matrices have the same eigenvalues.

Proof. See Homework 2.

Theorem 5.29. Suppose B = S−1AS. Then v is an eigenvector of A with
eigenvalue λ if and only if S−1v is an eigenvector ofB with associated eigen-
value λ.

Hessenberg reduction : Find an orthogonal matrix Q such that

Q∗AQ = H, (5.25)

where H = [hij] is an upper Hessenberg matrix, i.e., hij = 0 whenever i >
j + 1.
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Hessenberg reduction – via Householder

• A bad idea

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X


Q∗

1·−−−→



X X X X X

0 X X X X

0 X X X X

0 X X X X

0 X X X X


·Q1−−−→



X X X X X

X X X X X

X X X X X

X X X X X

X X X X X


A Q∗

1A Q∗
1AQ1

• A good idea


X X X X X

X X X X X

X X X X X

X X X X X

X X X X X


Q∗

1·−−−→



X X X X X

X X X X X

0 X X X X

0 X X X X

0 X X X X


·Q1−−−→



X X X X X

X X X X X

0 X X X X

0 X X X X

0 X X X X


A Q∗

1A Q∗
1AQ1
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• A good idea (cont’d)


X X X X X

X X X X X

X X X X

X X X X

X X X X


Q∗

2·−−−→



X X X X X

X X X X X

X X X X

0 X X X

0 X X X


·Q2−−−→



X X X X X

X X X X X

X X X X

X X X

X X X


Q∗

1AQ1 Q∗
2Q
∗
1AQ1 Q∗

1Q
∗
1AQ1Q2

→ · · · →


X X X X X

X X X X X

X X X X

X X X

X X

 = H

Q∗
m−2 · · ·Q

∗
2Q

∗
1︸ ︷︷ ︸

Q∗

AQ1Q2 · · ·Qm−2︸ ︷︷ ︸
Q

• Reference: [7, 23]
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Hessenberg reduction — A general algorithm
Reduction to upper Hessenberg form via Householder

Algorithm 5.30.

if Q is desired, set Q = I;
for i = 1 : n− 2

ui = House(A(i+ 1 : n, i));
Pi = I − 2uiu

T
i ; / ∗Q = diag(Ii×i, Pi) ∗ /

A(i+ 1 : n, i : n) = Pi · A(i+ 1 : n, i : n);
A(1 : n, i+ 1 : n) = A(1 : n, i+ 1 : n) · Pi;
if Q is desired

Q(i+ 1 : n, i : n) = Pi ·Q(i+ 1 : n, i : n);
/ ∗Q = Qi ·Q ∗ /

end if
end for

• This algorithm does not form Pi explicitly, but instead multiplies by
I−2uiu

T
i via matrix vector multiplications, and the ui vectors can be stored

below the subdiagonal (see the QR part of the lec. notes).

• Proposition 5.31. Hessenberg form is preserved by QR iteration.
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Definition 5.32. A Hessenberg matrix H is unreduced if all subdiagonals
are nonzero.

• IfH is reduced (due to hi+1,i = 0), then its eigenvalues are those of its lead-
ing i× i Hessenberg submatrix and its trailing (n− i)× (n− i) Hessenberg
submatrix.

H9,9 =



x x x x x x x x x
x x x x x x x x x
x x x x x x x x
x x x x x x x

0 x x x x x

x x x x x

x x x x

x x x
x x


=

[
H4,4 ∗
O H5,5

]

• We will consider unreduced Hessenberg only, without loss of generality.
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Hessenberg reduction via Householder

• Costs: 10
3 n

3 +O(n2), or
14
3 n

3 +O(n2) when Q = Qn−1 · · ·Q1 is also computed.

• Convergence [28]: The computed Hessenberg matrix Ĥ satisfies

Ĥ = QT (A+ E)Q,

where Q is orthogonal and

||E||F ≤ cn2u||Q||F

with c a small constant.

• The advantage of Hessenberg form under QR iteration is that

– it costs only 6n2 +O(n) flops instead of O(n3), and
– its form is preserved so that the matrix remains upper Hessenberg.

• This algorithm is available as
– hess: Matlab
– sgehrd: LAPACK
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QR via Givens, for Hessenberg matrices

• Pictorially, the algorithm may look like


X X X X

X X X X

X X X

X X


G∗

1·−−−−→



X X X X

0 X X X

X X X

X X


G∗

2·−−−−→



X X X X

X X X

0 X X

X X


G∗

3·−−−−→



X X X X

X X X

X X

0 X


H1 G∗

1H1 G∗
2G

∗
1H1 G∗

3G
∗
2G

∗
1H1 = R



X X X X

X X X

X X

X


·G1−−−−→



X X X X

X X X X

X X

X


·G2−−−−→



X X X X

X X X X

X X X

X


·G3−−−−→



X X X X

X X X X

X X X

X X


R RG1 RG1G2 RG1G2G3 = H2

• H2 = RG1G2G3 = G∗3G
∗
2G
∗
1H1G1G2G3 = Q∗H1Q

Q = G1G2G3
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QR via Givens, for Hessenberg (cont’d)

Algorithm 5.33. Let A ∈ Rn×n be upper Hessenberg. Then the follow-
ing algorithm overwrites A with

QTA = R,

where Q is orthogonal and R is upper triangular. Q = G1 · · ·Gn−1 is a
product of Givens rotations where Gj has the form Gj = G(j, j + 1, θj).

for j = 1 : n− 1
[c, s] = givens(A(j, j), A(j + 1, j))

A(j : j + 1, j : n) =

[
c −s
s c

]
A(j : j + 1, j : n)

end
for j = 1 : n− 1

A(1 : j + 1, j : j + 1) = A(1 : j + 1, j : j + 1)

[
c s
−s c

]
end

(5.26)

• This algorithm requires about 2 · 3n2 = 6n2 flops.
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Example 5.34. Find QR decomposition of H1 =

 3 1 2
4 2 3
0 .01 1

.

Solution.

H1

G′
1·−−→

 5.0000 2.2000 3.6000
0 0.4000 0.2000
0 0.0100 1.0000


︸ ︷︷ ︸

G′
1H1

G′
2·−−→

 5.0000 2.2000 3.6000
0 0.4001 0.2249
0 0 0.9947


︸ ︷︷ ︸

G′
2G

′
1H1=R

R
·G1−−→

 4.7600 −2.6800 3.6000
0.3201 0.2401 0.2249

0 0 0.9947


︸ ︷︷ ︸

RG1

·G2−−→

 4.7600 −2.5892 3.6659
0.3201 0.2456 0.2189

0 0.0249 0.9944


︸ ︷︷ ︸

RG1G2=H2

where

G1 =

 .6 −.8 0
.8 .6 0
0 0 1

 , G2 =

 1 0 0
0 .9997 −.0250
0 .0250 .9997

 .
Then,

H2 = RG1G2 = G′2G
′
1H1G1G2 = Q′H1Q

and Q = G1G2, which does not have to be constructed explicitly in practice.
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5.5.7. Tridiagonal and bidiagonal reduction

• Tridiagonal reduction: If A is symmetric, the Hessenberg reduction
process leaves A symmetric at each step, so zeros are created in symmetric
positions. 

∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗


︸ ︷︷ ︸

Tridiagonal Matrix



∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

Bidiagonal Matrix

• Bidiagonal reduction: Compute orthogonal matrices Q and V such that
QAV is bidiagonal.
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Tridiagonal reduction algorithm

• Algorithm 5.35. (Householder tridiagonalization algorithm). If
A ∈ Rn×n is symmetric, then the following algorithm overwrites A with
T = QTAQ, where T is tridiagonal and Q = H1 · · ·Hn−2 is the product of
the Householder transformations.

for k = 1 : n− 2

[v, β] = house(A(k + 1 : n, k))

p = βA(k + 1 : n, k + 1 : n)v

w = p− (βpTv/2)v

A(k + 1, k) = ||A(k + 1 : n, k)||2; A(k, k + 1) = A(k + 1, k);

A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n)− vwT −wvT

end

(5.27)

• The matrix Q can be stored in factored form in the subdiagonal portion of
A.

• Cost: 4
3n

3 +O(n2), or
8
3n

3 +O(n2) to form Qn−1 · · ·Q1 as well.

• LAPACK routine: ssytrd.
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• Example: 1 0 0
0 .6 .8
0 .8 −.6

T  1 3 4
3 2 8
4 8 3

 1 0 0
0 .6 .8
0 .8 −.6

 =

 1 5 0
5 10.32 1.76
0 1.76 −5.32


• Note that if T has a zero subdiagonal, then the eigenproblem splits into

a pair of smaller eigenproblems. In particular, if tk+1,k = 0, then

σ(T ) = σ(T (1 : k, 1 : k)) ∪ σ(k + 1 : n, k + 1 : n)).

If T has no zero subdiagonal entries, it is unreduced.

• Let T̂ denote the computed version of T obtained by Algorithm 5.35. Then

T̂ = Q̃T (A+ E)Q̃,

where Q̃ is exactly orthogonal andE is symmetric matrix satisfying ||E||F ≤
cu||A||F where c is small constant [28].
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Bidiagonal reduction

• Bidiagonal reduction: Compute orthogonal matrices Q and V such
that QAV is bidiagonal.

A7×5 →



∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 0
0 0 0 0 0


, A5×5 →


∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗



• If A is n × n, and we get orthogonal matrices Q = Qn−1 · · ·Q1, V =

V1 · · ·Vn−2, such that
QAV = Ã (5.28)

is upper bidiagonal.

– Eigenvalues/eigenvectors:

ÃT Ã = V TATQTQAV = V TATAV

=⇒ ÃT Ã has the same eigenvalues as ATA;
=⇒Ã has the same singular values as A.

– Cost: 8
3n

3 +O(n2), & 4n3 +O(n2) to compute Q and V .

– LAPACK routine sgebrd.
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• Bidiagonal Reduction Process:
X X X X
X X X X
X X X X
X X X X

 QT
1 ·
−−→


X X X X
0 X X X
0 X X X
0 X X X

 ·V1−−→


X X 0 0
0 X X X
0 X X X
0 X X X


A QT

1A QT
1AV1

Q1 is a Householder refection, and V1 is a Householder refection
such that leaves the 1st column of Q1A unchanged.

QT
2 ·
−−→


X X 0 0

0 X X X

0 0 X X

0 0 X X

 ·V2−−→


X X 0 0

0 X X 0

0 0 X X

0 0 X X

 QT
3 ·
−−→


X X 0 0

0 X X 0

0 0 X X

0 0 0 X


QT

2Q
T
1AV1 QT

2Q
T
1AV1V2 QT

3Q
T
2Q

T
1AV1V2 = B

• A→ QTAV = B — upper bidiagonal, where

Q = Q1Q2Q3, V = V1V2.
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Algorithm 5.36. (Householder bidiagonalization algorithm) [10].
Given A ∈ Rm×n (m ≥ n), the following algorithm overwrite A with

QT
BAVB = B,

where B is upper bidiagonal and QB = Q1 · · ·Qn, and VB = V1 · · ·Vn−2. The
essential part of Qj ’s Householder vector is stored in A(j+1 : m, j) and the
essential part of Vj ’s Householder vector is stored in A(j, j + 2 : n).

for j = 1 : n− 1
[v, β] = house(A(j : m, j))
A(j : m, j : n) = (Im−j+1 − βvvT )A(j : m, j : n)
A(j + 1 : m, j) = v(2 : m− j + 1)
if j ≤ n− 2

[v, β] = house(A(j, j + 1 : n)T )
A(j : m, j + 1 : n) = A(j : m, j + 1 : n)(In−j − βvvT )
A(j, j + 2 : n) = v(2 : n− j)T

end
end

(5.29)

• This algorithm requires about 4mn2 − 4n3/3 flops.
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Example 5.37. If the Householder Bidiagonal algorithm is applied to A, and
correct to 4 significant digits, then

A =


1 5 9
2 6 10
3 7 11
4 8 12

→ B ≈


5.477 23.80 0.

0. 7.264 −.7515
0. 0. 0.
0. 0. 0.

 , QTAV = B

V ≈

 1. 0. 0.
0. .5369 .8437
0. .8437 −.5369

 , Q ≈


.1826 .8165 −.5400 .0917
.3651 .4082 .7883 .2803
.5477 −.0000 .0434 −.8355
.7303 −.4082 −.2917 .4636



• R-Bidiagonalization: If m � n, we first transform A to an upper
triangular matrix first,

QTA =

[
R1

0

]
,

and then apply the Householder Bidiagonalization Algorithm to the square
upper triangular matrix R1.

Total cost: 2mn2 + 2n3, which is less than 4mn2 − 4n3/3 whenever m ≥
5n/3.
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5.5.8. QR iteration with implicit shifts – Implicit Q theo-
rem

In this subsection, we show how to implement QR iteration effectively for an
upper Hessenberg matrix H.

• The implementation is implicit in the sense that we do not explicitly com-
pute the QR factorization of H, but rather construct Q as a product of
Givens rotations and simple orthogonal matrices.

• the implicit Q theorem shows that this implicitly constructed Q is the Q
we want.

Theorem 5.38. (Implicit Q theorem). Suppose that QTAQ = H is
unreduced upper Hessenberg. Then columns 2 through n of Q are de-
termined uniquely (up to signs) by the first column of Q.

Implication of the theorem: To compute Ai+1 = QT
i AiQi from Ai (in the

QR iteration), we will need only to
• compute the 1st column of Qi (which is parallel to the 1st column of
Ai − σiI and so can be gotten just by normalizing this column vector).

• choose other columns of Qi such that Qi is orthogonal and Ai+1 is unre-
duced Hessenberg.
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Proof. (Sketch of the Proof of Implicit Q theorem). Let

QTAQ = H, V TAV = G

be unreduced upper Hessenberg, Q and V be orthogonal, and the 1st columns
of Q and V are equal. Define

W = V TQ = [w1, · · · ,wn].

Then W is orthogonal and GW = WH and therefore we have

hi+1,iwi+1 = Gwi −
i∑

j=1

hjiwj, i = 1, 2, · · · , n− 1

Since w1 = e1 and G is upper Hessenberg, W is upper triangular. Since W is
also orthogonal, W is diagonal and W = diag(±1, · · · ,±1).
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Implicit Single Shift QR Algorithm
It is also called the bulge-and-chase algorithm.

Example 5.39. To see how to use the implicit Q theorem to compute A1 from
A0 = A, we will use a 5× 5 matrix.

1. Choose G1 such that GT
1AG1 = A1:

c1 s1

−s1 c1

1

1

1


︸ ︷︷ ︸

GT
1



X X X X X

X X X X X

X X X X

X X X

X X


︸ ︷︷ ︸

A



c1 −s1
s1 c1

1

1

1


︸ ︷︷ ︸

G1

=



X X X X X

X X X X X

⊕ X X X X

X X X

X X


︸ ︷︷ ︸

A1

* We will discuss how to choose c1 and s1 below; for now they may be
any Givens rotation.

* The ⊕ position (3,1) is called a bulge and needs to be eliminated to
restore Hessenberg form.

2. Choose G2 such that GT
2A1G2 = A2:

1

c2 s2

−s2 c2

1

1


︸ ︷︷ ︸

GT
2



X X X X X

X X X X X

⊕ X X X X

X X X

X X


︸ ︷︷ ︸

A1



1

c2 −s2
s2 c2

1

1


︸ ︷︷ ︸

G2

=



X X X X X

X X X X X

X X X X

⊕ X X X

X X


︸ ︷︷ ︸

A2

Thus the bulge has been chased from (3,1) to (4,2).
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3. Choose G3 such that GT
3A2G3 = A3:

1

1

c3 s3

−s3 c3

1


︸ ︷︷ ︸

GT
3



X X X X X

X X X X X

X X X X

⊕ X X X

X X


︸ ︷︷ ︸

A2



1

1

c3 −s3
s3 c3

1


︸ ︷︷ ︸

G3

=



X X X X X

X X X X X

X X X X

X X X

⊕ X X


︸ ︷︷ ︸

A3

The bulge has been chased from (4,2) to (5,3).

4. Choose G4 such that GT
4A3G4 = A4:

1

1

1

c4 s4

−s4 c4


︸ ︷︷ ︸

GT
4



X X X X X

X X X X X

X X X X

X X X

⊕ X X


︸ ︷︷ ︸

A3



1

1

1

c4 −s4
s4 c4


︸ ︷︷ ︸

G4

=



X X X X X

X X X X X

X X X X

X X X

X X


︸ ︷︷ ︸

A4

So, we are back to the upper Hessenberg form.

• Let Q = G1G2G3G4. Then, QTAQ = A4.
The first columns of Q is [c1, s1, 0, · · · , 0]T . which by implicit Q theorem
has uniquely determined the other columns of Q (up to signs).

• We now choose the first column of Q to be proportional to the first column
of A− σI, [a11 − σ, a21, 0, · · · , 0]T .

Then, Q is the same as in the QR of A− σI!

• Cost: 6n2 +O(n) for any n× n matrix A.
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Example 5.40. Use the implicit single shift QR algorithm to find the QR
factorization of

A =


1 6 11 16 21
2 7 12 17 22
0 8 13 18 23
0 0 14 19 24
0 0 0 20 25

 . (5.30)

Solution.

• Step 1: bulge ⊕ = −7.1554

G1 =
-0.4472 0.8944 0 0 0
-0.8944 -0.4472 0 0 0

0 0 1.0000 0 0
0 0 0 1.0000 0
0 0 0 0 1.0000

G1'*A0 =
-2.2361 -8.9443 -15.6525 -22.3607 -29.0689

0 2.2361 4.4721 6.7082 8.9443
0 8.0000 13.0000 18.0000 23.0000
0 0 14.0000 19.0000 24.0000
0 0 0 20.0000 25.0000

A1 = G1'*A0*G1 =
9.0000 2.0000 -15.6525 -22.3607 -29.0689

-2.0000 -1.0000 4.4721 6.7082 8.9443
-7.1554 -3.5777 13.0000 18.0000 23.0000

0 0 14.0000 19.0000 24.0000
0 0 0 20.0000 25.0000
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• Step 2: bulge ⊕ = −13.4832

G2 =
1.0000 0 0 0 0

0 -0.2692 0.9631 0 0
0 -0.9631 -0.2692 0 0
0 0 0 1.0000 0
0 0 0 0 1.0000

G2'*A1 =
9.0000 2.0000 -15.6525 -22.3607 -29.0689
7.4297 3.7148 -13.7240 -19.1414 -24.5587

0 0 0.8076 1.6151 2.4227
0 0 14.0000 19.0000 24.0000
0 0 0 20.0000 25.0000

A2 = G2'*A1*G2 =
9.0000 14.5363 6.1397 -22.3607 -29.0689
7.4297 12.2174 7.2721 -19.1414 -24.5587

0 -0.7778 -0.2174 1.6151 2.4227
0 -13.4832 -3.7687 19.0000 24.0000
0 0 0 20.0000 25.0000

• Step 3: bulge ⊕ = −19.9668

G3 =
1.0000 0 0 0 0

0 1.0000 0 0 0
0 0 -0.0576 0.9983 0
0 0 -0.9983 -0.0576 0
0 0 0 0 1.0000

G3'*A2 =
9.0000 14.5363 6.1397 -22.3607 -29.0689
7.4297 12.2174 7.2721 -19.1414 -24.5587

0 13.5056 3.7749 -19.0615 -24.0997
0 0 0 0.5183 1.0366
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0 0 0 20.0000 25.0000
A3 = G3'*A2*G3 =

9.0000 14.5363 21.9700 7.4172 -29.0689
7.4297 12.2174 18.6908 8.3623 -24.5587

0 13.5056 18.8125 4.8664 -24.0997
0 0 -0.5174 -0.0298 1.0366
0 0 -19.9668 -1.1518 25.0000

• Step 4: chasing bulge is completed.

G4 =
1.0000 0 0 0 0

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 -0.0259 0.9997
0 0 0 -0.9997 -0.0259

G4'*A3 =
9.0000 14.5363 21.9700 7.4172 -29.0689
7.4297 12.2174 18.6908 8.3623 -24.5587

0 13.5056 18.8125 4.8664 -24.0997
0 0 19.9735 1.1521 -25.0185
0 0 0 0 0.3886

A4 = G4'*A3*G4 =
9.0000 14.5363 21.9700 28.8670 8.1678
7.4297 12.2174 18.6908 24.3338 8.9957

0 13.5056 18.8125 23.9655 5.4891
0 0 19.9735 24.9802 1.7999
0 0 0 -0.3885 -0.0101
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Thus, QTAQ = A4, where

Q = G1G2G3G4

=


−0.4472 −0.2408 −0.0496 −0.0223 0.8597
−0.8944 0.1204 0.0248 0.0111 −0.4298

0 −0.9631 0.0155 0.0070 −0.2687
0 0 −0.9983 0.0015 −0.0576
0 0 0 −0.9997 −0.0259



=


c1 −0.2408 −0.0496 −0.0223 0.8597
s1 0.1204 0.0248 0.0111 −0.4298
0 s2 0.0155 0.0070 −0.2687
0 0 s3 0.0015 −0.0576
0 0 0 s4 −0.0259


and therefore A4 = RQ , when A = QR.
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Implicit Double Shift QR Algorithm
Double shifting has been considered to maintain real arithmetic, for comput-
ing the eigenvalues of companion and fellow matrices.

• Companion and fellow matrices are Hessenberg matrices, that can be de-
composed into the sum of a unitary and a rank-1 matrix.

• The Hessenberg, the unitary as well as the rank-1 structures are pre-
served under a step of the QR-method. This makes these matrices suit-
able for the design of a fast QR-method.

• Several techniques already exist for performing a QR-step. The imple-
mentation of these methods is highly dependent on the representation
used.
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Definition 5.41. Given an nth-orer monic polynomial

a(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn, (5.31)

its companion matrix is defined as

A =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
... ... . . . ... ...
0 0 · · · 1 −an−1

 . (5.32)

The eigenvalues of A are the roots of the polynomial a(x).

Definition 5.42. Fellow matrices are rank-1 perturbations of unitary
Hessenberg matrices. That is, a fellow matrix F is expressed as

F = H + uvT , (5.33)

where H is a unitary Hessenberg matrix and u and v are vectors.
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5.6. Symmetric Eigenvalue Problems

5.6.1. Algorithms for the symmetric eigenproblem – Di-
rect methods

1. Tridiagonal QR iteration: This algorithm finds all the eigenvalues,
and optionally all the eigenvectors, of a symmetric tridiagonal matrix.

– Implemented efficiently, it is currently the fastest practical method
to find all the eigenvalues of a symmetric tridiagonal matrix, taking
O(n2) flops.

– But for finding all the eigenvectors as well, QR iteration takes a little
over 6n3 flops on average and is only the fastest algorithm for small
matrices, up to about n = 25.

Matlab command: eig
LAPACK routines:

ssyev (for dense matrices),
sstev (for tridiagonal matrices).
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2. Rayleigh quotient iteration: This algorithm underlies the QR itera-
tion. But it can be used separately (without assuming that the matrix
has first been reduced to tridiagonal form).

3. Divide-and-conquer method: This is currently the fastest method to
find all the eigenvalues and eigenvectors of symmetric tridiagonal matri-
ces larger than n = 25.

LAPACK routines:
sstevd, defaults to QR iteration for smaller matrices.

In the worst case, divide-and-conquer requires O(n3) flops, but in practice
the constant is quite small. Over a large set of random test cases, it
appears to take only O(n2.3) flops in average, and as low as O(n2) for some
eigenvalue distributions.

In theory, divide-and-conquer could be implemented to run inO(n·logp n).
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4. Bisection and inverse iteration: Bisection may be used to find just a
subset of the eigenvalues of a symmetric tridiagonal matrix, say, those in
an interval [a, b] or [αi, αi−j].

It needs only O(nk) flops, where k is the number of eigenvalues desired.
Thus Bisection can be much faster than QR iteration when k � n, since
QR iteration requires O(n2) flops.

Inverse iteration can then be used to find the corresponding eigenvec-
tors. In the best case, when the eigenvalues are “well separated” inverse
iteration also costs only O(nk) flops.

But in the worst case, when many eigenvalues are clustered close to-
gether, inverse iteration takes O(nk2) flops and does not even guar-
antee the accuracy.

5. Jacobi’s method: This method is historically the oldest method for the
eigenproblem, dating to 1846. It is usually much slower than any of the
above methods, taking O(n3) flops with a large constant. But it is some-
times much more accurate than the above methods. It does not require
tridiagonalization of the matrix.
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5.6.2. Tridiagonal QR iteration

• Tridiagonal QR iteration:

1. Given A = AT , use a variant of the Householder tridiagonalization
algorithm (Algorithm 5.35 on p. 216) to find orthogonal Q so that

QAQT = T

is tridiagonal.

2. Apply QR iteration to T to get a sequence

T = T0, T1, T2, · · ·

of tridiagonal matrices converging to diagonal form.

• The QR iteration keeps all the Ti tridiagonal. Indeed, since QAQT is
symmetric and upper Hessenberg, it must also be lower Hessenberg, i.e.,
tridiagonal. This keeps each the QR iteration very inexpensive.
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• Tridiagonal QR iteration – Operation count:

– Reducing A to symmetric tridiagonal form T costs 4
3n

3 + O(n2) flops,
or 8

3n
3 +O(n2) flops if eigenvectors are also desired.

– One tridiagonal QR iteration with a single shift (“bulge chasing”)
costs 6n flops.

– Finding all eigenvalues of T takes only 2 QR steps per eigenvalue on
average, for a total of 6n2 flops.

– Finding all eigenvalues and eigenvectors of T costs 6n3 +O(n2) flops.

– The total cost to find just eigenvalues of A is
4

3
n3 +O(n2) flops.

– The total cost to find all the eigenvalues and eigenvectors of A

is 8
2

3
n3 +O(n2) flops.
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• Tridiagonal QR iteration – How to chose the shifts: Denote the ith

iterate by Ti =


a1 b1

b1
. . . . . .
. . . . . . bn−1

bn−1 an

 .
– The simplest choice of shift would be σi = an; this is the single shift
QR iteration (see § 5.5.8). It is cubically convergent for almost all
matrices.

– Wilkinson’s shift: Let the shift σi be the eigenvalue of
[
an−1 bn−1

bn−1 an

]
that is closest to an.

– Wilkinson Theorem: QR iteration with Wilkinson’s shift is glob-
ally, and at least linearly, convergent. It is asymptotically cubically
convergent for almost all matrices.
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Tridiagonal QR iteration with Wilkinson’s shift

• Matlab Program: T ∈ Rn×n — symmetric tridiagonal, m — number of
iterations

% Dr. James Demmel's matlab code tridiQR.m % (slightly modified)

%

% Store last subdiagonal and last diagonal entries of QR iterates in NN

NN = [ T(n,n-1), T(n,n) ];

% Perform QR iteration with Wilkinson's shift

for i = 1:m

% Compute the shift

lc = T(n-1:n, n-1:n); elc = eig(lc); %calculate the e-values of lc

if ( abs(T(n,n)-elc(1)) < abs(T(n,n)-elc(2)) )

shift = elc(1);

else

shift = elc(2);

end

% Perform QR iteration; enforce symmetry explicitly

[q,r] = qr(T - shift*eye(n)); T = r*q + shift*eye(n);

T = tril(triu(T,-1),1); T = (T + T')/2;

% Update NN

NN = [NN;[T(n,n-1),T(n,n)]]; %append T(n,n-1),T(n,n) to NN

end

NN = [NN,NN(:,2)-NN(m+1,2)];
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Example 5.43. Here is an illustration of the convergence of the tridiagonal
QR iteration, starting with the tridiagonal matrix T = T0:

T0 =


0.2493 1.2630 0 0
1.2630 0.9688 −0.8281 0

0 −0.8281 0.4854 −3.1883
0 0 −3.1883 −0.9156


→


1.9871 0.7751 0 0
0.7751 1.7049 −1.7207 0

0 −1.7207 0.6421 −0.0000
0 0 −0.0000 −3.5463

 = T3

(5.34)

• The following table shows the last off-diagonal entry of each Ti, the last
diagonal entry of Ti, and the difference between the last diagonal entry
and its ultimate value (α ≈ −3.54627). The cubic convergence of the error
to zero (in the last column) is evident.
i Ti(4, 3) Ti(4, 4) Ti(4, 4)− α
1 −3.188300000000000 −0.915630000000000 2.630637193722710
2 −0.056978959466637 −3.545728453189497 0.000538740533214
3 −0.000000246512081 −3.546267193722698 0.000000000000012

• By the way,

eig(T0) = [−3.5463 − 0.7091 1.7565 3.2868]
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5.6.3. Rayleigh quotient iteration

• Algorithm 5.44. (Rayleigh quotient iteration).
Given x0 with ||x0||2 = 1, and a user-supplied stopping tolerance tol, we
iterate

ρ0 = ρ(x0, A) =
xT0Ax0

xT0 x0

i = 0
repeat

yi = (A− ρi−1I)−1xi−1

xi = yi/||yi||2
ρi = ρ(xi, A)
i = i+ 1

until convergence (||Axi − ρixi||2 < tol)

(5.35)

• Theorem 5.45. Rayleigh quotient iteration is locally cubically con-
vergent. That is, the number of correct digits triples at each step once
the error is small enough and the eigenvalue is simple.
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5.6.4. Divide-and-conquer

• Divide-and-conquer is the fastest algorithm so far to find all e-values
and e-vectors of a tridiagonal matrix (dim ≥ 25).

• The idea is to compute the Schur decomposition

QTTQ = Λ = diag(λ1, · · · , λn), QTQ = I, (5.36)

for tridiagonal T by

* “tearing” T in half;

* computing the Schur decompositions of the 2 parts;

* combining the 2 half-sized Schur decompositions into the required
full size Schur decomposition.

The overall procedure is suitable for parallel computation.
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Exercises for Chapter 5

5.1. Let, for n ≥ 2 and for a small ε > 0,

A =


0 1

. . . . . .
0 1

ε 0

 ∈ Rn×n. (5.37)

(a) Verify that the characteristic polynomial of A is given by

φ(λ) = λn − ε = 0.

So λ = n
√
ε (n possible values).

(b) Verify that
dλ

dε

∣∣∣
ε=0

=∞. (5.38)

This implies that the condition number of λ (a multiple eigenvalue) is infinite.

Note: The eigenvalue λ (the nth root of ε) grows much faster than any multiple of ε
when ε is small. Thus the condition number of λ must be large. More formally, you
can prove that the condition number of λ is infinite by using a calculus technique, as in
(5.38).

5.2. Prove Theorem 5.28 on page 206.

Hint: Let A and B are similar, i.e., B = S−1AS. To show that A and B have the same
eigenvalues, it suffices to show that they have the same characteristic polynomial. Thus
what you have to do is to show

det(B − λI) = det(S−1AS − λI). (5.39)

5.3. Let A =

 1 1 1
−1 9 2

0 −1 2

 .
(a) Using Matlab, apply the inverse power iteration with the shift σ = 9, starting with

x0 = [1 1 1]T . For simplicity, just form

B = (A− 9I)−1 (B=inv(A-9*eye(3));)

and then iterate at least 10 iterations with B.
(b) Use [V,D]=eig(A) to get the true dominant eigenvector v. Calculate the errors and

ratios
||xj − v||2,

||xj+1 − v||2
||xj − v||2

; j = 1, 2, · · · .

Compute the theoretical convergence rate (from the known eigenvalues) and com-
pare it with these errors/ratios.
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5.4. Let

A =

 −31 −35 16
−10 −8 4
−100 −104 49

 . (5.40)

Then, we have its spectrum σ(A) = {9, 3,−2}. Applying the orthogonal iteration, Algo-
rithm 5.22, with Z0 = [e1 e2].

5.5. This problem is concerned with the QR iteration for the same matrix A in Homework 4.

(a) Apply Algorithm 5.24 to find eigenvalues of A.
(b) Apply Algorithm 5.26, with the shift σi = Ai(3, 3), to find eigenvalues of A.
(c) Compare their convergence speeds.

5.6. Consider the matrix in Example 5.40

A =


1 6 11 16 21
2 7 12 17 22
0 8 13 18 23
0 0 14 19 24
0 0 0 20 1

 .
(a) Use [V,D]=eig(A) to get the true eigenvalues and eigenvectors of A.
(b) Use the implicit single shift QR iteration to find eigenvalues of A. Compare the

results with the true eigenvalues.
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6.1. A Model Problem

This section is a revisit of Section 2.1.
Let Ω = (ax, bx)× (ay, by) in 2D space. Consider the model problem

(a) −∇ · (a∇u) + cu = f, x ∈ Ω
(b) auν + βu = g, x ∈ Γ,

(6.1)

where the diffusivity a(x) > 0 and the coefficient c(x) ≥ 0.

• When c ≡ 0 and β ≡ 0, the problem (6.1) has infinitely many solutions.

– If u(x) is a solution, so is u(x) + C, for ∀C ∈ R.
– Also we can see that the corresponding algebraic system is singular.
– The singularity is not a big issue in numerical simulation; one may

impose a Dirichlet condition at a grid point on the boundary.

• We may assume that (6.1) admits a unique solution.
• For simplicity, the 2nd-order finite difference method (FDM) will

be used for discretization.

To explain the main feature of the central FDM, we may start with the prob-
lem (6.1) with the constant diffusivity, i.e., a(x) ≡ 1.

6.1.1. Constant-coefficient problems

Consider the following simplified problem (a ≡ 1):

−uxx − uyy + cu = f(x, y), (x, y) ∈ Ω,

uν + βu = g(x, y), (x, y) ∈ Γ,
(6.2)

Furthermore, we may start with the 1D problem:

(a) −uxx + cu = f, x ∈ (ax, bx),
(b) −ux + βu = g, x = ax,
(c) ux + βu = g, x = bx.

(6.3)
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FD Approximation

• Select nx equally spaced grid points on the interval [ax, bx]:

xi = ax + ihx, i = 0, 1, · · · , nx, hx =
bx − ax
nx

.

• Let ui = u(xi) and recall the central second-order FD scheme for uxx at xi:

−uxx(xi) ≈
−ui−1 + 2ui − ui+1

h2
x

+
uxxxx(xi)

12
h2
x + · · · . (6.4)

• Apply the FD scheme for (6.3.a) to have

−ui−1 + (2 + h2
xc)ui − ui+1 = h2

xfi. (6.5)

• However, we will meet ghost grid values at the end points. For example, at
the point ax = x0, the formula becomes

−u−1 + (2 + h2
xc)u0 − u1 = h2

xf0. (6.6)

Here the value u−1 is not defined and we call it a ghost grid value.

• Now, let’s replace the value by using the boundary condition (6.3.b). The
central FD scheme for ux at x0 reads

ux(x0) ≈
u1 − u−1

2hx
, Trunc.Err = −uxxx(x0)

6
h2
x + · · · . (6.7)

• Thus he equation (6.3.b) can be approximated (at x0)

u−1 + 2hxβu0 − u1 = 2hxg0. (6.8)

• Hence it follows from (6.6) and (6.8) that

(2 + h2
xc+ 2hxβ)u0 − 2u1 = h2

xf0 + 2hxg0. (6.9)

The same can be considered for the algebraic equation at the point xn.
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The Algebraic System
The problem (6.3) is reduced to finding the solution u1 satisfying

A1u1 = b1, (6.10)

where

A1 =


2 + h2

xc+ 2hxβ −2
−1 2 + h2

xc −1
. . . . . . . . .

−1 2 + h2
xc −1

−2 2 + h2
xc+ 2hxβ

 ,

and

b1 =


h2
xf0

h2
xf1
...

h2
xfnx−1

h2
xfnx

+


2hxg0

0
...
0

2hxgnx

 .
Such a technique of removing ghost grid values is called outer bordering.
We can use it for the 2D problem (6.2) along the boundary grid points.

Symmetrization : The matrix A1 is not symmetric! You can symmetrize
it by dividing the first and the last rows of [A1|b1] by 2. For the 2D problem,
you have to apply “division by 2" along each side of boundaries. (So, the
algebraic equations corresponding to the corner points would be divided by
a total factor of 4, for a symmetric algebraic system.)
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6.1.2. General diffusion coefficients

Let the 1D problem read

(a) −(aux)x + cu = f, x ∈ (ax, bx),
(b) −aux + βu = g, x = ax,
(c) aux + βu = g, x = bx.

(6.11)

The central FD scheme for (aux)x can be obtained as follows.

• The term (aux) can be viewed as a function and approximated as

(aux)x(xi) ≈
(aux)i+1/2 − (aux)i−1/2

hx
+O(h2

x), (6.12)

where (aux)i+1/2 denotes the value of (aux) evaluated at xi+1/2 := (xi+xi+1)/2.
• The terms (aux)i+1/2 and (aux)i−1/2 can be again approximated as

(aux)i+1/2 ≈ ai+1/2
ui+1 − ui

hx
− ai+1/2

uxxx(xi+1/2)

3!

(hx
2

)2

+ · · · ,

(aux)i−1/2 ≈ ai−1/2
ui − ui−1

hx
− ai−1/2

uxxx(xi−1/2)

3!

(hx
2

)2

+ · · · .
(6.13)

• Combine the above two equations to have

−(aux)x(xi) ≈
−ai−1/2ui−1 + (ai−1/2 + ai+1/2)ui − ai+1/2ui+1

h2
x

, (6.14)

of which the overall truncation error becomes O(h2
x). See Exercise 6.1 on

page 295.
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Note:

• The y-directional approximation can be done in the same fashion.
• The reader should also notice that the quantities ai+1/2 evaluated at

mid-points are not available in general.
• We may replace it by the arithmetic/harmonic average of ai and ai+1:

ai+1/2 ≈
ai + ai+1

2
or

[
1

2

(
1

ai
+

1

ai+1

)]−1

. (6.15)

• The harmonic average is preferred; the resulting system holds the con-
servation property, particularly the flux conservation.



6.1. A Model Problem 251

6.1.3. FD schemes for mixed derivatives

The linear elliptic equation in its general form is given as

−∇ · (A(x)∇u) + b · ∇u+ cu = f, x ∈ Ω ⊂ Rd, (6.16)

where 1 ≤ d ≤ 3 and

−∇ · (A(x)∇u) = −
∑
i,j

∂

∂xi

(
aij(x)

∂u

∂xj

)
.

Thus we must approximate the mixed derives whenever they appear.

As an example, we consider a second-order FD scheme for (aux)y on a mesh
of grid size hx × hy:

(aux)y(xpq) ≈
aux(xp,q+1)− aux(xp,q−1)

2hy
+O(h2

y)

≈ ap,q+1(up+1,q+1 − up−1,q+1)− ap,q−1(up+1,q−1 − up−1,q−1)

4hxhy
+O(h2

x) +O(h2
y).

(6.17)

• There may involve difficulties in FD approximations when the diffu-
sion coefficient A is a full tensor.

• Scalar coefficients can also become a full tensor when coordinates are
changed.
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6.1.4. L∞-norm error estimates for FD schemes

Let Ω be a rectangular domain in 2D and Γ = ∂Ω. Consider

−∆u = f, x ∈ Ω,
u = g, x ∈ Γ,

(6.18)

where x = (x, y) = (x1, x2) and

∆ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂x2
1

+
∂2

∂x2
2

.

Let ∆h be the discrete five-point Laplacian:

∆hupq = (δ2
x + δ2

y)upq

:=
up−1,q − 2upq + up+1,q

h2
x

+
up,q−1 − 2upq + up,q+1

h2
y

.
(6.19)

Consistency : Let uh be the FD solution of (6.18), i.e.,

−∆huh = f, x ∈ Ωh,

uh = g, x ∈ Γh,
(6.20)

where Ωh and Γh are the sets of grid points on Ω◦ and Γ, respectively. Note
that the exact solution u of (6.18) satisfies

−∆hu = f +O(h2∂4u), x ∈ Ωh. (6.21)

Thus it follows from (6.20) and (6.21) that for some C > 0 independent of
h,

‖∆h(u− uh)‖∞,Ωh
≤ Ch2‖∂4u‖∞,Ωh

, (6.22)

where ‖·‖∞,Ωh
denotes the maximum norm measured on the grid points Ωh.
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Convergence : We are more interested in an error estimate for (u − uh)

rather than for ∆h(u− uh). We begin with the following lemma.

Lemma 6.1. Let Ω is a rectangular domain and vh be a discrete function
defined on a grid Ωh of Ω with vh = 0 on the boundary Γh. Then

‖vh‖∞,Ωh
≤ C‖∆hvh‖∞,Ωh

, (6.23)

for some C > 0 independent on h.

Clearly, (u − uh) in (6.22) can be considered as a discrete function on the unit
square with u − uh = 0 on Γh. Therefore, with a aid of Lemma 6.1, one can
conclude

Theorem 6.2. Let u and uh be the solutions of (6.18) and (6.20), respec-
tively. Then

‖u− uh‖∞,Ωh
≤ Ch2‖∂4u‖∞,Ωh

, (6.24)

for some C > 0 independent on the grid size h.
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Generalization :

The above theorem can be expanded for more general elliptic problems of
the form

Lu := −∇ · (A(x)∇u) + b(x) · ∇u = f, x ∈ Ω,
u = g, x ∈ Γ,

(6.25)

where A(x) = diag(a11(x), a22(x)).

Let Lh be the five-point central discretization of L and uh be the solution of

Lhuh = f, x ∈ Ωh,
uh = g, x ∈ Γh.

(6.26)

Theorem 6.3. Let u and uh be the solutions of (6.25) and (6.26), respec-
tively. Assume h is sufficiently small for the case b 6= 0. Then

‖u− uh‖∞,Ωh
≤ Ch2, (6.27)

for some C = C(Ω, ∂3u, ∂4u) > 0 independent on the grid size h.
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6.1.5. The Algebraic System for FDM

Let Ω = [ax, bx]× [ay, by] and Γ = ∂Ω. Consider (6.18):

−∆u = f, x ∈ Ω,
u = g, x ∈ Γ.

(6.28)

Define, for some positive integers nx, ny,

hx =
bx − ax
nx

, hy =
by − ay
ny

and
xp = ax + p hx, p = 0, 1, · · · , nx
yq = ay + q hy, q = 0, 1, · · · , ny

Let ∆h be the discrete five-point Laplacian (6.19):

∆hupq = (δ2
x + δ2

y)upq

:=
up−1,q − 2upq + up+1,q

h2
x

+
up,q−1 − 2upq + up,q+1

h2
y

.
(6.29)
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Then, when the grid points are ordered row-wise, the algebraic system for
the FDM reads

Au = b, (6.30)

where

A =


B −I/h2

y 0

−I/h2
y B −I/h2

y
. . . . . . . . .

−I/h2
y B −I/h2

y

0 −I/h2
y B

 (6.31)

with I being the identity matrix of dimension nx − 1 and B being a matrix
of order nx − 1 given by

B =


d −1/h2

x 0
−1/h2

x d −1/h2
x

. . . . . . . . .
−1/h2

x d −1/h2
x

0 −1/h2
x d

 (6.32)

where d =
2

h2
x

+
2

h2
y

.

On the other hand,

bpq = fpq +
gp−1,q

h2
x

δp−1,0 +
gp+1,q

h2
x

δp+1,nx

+
gp,q−1

h2
y

δq−1,0 +
gp,q+1

h2
y

δq+1,ny

(6.33)

Here, the global point index for the row-wise ordering of the interior
points, i = 0, 1, 2, · · · , becomes

i = (q − 1) ∗ (nx − 1) + p− 1 (6.34)



6.1. A Model Problem 257

Saving and managing the algebraic system

• For the FDM we just considered, the total number of interior nodal
points is

(nx − 1) ∗ (ny − 1)

Thus, you may try to open the matrix and other arrays based on this
number.

• Saving nonzero entries only, the matrix A can be stored in an array of
the form

A[M ][5] or A[ny − 1][nx − 1][5], (6.35)

where M = (nx − 1) ∗ (ny − 1).
• However, it is often more convenient when the memory objects are

opened incorporating all the nodal points (including those on bound-
aries). You may open the matrix as

A[ny + 1][nx + 1][5]. (6.36)

The matrix A in (6.31) can be saved, in Python, as

1 rx, ry = 1/hx**2, 1/hy**2
2 d = 2*(rx+ry)
3 for q in range(1,ny):
4 for p in range(1,nx):
5 A[q][p][0] = -ry
6 A[q][p][1] = -rx
7 A[q][p][2] = d
8 A[q][p][3] = -rx
9 A[q][p][4] = -ry
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Let the solution vector u be opened in u[ny+1][nx+1] and initialized along the
boundaries. Then, the Gauss-Seidel iteration can be carried out as

Gauss-Seidel
1 import numpy as np; import copy
2 from numpy import abs,sqrt,pi,sin,cos
3

4 # the Jacobi matrix
5 T = copy.deepcopy(A) # np.ndarray((ny+1,nx+1,5),float)
6

7 for q in range(1,ny):
8 for p in range(1,nx):
9 for c in [0,1,3,4]:

10 T[q][p][c] = -T[q][p][c]/T[q][p][2]
11

12 # A function for the Gauss-Seidel iteration
13 def Gauss_Seidel(T,u,itmax=1):
14 ny,nx = leng(u)-1, len(u[0])-1
15 for it in range(0,itmax):
16 for q in range(1,ny):
17 for p in range(1,nx):
18 u[q][p] = T[q][p][0]*u[q-1][p] \
19 +T[q][p][1]*u[q][p-1] \
20 +T[q][p][3]*u[q][p+1] \
21 +T[q][p][4]*u[q+1][p]
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Positiveness

Definition 6.4. An n × n complex-valued matrix A = [aij] is diagonally
dominant if

|aii| ≥ Λi :=
n∑

j = 1
j 6= i

|aij|, (6.37)

for all 1 ≤ i ≤ n. An n × n matrix A is irreducibly diagonally dominant if
A is irreducible and diagonally dominant, with strict inequality holding in
(6.37) for at least one i.

Theorem 6.5. Let A be an n × n strictly or irreducibly diagonally dom-
inant complex-valued matrix. Then, A is nonsingular. If all the diagonal
entries of A are in addition positive real, then the real parts of all eigen-
values of A are positive.

Corollary 6.6. A Hermitian matrix satisfying the conditions in Theo-
rem 6.5 is positive definite.

Corollary 6.7. The FD/FE matrices from diffusion equations (including
the Poisson equation) are positive definite, when it is symmetric.
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6.2. Iterative Linear Solvers

6.2.1. Basic concepts for iterative solvers

We consider iterative methods in a more general mathematical setting. A
general type of iterative process for solving the algebraic system

Ax = b, A ∈ Rn×n (6.38)

can be described as follows.

• Split the matrix A as
A = M −N, (6.39)

where M is an invertible matrix.
• Then, the system (6.38) can be expressed equivalently as

Mx = Nx + b. (6.40)

• Associated with the splitting is an iterative method

Mxk = Nxk−1 + b =⇒ xk = M−1Nxk−1 +M−1b (6.41)

for a given initialization x0, k ≥ 1.
• Since N = M − A, (6.41) can be rewritten as

xk = (I −M−1A)xk−1 +M−1b
or

xk = xk−1 +M−1(b− Axk−1)

(6.42)

Here, the matrix I −M−1A (= M−1N) is called the iteration matrix.
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We shall say that the iterative method in (6.42) is convergent if it con-
verges for any initial vector x0. A sequence of vectors {x1,x2, · · · } will be
computed from (6.42), and our objective is to choose M so that these two
conditions are met:

1. The sequence {xk} is easily computed. (Of course, M must be invertible.)

2. The sequence {xk} converges rapidly to the solution.

Both conditions can be satisfied if 1 M is easy to invert and 2 M−1

approximates A−1 well.

Convergence: Recall (6.42):

xk = (I −M−1A)xk−1 +M−1b (k ≥ 1).

If the sequence {xk} converges, say to a vector x, then it follows from (6.42)
that

x = (I −M−1A)x +M−1b (6.43)

Thus, by letting ek = x− xk, we have

ek = (I −M−1A)ek−1 (k ≥ 1), (6.44)

which implies
||ek|| ≤ ||I −M−1A|| ||ek−1||

≤ ||I −M−1A||2 ||ek−2||
≤ · · · ≤ ||I −M−1A||k ||e0||

(6.45)

Thus, it can be concluded as in the following theorem.

Theorem 6.8. (Sufficient condition for convergence).
If ||I − M−1A|| = ||M−1N || < 1 for some induced matrix norm, then the
sequence produced by (6.42) converges to the solution of Ax = b for any
initial vector x0.
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Note: Let δ = ||I −M−1A||.

• (Choice of M) When

M−1A ≈ I, or equivalently M−1 ≈ A−1,

the quantity δ will become smaller and therefore the iteration con-
verges faster.

• (Stopping criterion) If δ = ||I −M−1A|| < 1, then it is safe to halt
the iterative process when ||xk − xk−1|| is small. Indeed, since

ek = (I −M−1A)ek−1 = (I −M−1A)(ek + xk − xk−1),

we can obtain
||ek|| ≤ δ(||ek||+ ||xk − xk−1||)

which implies

||ek|| ≤ δ

1− δ
||xk − xk−1||. (6.46)

Theorem 6.9. The iteration (6.42) converges if and only if

ρ(I −M−1A) = ρ(M−1N) < 1. (6.47)

Note: An iterative algorithm converges if and only if its iteration matrix
is convergent.
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6.2.2. Richardson method: the simplest iteration

The iterative method is called the Richardson method if M is simply
chosen to be the identity matrix:

M = I and N = I − A.

In this case, the second equation in (6.42) reads

xk = xk−1 + (b− Axk−1). (6.48)

Figure 6.1: A maple implementation for the Richardson method.

Results of Richardson
1 A := 1/6*Matrix([[6, 3, 2], [2, 6, 3], [3, 2, 6]]):
2 b := 1/6*Vector([11, 11, 11]):
3 x := Vector([0, 0, 0]):
4 Richardson(3, A, b, x, 10)
5 k=, 1, [1.833333333, 1.833333333, 1.833333333]
6 k=, 2, [0.3055555556, 0.3055555556, 0.3055555556]
7 k=, 3, [1.578703704, 1.578703704, 1.578703704]
8 k=, 4, [0.5177469136, 0.5177469136, 0.5177469136]
9 k=, 5, [1.401877572, 1.401877572, 1.401877572]

10 k=, 6, [0.6651020233, 0.6651020233, 0.6651020233]
11 k=, 7, [1.279081647, 1.279081647, 1.279081647]
12 k=, 8, [0.7674319606, 0.7674319606, 0.7674319606]
13 k=, 9, [1.193806699, 1.193806699, 1.193806699]
14 k=, 10, [0.8384944171, 0.8384944171, 0.8384944171]
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Eigenvalues of the iteration matrix
1 with(LinearAlgebra): Id := Matrix(3, shape = identity):
2 evalf(Eigenvalues(Id - A));
3 [ -0.8333333333 ]
4 [0.4166666667 - 0.1443375673 I]
5 [0.4166666667 + 0.1443375673 I]

Note: Eigenvalues of A must be

1.833333333
0.5833333333 + i 0.1443375673
0.5833333333− i 0.1443375673

.

Thus all eigenvalues λ ofA are in the open disk {z ∈ C : |z−1| < 1}, which is
a sufficient and necessary condition for the convergence of the Richardson
method.

Generalization of the Richardson method

Consider
Ax = b, (6.49)

where some eigenvalues of A are not in {z ∈ C : |z − 1| < 1}.

• First, scale (6.49) with a constant η:

ηAx = ηb, (6.50)

where all the eigenvalues of ηA are in the open disk.
• Then, apply the Richardson method to (6.50):

with M = I and N = I − ηA, the iteration reads

xk = xk−1 + (ηb− ηAxk−1)

= xk−1 + η(b− Axk−1).
(6.51)

Thus the Richardson method converges by choosing an appropriate
scaling factor η.

Self-study 6.10. Let A ∈ Rn×n be a definite matrix. Prove that the gener-
alized Richardson method is convergent for the solution of Ax = b.

Solution.
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Regular Splitting and M-matrices

Definition 6.11. For n × n real matrices, A, M , and N , A = M − N is a
regular splitting of A if M is nonsingular with M−1 ≥ 0, and N ≥ 0.

Theorem 6.12. If A = M −N is a regular splitting of A and A−1 ≥ 0, then

ρ(M−1N) =
ρ(A−1N)

1 + ρ(A−1N)
< 1. (6.52)

Thus, the matrix M−1N is convergent and the associated iterative method
of (6.42) converges for any initial value x0.

Definition 6.13. An n× n real matrix A = [aij] with aij ≤ 0 for all i 6= j is
an M-matrix if A is nonsingular and A−1 ≥ 0.

Theorem 6.14. Let A = (aij) be an n × n M -matrix. If M is any n × n
matrix obtained by setting certain off-diagonal entries of A to zero, then
A = M −N is a regular splitting of A and ρ(M−1N) < 1.

Theorem 6.15. Let A be an n × n real matrix with A−1 > 0, and A =
M1 − N1 = M2 − N2 be two regular splittings of A. If N2 ≥ N1 ≥ 0, where
neither N2 −N1 nor N1 is null, then

0 < ρ(M−1
1 N1) < ρ(M−1

2 N2) < 1. (6.53)

Note: Results of the kind of Theorem 6.15 are called comparison theo-
rem in the literature.
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6.3. Relaxation Methods

Definition 6.16. A matrix splitting is an expression which represents
a given matrix as a sum or difference of matrices: A = M −N .

6.3.1. Point relaxation methods

Relaxation methods: We first express A = (aij) ∈ Rn×n as the matrix
sum:

A = D − E − F, (6.54)

where

D =


a11 0 · · · 0

0 a22
. . . ...

... . . . . . . 0
0 · · · 0 ann

 −E =


0 0 · · · 0

a21 0 . . . ...
... . . . . . . 0
an1 · · · an,n−1 0



−F =


0 a12 · · · a1n

0 0 . . . ...
... . . . . . . an−1,n

0 · · · 0 0


Then, relaxation methods can be formulated by selecting M and N for
the matrix splitting. Examples are:

Table 6.1: Common relaxation methods.

M N

Jacobi method D E + F
Gauss-Seidel method D − E F

SOR method
1

ω
D − E, ω ∈ (0, 2)

1− ω
ω

D + F

Here, SOR stands for successive over relaxation.
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Jacobi Method

The Jacobi method is formulated with M = D and N = E + F :

Dxk = (E + F )xk−1 + b. (6.55)

The i-th component of (6.55) reads

aiix
k
i = bi +

i−1∑
j=1

(−aijxk−1
j ) +

n∑
j=i+1

(−aijxk−1
j ), (6.56)

or, equivalently,

xki =
1

aii

(
bi −

i−1∑
j=1

aijx
k−1
j −

n∑
j=i+1

aijx
k−1
j

)
(6.57)

Example 6.17. Let A :=

 2 −1 0
−1 2 −1

0 −1 2

 and b :=

1
0
5

. Use the Jacobi method

to find xk, k = 1, 2, 3, beginning from x0 =

1
1
1

.

Solution.
Manual checking in Maple

1 x0 := Vector([1,1,1]):
2 x1 := Vector(3): x2 := Vector(3): x3 := Vector(3):
3

4 x1[1] := (-A[1, 2]*x0[2] - A[1, 3]*x0[3] + b[1])/A[1, 1];
5 x1[2] := (-A[2, 1]*x0[1] - A[2, 3]*x0[3] + b[2])/A[2, 2];
6 x1[3] := (-A[3, 1]*x0[1] - A[3, 2]*x0[2] + b[3])/A[3, 3];
7 x1^%T
8 [1, 1, 3]
9

10 x2[1] := (-A[1, 2]*x1[2] - A[1, 3]*x1[3] + b[1])/A[1, 1];
11 x2[2] := (-A[2, 1]*x1[1] - A[2, 3]*x1[3] + b[2])/A[2, 2];
12 x2[3] := (-A[3, 1]*x1[1] - A[3, 2]*x1[2] + b[3])/A[3, 3];
13 x2^%T
14 [1, 2, 3]
15

16 x3[1] := (-A[1, 2]*x2[2] - A[1, 3]*x2[3] + b[1])/A[1, 1];
17 x3[2] := (-A[2, 1]*x2[1] - A[2, 3]*x2[3] + b[2])/A[2, 2];
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18 x3[3] := (-A[3, 1]*x2[1] - A[3, 2]*x2[2] + b[3])/A[3, 3];
19 x3^%T
20 [3 7]
21 [-, 2, -]
22 [2 2]

Note: The true solution is [2, 3, 4]T .

Jacobi: Maple implementation

Figure 6.2: Maple implementation for the Jacobi method.

Results of Jacobi
1 Jacobi(3, A, b, x0, tol, 10)
2 k=, 1, [1., 1., 3.]
3 k=, 2, [1., 2., 3.]
4 k=, 3, [1.500000000, 2., 3.500000000]
5 k=, 4, [1.500000000, 2.500000000, 3.500000000]
6 k=, 5, [1.750000000, 2.500000000, 3.750000000]
7 k=, 6, [1.750000000, 2.750000000, 3.750000000]
8 k=, 7, [1.875000000, 2.750000000, 3.875000000]
9 k=, 8, [1.875000000, 2.875000000, 3.875000000]

10 k=, 9, [1.937500000, 2.875000000, 3.937500000]
11 k=, 10, [1.937500000, 2.937500000, 3.937500000]

Jacobi: the `∞-error = 0.0625
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Gauss-Seidel Method

The Gauss-Seidel method is formulated with M = D − E and N = F :

(D − E)xk = Fxk−1 + b. (6.58)

Note that (6.58) can be equivalently written as

Dxk = b + Exk + Fxk−1. (6.59)

The i-th component of (6.59) reads

aiix
k
i = bi +

i−1∑
j=1

(−aijxkj ) +
n∑

j=i+1

(−aijxk−1
j ), (6.60)

or, equivalently,

xki =
1

aii

(
bi −

i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k−1
j

)
(6.61)

The difference is that the SOR method utilizes updated values.

Gauss-Seidel (GS): Maple implementation

Figure 6.3: Maple implementation for the Gauss-Seidel method.
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Results of GaussSeidel
1 GaussSeidel(3, A, b, x0, tol, 10)
2 k=, 1, [1., 1., 3.]
3 k=, 2, [1., 2., 3.500000000]
4 k=, 3, [1.500000000, 2.500000000, 3.750000000]
5 k=, 4, [1.750000000, 2.750000000, 3.875000000]
6 k=, 5, [1.875000000, 2.875000000, 3.937500000]
7 k=, 6, [1.937500000, 2.937500000, 3.968750000]
8 k=, 7, [1.968750000, 2.968750000, 3.984375000]
9 k=, 8, [1.984375000, 2.984375000, 3.992187500]

10 k=, 9, [1.992187500, 2.992187500, 3.996093750]
11 k=, 10, [1.996093750, 2.996093750, 3.998046875]

Gauss-Seidel: the `∞-error ≈ 0.0039 = 3.9E-3.

Note: By comparison with the result of the Jacobi method, we may con-
clude that Gauss-Seidel method is twice faster than the Jacobi method.
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Successive Over Relaxation (SOR) Method

The successive over relaxation (SOR) is formulated with M =
1

ω
D − E

and N =
1− ω
ω

D + F :

(D − ωE)xk =
(
(1− ω)D + ωF

)
xk−1 + ωb. (6.62)

Note that (6.62) can be equivalently written as
Dxk = (1− ω)Dxk−1 + ω(b + Exk + Fxk−1). (6.63)

The i-th component of (6.63) reads

aiix
k
i = (1− ω)aiix

k−1
i + ω

(
bi +

i−1∑
j=1

(−aijxkj ) +
n∑

j=i+1

(−aijxk−1
j )

)
, (6.64)

or, equivalently,

xkGS,i =
1

aii

(
bi −

i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k−1
j

)
xki = (1− ω)xk−1

i + ωxkGS,i

(6.65)

Note that when ω = 1, the SOR becomes the Gauss-Seidel method.

SOR: Maple implementation

Figure 6.4: Maple implementation for the SOR method.
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Results of SOR
1 SOR(3, A, b, x0, 1.2, tol, 10)
2 k=, 1, [1.0, 1.000000000, 3.400000000]
3 k=, 2, [1.000000000, 2.440000000, 3.784000000]
4 k=, 3, [1.864000000, 2.900800000, 3.983680000]
5 k=, 4, [1.967680000, 2.990656000, 3.997657600]
6 k=, 5, [2.000857600, 3.000977920, 4.001055232]
7 k=, 6, [2.000415232, 3.000686694, 4.000200970]
8 k=, 7, [2.000328970, 3.000180625, 4.000068180]
9 k=, 8, [2.000042580, 3.000030331, 4.000004563]

10 k=, 9, [2.000009683, 3.000002482, 4.000000576]
11 k=, 10, [1.999999552, 2.999999581, 3.999999633]

SOR: the `∞-error ≈ 0.00000045 = 4.5E-7.

Note: The SOR with ω = 1.2:

• It is much faster than the Jacobi and GS methods.
• Question: How can we find the optimal parameter ω̂?

We will see it soon.

Convergence Theory

Theorem 6.18. For and x0 ∈ Rn, the sequence defined by

xk = T xk−1 + c (6.66)

converges to the unique solution of x = T x + c if and only if ρ(T ) < 1. In
this case, the iterates satisfy

||x− xk|| ≤ ||T ||k ||x− x0||. (6.67)

For example:

Relaxation method T (Iteration matrix)
Jacobi method TJ = D−1(E + F )
Gauss-Seidel method TGS = (D − E)−1F
SOR method TSOR = (D − ωE)−1

[
(1− ω)D + ωF

]
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Theorem 6.19. (Stein and Rosenberg, 1948) [21]. One and only one of
the following mutually exclusive relations is valid:

1. ρ(TJ) = ρ(TGS) = 0

2. 0 < ρ(TGS) < ρ(TJ) < 1

3. ρ(TJ) = ρ(TGS) = 1

4. 1 < ρ(TJ) < ρ(TGS)

Theorem 6.20. (Ostrowski, 1954) [16]. Let A be symmetric. Then,

ρ(TSOR) < 1 ⇐⇒ A is is positive definite and 0 < ω < 2. (6.68)

Parameter 6.21. (Optimal ω for the SOR). For algebraic systems of
good properties, it is theoretically known that the convergence of the SOR
can be optimized when

ω̂ =
2

1 +
√

1− ρ(TJ)2
. (6.69)

However, in many cases you can find a better ω for a given algebraic sys-
tem.

Note: Let 0 < ρ(TJ) < 1. Then the theoretically optimal SOR parameter

1 < ω̂ < 2,

ω̂ ≈ 1 +
1

4
ρ(TJ)2 +

1

8
ρ(TJ)4.

(6.70)

Remark 6.22.

• When ω > 1, the blending of the SOR, the second equation in (6.65), is
an extrapolation. It is how the algorithm is named.

• On the other hand, when ω < 1, the algorithm is also called the suc-
cessive under relaxation (SUR).
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6.3.2. Line relaxation methods

• The standard Jacobi, Gauss-Seidel, and SOR schemes are called point
relaxation methods.

• We can compute a whole line of new values using a direct method, e.g.,
Gauss elimination.

• this leads to line relaxation methods.

Algebraic interpretation : As in §6.1.5, consider

−∆u = f, x ∈ Ω,
u = g, x ∈ Γ,

(6.71)

where Ω is a rectangular domain in R2, and its discrete five-point Laplacian

∆hupq = (δ2
x + δ2

y)upq

:=
up−1,q − 2upq + up+1,q

h2
x

+
up,q−1 − 2upq + up,q+1

h2
y

.
(6.72)
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Then, for the column-wise point ordering, the algebraic system for the FDM
reads

Au = b, (6.73)

where

A =


C −I/h2

x 0
−I/h2

x C −I/h2
x

. . . . . . . . .
−I/h2

x C −I/h2
x

0 −I/h2
x C

 (6.74)

with I being the identity matrix of dimension ny − 1 and C being a matrix of
order nx − 1 given by

C =


d −1/h2

y 0

−1/h2
y d −1/h2

y
. . . . . . . . .

−1/h2
y d −1/h2

y

0 −1/h2
y d

 (6.75)

where d =
2

h2
x

+
2

h2
y

.

• A line relaxation method can be viewed as a (standard) relaxation
method which deals with the matrix C like a single entry of a tridiag-
onal matrix.

• Once a point relaxation method converges, its line method converges
twice faster asymptotically.

• Line methods can employ the line solver in alternating directions of
(x, y).
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Convergence comparison : For (6.71) on p.274, we choose

Ω = (0, 1)2, n = nx = ny.

The following table includes the spectral radii of iteration matrices ρ(T ) and
the required iteration counts k for the convergence to satisfy the tolerance
‖ek‖

/
‖e0‖ < 10−6.

Table 6.2: Convergence comparison

Point Jacobi Line Jacobi Point GS Line GS
n ρ(T ) k ρ(T ) k ρ(T ) k ρ(T ) k

5 0.8090 66 0.6793 36 0.6545 33 0.4614 18
10 0.9511 276 0.9067 142 0.9045 138 0.8221 71
20 0.9877 1116 0.9757 562 0.9755 558 0.9519 281
40 0.9969 4475 0.9939 2241 0.9938 2238 0.9877 1121

Final remarks for relaxation methods
• GS methods converge asymptotically twice faster than Jacobi methods,

in either point or line iterations. SOR is yet faster and the line SOR is
again twice faster.

• Relaxation methods sweep over either points or groups of points. For a
faster convergence, you may let them visit the points in an order followed
by the opposite order.

• For line methods, the tridiagonal matrix can be stored in a 3-column
array, instead of a square big-fat array.
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6.4. Krylov Subspace Methods

Definition 6.23. A matrix A = (aij) ∈ Rn×n is said to be positive definite
if

xTAx =
n∑

i,j=1

xiaijxj > 0, ∀x ∈ Rn, x 6= 0. (6.76)

For solving a linear system
Ax = b, (6.77)

where A is symmetric positive definite, Krylov subspace methods update
the iterates as follows.

Given an initial guess x0 ∈ Rn, find successive approximations xk ∈ Rn of
the form

xk+1 = xk + αkpk, k = 0, 1, · · · , (6.78)

where pk is the search direction and αk > 0 is the step length.

• Different methods differ in the choice of the search direction and the step
length.

• In this section, we consider the gradient descent method the conju-
gate gradient (CG) method, and preconditioned CG method.

• For other Krylov subspace methods, see e.g. [3, 13].

Remark 6.24. The algebraic system (6.77) admits a unique solution x ∈
Rn, which is equivalently characterized by

x = arg min
η∈Rn

f(η), f(η) =
1

2
η · Aη − b · η. (6.79)
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6.4.1. Gradient descent (GD) method

The gradient descent method is also known as the steepest descent method
or the Richardson’s method.

Derivation of the GD method
• We denote the gradient and Hessian of f by f ′ and f ′′, respectively:

f ′(η) = Aη − b, f ′′(η) = A. (6.80)

• Given xk+1 as in (6.78), we have by Taylor’s formula

f(xk+1) = f(xk + αkpk)

= f(xk) + αkf
′(xk) · pk +

α2
k

2
pk · f ′′(ξ)pk,

(6.81)

for some ξ.
• Since f ′′(η) (= A) is bounded,

f(xk+1) = f(xk) + αkf
′(xk) · pk +O(α2

k), as αk → 0.

• The goal is to find pk and αk such that

f(xk+1) < f(xk), (6.82)

which can be achieved if
f ′(xk) · pk < 0 (6.83)

and αk is sufficiently small.
• Choice: When f ′(xk) 6= 0, (6.83) holds, if we choose:

pk = −f ′(xk) = b− Axk =: rk (6.84)

That is, the search direction is the negative gradient, the steepest de-
scent direction.
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Optimal step length: We may determine αk such that

f(xk + αkpk) = min
α
f(xk + αpk), (6.85)

in which case αk is said to be optimal.

If αk is optimal, then

0 =
d

dα
f(xk + αpk)

∣∣∣∣
α=αk

= f ′(xk + αkpk) · pk

= (A(xk + αkpk)− b) · pk
= (Axk − b) · pk + αkpk · Apk.

(6.86)

So,
αk =

rk · pk
pk · Apk

. (6.87)

Theorem 6.25. (Convergence of the GD method): The GD method
converges, satisfying

‖x− xk ‖2 ≤
(

1− 1

κ(A)

)k
‖x− x0 ‖2. (6.88)

Thus, the number of iterations required to reduce the error by a factor of ε
is in the order of the condition number of A:

k ≥ κ(A) log
1

ε
. (6.89)

6.4.2. Conjugate gradient (CG) method

In this method the search directions pk are conjugate, i.e.,

pi · Apj = 0, i 6= j, (6.90)

and the step length αk is chosen to be optimal.
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Algorithm 6.26. (CG Algorithm, V.1)

Select x0, ε;
r0 = b− Ax0, p0 = r0;
Do k = 0, 1, · · ·

αk = rk · pk/pk · Apk; (CG1)
xk+1 = xk + αkpk; (CG2)
rk+1 = rk − αkApk; (CG3)
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;
βk = −rk+1 · Apk/pk · Apk; (CG4)
pk+1 = rk+1 + βkpk; (CG5)

End Do

(6.91)

Remark 6.27. (CG Algorithm, V.1)

• In practice, qk = Apk is computed only once, and saved.
• rk = b− Axk, by definition. So,

rk+1 = b− Axk+1 = b− A(xk + αkpk)
= b− Axk − αkApk = rk − αkApk. (CG3)

• αk in (CG1) is optimal as shown in (6.87). Also it satisfies rk+1 · pk = 0.
You may easily verify it using rk+1 in (CG3).

• βk in (CG4) is determined such that pk+1 ·Apk = 0. Verify it using pk+1

in (CG5).

Theorem 6.28. For m = 0, 1, · · · ,

span{p0, · · · ,pm} = span{r0, · · · , rm}
= span{r0, Ar0, · · · , Amr0}.

(6.92)

Theorem 6.29. The search directions and the residuals satisfy the or-
thogonality,

pi · Apj = 0; ri · rj = 0, i 6= j. (6.93)
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Theorem 6.30. For some m ≤ n, we have Axm = b and

‖x− xk ‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x− x0 ‖A. (6.94)

So the required iteration number to reduce the error by a factor of ε is

k ≥ 1

2

√
κ(A) log

2

ε
. (6.95)

Proofs of the above theorems can be found in e.g. [12].

Simplification of the CG method : Using the properties and identities in-
volved in the method, one can derive a more popular form of the CG method.

Algorithm 6.31. (CG Algorithm, V.2)

Select x0, ε;
r0 = b− Ax0, p0 = r0;
Compute ρ0 = r0 · r0;
Do k = 0, 1, · · ·

αk = ρk/pk · Apk;
xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;
ρk+1 = rk+1 · rk+1;
βk = ρk+1/ρk;
pk+1 = rk+1 + βkpk;

End Do

(6.96)

Note:
rk · pk = rk · (rk + βk−1pk−1) = rk · rk,

βk = −rk+1 · Apk/pk · Apk = −rk+1 · Apk
αk
ρk

= rk+1 · (rk+1 − rk)/ρk = ρk+1/ρk.

(6.97)
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Example 6.32. (Revisit to Example 6.17)

LetA :=

 2 −1 0
−1 2 −1

0 −1 2

 and b :=

1
0
5

. Use the CG method to find xk, k = 1, 2, 3,

beginning from x0 =

1
1
1

.

Solution.

Remark 6.33.

• For the example, the CG converged completely in three iterations.
• The CG method was originally developed as a direct solver.
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6.4.3. Preconditioned CG method

• The condition number of A, κ(A), is the critical factor for the convergence
of the CG method.

• If we can find a matrix M such that
M ≈ A

and it is easy to invert, we may try to apply the CG algorithm to the
following system

M−1Ax = M−1b. (6.98)

• Since
κ(M−1A)� κ(A) (6.99)

(hopefully, κ(M−1A) ≈ 1), the CG algorithm will converge much faster.

In practice, we do not have to multiply M−1 to the original algebraic system
and the algorithm can be implemented as

Algorithm 6.34. (Preconditioned CG)

Select x0, ε;
r0 = b− Ax0, Mz0 = r0;
p0 = z0, compute ρ0 = z∗0r0;
Do k = 0, 1, · · ·

αk = ρk/p
∗
kApk;

xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖ rk+1 ‖2 < ε ‖ r0 ‖2, stop;
Mzk+1 = rk+1;
ρk+1 = z∗k+1rk+1;
βk = ρk+1/ρk;
pk+1 = zk+1 + βkpk;

End Do

(6.100)

Here the superscript * indicates the transpose complex-conjugate; it is the
transpose for real-valued systems.
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6.5. Applications of Richardson Extrapolation for
PDEs

Problem 6.35. The Richardson extrapolation is a numerical proce-
dure that produces a numerical solution of a higher-order accuracy,
when two numerical solutions are available from a mesh and its refined
one. By applying extrapolation recursively, the Richardson extrapolation
becomes a sequence acceleration method that improves the rate of conver-
gence of a sequence.

• The Issue: The Richardson extrapolation can compute the solution of
a higher-order accuracy only on the course mesh.

• Various multiple coarse grid (MCG) updating strategies have been
considered in the literature [5].

• An MCG updating method can be expensive computationally.
• The extrapolated solutions often show a desired order of accuracy,

when they compared with each other. However, their error can
be larger than that of the numerical solution obtained using
the original high-order scheme.

Quesiton. Can we get higher-order solutions on finer meshes, without
using a multiple coarse grid updating method?

Example 6.36. Consider

−u′′(x) = π2 sin(πx), x ∈ (0, 1)
u(0) = 0, u(1) = 2,

(6.101)

for which the exact solution is u(x) = sin(πx) + 2x.

(a) Partition [0, 1] into n equal subintervals. That is,

h =
1

n
; xi = i · h, i = 0, 1, · · · , n.

Let uh be such that uh[i] = u(xi).
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(b) Approximate −u′′(xi) by using the formula: For each i = 1, 2, · · · , n− 1,

−u′′(xi) =
−ui−1 + 2ui − ui+1

h2
+K2h

2 +K4h
4 + · · · = fi. (6.102)

where

Kj = 2 · u
(j+2)(xi)

(j + 2)!
, j = 2, 4, · · · . (6.103)

(c) Assemble the above for an algebraic system to solve:

Avh = b (6.104)

(d) Find vh, vh/2, and vh/4.

(e) Apply the Richardson Extrapolation and measure the errors.

Remark 6.37. In Example 6.36:

• Solutions of a fourth-order accuracy can be obtained on the meshes of
grid sizes h and h/2.

• Solutions of a sixth-order accuracy can be computed only on the
coarsest mesh of grid size h.
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Remark 6.38. Equation (6.102) can be rewritten as

ui =
ui−1 + ui+1

2
+
h2

2
(fi −K2h

2)− 1

2
K4h

6 − · · · , (6.105)

where
K2 =

u(4)(xi)

12
and K4 =

u(6)(xi)

360
. (6.106)

Since u(4) = −f ′′, for example, K2 is approximated as

K2 =
u(4)(xi)

12
= − 1

12
f ′′(xi) = − 1

12

fi−1 − 2fi + fi+1

h2
+O(h2), (6.107)

and therefore

fi −K2h
2 =

1

12
(fi−1 + 10fi + fi+1) +O(h4), (6.108)

from which we have

ui =
ui−1 + ui+1

2
+
h2

24
(fi−1 + 10fi + fi+1) +O(h6). (6.109)
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Algorithm 6.39. In order to get a sixth-order solution on the mid mesh,
we first should have meaningful fourth-order solutions on the mid and fine
meshes.

1. Let wh =
1

3
(4vh/2 − vh), Richardson extrapolation on the course mesh.

2. Let w̃h/2 be its expansion on the mid mesh: w̃h/2[0 : 2 : end] = wh.
3. Then, you should determine values w̃h/2[1 : 2 : end] to complete the ex-

pansion. Using (6.109), if i ∈ [1 : 2 : 2 ∗ n− 1], we have

w̃h/2(i) =
w̃h/2(i− 1) + w̃h/2(i+ 1)

2
+

(h/2)2

24
(fi−1 + 10fi + fi+1), (6.110)

where fi = f(i · (h/2)).
4. Repeat the above, starting with wh/2, to get its expansion w̃h/4.
5. Then a sixth-order solution on the mid mesh is

1

15

(
16 ∗ w̃h/4[0 : 2 : end]− w̃h/2

)
. (6.111)

Check the error.
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How to find the accuracy order of a numerical scheme:

• For given h, you can measure the error: that is,

||uh − vh||∞ = Eh. (6.112)

• If the accuracy order is α, we may write

Eh = O(hα) = C · hα, (6.113)

for some constant C > 0.
• If you compute the numerical solution with h/2, then you can measure

the error to be Eh/2, which can be written as

Eh/2 = O
(
(h/2)α

)
= C · (h/2)α, (6.114)

• Dividing (6.113) by (6.114) reads

hα

(h/2)α
=

Eh

Eh/2
=⇒ 2α =

Eh

Eh/2
.

• Now, applying the natural log to the equation results in

α =
ln(Eh/Eh/2)

ln 2
(6.115)
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6.6. A Nonoscillatory High-Order Time-Stepping
Procedure

Note: In this section, we consider a nonoscillatory second-order time-
stepping procedure, for which details can be found in [14].

6.6.1. Heat transfer

Model-Problem 6.40. For simplicity, consider a diffusion equation de-
fined in the 1D space.

∂u

∂t
− uxx = f, (x, t) ∈ (0, 1)× [0, T ],

u(0, t) = u(1, t) = 0, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ (0, 1).

(6.116)

Discretization

• Let the domain be partitioned into nx subintervals:

xi = i ·∆x, i = 0, 1, · · · , nx, ∆x =
1

nx
.

• Let A be the second-order approximation of −∂xx:

Au = −uxx +O(∆x2). (6.117)

Then the semi-discrete problem of (6.116) reads

∂u

∂t
+Au = f. (6.118)
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• Define ∆t = T/nt, for some positive integer nt, tn = n∆t, and un = u(·, tn).
• Assume un is known.
• To find un+1: the θ-method is formulated as

un+1 − un

∆t
+A[θun+1 + (1− θ)un] = fn+θ, θ ∈ [0, 1], (6.119)

where fn+θ is either f(x, tn+θ) or θfn+1 + (1 − θ)fn. A simple algebraic
rearrangement of (6.119) gives

(I + θ∆tA)un+1 = [I − (1− θ)∆tA]un + ∆tfn+θ. (6.120)

Note: Popular choices of θ ∈ [0, 1] are 0, 1, and 1/2.

• Forward Euler method: θ = 0.

un+1 = (I −∆tA)un + ∆tfn, (6.121)

which is stable only for µ =
∆t

∆x2 ≤
1

2
.

• Crank-Nicolson method: θ = 1/2.(
I +

∆t

2
A
)
un+1 =

(
I − ∆t

2
A
)
un + ∆tfn+1/2, (6.122)

which is unconditionally stable and of a second-order accuracy in
the temporal approximation.

• Backward Euler method: θ = 1.

(I + ∆tA)un+1 = un + ∆tfn+1, (6.123)

which is unconditionally stable.
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Remark 6.41. Although the Crank-Nicolson (CN) method is uncondi-
tionally stable and of second-order accuracy in both spatial and tem-
poral directions, it may introduce spurious oscillations into the numeri-
cal solution for nonsmooth data.

6.6.2. The variable-θ method

Strategy 6.42. Variable-θ method. In each time level,

• Default is the CN method (θ = 1/2).
• The method detects points of potential oscillations, to implicitly resolve

the solution there (θ = 1).

How to detect points of potential oscillations

Definition 6.43. The wobble set is a collection of the grid points where
the solution has high fluctuations so that the implicit method (θ = 1)
should be applied for the numerical solution not to develop oscillations.

Observation 6.44. Numerical oscillations of the CN method occur when
its explicit half step produces spurious oscillations.

• Such non-physical oscillations may happen particularly when the time
step size ∆t is larger than the stability limit of the explicit scheme.

• Thus the wobble set may be formed to include points where the explicit
half step of the CN method introduces undesired local extrema.

• It follows from (6.122) that the explicit half step of the CN method
reads

un,∗ :=
(
I − ∆t

2
A
)
un, (6.124)

for which we set f ≡ 0.
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Algorithm 6.45. Determining the wobble set.

• Define an index function for local extrema (idxt) as

idxt(a, b, c) =


0, if min(a, c) < b < max(a, c),
1, if b = max(a, c),
−1, if b = min(a, c),

2, if max(a, c) < b,
−2, if b < min(a, c).

(6.125)

• Let P , Q, and R be point indices and define

iswb(P,Q,R, n) =


1, if idxt(un,∗P , un,∗Q , un,∗R ) 6= 0 and∣∣∣idxt(un,∗P , un,∗Q , un,∗R ) + idxt(unP , u

n
Q, u

n
R)
∣∣∣ < 4,

0, otherwise.
(6.126)

• Then, the wobble set (for the computation of un+1) is defined as

Wn =
{
xi | iswb(i− 1, i, i+ 1, n) = 1

}
. (6.127)

Remark 6.46. The function iswb selects candidates for the wobble set
from local extrema satisfying idxt(un,∗P , un,∗Q , un,∗R ) 6= 0; however, the condi-
tion ∣∣∣idxt(un,∗P , un,∗Q , un,∗R ) + idxt(unP , u

n
Q, u

n
R)
∣∣∣ < 4

excludes cases where a strict extremum in un becomes a strict extremum
in the same sense in un,∗. Thus, the wobble set (6.127) is the set of interior
grid points xi where un,∗i becomes a local extremum while uni is either a
non-extreme or an extreme in the opposite sense.
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Algorithm 6.47. The variable-θ method.

• Having the wobble set, the parameter θ for the computation of un+1

can be assigned pointwisely

θn+1
i := θ(xi, t

n+1) =

{
1, if xi ∈ Wn,
1/2, otherwise. (6.128)

• Thus, the variable-θ method for (6.119) can be formulated as

un+1
i − uni

∆t
+A[θn+1

i un+1
i + (1− θn+1

i )uni ] = f
n+1/2
i . (6.129)

Example 6.48. When f ≡ 0 and

u0(x) =


0 if 0 < x < 1

4 ,

1 if 1
4 ≤ x < 3

4 ,

0 if 3
4 ≤ x < 1,

the exact solution of (6.116) is given by

u(x, t) =
∞∑
k=1

4

kπ
sin

(
kπ

2

)
sin

(
kπ

4

)
sin (kπx) e−k

2π2t, (6.130)

for (x, t) ∈ (0, 1)× [0, T ].

(a) (b) (c)

Figure 6.5: Propagation of the exact and numerical solutions for (6.116): (a) the exact
solution and the numerical solution of (b) the CN method and (c) the variable-θ method
(6.129) for 0 ≤ t ≤ T = 1.0, when ∆t = 0.01 and ∆x = 0.025.



294 Chapter 6. Iterative Methods for Linear Systems

Accuracy Comparison

Figure 6.6: The numerical solutions at T = 1.0, compared with the exact solution.

Remark 6.49. The variable-θ method

• Its numerical solutions are nonoscillatory.
• It shows second-order accuracy, in practice.

– Often, it is more accurate than the CN method.

• It is easily applicable for 2D and 3D problems [14, 15].

– computational cost: only 3-5% increase.
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Exercises for Chapter 6

6.1. Verify that the overall truncation error for the FD scheme (6.14) is second-order in hx.
Hint: Define

K(x) = a(x)
uxxx(x)

3!

(hx
2

)2

+ · · · ,

for the truncation errors appeared in (6.13). Then the truncation error for the approxi-
mation of (aux)i+1/2 − (aux)i−1/2 becomes K(xi+1/2)−K(xi−1/2) = hxK

′(xi) + · · · .

6.2. When the boundary-value problem{
−uxx = −2, 0 < x < 4
ux(0) = 0, u(4) = 16

(6.131)

is discretized by the second-order finite difference method with h = 1, the algebraic
system reads Ax = b, where

A =


2 −2 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

, b =


−2
−2
−2
14

 (6.132)

and the exact solution is x = [0, 1, 4, 9]T .

(a) Is A irreducibly diagonally dominant?
(b) Perform 10 iterations of the Jacobi and Gauss-Seidel methods, starting from

x0 = [0, 0, 0, 0]T .
(c) Try to find the best ω with which the SOR method converges fastest during the first

10 iterations.
(d) Find the spectral radii of the iteration matrices of the Jacobi, the Gauss-Seidel, and

the SOR with the best ω.

6.3. Implement a code for Example 6.36 and Algorithm 6.39, with h = 1/10, 1/20, and 1/40,
to get a sixth-order solution on the mid mesh. If you use Matlab, you may start with

get_A_b.m
1 function [A,b] = get_A_b(interval,n,f,u)
2

3 A=zeros(n+1,n+1);
4 b=zeros(n+1,1);
5 h=(interval(2)-interval(1))/n;
6 %%---------
7 for i=2:n
8 A(i,i-1) = -1;
9 A(i,i) = 2;

10 A(i,i+1) = -1;
11 b(i) = h^2*f( interval(1)+(i-1)*h );
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12 end
13

14 A(1,1)=1; A(n+1,n+1)=1;
15 b(1)=u(interval(1)); b(n+1)=u(interval(2));

Part of Richardson_extrapolation.m
1 u = @(x) sin(pi*x)+2*x;
2 f = @(x) pi^2*sin(pi*x);
3

4 interval=[0,1]; n0 = 10;
5 U = cell(3,1); V = cell(3,1);
6 W = cell(2,2); WT = cell(3,1);
7

8 %%-- U & V
9 for i=1:3

10 n = n0*2^(i-1); X =linspace(0,1,n+1)';
11 U{i} = u(X);
12 [A,b] = get_A_b(interval,n,f,u);
13 V{i}= A\b;
14 end
15

16 %%-- Richardson
17 for i=1:2
18 W{i,1} = (1/3)*(4*V{i+1}(1:2:end)-V{i});
19 end
20 W{1,2} = (1/15)*(16*W{2,1}(1:2:end)-W{1,1});
21

22 %%-- Expansion: WT{i}, i=2,3, from W{i-1,1}
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7.1. Introduction to Data Mining

Why Mine Data?

Commercial Viewpoint

• Lots of data is being collected and warehoused.

– Web data, e-commerce
– Purchases at department/grocery stores
– Bank/Credit Card transactions

• Computers have become cheaper and more powerful.
• Competitive pressure is strong.

– Provide better, customized services for an edge (e.g. in Customer
Relationship Management)

Scientific Viewpoint

• Data collected and stored at enormous speeds (GB/hour)

– Remote sensors on a satellite
– Telescopes scanning the skies
– Microarrays generating gene expression data
– Scientific simulations generating terabytes of data

• Traditional techniques infeasible for raw data
• Data mining may help scientists

– in classifying and segmenting data
– in Hypothesis Formation
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Mining Large Data Sets - Motivation

• There is often information “hidden” in the data that is not readily evi-
dent.

• Human analysts may take weeks to discover useful information.
• Much of the data is never analyzed at all.

– Data gap becomes larger and larger.

What is Data Mining?

• Data mining is a process to turn raw data into useful informa-
tion/patterns.

– Non-trivial extraction of implicit, previously unknown and poten-
tially useful information from data.

– Exploration & analysis, by automatic or semi-automatic means, of
large quantities of data in order to discover meaningful patterns.

– Patterns must be: valid, novel, understandable, and poten-
tially useful.

Note: Data mining is also called Knowledge Discovery in Data (KDD).

Origins of Data Mining

• Draws ideas from machine learning/AI, pattern recognition, statistics,
and database systems.

• Traditional Techniques may be unsuitable, due to

– Enormity of data
– High dimensionality of data
– Variety: Heterogeneous, distributed nature of data
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Data Mining Methods

• Prediction Methods
– Use some variables to predict unknown or future values of other vari-

ables.

• Description Methods
– Find human-interpretable patterns that describe the data.

Data Mining Tasks

• Classification [Predictive]
– Given a collection of records (training set), find a model for class

attribute as a function of the values of other attributes.

• Regression [Predictive]
– Predict a value of a given continuous valued variable based on the

values of other variables, assuming a linear or nonlinear model of
dependency.

• Clustering [Descriptive]
– Given a set of data points and a similarity measure among them,

find clusters such that data points in one cluster are more similar to
one another than points in other clusters.

• Association Rule Discovery [Descriptive]
– Given a set of records each of which contain some number of items

from a given collection, produce dependency rules which will predict
occurrence of an item based on occurrences of other items.

• Sequential Pattern Discovery [Descriptive]
– Given is a set of objects, with each object associated with its own

timeline of events, find rules that predict strong sequential depen-
dencies among different events.

• Deviation/Anomaly Detection [Predictive]
– Detect significant deviations from normal behavior.
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Challenges in Data Mining

• Scalability
• Dimensionality
• Complex and Heterogeneous Data

– Spatial and temporal data
– Point and interval data
– Categorical data
– Graph data
– semi/un-structured Data

• Data Quality
• Data Ownership and Distribution
• Privacy Preservation
• Streaming Data

Related Fields

Figure 7.1: Related fields.
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7.2. Vectors and Matrices in Data Mining

Note: Often the data are numerical, and the data points can be thought of
as belonging to a high-dimensional vector space. Ensembles of data points
can then be organized as matrices. In such cases it is natural to use con-
cepts and techniques from linear algebra. Here, we present Numerical
Linear Algebra in Data Mining, following and modifying (Eldén, 2006) [8].

7.2.1. Examples

Example 7.1. Term-document matrices are used in information retrieval.
Consider the following set of five documents. Key words, referred to as terms,
are marked in boldface.
Document 1: The Google matrix P is a model of the Internet.
Document 2: Pij is nonzero if there is a link from web page j to i.
Document 3: The Google matrix is used to rank all web pages.
Document 4: The ranking is done by solving a matrix eigenvalue prob-

lem.
Document 5: England dropped out of the top 10 in the FIFA ranking.

• Counting the frequency of terms in each document we get the following
result.

Term Doc 1 Doc 2 Doc 3 Doc 4 Doc 5
eigenvalue 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
web 0 1 1 0 0

The set of terms is called the dictionary.
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• Each document is represented by a vector in R10 , and we can organize the
data as a term-document matrix,

A =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0


∈ R10×5. (7.1)

• Assume that we want to find all documents that are relevant with respect
to the query “ranking of web pages”. This is represented by a query vector,
constructed in an analogous way as the term-document matrix, using the
same dictionary.

q =



0
0
0
0
0
0
0
1
1
1


∈ R10. (7.2)

Thus the query itself is considered as a document.

• Now, the information retrieval task can be formulated as a mathematical
problem: find the columns of A that are close to the vector q.

– To solve this problem we use some distance measure in R10.
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Remark 7.2. Information Retrieval, with term-document matrix
A ∈ Rm×n.

• It is common that m is large, of the order 106, say.
• The matrixA is sparse, because most of the documents only contain

a small fraction of the terms in the dictionary.
• In some methods for information retrieval, linear algebra techniques,

such as singular value decomposition (SVD), are used for data
compression and retrieval enhancement.

Note: The very idea of data mining is to extract useful information
from large and often unstructured datasets. Therefore

• the methods must be efficient and often specially designed for large
problems.

Example 7.3. Google Pagerank algorithm. The task of extracting in-
formation from all the web pages available on the Internet, is performed by
search engines.

• The core of the Google search engine is a matrix computation, probably
the largest that is performed routinely.

• The Google matrix P is assumed to be of dimension of the order bil-
lions (2005), and it is used as a model of (all) the web pages on the Inter-
net.

• In the Google Pagerank algorithm, the problem of assigning ranks to
all the web pages is formulated as a matrix eigenvalue problem.
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The Google Pagerank algorithm

• Let all web pages be ordered from 1 to n, and let i be a particular web page.

• Then Oi will denote the set of pages that i is linked to, the outlinks. The
number of outlinks is denoted Ni = |Oi|.

• The set of inlinks, denoted Ii, are the pages that have an outlink to i.

• Now define Q to be a square matrix of dimension n, and let

Qij =

{
1/Nj, if there is a link from j to i,
0, otherwise. (7.3)

– This definition means that row i has nonzero elements in those positions
that correspond to inlinks of i.

– Similarly, column j has nonzero elements equal to 1/Nj in those posi-
tions that correspond to the outlinks of j.

– Thus, the sum of each column is either 0 or 1.

• The following link graph illustrates a set of web pages with outlinks and
inlinks.

Figure 7.2: A link graph, for six web pages.

The corresponding link matrix becomes

Q =



0 1/3 0 0 0 0
1/3 0 0 0 0 0

0 1/3 0 0 1/3 1/2
1/3 0 0 0 1/3 0
1/3 1/3 0 0 0 1/2

0 0 1 0 1/3 0

 (7.4)
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• Define a pagerank vector r, which holds the ranks of all pages.

• Then, the vector r can be found as the eigenvector corresponding to the
eigenvalue λ = 1 of Q:

Qr = λr. (7.5)

We discuss numerical aspects of the Pagerank computation in Section 7.4.

7.2.2. Data compression: Low rank approximation

Note: Rank Reduction.

• One way of measuring the information contents in a data matrix is to
compute its rank.

• Obviously, linearly dependent column or row vectors are redundant.
• Therefore, one natural procedure for extracting information from a data

matrix is to systematically determine a sequence of linearly in-
dependent vectors, and deflate the matrix by subtracting rank one
matrices, one at a time.

• It turns out that this rank reduction procedure is closely related
to matrix factorization, data compression, dimensionality reduc-
tion, and feature selection/extraction.

• The key link between the concepts is the Wedderburn rank reduction
theorem.

Theorem 7.4. (Wedderburn, 1934) [27]. Suppose A ∈ Rm×n, f ∈ Rn, and
g ∈ Rm. Then

rank
(
A− AfgTA

ω

)
= rank(A)− 1 ⇐⇒ ω = gTAf 6= 0. (7.6)
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Algorithm 7.5. Wedderburn rank-reduction process.
Based on Wedderburn rank reduction theorem, a stepwise rank reduction
procedure can be defined.

• Let A(0) = A.
• Define a sequence of matrices {A(i)}:

A(i+1) = A(i) − A(i)f (i)g(i)TA(i)

ωi
, (7.7)

where f (i) ∈ Rn and g(i) ∈ Rm such that

ωi = g(i)TA(i)f (i) 6= 0. (7.8)

• The sequence defined in (7.7) terminates when r = rank(A(i+1)), since
each time the rank of the matrix decreases by one. The matrices A(i)

are called Wedderburn matrices.

Remark 7.6. The Wedderburn rank-reduction process gives a matrix de-
composition called the rank-reduction decomposition.

A = F̂Ω−1Ĝ, (7.9)

where
F̂ = (f1, · · · , fr) ∈ Rm×r, fi = A(i)f (i),
Ω = diag(ω1, · · · , ωr) ∈ Rr×r,

Ĝ = (g1, · · · ,gr) ∈ Rn×r, gi = A(i)Tg(i).

(7.10)

Theorem 7.4 can be generalized to the case where the reduction of rank is
larger than one, as shown in the next theorem.
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Theorem 7.7. (Guttman, 1957) [11]. Suppose A ∈ Rm×n, F ∈ Rn×k, and
G ∈ Rm×k. Then

rank(A− AFR−1GTA) = rank(A)− rank(AFR−1GTA)
⇐⇒ R = GTAF is nonsingular. (7.11)

Note: There are many choices of F and G that satisfy the condition (7.11).

• Therefore, various rank-reduction decompositions are possible.
• It is known that several standard matrix factorizations in numerical

linear algebra are instances of the Wedderburn formula:

– Gram-Schmidt orthogonalization,
– singular value decomposition,
– QR and Cholesky decomposition, and
– the Lanczos procedure.

Relation between the truncated SVD and the Wedderburn rank re-
duction process
• Recall the truncated SVD (4.14), page 135.
• In the rank reduction formula (7.11), define the error matrix E as

E = A− AFR−1GTA = A− AF (GTAF )−1GTA, (7.12)

where F ∈ Rn×k and G ∈ Rm×k.
• Assume that k ≤ rank(A) = r, and consider the problem

min ||E|| = min
F∈Rn×k,G∈Rm×k

||A− AF (GTAF )−1GTA||, (7.13)

where the norm is orthogonally invariant such as the L2-norm and
the Frobenius norm.

• According to Theorem 4.12, p.135, the minimum error is obtained when

(AF )(GTAF )−1(GTA) = UΣkV
T = UkΣkV

T
k , (7.14)

which is equivalent to choosing

F = Vk G = Uk. (7.15)
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7.3. Text Mining

Definition 7.8. Text mining is methods that extract useful information
from large and often unstructured collections of texts.

• A related term is information retrieval.
• A typical application is search in data bases of abstract of scientific pa-

pers.

– For instance, in medical applications one may want to find all the ab-
stracts in the data base that deal with a particular syndrome.

– So one puts together a search phrase, a query, with key words that are
relevant for the syndrome.

– Then the retrieval system is used to match the query to the documents
in the data base, and present to the user all the documents that are
relevant, preferably ranked according to relevance.

Example 7.9. The following is a typical query (Eldén, 2006) [8].

9. the use of induced hypothermia in heart surgery, neurosurgery,
head injuries and infectious diseases. (7.16)

We will refer to this query as Q9 in the sequel.

Note: Another well-known area of text mining is web search engines.

• There the search phrase is usually very short.
• Often there are so many relevant documents that it is out of the ques-

tion to present them all to the user.
• In that application the ranking of the search result is critical for

the efficiency of the search engine.
• We will come back to this problem in Section 7.4.
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Public Domain Text Mining Software

A number of public domain software are available.

• R
– textmineR

• Python
– nltk (natural language toolkit)
– spaCy (written in Cython)

In this section
We will review one of the most common methods for text mining, namely
the vector space model (Salton et al., 1975) [19].

• In Example 7.1, we demonstrated the basic ideas of the construction of
a term-document matrix in the vector space model.

• Below we first give a very brief overview of the preprocessing that is
usually done before the actual term-document matrix is set up.

• Then we describe a variant of the vector space model: Latent Semantic
Indexing (LSI) (Deerwester et al., 1990) [6], which is based on the SVD
of the term-document matrix.

7.3.1. Vector space model: Preprocessing and query match-
ing

Note: In information retrieval, keywords that carry information about
the contents of a document are called terms.

• A basic task is to create a list of all the terms in alphabetic order, a so
called index.

• But before the index is made, two preprocessing steps should be done:

(a) removal of stop words
(b) stemming
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Removal of Stop Words

• Stop words are words that one can find in virtually any document.
• The occurrence of such a word in a document does not distinguish this

document from other documents.
• The following is the beginning of one stop list

a, able, about, above, according, accordingly, across, actually, after, after-
wards, again, against, ain’t, all, allow, allows, almost, alone, along, already,
also, although, always, am, among, amongst, an, and, ...

• Various sets of stop words are available on the Internet, e.g.
https://countwordsfree.com/stopwords.

Stemming

• Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem.

• Clearly, from the point of view of information retrieval, no information is
lost in the following reduction.

computable
computation
computing
computed
computational

 =⇒ comput

• Public domain stemming algorithms are available on the Internet, e.g.
the Porter Stemming Algorithm
https://tartarus.org/martin/PorterStemmer/.

https://countwordsfree.com/stopwords
https://tartarus.org/martin/PorterStemmer/
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The Term-Document Matrix

• The term-document matrix A ∈ Rm×n, where

m = the number of terms in the dictionary
n = the number of documents

• It is common not only to count the occurrence of terms in docu-
ments but also to apply a term weighting scheme.

• Similarly, document weighting is usually done.

Example 7.10. For example, one can define the elements in A by

aij = fij log(n/ni), (7.17)

where

• fij is term frequency,
the number of times term i appears in document j,

• ni is the number of documents that contain term i

(inverse document frequency).

If a term occurs frequently in only a few documents, then both factors are
large. In this case the term discriminates well between different groups of
documents, and it gets a large weight in the documents where it appears.
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Normally, the term-document matrix is sparse: most of the matrix elements
are equal to zero.

Example 7.11. For the stemmed Medline collection in Example 7.9, p.309,
the matrix is 4163 × 1063, with 48263 non-zero elements, i.e. approximately
1%. (It includes 30 query columns.) The first 500 rows and columns of the
matrix are illustrated in Figure 7.3.

Figure 7.3: The first 500 rows and columns of the Medline matrix. Each dot represents a
non-zero element.
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Query Matching

• The query is parsed using the same dictionary as the documents, giving
a vector q ∈ Rm.

• Query matching is the process of finding all documents that are con-
sidered relevant to a particular query q.

• This is often done using the cosine distance measure: All documents
{aj} are returned for which

q · aj
||q|| ||aj||

≥ tol, (7.18)

where tol is user-defined tolerance.

Example 7.12. Query matching is performed for query Q9 in the stemmed
Medline collection. With tol = 0.19 only a single document is considered
relevant. When the tolerance was lowered to 0.17, then three documents are
retrieved.

• Irrelevant documents may be returned.

– For a high value of the tolerance, the retrieved documents are likely to
be relevant.

– When the cosine tolerance is lowered, irrelevant documents may be re-
turned relatively more.

Definition 7.13. In performance modelling for information retrieval, we
define the following measures:

P =
Tr
Tt

(precision) R =
Tr
Br

(recall), (7.19)

where

Tr = the number of relevant documents retrieved
Tt = the total number of documents retrieved
Br = the total number of relevant documents in the database
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Note: With the cosine measure:

• We see that with a large value of tol, we have high precision, but low
recall.

• For a small value of tol, we have high recall, but low precision.

Example 7.14. Query matching is performed for query Q9 in the Medline
collection using the cosine measure, in order to obtain recall and precision as
illustrated in Figure 7.4.

• In the comparison of different methods, it is more illustrative to draw the
recall versus precision diagram.

• Ideally a method has high recall at the same time as the precision is
high. Thus, the closer the curve is to the upper right corner, the better
the method is.

Figure 7.4: Recall versus precision diagram for query matching for Q9, using the vector space
method.
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7.3.2. Latent Semantic Indexing

Latent Semantic Indexing (LSI) is based on the assumption

• that there is some underlying latent semantic structure in the
data that is corrupted by the wide variety of words used

• and that this semantic structure can be enhanced by projecting the
data onto a lower-dimensional space using the singular value de-
composition.

Algorithm 7.15. Latent Semantic Indexing (LSI)

• Let A = UΣV T be the SVD of the term-document matrix.
• Let Ak be its approximation of rank k:

Ak = UkΣkV
T
k = Uk(ΣkV

T
k ) =: UkDk, (7.20)

where Vk ∈ Rn×k so that Dk ∈ Rk×n.

– The columns of Uk live in the document space and are an orthogonal
basis that we use to approximate all the documents.

– Column j of Dk holds the coordinates of document j in terms of the
orthogonal basis.

• Note that
qTAk = qTUkDk = (UT

k q)TDk ∈ R1×n. (7.21)

• Thus, in query matching, we compute the coordinates of the query in
terms of the new document basis and compute the cosines from

cos θj =
q̂k · (Dkej)

||q̂k|| ||Dkej||
, q̂k = UT

k q. (7.22)

• This means that the query-matching is performed in a k-dimensional
space.
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Example 7.16. Query matching is carried out for Q9 in the Medline col-
lection, approximating the matrix using the truncated SVD with of rank 100
(k = 100). The recall-precision curve is given in Figure 7.5. It is seen that for
this query, the LSI improves the retrieval performance.

Figure 7.5: Recall versus precision diagram for query matching for Q9, using the full vector
space method (solid curve) and the rank 100 approximation (dashed).
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Example 7.17. Recall Example 7.1. Consider the term-document matrix
A ∈ R10×5 and the query vector q ∈ R10, of which the query is “ranking of
web pages”. See pages 302–303 for details.

Document 1: The Google matrix P is a model of the Internet.
Document 2: Pij is nonzero if there is a link from web page j to i.
Document 3: The Google matrix is used to rank all web pages.
Document 4: The ranking is done by solving a matrix eigenvalue problem.
Document 5: England dropped out of the top 10 in the FIFA ranking.

A =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0


∈ R10×5, q =



0
0
0
0
0
0
0
1
1
1


∈ R10.

• (Eldén, 2006) [8]
“Obviously, Documents 1-4 are relevant with respect to the query,
while Document 5 is totally irrelevant. However, we obtain the follow-
ing cosines for query and the original data

(0 0.6667 0.7746 0.3333 0.3333)

We then compute the SVD of the term-document matrix, and use a rank
2 approximation. After projection to the two-dimensional subspace the
cosines, computed according to (7.22), are

(0.7857 0.8332 0.9670 0.4873 0.1819)

It turns out that Document 1, which was deemed totally irrelevant for the
query in the original representation, is now highly relevant. In addition,
the scores for the relevant Documents 2-4 have been reinforced. At the
same time, the score for Document 5 has been significantly reduced.”

• However, I view it as a warning.
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7.4. Eigenvalue Methods in Data Mining

Note: An Internet search performs two major operations, using a search
engine.

(a) Traditional text processing. The aim is to find all the web pages
containing the words of the query.

(b) Sorting out.

• Due to the massive size of the Web, the number of hits is likely to
be much too large to be handled by the user.

• Therefore, some measure of quality is needed to sort out the pages
that are likely to be most relevant to the particular query.

When one uses a web search engine, then typically the search phrase is
under-specified.

Example 7.18. A Google search conducted on October 21, 2022, using the
search phrase “university”:

• The result: links to universities, including Mississippi State University,
University of Arizona, University of Washington - Seattle, University of
Wisconsin–Madison, The University of Texas at Austin, and University of
Southern California - Los Angeles.

• The total number of web pages relevant to the search phrase was more
than 7 billions.

Remark 7.19. Google uses an algorithm (Pagerank) for ranking all the
web pages that agrees rather well with a common-sense quality measure.

• Google assigns a high rank to a web page, if it has inlinks from other
pages that have a high rank.

• We will see that this “self-referencing” statement can be formulated
mathematically as an eigenvalue problem.
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7.4.1. Pagerank

Note: Google uses the concept of Pagerank as a quality measure of web
pages. It is based on the assumption that

the number of links to and from a page give information
about the importance of a page.

• Let all web pages be ordered from 1 to n, and let i be a particular web
page.

• Then Oi will denote the set of pages that i is linked to, the outlinks. The
number of outlinks is denoted Ni = |Oi|.

• The set of inlinks, denoted Ii, are the pages that have an outlink to i.

Note: In general, a page i can be considered as more important the more
inlinks it has.

• However, a ranking system based only on the number of inlinks is easy
to manipulate.

– When you design a web page i that you would like to be seen by
as many as possible, you could simply create a large number of
(information-less and unimportant) pages that have outlinks to i.

• In order to discourage this, one may define the rank of i in such a way
that if a highly ranked page j, has an outlink to i, this should add to
the importance of i.

• Here the manner is:

the rank of page i is a weighted sum of the ranks of the
pages that have outlinks to i.
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Definition 7.20. The preliminary definition of Pagerank is

ri =
∑
j∈Ii

rj
Nj
, i = 1, 2, · · · , n. (7.23)

That is, the weighting is such that the rank of a page j is divided evenly
among its outlinks.

Remark 7.21. Pagerank may not be solvable.

• As in (7.3)-(7.4), p. 305, let Q be a square matrix of dimension n, and
let

Qij =

{
1/Nj, if there is a link from j to i,
0, otherwise, (7.24)

where Q is sometimes called the normalized web matrix.
• Then, (7.23) can be written as

λr = Qr, λ = 1, (7.25)

i.e., r is an eigenvector of Q with eigenvalue λ = 1.
• However, it is not clear that Pagerank is well-defined, because we do

not know if there exists an eigenvalue equal to 1.

Reformulation of (7.23)
Modify the matrix Q to have an eigenvalue λ = 1.

• Assume that a surfer visiting a web page, always chooses the next page
among the outlinks with equal probability.

• Assume that the random surfer never get stuck.

– In other words, there should be no web pages without outlinks (such
a page corresponds to a zero column in Q).

• Therefore the model is modified so that zero columns are replaced by a
constant value in each position.
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• Define the vectors

e =


1
1
...
1

 ∈ Rn, d =


d1

d2
...
dn

, dj =

{
1, if Nj = 0,
0, otherwise. (7.26)

• Then the modified matrix is defined

P = Q+
1

n
edT . (7.27)

• Then P is a column-stochastic matrix, of which columns are probabil-
ity vectors. That is, it has non-negative elements (P ≥ 0) and the sum of
each column is 1.

• Furthermore,

eTP = eTQ+
1

n
eTedT = eTQ+ dT = eT , (7.28)

which implies that λ = 1 is a left eigenvalue and therefore a right
eigenvalue. Note that

eTP = eT ⇐⇒ P Te = e,
det(A− λI) = det(AT − λI).

(7.29)

• Now, we define the Pagerank vector r as a unique eigenvector of P with
eigenvalue λ = 1,

P r = r. (7.30)

• However, uniqueness is still not guaranteed.

– To ensure this, the directed graph corresponding to the matrix must
be strongly connected

– Equivalently, in matrix terms, P must be irreducible.
– Equivalently, there must not exist any subgraph, which has no out-

links.
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The uniqueness of the eigenvalue is guaranteed by the Perron-Frobenius
theorem.

Theorem 7.22. (Perron-Frobenius) If A ∈ Rn×n is nonnegative, then

• ρ(A) is an eigenvalue of A.
• There is a nonnegative eigenvector x such that Ax = ρ(A)x.

Theorem 7.23. (Perron-Frobenius) If A ∈ Rn×n is nonnegative and
irreducible, then

• ρ(A) is an eigenvalue of A.
• ρ(A) > 0.
• There is a positive eigenvector x such that Ax = ρ(A)x.
• ρ(A) is a simple eigenvalue.

Theorem 7.24. (Perron) If A ∈ Rn×n is positive, then

• Theorem 7.23 holds, and in addition,
• |λ| < ρ(A) for any eigenvalue λ with λ 6= ρ(A).

Corollary 7.25. Let A be an irreducible column-stochastic matrix. Then

• The largest eigenvalue in magnitude is equal to 1.
• There is a unique corresponding eigenvector r satisfying r > 0 and
||r||1 = 1; this is the only eigenvector that is non-negative.

• If A > 0, then |λi| < 1, i = 2, 3, · · · , n.

Remark 7.26. Given the size of the Internet and reasonable assumptions
about its structure,

• it is highly probable that the link graph is not strongly connected,
• which means that the Pagerank eigenvector of P may not be

well-defined.
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7.4.2. The Google matrix

To ensure connectedness, i.e., to make it impossible for the random walker
to get trapped in a subgraph, one can add, artificially, a link from
every web page to all the other. In matrix terms, this can be made by
taking a convex combination of P and a rank one matrix.

One billion dollar idea, by Sergey Brin and Lawrence Page in 1996

• The Google matrix is the matrix

G = αP + (1− α)
1

n
eeT , (7.31)

for some α satisfying 0 < α < 1, called the damping factor.
• Obviously G is irreducible (since G > 0) and column-stochastic.a

• Furthermore,

eTG = αeTP + (1− α)eT
1

n
eeT = αeT + (1− α)eT = eT . (7.32)

• The pagerank equation reads

Gr =
[
αP + (1− α)

1

n
eeT

]
r = r. (7.33)

aA n × n matrix is called a Markov matrix if all entries are nonnegative and the sum of each column
vector is equal to 1. A Markov matrix are also called a stochastic matrix.
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Note: The random walk interpretation of the additional rank one term is
that each time step a page is visited, the surfer will jump to any page in the
whole web with probability 1−α (sometimes referred to as teleportation).

• Recall (7.27): P = Q+
1

n
edT , which can be interpreted as follows.

When a random surfer visits a web page of no outlinks, the surfer
will jump to any page with an equal probability 1/n.

• The convex combination in (7.31): G = αP + (1− α)
1

n
eeT .

Although there are outlinks, the surfer will jump to any page with
an equal probability (1− α)/n.

Proposition 7.27. Let the eigenvalues of the column-stochastic matrix P
be {1, λ2, λ3, · · · , λn}. Then, the eigenvalues of G = αP + (1 − α) 1

neeT are
{1, αλ2, αλ3, · · · , αλn}.

• This means that even if P has a multiple eigenvalue equal to 1, the
second largest eigenvalue in magnitude of G is equal to α.

Remark 7.28. The vector
1

n
e in (7.31) can be replaced by a non-negative

vector v with ||v||1 = 1, which can be chosen in order to make the search
biased towards certain kinds of web pages. Therefore, it is referred to as a
personalization vector.



326 Chapter 7. Matrix Analysis in Data Mining

7.4.3. Solving the Pagerank equation

Now, we should solve the Pagerank equation, an eigenvalue problem

Gr = r, (7.34)

where r ≥ 0 with ||r||1 = 1.

Observation 7.29. The Google matrix G ∈ Rn×n

• G is a full matrix, although it is not necessary to construct it explicitly.
• n represents the number of all web pages, which is order of billions.
• It is impossible to use sparse eigenvalue algorithms that require

the storage of more than very few vectors.

The only viable method so far for Pagerank computations on the whole web
seems to be the power method. See (5.13), p.188.

• The rate of convergence of the power method depends on the ratio of
the second largest and the largest eigenvalue in magnitude.

• Here, we have
|1− λ(k)| = O(αk), (7.35)

due to Proposition 7.27.
• In view of the huge dimension of the Google matrix, it is non-trivial to

compute the matrix-vector product. We will consider some details.



7.4. Eigenvalue Methods in Data Mining 327

The power method: matrix-vector product

Recall: It follows from (7.24), (7.27), and (7.31) that the Google matrix
is formulated as

G = αP + (1− α)
1

n
eeT , (7.36)

where
P = Q+

1

n
edT .

Here Q is the link matrix and e and d are defined as in (7.26).

Derivation 7.30. Let z = Gy .

• Normalization-free: Since G is column-stochastic (eTG = eT ),

||z||1 = eTz = eTGy = eTy = ||y||1. (7.37)

Thus, when the power method begins with y(0) with ||y(0)||1 = 1, the
normalization step in the power method is unnecessary.

• Let us look at the multiplication in some detail:

z =
[
αP + (1− α)

1

n
eeT

]
y = αQy + β

e

n
, (7.38)

where
β = αdTy + (1− α)eTy. (7.39)

• Apparently we need to know which pages lack outlinks (d), in order to
find β. However, in reality, we do not need to define d. It follows from
(7.37) and (7.38) that

β = 1− αeTQy = 1− ||αQy||1. (7.40)
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Algorithm 7.31. The following Matlab code implements the matrix vec-
tor multiplication: z = Gy.

zhat = alpha*Q*y;
beta = 1-norm(zhat,1);
z = zhat + beta*v;
residual = norm(y-z,1);

Here v is (1/n)e or a personalization vector; see Remark 7.28.

Note:

• From Proposition 7.27, we know that the second eigenvalue of the
Google matrix is αλ2.

• A typical value of α = 0.85.
• Approximately k = 57 iterations are needed to reach 0.85k < 10−4.
• This is reported to be close the number of iterations used by Google.
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Exercises for Chapter 7

7.1. Consider Example 7.17, p.318. Compute vectors of cosines, for each subspace approxi-
mations, i.e., with Ak where k = 1, 2, · · · , 5.

7.2. Verify equations in Derivation 7.30, p.327, particularly (7.38), (7.39), and (7.40).

7.3. Consider the link matrix Q in (7.4) and its corresponding link graph in Figure 7.2. Find
the pagerank vector r by solving the Google pagerank equation.

• You may initialize the power method with any vector r(0) satisfying ||r(0)||1 = 1.
• Set α = 0.85.
• Let the iteration stop, when residual < 10−4.

7.4. Now, consider a modified link matrix Q̃, by adding an outlink from page 4 to 5 in
Figure 7.2. Find the pagerank vector r̃, by setting parameters and initialization the
same way as for the previous problem.

• Compare r with r̃.
• Compare the number of iterations for convergence.
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P.1. mCLESS

Note: Some machine learning algorithms are considered as black
boxes, because

• the models are sufficiently complex and
• they are not straightforwardly interpretable to humans.

Lack of interpretability in predictive models can undermine trust in those
models, especially in health care, in which so many decisions are – literally
– life and death issues [17].

Project Objectives

• Develop a family of interpretable machine learning algorithms.

– We will develop algorithms involving least-squares formulation.
– The family is called the Multi-Class Least Error Square Sum

(mCLESS).

• Compare with traditional methods, using public domain datasets.
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P.1.1. What is machine learning?

Definition P.1. Machine learning (ML)

• ML algorithms are algorithms that can learn from data (input) and
produce functions/models (output).

• Machine learning is the science of getting machines to act, without
functions/models being explicitly programmed to do so.

Example P.2. There are three different types of ML:

• Supervised learning: e.g., classification, regression

– Labeled data
– Direct feedback
– Predict outcome/future

• Unsupervised learning: e.g., clustering

– No labels
– No feedback
– Find hidden structure in data

• Reinforcement learning: e.g., chess engine

– Decision process
– Reward system
– Learn series of actions

Note: The most popular type is supervised learning.
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Supervised Learning

Assumption. Given a data set {(xi, yi)}, where yi are labels,
there exists a relation f : X → Y .

Supervised learning:{
Given : A training data {(xi, yi) | i = 1, · · · , N}
Find : f̂ : X → Y , a good approximation to f

(P.1.1)

Figure P.1: Supervised learning and prediction.

Figure P.2: Classification and regression.
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P.1.2. Simple classifiers

The Perceptron [18] (or Adaline) is the simplest artificial neuron that
makes decisions for datasets of two classes by weighting up evidence.

• Inputs: feature values x = [x1, x2, · · · , xd]
• Weight vector and bias: w = [w1, w2, · · · , wd]T , w0

• Net input:
z = w0 + w1 x1 + w2 x2 + · · ·+ wd xd (P.1.2)

• Activation:
φ(z) =

{
1, if z ≥ θ
0, otherwise, (P.1.3)

where θ is a threshold. When the logistic sigmoid function is chosen
for the activation function, i.e., φ(z) = 1/(1 + e−z), the resulting
classifier is called the Logistic Regression.

Remark P.3. Note that the net input in (P.1.2) represents a hyperplane
in Rd.

• More complex neural networks can be built, stacking the simple arti-
ficial neurons as building blocks.

• Machine learning (ML) is to train weights from datasets of an arbi-
trary number of classes.

– The weights must be trained in such a way that data points in a
class are heavily weighted by the corresponding part of weights.

• The activation function is incorporated in order

(a) to keep the net input restricted to a certain limit as per our
requirement and, more importantly,

(b) to add nonlinearity to the network.
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P.1.3. The mCLESS classifier

Here we present a new classifier which is based on a least-squares formu-
lation and able to classify datasets having arbitrary numbers of classes. Its
nonlinear expansion will also be suggested.

Two-layer Neural Networks

Figure P.3: A synthetic data of three classes.

• In order to describe the proposed algorithm effectively, we exemplify a
synthetic data of three classes, as shown in Figure P.3, in which each
class has 100 points.

• A point in the c-th class is expressed as

x(c) = [x
(c)
1 , x

(c)
2 ] = [x1, x2, c] c = 0, 1, 2,

where the number in () in the superscript denotes the class that the
point belongs.

• Let’s consider an artificial neural network of the identity activation
and no hidden layer, for simplicity.
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A set of weights can be trained in a way that points in a class are heavily
weighted by the corresponding part of weights, i.e.,

w
(j)
0 + w

(j)
1 x

(i)
1 + w

(j)
2 x

(i)
2 = δij =

{
1 if i = j
0 if i 6= j

(P.1.4)

where δij is called the Kronecker delta and w(j)
0 is a bias for the class j.

• Thus, for neural networks which classify a dataset of C classes with
points in Rd, the weights to be trained must have dimensions (d+1)×C.

• The weights can be computed by the least-squares method.
• We will call the algorithm the Multi-Class Least Error Square Sum

(mCLESS).

Training in the mCLESS

• Dataset: We express the dataset {X,y} used for Figure P.3 by

X =


x11 x12

x21 x22
... ...

xN1 xN2

 ∈ RN×2, y =


c1

c2
...
cN

, (P.1.5)

where ci ∈ {0, 1, 2}, the class number.

• The algebraic system: It can be formulated using (P.1.4).

– Define the information matrix:

A =


1 x11 x12

1 x21 x22
...

1 xN1 xN2

 ∈ RN×3. (P.1.6)

Note. The information matrix can be made using
A = np.column_stack((np.ones([N,]),X))

– The weight matrix to be learned is:

W = [w(0),w(1),w(2)] =

w
(0)
0 w

(1)
0 w

(2)
0

w
(0)
1 w

(1)
1 w

(2)
1

w
(0)
2 w

(1)
2 w

(2)
2

, (P.1.7)
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where the j-th column weights heavily points in the j-th class.
– Define the source matrix:

B = [δci,j] ∈ RN×3. (P.1.8)

For example, if the i-th point is in Class 0, then the i-th row of B is
[1, 0, 0].

• Then the multi-column least-squares (MC-LS) problem reads

Ŵ = arg min
W
||AW −B||2, (P.1.9)

which can be solved by the method of normal equations:

(ATA) Ŵ = ATB, ATA ∈ R3×3. (P.1.10)

• The output of training: The weight matrix Ŵ .

Note: The normal matrix ATA is occasionally singular, particularly for
small datasets. In the case, the MC-LS problem can be solved using the
singular value decomposition (SVD).

Prediction in the mCLESS

The prediction step in the mCLESS is quite simple:

(a) Let [x1, x2] be a new point.
(b) Compute

[1, x1, x2] Ŵ = [p0, p1, p2], Ŵ ∈ R3×3. (P.1.11)

Note. Ideally, if the point [x1, x2] is in class j, then pj is near 1, while
others would be near 0. Thus pj is the largest.

(c) Decide the class c:

c = np.argmax([p0, p1, p2], axis = 1). (P.1.12)
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Experiment P.4. mCLESS, with a Synthetic Dataset

• As a preprocessing, the dataset X is scaled column-wisely so that the
maximum value in each column is 1 in modulus.

• The training is carried out with randomly selected 70% the dataset.
• The output of training, Ŵ , represents three sets of parallel lines.

– Let [w
(j)
0 , w

(j)
1 , w

(j)
2 ]T be the j-th column of Ŵ . Define Lj(x1, x2) as

Lj(x1, x2) = w
(j)
0 + w

(j)
1 x1 + w

(j)
2 x2, j = 0, 1, 2. (P.1.13)

– Figure P.4 depicts Lj(x1, x2) = 0 and Lj(x1, x2) = 1 superposed on the
training set.

• It follows from (P.1.12) that the mCLESS can be viewed as an one-
versus-rest (OVR) classifier.

Figure P.4: Lines represented by the weight vectors. mCLESS is interpretable!

The whole algorithm (training-prediction) is run 100 times, with randomly
splitting the dataset into 70:30 parts respectively for training and predic-
tion; which results in 98.37% and 0.00171 sec for the average accuracy and
e-time. The used is a laptop of an Intel Core i7-10750H CPU at 2.60GHz.
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P.1.4. Feature expansion

Remark P.5. Nonlinear mCLESS

• The mCLESS so far is a linear classifier.

• As for other classifiers, its nonlinear expansion begins with a data trans-
formation, more precisely, feature expansion.

• For example, the Support Vector Machine (SVM) replaces the dot
product of feature vectors (point) with the result of a kernel function
applied to the feature vectors, in the construction of the Gram matrix:

K(xi,xj) ≈ σ(xi) · σ(xj),

where σ is a function for feature expansion.

– Thus, without an explicit expansion of feature vectors, the SVM can
incorporate the effect of data transformation effectively. Such a tech-
nique is called the kernel trick.

• However, the mCLESS does not incorporate dot products between
points.

– As a result, we must perform feature expansion without a kernel
trick, which results in an augmented normal matrix, expanded in
both column and row directions.
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Feature Expansion for mCLESS

• A feature expansion is expressed as{
x = [x1, x2, · · · , xd]
w = [w0, w1, · · · , wd]T

⇒
{

x̃ = [x1, x2, · · · , xd, σ(x)]
w̃ = [w0, w1, · · · , wd, wd+1]

T (P.1.14)

where σ() is a feature function of x.
• Then, the expanded weights must be trained to satisfy

[1, x̃(i)] w̃(j) = w
(j)
0 + w

(j)
1 x

(i)
1 + · · ·+ w

(j)
d x

(i)
d + w

(j)
d+1σ(x(i)) = δij, (P.1.15)

for all points in the dataset. Compare the equation with (P.1.4).
• The corresponding expanded information and weight matrices read

Ã =


1 x11 x12 · · · x1d σ(x1)

1 x21 x22 · · · x2d σ(x2)
... . . . ...

1 xN1 xN2 · · · xNd σ(xN)

 , W̃ =



w
(0)
0 w

(1)
0 · · · w(C−1)

0

w
(0)
1 w

(1)
1 · · · w(C−1)

1
... . . . ...

w
(0)
d w

(1)
d · · · w(C−1)

d

w
(0)
d+1 w

(1)
d+1 · · · w

(C−1)
d+1


,

(P.1.16)
where Ã ∈ RN×(d+2), W̃ ∈ R(d+2)×C , and C is the number of classes.

• Feature expansion can be performed multiple times. When α features
are added, the optimal weight matrix Ŵ ∈ R(d+1+α)×C is the least-squares
solution of

(ÃT Ã) Ŵ = ÃTB, (P.1.17)

where ÃT Ã ∈ R(d+1+α)×(d+1+α) and B is the same as in (P.1.8).

Remark P.6. Various feature functions σ() can be considered. Here we
will focus on the feature function of the form

σ(x) = ‖x− p‖, (P.1.18)

the Euclidean distance between x and a prescribed point p.
Now, the question is: “How can we find p?”
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What to do

1. Implement mCLESS.

• Training. You should implement modules for each of (P.1.6) and
(P.1.8). Then use Xtrain and ytrain to get A and B.

• Test. Use the same module (implemented for A) to get Atest from
Xtest. Then perform P = (Atest)*Ŵ as in (P.1.11). Now, you can get
the prediction using

prediction = np.argmax(P,axis=1);
which may be compared with ytest to obtain accuracy.

2. Also, add modules for feature expansion, as described on page 341.

• For this, try to an interpretable strategy to find an effective point
p such that the feature expansion with (P.1.18) improves accuracy.

3. Use datasets such as iris and wine. To get them:
from sklearn import datasets
data_read1 = datasets.load_iris()
data_read2 = datasets.load_wine()

4. Report your experiments with the code and results.

You may start with the following machine learning modelcode; add your
own modules.

Machine_Learning_Model.py
1 import numpy as np; import pandas as pd
2 import seaborn as sbn; import matplotlib.pyplot as plt
3 import time
4 from sklearn.model_selection import train_test_split
5 from sklearn import datasets; #print(dir(datasets))
6 np.set_printoptions(suppress=True)
7

8 #=====================================================================
9 # DATA: Read & Preprocessing

10 # load_iris, load_wine, load_breast_cancer, ...
11 #=====================================================================
12 data_read = datasets.load_iris(); #print(data_read.keys())
13

14 X = data_read.data
15 y = data_read.target
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16 datafile = data_read.filename
17 targets = data_read.target_names
18 features = data_read.feature_names
19

20 print('X.shape=',X.shape, 'y.shape=',y.shape)
21

22 #---------------------------------------------------------------------
23 # SETTING
24 #---------------------------------------------------------------------
25 N,d = X.shape; labelset=set(y)
26 nclass=len(labelset);
27 print('N,d,nclass=',N,d,nclass)
28

29 rtrain = 0.7e0; run = 100
30 rtest = 1-rtrain
31

32 #=====================================================================
33 # CLASSIFICATION
34 #=====================================================================
35 btime = time.time()
36 Acc = np.zeros([run,1])
37 from sklearn.neighbors import KNeighborsClassifier
38 clf = KNeighborsClassifier(5)
39

40 for it in range(run):
41 Xtrain, Xtest, ytrain, ytest = train_test_split(
42 X, y, test_size=rtest, random_state=it, stratify = y)
43 clf.fit(Xtrain, ytrain);
44 Acc[it] = clf.score(Xtest, ytest)
45

46 #-----------------------------------------------
47 # Print: Accuracy && E-time
48 #-----------------------------------------------
49 etime = time.time()-btime
50 print(' %s: Acc.(mean,std) = (%.2f,%.2f)%%; Average E-time= %.5f'
51 %(datafile,np.mean(Acc)*100,np.std(Acc)*100,etime/run))
52

53 #=====================================================================
54 # Scikit-learn Classifiers, for Comparisions
55 #=====================================================================
56 #exec(open("sklearn_classifiers.py").read())
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sklearn_classifiers.py
1 #=====================================================================
2 # Required: X, y, datafile
3 print('========= Scikit-learn Classifiers, for Comparisions =========')
4 #=====================================================================
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.datasets import make_moons, make_circles, make_classification
7 from sklearn.neural_network import MLPClassifier
8 from sklearn.neighbors import KNeighborsClassifier
9 from sklearn.linear_model import LogisticRegression

10 from sklearn.svm import SVC
11 from sklearn.gaussian_process import GaussianProcessClassifier
12 from sklearn.gaussian_process.kernels import RBF
13 from sklearn.tree import DecisionTreeClassifier
14 from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
15 from sklearn.naive_bayes import GaussianNB
16 from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
17 from sklearn.inspection import DecisionBoundaryDisplay
18

19 #-----------------------------------------------
20 names = [
21 "Logistic Regr",
22 "KNeighbors-7 ",
23 "Linear SVM ",
24 "RBF SVM ",
25 "Random Forest",
26 "Deep-NN ",
27 "AdaBoost ",
28 "Naive Bayes ",
29 "QDA ",
30 "Gaussian Proc",
31 ]
32

33 #-----------------------------------------------
34 classifiers = [
35 LogisticRegression(max_iter = 1000),
36 KNeighborsClassifier(7),
37 SVC(kernel="linear", C=0.5),
38 SVC(gamma=2, C=1),
39 RandomForestClassifier(max_depth=5, n_estimators=50, max_features=1),
40 MLPClassifier(alpha=1, max_iter=1000),
41 AdaBoostClassifier(),
42 GaussianNB(),
43 QuadraticDiscriminantAnalysis(),
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44 GaussianProcessClassifier(),
45 ]
46

47 #-----------------------------------------------
48 acc_max=0
49 for name, clf in zip(names, classifiers):
50 Acc = np.zeros([run,1])
51 btime = time.time()
52

53 for it in range(run):
54 Xtrain, Xtest, ytrain, ytest = train_test_split(
55 X, y, test_size=rtest, random_state=it, stratify = y)
56

57 clf.fit(Xtrain, ytrain);
58 Acc[it] = clf.score(Xtest, ytest)
59

60 etime = time.time()-btime
61 accmean = np.mean(Acc)*100
62 print('%s: %s: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
63 %(datafile,name,accmean,np.std(Acc)*100,etime/run))
64 if accmean>acc_max:
65 acc_max= accmean; algname = name
66 print('sklearn classifiers max: %s= %.2f' %(algname,acc_max))
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θ-method, 290

A-norm, 7
activation function, 335
Adaline, 335
algebraic multiplicity, 171
argmax, numpy, 338
association rule discovery, 300

back substitution, 33
backward error, 120
Backward Euler method, 290
backward stable, 120
Bauer-Fike theorem, 176
bidiagonal reduction, 215, 218
bisection and inverse iteration, 234
black boxes, 332
boundary-value problem, 295
bulge-and-chase, 224

Cauchy-Schwarz inequality, 7
CG method, 279
characteristic polynomial, 170
Cholesky factorization, 58, 63, 74
classical Gram-Schmidt process, 82
classification, 300
clustering, 300
colon notation, 4
column-stochastic matrix, 322
column-wise point ordering, 275
column_stack, numpy, 337
companion matrix, 231
comparison theorem, 265
condition number, 11, 175
conjugate, 279
conjugate gradient method, 279
consistency, 252
convergent, 261

cosine distance measure, 314
covariance matrix, 139, 159
Crank-Nicolson method, 290

damping factor, 324
data compression, 306
data gap, 299
data mining, 299
defective, 171
definite matrix, 264
description methods, 300
deviation/anomaly detection, 300
diagonal dominance, 259
diagonalizable, 171
dictionary, 302
dimensionality reduction, 306
direct algebraic solver, 23
directed graph, 184
Dirichlet boundary condition, 29
discrete five-point Laplacian, 252, 255, 274
discrete least-squares, 70
Divide-and-conquer, 241
Divide-and-conquer method, 233
document weighting, 312
dot product, 3
double implicit shift, 195
dyadic decomposition, 130

eigendecomposition, 138
eigenpair, 170
eigenvalue decomposition, 170
elementary matrix, 35
elementary row operations, 34
equal-volume fitting ellipsoid, 158
Euclidean norm, 6

FDM, 246
feature expansion, 340
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feature function, 341
feature selection/extraction, 306
fellow matrix, 231
finite difference method, 246
finite difference scheme, 26
floating point operation, 5
flop, 5
flux conservation, 250
Forward Euler method, 290
forward substitution, 32
Francis QR iteration, 195
Frobenius norm, 8
fundamental theorem of algebra, 173

Gauss elimination, 34
Gauss-Seidel iteration, 258
Gauss-Seidel method, 269
Gaussian elimination with partial pivoting,

52
gaxpy, 4
GD method, 278
generalized Richardson method, 264
geometric multiplicity, 171
Gerschgorin’s theorem, 180
get_A_b.m, 296
ghost grid value, 27, 247
Givens rotation, 111, 212
global point index, 256
Google, 319
Google matrix, 304, 324, 327
Google Pagerank algorithm, 304
Google search, 319
Google search engine, 304
gradient, 278
gradient descent method, 278
Gram-Schmidt process, 76

Hadamard product, 3
Hessenberg decomposition, 195
Hessenberg matrix, 195, 206
Hessenberg reduction, 207
Hessenberg, unreduced, 210
Hessian, 278
Hessian matrix, 73
House, 99

Householder bidiagonalization algorithm,
220

Householder matrix, 95
Householder reflection, 93, 94
Householder tridiagonalization algorithm,

216
hyperplane, 335
hypothesis formation, 298

ill-conditioned, 15
image compression, 146
Implicit double shift QR algorithm, 230
implicit Q theorem, 222
index, 310
induced norm, 8
infinity-norm, 6
information matrix, 337
information retrieval, 304, 309
inlinks, 320
inner product, 3
Internet search, 319
invariant subspace, 196
inverse document frequency, 312
inverse matrix, 24
inverse power iteration, 193
inverse power method, 193
invertible matrix, 24
invertible matrix theorem, 24
iris, 342
irreducible, 322
irreducible matrix, 183
iteration matrix, 260
iterative algebraic solver, 23
iterative linear solver, 260

Jacobi method, 267
Jacobi’s method, 234
Jordan canonical form, 172

kernel trick, 340
Knowledge Discovery in Data, 299
Krylov subspace method, 277

Lagrange multiplier, 158
latent semantic indexing, 310, 316
Lawrence Page, 324
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LDLT factorization, 63
leading principal submatrix, 38
least-squares problem, 70
left eigenvalue, 322
left eigenvector, 172
left singular vectors, 127
line relaxation methods, 274
linear classifier, 340
linear least-squares problem, 70
link graph, 305, 323
link matrix, 305, 327
Logistic Regression, 335
lower-triangular matrix, 30
LSI, 316
LU decomposition theorem, 38

M-matrix, 67, 265
machine learning, 332, 333
machine learning algorithm, 333
machine learning modelcode, 342
Machine_Learning_Model.py, 342
Markov matrix, 324
matrix eigenvalue problem, 304
matrix factorization, 306
matrix norms, 8
matrix operations, 2
matrix splitting, 266
matrix-vector multiplication, 4
maximum-norm, 6
MCG, 284
mCLESS, 332, 337
method of normal equations, 338
minimum-norm solution, 149
minimum-volume enclosing ellipsoid, 158
mixed derivatives, 251
model, 300
modified Gram-Schmidt process, 83
multi-class least error square sum, 337
multi-column least-squares, 338
multiple coarse grid, 284
mutually consistent, 8

nltk, 310
nodal point, 184
nonoscillatory second-order time-stepping,

289

nonsingular matrix, 24
normal equation, 72
normal matrix, 9
normalized web matrix, 321
numerical rank, 143

one-versus-rest, 339
operator norm, 8
optimal ω for SOR, 273
optimal step length, 279
orthogonal basis, 76
orthogonal decomposition, 93
orthogonal iteration, 196
orthogonal matrix, 9, 92, 112
orthogonal_iteration.m, 202
orthogonally invariant, 308
orthonormal basis, 78
outer bordering, 28, 248
outlinks, 305, 320
OVR, 339

p-norms, 6
Pagerank, 319–321
pagerank equation, 324
Pagerank vector, 322
pagerank vector, 306
parallel computation, 241
PCG, 283
Peppers image, 147
Perceptron, 335
permutation matrix, 49, 183
Perron-Frobenius theorem, 323
personalization vector, 325, 328
plane rotator, 113
point relaxation method, 274
point relaxation methods, 266
polynomial factorization, 173
Porter Stemming Algorithm, 311
positive definite, 73, 277
power method, 188, 326
precision, 314
preconditioned CG method, 283
prediction methods, 300
preprocessing, 310
principal component analysis, 156
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principal components, 156
projection, 93
pseudoinverse, 134
PSNR, 148

Q9, 309
QR decomposition, 79
QR iteration, 199
QR iteration, with a shift, 200
QR iteration, without shifts, 199
qr_iteration.m, 202
qr_iteration_shift.m, 202
QR_Orthogonal.m, 201
quasi-upper triangular, 173
query matching, 314

rank, 18
rank reduction procedure, 306
rank-deficient least-squares problem, 126,

149
rank-deficient matrix, 126
rank-reduction decomposition, 307
Rayleigh quotient, 187
Rayleigh quotient iteration, 233, 240
recall, 314
recall versus precision diagram, 315
reducible matrix, 183
reflection matrix, 113
reflector, 93, 95
regression, 300
regular splitting, 265
relaxation methods, 266
residual, 187
Richardson extrapolation, 284
Richardson method, 263
Richardson’s method, 278
Richardson_extrapolation.m, 296
right eigenvalue, 322
right eigenvector, 172
right singular vectors, 127
row-wise point ordering, 256

saxpy, 3
scaling factor, 264
Schur canonical form, 173
Schur decomposition, 137, 241

search direction, 277
search engine, 304
second-order accuracy, 291
self-referencing, 319
semi-axis of an ellipsoid, 158
semi-discrete problem, 289
sequential pattern discovery, 300
Sergey Brin, 324
shift, 193
similar, 206
similarity, 170
similarity transformation, 206
simultaneous iteration, 196
single shift QR algorithm, 224
singular value decomposition, 127, 304,

316, 338
singular values, 127
sklearn_classifiers.py, 344
SOR, 266, 271
SOR, optimal ω, 273
source matrix, 338
spaCy, 310
sparse, 313
sparse eigenvalue algorithms, 326
sstevd, 233
stability, 17
stable, 290
steepest descent method, 278
stemming, 311
step length, 277
Stieltjes matrix, 67
stochastic matrix, 324
stop words, 311
strictly diagonally dominant, 182
strictly upper triangular, 18
strong stability, 17
strongly connected, 322
strongly connected directed graph, 185
subordinate norm, 8
subspace iteration, 196
successive over relaxation, 266, 271
successive under relaxation, 273
supervised learning, 334
support vector machine, 340
SUR, 273
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SVD, 304, 338
SVD theorem, 127
SVM, 340
symmetric positive definite, 58, 277
symmetric positive semidefinite, 62
symmetrization, 248

teleportation, 325
term, 302
term frequency, 312
term weighting scheme, 312
term-document matrix, 302, 303, 310, 312
terms, 310
text mining, 309
textmineR, 310
training data, 334
transforming matrix, 206
triangular systems, 30
tridiagonal QR iteration, 232
tridiagonal reduction, 215
truncated SVD, 135

unconditionally stable, 290, 291
unit roundoff error, 144
upper bidiagonal, 218
upper-triangular matrix, 30

variable-θ method, 291, 293
vector multiply, 3
vector norm, 6
vector operations, 3
vector space model, 310

web search engines, 309
Wedderburn matrices, 307
Wedderburn rank reduction theorem, 306
Wedderburn rank-reduction process, 307
weight matrix, 337
well-conditioned, 15
Wilkinson theorem, 237
Wilkinson’s shift, 237
wine, 342
wobble set, 291, 292
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