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Prologue

In organizing this lecture note, I am indebted by the following:

* S. RASCHKA AND V. MIRJALILI, Python Machine Learning, 3rd Ed., 2019
[62].

* (Lecture note) http://fa.bianp.net/teaching/2018/eecs227at/, Dr. Fabian Pe-
dregosa, UC Berkeley

* (Lecture note) Introduction To Machine Learning, Prof. David Sontag,
MIT & NYU

* (Lecture note) Mathematical Foundations of Machine Learning, Dr. Justin
Romberg, Geoigia Tech

This lecture note will grow up as time marches; various core algorithms,
useful techniques, and interesting examples would be soon incorporated.

Seongjai Kim
April 28, 2025
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CHAPTER 1

Introduction

What are we “learning” in Machine Learning (ML)?

This is a hard question to which we can only give a somewhat fuzzy answer.
But at a high enough level of abstraction, there are two answers:

¢ Algorithms, which solve some kinds of inference problems
* Models for datasets.

These answers are so abstract that they are probably completely unsatis-
fying. But let’s (start to) clear things up, by looking at some particular
examples of “inference" and “modeling" problems.

Contents of Chapter 1

1.1. Why and What in Machine Learning (ML)? . . . . ... ... ... ... ......... 2
1.2. Three Different Typesof ML . . . . . . . . . . . . .. .. . .. ... .. . .. ... 5
1.3. Issuesin Machine Learning . . . . . . . . . . . . . . . .. ... ... 9
1.4. A Machine Learning Modelcode: Scikit-Learn Comparisons and Ensembling . . . . . 15
Exercises for Chapter 1. . . . . . . . . . . . . . e e 20



2 Chapter 1. Introduction

1.1. Why and What in Machine Learning (ML)?

1.1.1. Inference problems

Definition}, 1.1. Statistical inference is the process of using data
analysis to deduce properties of an underlying probability distribution.
Inferential statistical analysis infers properties of a population, for ex-
ample by testing hypotheses and deriving estimates.

Loosely speaking, inference problems take in data, then output
some kind of decision or estimate. The output of a statistical infer-
ence is a statistical proposition; here are some common forms of statistical
proposition.

* a point estimate

an interval estimate

a credible interval

rejection of a hypothesis

¢ classification or clustering of the data points into discrete groups

r
|
|
L

(b) What words are in this picture?

[SeCTey

. “2
inessage:

(c) If I give you a recording of somebody speaking, can you produce text of
what they are saying?
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Machine learning algorithms are not algorithms for performing in-
ference. Rather, they are algorithms for building inference algo-
rithms from examples. An inference algorithm takes a piece of data
and outputs a decision (or a probability distribution over the decision
space).

1.1.2. Modeling

A second type of problem associated with machine learning (ML) might
be roughly described as:

Given a dataset, how can I succinctly describe it (in a quantita-
tive, mathematical manner)?

One example is regression analysis. Most models can be broken into two
categories:

* Geometric models. The general problem is that we have example
data points
X1, X2, "'JXNGRD

and we want to find some kind of geometric structure that (ap-
proximately) describes them.

Here is an example: given a set of vectors, what (low dimensional) sub-
space comes closest to containing them?

* Probabilistic models. The basic task here is to find a probability
distribution that describes the dataset {x,,}.

The classical name for this problem is density estimation — given
samples of a random variable, estimate its probability density function
(pdf). This gets extremely tricky in high dimensions (large values of
D) or when there are dependencies between the data points. Key to
solving these problems is choosing the right way to describe your
probability model.
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Note: In both cases above, having a concise model can go a tremen-
dous way towards analyzing the data.

* As a rule, if you have a simple and accurate model, this
is tremendously helping in solving inference problems, be-
cause there are fewer parameters to consider and/or esti-
mate.

* The categories can either overlap with or complement each
other. It is often the case that the same model can be interpreted
as a geometric model or a probabilistic model.

1.1.3. Machine learning examples

¢ Classification: from data to discrete classes

— Spam filtering
— Object detection (e.g., face)
— Weather prediction (e.g., rain, snow, sun)

* Regression: predicting a numeric value

— Stock market
— Weather prediction (e.g., Temperature)

Ranking: comparing items
— Web search (keywords)
— Given an image, find similar images

Collaborative Filtering (e.g., Recommendation systems)

Clustering: discovering structure in data

— Clustering points or images
— Clustering web search results

Embedding: visualizing data
— Embedding images, words

Structured prediction: from data to discrete classes
— Speech/image recognition
— Natural language processing



1.2. Three Different Types of ML

1.2. Three Different Types of ML

* Supervised learning: classification, regression
* Unsupervised learning: clustering

* Reinforcement learning: chess engine

> Labeled data

Supervised Learning > Direct feedback

> Predict outcome/future

> No labels

Unsupervised Learning > No feedback

> Find hidden structure in data

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Figure 1.1: Three different types of ML (by methods)
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1.2.1. Supervised learning

Chapter 1. Introduction

{

Given : Training set {(z;,y;) |i=1,--- ,N}
Find :

Supervised learning:

Assumption. Given a data set {(x;,y;)}, Jarelation f: X - Y .

f : X Y, agood approximation to f

(1.1)

Mlew Data

Labels

Training Data

Machine Learming

Algorithm

LJ

= Predictive Model

-

Prediction

Figure 1.2: Supervised learning and prediction.

)

Figure 1.3: Classification and regression.
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1.2. Three Different Types of ML

1.2.2. Unsupervised learning

Note:

* In supervised learning, we know the right answer beforehand when
we train our model, and in reinforcement learning, we define a mea-
sure of reward for particular actions by the agent.

* In unsupervised learning, however, we are dealing with unlabeled
data or data of unknown structure. Using unsupervised learn-
ing techniques, we are able to explore the structure of our data

to extract meaningful information without the guidance of a
known outcome variable or reward function.

* Clustering is an exploratory data analysis technique that allows
us to organize a pile of information into meaningful subgroups
(clusters) without having any prior knowledge of their group mem-
berships.

\/

X

Figure 1.4: Clustering.
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1.2.3. Reinforcement learning

Definition} 1.5. Reinforcement learning (RL) is the science of de-
cision making, combining machine learning and optimal control.

* It is about learning the optimal behavior in a dynamic environment
in order to obtain maximum reward.

* This optimal behavior is learned through interactions with the en-
vironment and observations of how it responds.

* RL does not need labeled input/output pairs.

* In the absence of a supervisor, the learner must independently dis-
cover the sequence of actions that maximize the reward. This dis-
covery process is similar to a trial-and-error search.

e Examples: AlphaGo, autonomous driving, robotics, ...

Key Points in RL

* Input: The input should be an initial state from which the model
will start.

* Output: There are many possible outputs, as there are a variety of
solutions to a particular problem

* Training: The training is based upon the input. The model will
return a state; the user decides to reward or punish the model based
on its output.

* The model keeps continue to learn.

¢ The best solution is decided based on the maximum reward.




1.3. Issues in Machine Learning

1.3. Issues in Machine Learning

1. Overfitting: Fitting training data too tightly
* Difficulties: Accuracy drops significantly for test data

* Remedies:
— More training data (often, impossible)

- Early stopping; feature selection
— Regularization; ensembling (multiple classifiers)

b
%, |

X, ‘ \\ X, 1 .

e O,', 9)

S + o s Ci):‘: +

o\::'+ I\_:-+ 0,9:)-:-.'.
°+hs °+ 4 + 7+

o o - R O-"'-b*~\ -
Underfitting %1 Good X1 Overfitting

(high bias) compromise (high variance)

2. Curse of Dimensionality: The feature space becomes increas-
ingly sparse for an increasing number of dimensions (of a fixed-

size training dataset)

¢ Difficulties: Larger error, more computation time;
Data points appear equidistant from all the others

* Remedies

— More training data (often, impossible)
- Dimensionality reduction (e.g., Feature selection, PCA)

bh 20 - 16 regeans b XD - 64 regions
[]

| - @
al 1D egions 0
L N ]
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15 e 3 ® ]
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[ ]
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3. Multiple Local Minima Problem
Training often involves minimizing an objective function.

e Difficulties: Larger error, unrepeatable
* Remedies

— Gaussian sailing; regularization
— Careful access to the data (e.g., mini-batch)

4. Interpretability:
Although ML has come very far, researchers still don’t know exactly
how some algorithms (e.g., deep nets) work.

¢ If we don’t know how training nets actually work, how do we make
any real progress?

5. One-Shot Learning:
We still haven’t been able to achieve one-shot learning. Traditional
gradient-based networks need a huge amount of data, and are
often in the form of extensive iterative training.

* Instead, we should find a way to enable neural networks to
learn, using just a few examples.
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15

[Example] 1.6. Consider a simple
dataset: 10 points generated from a '
sine function, with noise. ST
Wanted: Find the best regression ~ o
model for the dataset: osl
® Let’s select a model from P,, 1
polynomials of degree < n a5 .

Sine_Noisy_Data_Regression.m

1 close all; clear all

3 a=0; b=1; m=10;

« | £ = 0(t) sin(2xpix*t);

5 DATAFILE = 'sine-noisy-data.txt';
6 renew_data = 0;

S

9 | if isfile(DATAFILE) && renew_data ==

10 DATA = readmatrix (DATAFILE); % np.loadtxt()
11 else

12 X = linspace(a,b,m); YO = £(X);

13 noise = rand([1,m]); noise = noise-mean(noise(:));
14 Y = YO + noise; DATA = [X',Y'];

15 writematrix (DATA,DATAFILE); % np.savetxt ()
16 end

17

TSR [ Ay /g

19 | x = linspace(a,b,101); y = f(x);
20 | x1 = DATA(:,1); y1 = DATA(:,2);
21 | E = zeros(1,m);

22 for n = 0:m-1

28 p = polyfit(xl,yl,n); % np.polyfit()
24 yhat = polyval(p,x1); % np.polyval()
25 E(n+1) = norm(yl-yhat,2)"2;

26 %hsavefigure(x,y,x1,yl,polyval(p,x),n)

27 | end

28

29 | % figure

0.4

0.8

0.8

11
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the simplest is most likely to be the best choice.

e Start simple, and only make the model more complex as needed.
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'The LS Error.

Given the dataset {(z;,vy;) | i = 1,2,--- ,m} and the model P,, define the
LS-error .

Ey =Y (yi— Pu(z:)’,  (m=10), (1.2)

i=1

which is also called the mean square error.

4.5 T T T T T

* —e—Training| |

alF
A - ®-Test

35¢F

LS-Error
- N
(%] 3% L ("%}

=
T

o
n

(=]

“One should not increase, beyond what is necessary,
the number of entities required to explain anything.”

William of Occam: A monk living in the 14-th century, England

When many solutions are available for a given problem, we should
select the simplest one.

But what do we mean by simple?

We will use prior knowledge of the problem to solve to define what
is a simple solution (Example of a prior: smoothness).



https://en.wikipedia.org/wiki/William_of_Ockham
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training and test example—label pair (z,y) is drawn independently at
random from the same (but unknown) population of examples and labels.
Represent this population as a probability distribution p(zx,y), so that:

(xia yz) ~ p(az, y)

* Then, given a loss function L:

N
. . 1
— Empirical (training) loss = N ; L(y;, f(z)).

(Also called the empirical risk, R(f, Dy).)
~ Expected (test) loss = £, {L(y, f(z))}.
(Also called the risk R(f).)

* Ideally, learning chooses the hypothesis that minimizes the
risk.

— But this is impossible to compute!

— The empirical risk is a good (unbiased) estimate of the risk
(by linearity of expectation).

* The principle of empirical risk minimization reads

f*(Dy) = argmin}A%(f, Dy). (1.3)
feF
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1.4. A Machine Learning Modelcode: Scikit-Learn
Comparisons and Ensembling

In machine learning, you can write a code easily and effectively using the
following modelcode. It is also useful for algorithm comparisons and
ensembling. You may download
https:/skim.math.msstate.edu/LectureNotes/data/Machine-Learning-Modelcode.PY.tar.

Machine_Learning_Model.py

1 | import numpy as np; import pandas as pd; import time

2 | import seaborn as sbn; import matplotlib.pyplot as plt
3 | from sklearn.model_selection import train_test_split

4+ | from sklearn import datasets

5 | np.set_printoptions(suppress=True)

7 #
s | # Upload a Dataset: print(dir(datasets))

9 # load_iris, load_wine, load_breast_cancer,
0 | #
u | data_read = datasets.load_iris(); #print(data_read.keys())

12
13 X data_read.data

14+ |y = data_read.target

15 dataname = data_read.filename

16 | targets data_read.target_names
17 features data_read.feature_names

18

19 | B -
20 | # SETTING
21 | e -

22 | N,d = X.shape; nclass=len(set(y));

23 | print ('DATA: N, d, nclass =',N,d,nclass)
24 | rtrain = 0.7e0; run = 50; CompEnsm = 2;
25
26 | def multi_run(clf,X,y,rtrain,run):

27 t0 = time.time(); acc = np.zeros([run,1])

28 for it in range(run):

29 Xtrain, Xtest, ytrain, ytest = train_test_split(

30 X, y, train_size=rtrain, random_state=it, stratify = y)
31 clf .fit(Xtrain, ytrain);

32 acclit] = clf.score(Xtest, ytest)

33 etime = time.time()-t0

34 return np.mean(acc)*100, np.std(acc)*100, etime # accmean,acc_std,etime



https://skim.math.msstate.edu/LectureNotes/data/Machine-Learning-Modelcode.PY.tar
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#
# My Classifier
#
from myclf import * # My Classifier = MyCLF()
if 'MyCLF' in locals():

accmean, acc_std, etime = multi_run(MyCLF(mode=1),X,y,rtrain,run)

print ('%s: MyCLFQ) : Acc. (mean,std) = (%.2f,%.2f)%%; E-time= %.5f"
% (dataname,accmean,acc_std,etime/run))

#
# Scikit-learn Classifiers, for Comparisions && Ensembling
#
if CompEnsm >= 1:
exec(open("sklearn_classifiers.py").read())

myclf.py

import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.tree import DecisionTreeClassifier

class MyCLF(BaseEstimator, ClassifierMixin): #a child class
def __init__(self, mode=0, learning rate=0.01):
self .mode = mode
self.learning_rate = learning_rate
self.clf = DecisionTreeClassifier(max_depth=5)

if self.mode==1: print('MyCLF() = %s' %(self.clf))

def fit(self, X, y):
self.clf.fit(X, y)

def predict(self, X):
return self.clf.predict(X)

def score(self, X, y):
return self.clf.score(X, y)

Note: Replace DecisionTreeClassifier () with your own classier.

* The classifier must be implemented as a child class if if it is used
in ensembling.
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sklearn_classifiers.py

1 | #
2 | # Required: X, y, multi_run [dataname, rtrain, run, CompEnsm]
3 | #
4+ | from sklearn.preprocessing import StandardScaler

5 from sklearn.datasets import make_moons, make_circles, make_classification
6 | from sklearn.neural_network import MLPClassifier

7 | from sklearn.neighbors import KNeighborsClassifier

s | from sklearn.linear_model import LogisticRegression

9 | from sklearn.svm import SVC

1 | from sklearn.gaussian_process import GaussianProcessClassifier

11 | from sklearn.gaussian_process.kernels import RBF

12 | from sklearn.tree import DecisionTreeClassifier

13 | from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

1 | from sklearn.naive_bayes import GaussianNB

15 | from sklearn.discriminant_analysis import (QuadraticDiscriminantAnalysis

16 | from sklearn.ensemble import VotingClassifier

17

18 T e e R
19 | classifiers = [

2 LogisticRegression(max_iter = 1000),

21 KNeighborsClassifier(5),

22 SVC(kernel="linear", C=0.5),

23 SVC(gamma=2, C=1),

24 RandomForestClassifier (max_depth=5, n_estimators=50, max_features=1),
2 MLPClassifier(hidden_layer_sizes=[100], activation='logistic',
26 alpha=0.5, max_iter=1000),

2 AdaBoostClassifier(),

28 GaussianNB(),

29 QuadraticDiscriminantAnalysis(),

30 GaussianProcessClassifier(),

31 ]

32 | names = [

33 "Logistic-Regr",

34 "KNeighbors-5 ",

35 "SVC-Linear "

36 "SVC-RBF ",

37 "Random-Forest",

38 "MLPClassifier",

39 "AdaBoost "

40 "Naive-Bayes ",

41 "QDA ",

42 "Gaussian-Proc",

s ]
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H o o
if dataname is None: dataname = 'No-dataname';
if run is None: run = 50;
if rtrain is None: rtrain = 0.7e0;
if CompEnsm is None: CompEnsm = 2;
#
print ('====== Comparision: Scikit-learn Classifiers ")
#
import os;

acc_max=0; Acc_CLF = np.zeros([len(classifiers),1]);

for k, (name, clf) in enumerate(zip(names, classifiers)):
accmean, acc_std, etime = multi_run(clf,X,y,rtrain,run)

Acc_CLF[k] = accmean
if accmean>acc_max: acc_max,algname = accmean,name
print('%s: %s: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f"
% (os.path.basename (dataname) ,name,accmean,acc_std,etime/run))
Print (' —-- oo ")
print ('sklearn classifiers Acc: (mean,max) = (%.2f,%.2f)%%; Best = %s'
% (np.mean(Acc_CLF) ,acc_max,algname))

if CompEnsm <2: quit()

rint ('====== Ensembling: SKlearn Classifiers ")
p g

names = [x.rstrip() for x in names]

popped_clf = []

popped_clf.append(names.pop(9)); classifiers.pop(9); #Gaussian Proc
popped_clf.append(names.pop(7)); classifiers.pop(7); #Naive Bayes
popped_clf.append(names.pop(6)); classifiers.pop(6); #AdaBoost
popped_clf.append(names.pop(4)); classifiers.pop(4); #Random Forest
popped_clf.append(names.pop(0)); classifiers.pop(0); #Logistic Regr
#print ('popped_clf=',popped_clf[::-1])

CLFs = [(name, clf) for name, clf in zip(names, classifiers)]
#if 'MyCLF' in locals(): CLFs += [('MyCLF',MyCLF())]

EnCLF = VotingClassifier(estimators=CLFs, voting='hard')
accmean, acc_std, etime = multi_run(EnCLF,X,y,rtrain,run)

print ('EnCLF =',[1is[0] for 1lis in CLFs])
print('%s: Ensemble CLFs: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f"
%(os.path.basename (dataname) ,accmean,acc_std,etime/run))
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Output
1 DATA: N, d, nclass = 150 4 3
2 | MyCLF() = DecisionTreeClassifier(max_depth=5)

3 | iris.csv: MyCLF() : Acc.(mean,std) = (94.53,3.12)%; E-time= 0.00074
4 | ====== Comparision: Scikit-learn Classifiers

5 | iris.csv: Logistic-Regr: Acc.(mean,std) = (96.13,2.62)%; E-time= 0.01035
6 | iris.csv: KNeighbors-5 : Acc.(mean,std) = (96.49,1.99)%; E-time= 0.00176
7 | iris.csv: SVC-Linear : Acc.(mean,std) = (97.60,2.26)%; E-time= 0.00085
g | iris.csv: SVC-RBF : Acc.(mean,std) = (96.62,2.10)%; E-time= 0.00101
9 | iris.csv: Random-Forest: Acc.(mean,std) = (94.84,3.16)%; E-time= 0.03647
10 | iris.csv: MLPClassifier: Acc.(mean,std) = (98.58,1.32)%; E-time= 0.20549
1 | iris.csv: AdaBoost : Acc.(mean,std) = (94.40,2.64)%; E-time= 0.04119
12 | iris.csv: Naive-Bayes : Acc.(mean,std) = (95.11,3.20)%; E-time= 0.00090
13 | iris.csv: QDA : Acc. (mean,std) = (97.64,2.06)%; E-time= 0.00085
14 | iris.csv: Gaussian-Proc: Acc.(mean,std) = (95.64,2.63)%; E-time= 0.16151

15 | ——T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T s s s

16 sklearn classifiers Acc: (mean,max) = (96.31,98.58)%; Best = MLPClassifier
17 | ====== Ensembling: SKlearn Classifiers
18 | EnCLF = ['KNeighbors-5', 'SVC-Linear', 'SVC-RBF', 'MLPClassifier', 'QDA']
19 | iris.csv: Ensemble CLFs: Acc.(mean,std) = (97.60,1.98)%; E-time= 0.22272

Ensembling:
You may stack the best and its siblings of other options.
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The exercise in the chapter is designed for you to
* install frequently-used machine learning packages in Python and

* run an example code, called a modelcode.

Exercises for Chapter 1

1.1. The modelcode in Section 1.4 will run without requiring any other implementation of
yours.

(a) Download the code or save it by copy-and-paste.
(b) Install all imported packages to run the code.
(c) Modification:
* Select another dataset in Machine_Learning_Model.py, line 11.
(You may use print(dir(datasets)) to find datasets available.)

* Set different options for some of the classifiers in sklearn_classifiers.py,
lines 20-30.

(d) Report the output.

Installation: If you are on Ubuntu, you may begin with
Install-Python-packages

1 | sudo apt update

2 | sudo apt install python3 -y

3 | sudo apt install python3-pip -y

4+ | rehash

5 | sudo pip3 install numpy scipy matplotlib sympy -y
6 | sudo pip3 install sklearn seaborn pandas -y
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2.1. Why Python?

Note: A good programming language must be easy to learn and use
and flexible and reliable.

Advantages of Python

Python has the following characteristics.

* Easy to learn and use
Flexible and reliable

Extensively used in Data Science

Handy for Web Development purposes

Having Vast Libraries support

Among the fastest-growing programming languages in the tech
industry

Disadvantage of Python

Python is an interpreted and dynamically-typed language. The line-by-
line execution of code, built with a high flexibility, most likely leads to
slow execution. Python scripts are way slow!

Remark 2.1. Speed up Python Programs

r
|
Lo === -

* Use numpy and scipy for all mathematical operations.

* Always use built-in functions wherever possible.

e Cython: It is designed as a C-extension for Python, which is
developed for users not familiar with C. A good choice!

* You may create and import your own C/C++/Fortran-modules into
Python. If you extend Python with pieces of compiled modules,
then the resulting code is easily 100 x faster than Python scripts.
The Best Choice!
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Functions in C/C++/Fortran can be compiled using the shell script.
Compile-£f90-c-cpp

23

1 | #!/usr/bin/bash

3 | LIB_F90="1ib_£90'
+ | LIB_GCC="1lib_gcc'
5 | LIB_GPP="1ib_gpp'

7 | ### Compiling: £90
s | f2py3 -c --f90flags='-03' -m $LIB_F90 *.f90

10 | ### Compiling: C (PIC: position-independent code)
1 | gcc -fPIC -03 -shared -o $LIB_GCC.so *.c

12
13 | ### Compiling: C++

1 | gt+ -fPIC -03 -shared -o $LIB_GPP.so *.cpp

The shared objects (*.s0) can be imported to the Python wrap-up.
Python Wrap-up

1 | #!/usr/bin/python3

3 | import numpy as np

4+ | import ctypes, time

5 | from 1lib_py3 import *
6 | from 1ib_f90 import *

7 | lib_gcc = ctypes.CDLL("./lib_gcc.so")
s | lib_gpp = ctypes.CDLL("./1ib_gpp.so")

10 | ### For C/CH+ ———mmmmmmmm e
u | # e.g., lib_gcc.CFUNCTION(double array,double array,int,int)

12 | # returns a double value.

13 oo
14 | IN_ddii = [np.ctypeslib.ndpointer(dtype=np.double),

15 np.ctypeslib.ndpointer(dtype=np.double),

16 ctypes.c_int, ctypes.c_int] #input type

17 | OUT_d = ctypes.c_double #output type
18
19 | 1lib_gcc.CFUNCTION.argtypes = IN_ddii
20 | lib_gcc.CFUNCTION.restype 0UT_d

21

22 | result = 1lib_gcc.CFUNCTION(x,y,n,m)
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* The library numpy is designed for a Matlab-like implementation.

* Python can be used as a convenient desktop calculator.

- First, set a startup environment

— Use Python as a desktop calculator

~/ .python_startup.py
1 | #.bashrc: export PYTHONSTARTUP="/.python_startup.py
2 | #.cshrc: setenv PYTHONSTARTUP ~/.python_startup.py

+ | print("\t~[[1;33m~/.python_startup.py")

¢ | import numpy as np; import sympy as sym
7 | import numpy.linalg as la; import matplotlib.pyplot as plt
s | print ("\tnp=numpy; la=numpy.linalg; plt=matplotlib.pyplot; sym=sympy")

10 from numpy import zeros,ones

1 | print("\tzeros,ones, from numpy")
12
13 | import random

14 | from sympy import x*

5 | X,y,2,t = symbols('x,y,z,t');

16 | print("\tfrom sympy import *; x,y,z,t = symbols('x,y,z,t')")
17

18 | print("\t~[[1;37mTo see details: dir() or dir(np)~[[m")

plt=matplotlib.pyplot; sym=sympy

from sympy import *; x,y,z,t = symbols('x,y,
To see details: dir() or dir(np)

Figure 2.1: Python startup.
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2.2. Python Essentials in 30 Minutes

*******************************

Key Features of Python

| |
| |
L e e e e e e e e e e — - = E

¢ Python is a simple, readable, open source programming language
which is easy to learn.

¢ It is an interpreted language, not a compiled language.

¢ In Python, variables are untyped; i.e., there is no need to define the
data type of a variable while declaring it.

* Python supports object-oriented programming models.
* It is platform-independent and easily extensible and embeddable.
* It has a huge standard library with lots of modules and packages.

* Python is a high level language as it is easy to use because of simple
syntax, powerful because of its rich libraries and extremely versatile.

*******************************

Programming Features

| |
| |
L e e e e e e e e e mm - - = E

¢ Python has no support pointers.
* Python codes are stored with .py extension.
* Indentation: Python uses indentation to define a block of code.

— A code block (body of a function, loop, etc.) starts with indenta-
tion and ends with the first unindented line.

— The amount of indentation is up to the user, but it must be consis-
tent throughout that block.

e Comments:

— The hash (#) symbol is used to start writing a comment.

— Multi-line comments: Python uses triple quotes, either’’’ or """.
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e Sequence datatypes: list, tuple, string

— [list]: defined using square brackets (and commas)
>>> 11 = ["abc", 14, 4.34, 23]

— (tuple): defined using parentheses (and commas)
>>> tu = (23, (4,5), ’a’, 4.1, -7)

- "string": defined using quotes (", ’, or """)
>>> st ’Hello World’
>>> st = "Hello World"
>>> st = """This is a multi-line string

. that uses triple quotes."""

* Retrieving elements
>>> 1i[0]
>abc’
>>> tull],tul2],tul-2]
(4, 5), ’a’, 4.1)
>>> st[25:36]
‘ng\nthat use’

¢ Slicing
>>> tul[1:4] # be aware
((4, 5), ’a’, 4.1)

* The + and * operators
>>> [1, 2, 3]+[4, 5, 6,7]
(1, 2, 3, 4, 5, 6, 7]
>>> "Hello" + " " + ’World’
Hello World
>>> (1,2,3)%3
(1, 2, 3,1, 2, 3,1, 2, 3)
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* Reference semantics
>>>a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> Db
[1, 2, 3, 4]
Be aware with copying lists and numpy arrays!

* numpy, range, and iteration
>>> range(8)
[0, 1, 2, 3, 4, 5, 6, 7]
>>> 1lmport numpy as np
>>> for k in range(np.size(1li)):

1i[k]
. <Enter>
>abc’
14
4.34
23

* numpy array and deepcopy
>>> from copy import deepcopy
>>> A = np.array([1,2,3])
>>> B = A
>>> C = deepcopy(A)
>>> A *= 4
>>> B
array([ 4, 8, 12])
>>> C
array([1, 2, 3])
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frequently_used_rules.py

## Multi-line statement

a= 1+2+3+4+5+\

6 +7+8+ 9+ 10
b=(0+2+3+4+5+

6 +7+8+ 9 + 10) #inside (O, [1, or {}
print(a,b)

# Output: 55 55

## Multiple statements in a single line using ";"
a=1; b=2; ¢c=3

## Docstrings in Python

def double(num) :
"""Function to double the value"""
return 2*num

print (double.__doc__)

# Output: Function to double the value

## Assigning multiple values to multiple variables
a, b, c=1, 2, "Hello"

## Swap

b, c==c¢c, b

print(a,b,c)

# Output: 1 Hello 2

## Data types in Python

a=>5; b=2.1

print("type of (a,b)", type(a), type(b))

# Output: type of (a,b) <class 'int'> <class 'float'>

## Python Set: 'set' object is not subscriptable
a =45,2,3,1,4}; b = {1,2,2,3,3,3}
print("a=",a,"b=",b)

# Output: a= {1, 2, 3, 4, 5} b= {1, 2, 3%}
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## Python Dictionary

d = {'keyl':'valuel', 'Seth':22, 'Alex':21}
print(d['keyl'],d['Alex'],d['Seth'])

# Output: valuel 21 22

## Output Formatting
x=5.1; y =10
print('x = %d and y
print('x = %f and y

hd' h(x,y))
hd' h(x,y))

print('x = {} and y = {}'.format(x,y))
print('x = {1} and y = {0}'.format(x,y))
# Output: x = 5 and y = 10

# x = 5.100000 and y = 10

# x =5.1 and y = 10

# x =10 and y = 5.1

print("x=" X, ny:n ’y’ sep=”#" ,end="&\n")
# Output: x=#5.1#y=#10&

## Python Interactive Input

C = input('Enter any: ')

print (C)

# Output: Enter any: Starkville
# Starkville
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[Examplejl 2.2. Compose a Python function which returns cubes of natural

numbers.
Solution.
get_cubes.py
1 | def get_cubes(num) :
> cubes = []
5 for i in range(l,num+1):
" value = 1**3
5 cubes . append (value)
6 return cubes
7
s | 1f __name__ == '__main__"':
9 num = input('Enter a natural number: ')
10 cubes = get_cubes(int (num))
1 print (cubes)

* Lines 8-11 are added for the function to be called directly. That is,
[Sun Nov.05] python get_cubes.py
Enter a natural number: 6
[1, 8, 27, 64, 125, 216]
* When get_cubes is called from another function, the last four lines
will not be executed.

call_get_cubes.py

1 | from get_cubes import *

s | cubes = get_cubes(8)
+ | print(cubes)

Execusion
i | [Sun Nov.05] python call_get_cubes.py
. | [1, 8, 27, 64, 125, 216, 343, 512]
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2.3. Zeros of a Polynomial in Python

In this section, we will implement a Python code for zeros of a polynomial
and compare it with a Matlab code.

Recall: Let’s begin with recalling how to find zeros of a polynomial.

* When the Newton’s method is applied for finding an approximate zero
of P(z), the iteration reads

P(Zlﬁnfl)

: 2.1
P’(.Tn_l) ( )

Ty = Tp-1 —

Thus both P(z) and P/(z) must be evaluated in each iteration.

* The derivative P’(x) can be evaluated by using the Horner’s
method with the same efficiency. Indeed, differentiating

P(z) = (z — 20)Q(z) + P(xo)
reads
P'(z) = Qz) + (z — 20)Q'(v). (2.2)

Thus

That is, the evaluation of () at x, becomes the desired quantity P’'(x).
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‘Example 2.4. Let P(x) = 2% — 423 + T2* — 5z — 2. Use the Newton’s method

and the Horner’s method to implement a code and find an approximate zero
of P near 3.

Solution. First, let’s try to use built-in functions.
zeros_of_poly_built_in.py

1 | ilmport numpy as np

s | coeff = [1, -4, 7, -5, -2]
+ |P = np.polyld(coeff)
s | Pder = np.polyder(P)

7 | print (P)

s | print (Pder)

s | print(np.roots(P))

v | print(P(3), Pder(3))

Output

4 3 2
1x-4x+7x-5x-2
3 2
4 x -12x+ 14 x -5
[ 2. +0.j 1.1378411+1.52731225j 1.1378411-1.52731225j -0.2756822+0.7 ]
19 37

(=2 ot L w 4] -

Python programmmg is as easy and simple as Matlab programming.

* In particular, numpy is developed for Matlab-like implementa-
tion, with enhanced convenience.

* Numpy is used extensively in most of scientific Python packages:
SciPy, Pandas, Matplotlib, scikit-learn, - - -
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Now, we implement a code in Python for Newton-Horner method to find

an approximate zero of P near 3.
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Zeros-Polynomials-Newton-Horner.py

def horner(A,x0):
""" oinput: A = [a_n,...,a_1,a_0]

output: p,d = P(x0),DP(x0) = horner(A,x0) """
n = len(A)
p = A[0]; d =0

for i in range(1,n):
d = p + x0xd
p = A[i] +x0x*p
return p,d

def newton_horner(A,x0,tol,itmax):
"t ipput: A = [a_n,...,a_1,a_0]
output: x: P(x)=0 """
x=x0
for it in range(l,itmax+1):
p,d = horner(A,x)
h = -p/d;
X = X + h;
if (abs(h)<tol): break
return x,it
if __name__ == '__main__"':
coeff = [1, -4, 7, -5, -2]; x0 =3
tol = 10*x(-12); itmax = 1000
X,1it =newton_horner(coeff,x0,tol,itmax)
print ("newton_horner: x0=Yg; x=%g, in ’%d iterations" %(x0,x,i

Execution

[Sat Jul.23] python Zeros-Polynomials-Newton-Horner.py
newton_horner: x0=3; x=2, in 7 iterations

t))
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Note: The above Python code must be compared with the Matlab code.

horner.m

i | function [p,d] = horner(A,x0)
2 | % dinput: A = [a_0,a_1,...,a_n]
s | % output: p=P(x0), d=P'(x0)

s |n = size(A(:),1);

6 P = A(I’l); d=0;

s | for 1 = n-1:-1:1

9 d = p + x0xd;

10 p = A(i) +x0x*p;
n | end

newton_horner.m

1 | function [x,it] = newton_horner(A,x0,tol,itmax)
2 | % dinput: A = [a_0,a_1,...,a_n]; x0: initial for P(x)=0
s | % outpue: x: P(x)=0

5 | x = x0;

¢ | for i1t=1:itmax

7 [p,d] = horner(A,x);

8 h = -p/d;

9 X = X + h;

10 if (abs(h)<tol), break; end
u | end

Call_newton_horner.m

v |la=[-2-57 -4 1];

2 | x0=3;

s | tol = 107-12; itmax=1000;

+ | [x,1it] = newton_horner(a,x0,tol,itmax) ;

s | fprintf (" newton_horner: x0=Yg; x=%g, in ’%d iterations\n",x0,x,i

6 Result: newton_horner: x0=3; x=2, in 7 iterations
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2.4. Python Classes

Classes are a key concept in the object-oriented programming.
Classes provide a means of bundling data and functionality to-
gether.

* A class is a user-defined template or prototype from which real-
world objects are created.

* The major merit of using classes is on the sharing mechanism
between functions/methods and objects.

- Initialization and the sharing boundaries must be declared
clearly and conveniently.

e A class tells us

- what data an object should have,
— what are the initial/default values of the data, and

- what methods are associated with the object to take actions on
the objects using their data.

* An object is an instance of a class, and creating an object from a
class is called instantiation.

In the following, we would build a simple class, as Dr.Xu did in [82, Ap-
pendix B.5]; you will learn how to initiate, refine, and use classes.
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Polynomial_O1.py

class Polynomial():
"""A class of polynomials"""

def __init__(self,coefficient):

"""Initialize coefficient attribute of a polynomial."""
self.coeff = coefficient

def degree(self):
"""Find the degree of a polynomial"""
return len(self.coeff)-1

© @ = =2} o - w DN =

=
(=3

-
=

12 | 1f __name__ == '__main__"':
13 p2 = Polynomial([1,2,3])
14 print (p2.coeff) # a variable; output: [1, 2, 3]

print(p2.degree()) # a method; output: 2

=
ot

* Lines 1-2: define a class called Polynomial with a docstring.

— The parentheses in the class definition are empty because we cre-
ate this class from scratch.

* Lines 4-10: define two functions, __init__() and degree(). A function

in a class is called a method.
— The __init__() method is a special method for initialization;
it is called the __init__() constructor.
— The self Parameter and Its Sharing

* The self parameter is required and must come first before the
other parameters in each method.

* The variable self.coeff (prefixed with self) is available to
every method and is accessible by any objects created from
the class. (Variables prefixed with self are called attributes.)

* We do not need to provide arguments for self.

9 ——

* Line 13: The line p2 = Polynomial([1,2,3]) creates an object p2 (a
polynomial 22 + 2z + 3), by passing the coefficient list [1,2,3].
— When Python reads this line, it calls the method __init__() in the
class Polynomial and creates the object named p2 that represents
this particular polynomial z2 + 2z + 3.
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Polynomial_02.py
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class Polynomial():
"""A class of polynomials"""

count = 0 #Polynomial.count

def __init__(self):
"""Initialize coefficient attribute of a polynomial."""
self.coeff = [1]

Polynomial.count += 1

def __del__(self):

"""Delete a polynomial object"""
Polynomial.count -=1

def degree(self):
"""Find the degree of a polynomial"""
return len(self.coeff)-1

def evaluate(self,x):
"""Evaluate a polynomial."""
n = self.degree(); eval = []
for xi in x:
p = self.coeff[0] #Horner's method
for k in range(1l,n+1): p = self.coeff[k]+ xi*p
eval.append (p)
return eval
if __name__ == '__main__':
polyl = Polynomial()
print('polyl, default coefficients:', polyl.coeff)
polyl.coeff = [1,2,-3]
print('polyl, coefficients after reset:', polyl.coeff)
print('polyl, degree:', polyl.degree())

poly2 = Polynomial(); poly2.coeff = [1,2,3,4,-5]
print('poly2, coefficients after reset:', poly2.coeff)
print('poly2, degree:', poly2.degree())

print ('number of created polynomials:', Polynomial.count)
del polyl
print ('number of polynomials after a deletion:', Polynomial.count)

print('poly2.evaluate([-1,0,1,2]):',poly2.evaluate([-1,0,1,2]))
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Line 4: (Global Variable) The variable count is a class attribute of
Polynomial.

— It belongs to the class but not a particular object.

— All objects of the class share this same variable
(Polynomial.count).

Line 8: (Initialization) Initializes the class attribute self.coeff.

— Every object or class attribute in a class needs an initial value.

— One can set a default value for an object attribute in the
__init__() constructor; and we do not have to include a param-
eter for that attribute. See Lines 29 and 35.

Lines 11-13: (Deletion of Objects) Define the __del__() method in
the class for the deletion of objects. See Line 40.

— del is a built-in function which deletes variables and objects.

Lines 19-28: (Add Methods) Define another method called evaluate,
which uses the Horner’s method. See Example 2.4, p.32.

Output

polyl, default coefficients: [1]

polyl, coefficients after reset: [1, 2, -3]
polyl, degree: 2

poly2, coefficients after reset: [1, 2, 3, 4, -5]
poly2, degree: 4

number of created polynomials: 2

number of polynomials after a deletion: 1
poly2.evaluate([-1,0,1,2]): [-7, -5, 5, 47]
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Note: If we want to write a class that is just a specialized version of
another class, we do not need to write the class from scratch.

* We call the specialized class a child class and the other general

class a parent class.

e The child class can inherit all the attributes and methods form the

parent class.

— It can also define its own special attributes and methods or even

overrides methods of the parent class.

Classes can import functions implemented earlier, to define methods.
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Classes.py

def

def

def

def

def

from util_Poly import *

class Polynomial():
"""A class of polynomials"""

init__(self,coefficient):

"""Initialize coefficient attribute of a polynomial."""

self.coeff = coefficient

degree(self):
"""Find the degree of a polynomial"""
return len(self.coeff)-1

class Quadratic(Polynomial):
"""A class of quadratic polynomial"""

__init__(self,coefficient):

"""Tnitialize the coefficient attributes ."""
super () .__init__(coefficient)

self .power_decrease = 1

roots(self):
return roots_Quad(self.coeff,self.power_decrease)

degree(self):
return 2




40

Chapter 2. Python Basics

¢ Line 1: Imports functions implemented earlier.

* Line 14: We must include the name of the parent class in the paren-
theses of the definition of the child class (to indicate the parent-child
relation for inheritance).

* Line 19: The super() function is to give an child object all the at-
tributes defined in the parent class.

* Line 20: An additional child class attribute self.power_decrease is
initialized.

* Lines 22-23: define a new method called roots, reusing a function
implemented earlier.

* Lines 25-26: The method degree () overrides the parent’s method.

util_Poly.py
def roots_Quad(coeff,power_decrease):
a,b,c = coeff
if power_decrease != 1:
a,c = c,a
discriminant = b**2-4xaxc
rl = (-b+discriminant**0.5)/(2%a)
r2 = (-b-discriminant**0.5)/(2*a)
return [r1,r2]

call_Quadratic.py

from Classes import *

quadl = Quadratic([2,-3,1])

print('quadl, roots:',quadl.roots())
quadl.power_decrease = 0

print('roots when power_decrease = 0:',quadl.roots())

Output

quadl, roots: [1.0, 0.5]
roots when power_decrease = 0: [2.0, 1.0]
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Final Remarks on Python Implementation

* A proper modularization must precede implementation, as for
other programming languages.

* Classes are used quite frequently.

- You do not have to use classes for small projects.

* Try to use classes smartly.
Quite often, they add unnecessary complications and
their methods are hardly applicable directly for other projects.
- You may implement stand-alone functions to import.
— This strategy enhances reusability of functions.
For example, the function roots_Quad defined in util_Poly.py
(page 40) can be used directly for other projects.
- Afterwards, you will get your own utility functions; using
them, you can complete various programming tasks effectively.
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Programming Problems in Homework

¢ Use Python.

* You should report your codes and results as well.

Exercises for Chapter 2

2.1.
2.2.

Use nested for loops to assign entries of a 5 x 5 matrix A such that A[i, j| = ij.

The variable d is initially equal to 1. Use a while loop to keep dividing d by 2 until
d <1076,

(a) Determine how many divisions are made.
(b) Verify your result by algebraic derivation.

Note: A while loop has not been considered in the lecture. However, you can figure it out

2.3.

2.4.

easily by yourself.

Write a function that takes as input a list of values and returns the largest value. Do
this without using the Python max () function; you should combine a for loop and an
if statement.

(a) Produce a random list of size 10-20 to verify your function.
Let Py(x) = 22* — 523 — 1122 + 20z + 10. Solve the following.

(a) Plot P, over the interval [—3,4].

(b) Find all zeros of P;, modifying Zeros-Polynomials-Newton-Horner.py, p.32.
(c) Add markers for the zeros to the plot.

(d) Find all roots of Pj(x) = 0.

(e) Add markers for the zeros of P; to the plot.

Hint: For plotting, you may import: “import matplotlib.pyplot as plt” then use
plt.plot (). You will see the Python plotting is quite similar to Matlab plotting.



CHAPTER 9

Simple Machine Learning Algorithms
for Classification

In this chapter, we will make use of one of the first algorithmically described
machine learning algorithms for classification, the perceptron and adap-
tive linear neurons (adaline). We will start by implementing a perceptron
step by step in Python and training it to classify different flower species in
the Iris dataset.
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3.1. Binary Classifiers - Artificial Neurons

Definition}, 8.1. A binary classifier is a function which can decide

whether or not an input vector belongs to some specific class (e.g.,
spam/ham).

* Binary classification often refers to those classification tasks that
have two class labels. (two-class classification)

* It is a type of linear classifier, i.e. a classification algorithm that
makes its predictions based on a linear predictor function
combining a set of weights with the feature vector.

¢ Linear classifiers are artificial neurons.

in the processing and transmitting of chemical and electrical signals.
Such a nerve cell can be described as a simple logic gate with binary
outputs;

* multiple signals arrive at the dendrites,

* they are integrated into the cell body,

e and if the accumulated signal exceeds a certain threshold, an output
signal is generated that will be passed on by the axon.

Axon
terminals
Myelin sheath /\
—
—
—
| Output
nput Dendrites Signals
Signals  —
—>
—
— Cell nucleus

Figure 3.1: A schematic description of a neuron.
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As artificial neurons, they have the following characteristics:

* Inputs are feature values: x
e Each feature has a weight: w

* Weighted sum (integration) is the activation

activation,,(x) = Z WjT; =W-X (3.1
J

* Decision/output: If the activation is

Positive = class 1
Negative = class 2

Unknowns, in ML:

Training : w
Prediction : activationy(x)

Examples:

* Perceptron
¢ Adaline (ADAptive LInear NEuron)

* Support Vector Machine (SVM) = nonlinear decision boundaries, too
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3.2. The Perceptron Algorithm

The perceptron is a binary classifier of supervised learning.

® 1957: Perceptron algorithm is invented by Frank Rosenblatt, Cornell
Aeronautical Laboratory

— Built on work of Hebbs (1949)
— Improved by Widrow-Hoff (1960): Adaline

* 1960: Perceptron Mark 1 Computer — hardware implementation

* 1970’s: Learning methods for two-layer neural networks

3.2.1. The perceptron: A formal definition

Definition}, 3.3. We can pose the perceptron as a binary classifier,
in which we refer to our two classes as 1 (positive class) and —1 (negative
class) for simplicity.

e Input values: x = (21,29, , 2,,)"

e Weight vector: w = (wy, ws, -+ ,wy,)"
* Net input: z = w1 + woxs + -+ + W Ty,

* Activation function: ¢(z), defined by

$(2) = { Lo ifz=0, (3.2)

—1 otherwise,

where 6 is a threshold.

For simplicity, we can bring the threshold ¢ in (3.2) to the left side of the
equation; define a weight-zero as wy = —0 and reformulate as

1 1f z Z 0, . T.
¢(Z) - { -1 OtheI'Wise, =W X =1U + w11 +---+ WmTm- (3-3)

In the ML literature, the variable wy is called the bias.

The equation wg+wix1+- - - +w,,x,, = 0 represents a hyperplane

in R™, while w, decides the intercept.
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3.2.2. The perceptron learning rule

The whole idea behind the Rosenblatt’s thresholded perceptron model
is to use a reductionist approach to mimic how a single neuron in the brain
works: it either fires or it doesn’t.

‘Algorithm‘ 3.4. Rosenblatt’s Initial Perceptron Rule

1. Initialize the weights to O or small random numbers.
2. For each training sample x,

(a) Compute the output value 71 (:= ¢(w’x)).

(b) Update the weights.

The update of the weight vector w can be more formally written as:

w=w+Aw, Aw =7 (y? —7)xO

wy = wo + Awy, Awgy =7 (y® — 7)), (3.4)

where 7 is the learning rate, 0 < 7 < 1, y') is the true class label of the
i-th training sample, and 3 denotes the predicted class label.

learning rule:

* Let the perceptron predict the class label correctly. Then y—5) = 0
so that the weights remain unchanged.

* Let the perceptron make a wrong prediction. Then

Aw; =y —§9) 2 = £2na;)

so that the weight w; is pushed towards the direction of the positive
or negative target class, respectively.
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Note: It is important to note that convergence of the perceptron
is only guaranteed if the two classes are linearly separable and the
learning rate is sufficiently small. If the two classes can’t be sep-
arated by a linear decision boundary, we can set a maximum number
of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications.

Definition}; 3.6. (Linearly separable dataset). A dataset {(xV,y")}
is linearly separable if there exist w and v such that

(3.5)

Figure 3.2: Linearly separable dataset.

Definition}, 3.7. (More formal/traditional definition). Let X and
Y be two sets of points in an m-dimensional Euclidean space. Then
X and Y are linearly separable if there exist m + 1 real numbers

wy,wo, -+, W, k such that every point x € X satisfies ijxj > k and
j=1

every pointy € Y satisfies Z w;y; < k.
j=1
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'Theorem | 3.8. Assume the data set D = {(xV), 4y} is linearly separa-
ble with margin ~, i.e.,

3w, W] =1, yPwTxD>~>0, Vi (3.6)

Suppose that |x")|| < R, Vi, for some R > 0. Then, the maximum num-
ber of mistakes made by the perceptron algorithm is bounded by R?/~*.

Proof. Assume the perceptron algorithm makes yet a mistake for (x*), y(*)).
Then

FUIE = w4 (0 — GO
= IO+ I (6 = OO + 20 (50— FOwO X0 @D
< WL+ (59 = FOxOI < w2+ (20 B,

lw

where we have used
(y — 5w xO <o, (3.8)

(See Exercise 1.) The inequality (3.7) implies
w2 < ¢-(2n R)?. (3.9)

(Here we have used |w'”| = 0.) On the other hand,

~

FTw ) — @Tw® +77(y(€) _ g(z))WTX(é) > wTw® + 25,
which implies
wiwl® > 0. (2n) (3.10)

and therefore
W O? > 2 - (277). (3.11)

It follows from (3.9) and (3.11) that ¢ < R?/+%. [

Properties of the perceptron algorithm: For a linearly separable
training dataset,

¢ Convergence: The perceptron will converge.
* Separability: Some weights get the training set perfectly correct.
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perceptron.py

import numpy as np

class Perceptron():

__init__(self, xdim, epoch=10, learning_rate=0.01):
self.epoch = epoch

self.learning_rate = learning_rate

self .weights = np.zeros(xdim + 1)

activate(self, x):
net_input = np.dot(x,self.weights[1:])+self.weights[0]
return 1 if (net_input > 0) else O

fit(self, Xtrain, ytrain):
for k in range(self.epoch):
for x, y in zip(Xtrain, ytrain):
yhat = self.activate(x)
self .weights[1:] += self.learning ratex(y-yhat)*x
self .weights[0] += self.learning ratex(y-yhat)

predict(self, Xtest):

yhat=[]

#for x in Xtest: yhat.append(self.activate(x))
[yhat.append(self.activate(x)) for x in Xtest]
return yhat

score(self, Xtest, ytest):
count=0;
for x, y in zip(Xtest, ytest):
if self.activate(x)==y: count+=1
return count/len(ytest)

fit_and_fig(self, Xtrain, ytrain):

wgts_all = []

for k in range(self.epoch):

for x, y in zip(Xtrain, ytrain):

yhat = self.activate(x)
self .weights[1:] += self.learning ratex(y-yhat)*x
self .weights[0] += self.learning ratex(y-yhat)
if k==0: wgts_all.append(list(self.weights))

return np.array(wgts_all)
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Iris_perceptron.py
import numpy as np; import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn import datasets; #print(dir(datasets))

np.set_printoptions (suppress=True)

from perceptron import Perceptron

data_read = datasets.load_iris(); #print(data_read.keys())

X = data_read.data;

y = data_read.target

targets = data_read.target_names; features = data_read.feature_names

N,d = X.shape; nclass=len(set(y));
print('N,d,nclass=',N,d,nclass)

#---- Take 2 classes in 2D —----—--——mmmmmmm o
X2 = X[y<=1]; y2 = yly<=1];

X2 = X2[:,[0,2]]

#---- Train and Test --------------mmmm -

Xtrain, Xtest, ytrain, ytest = train_test_split(X2, y2,
random_state=None, train_size=0.7e0)

clf = Perceptron(X2.shape[1],epoch=2)

#clf . fit(Xtrain, ytrain);

wgts_all = clf.fit_and_fig(Xtrain, ytrain);

accuracy = clf.score(Xtest, ytest); print('accuracy =', accuracy)

#yhat = clf.predict(Xtest);

sepal length

6 6
® setosa ® setosa
versicelor versicolor
54 51 — iter=0
ter=10
2 . — iter=20
— iter=30
= — iter=40
[ -
34 g‘ 3 = iter=50
™
[=%
@
2 i . i 2 i /
X e o0 -+ 4
[ X ] ° (X ®
..l.ollll e o ..l.ollll s .
14 ® 1 '____:______t______________
o] 01
T T T T T T T T T T T T
4.5 5.0 5.5 6.0 6.5 7.0 4.5 5.0 5.5 6.0 6.5 7.0
petal length petal length

Figure 3.3: A part of Iris data (left) and the convergence of Perceptron iteration (right).
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3.2.3. Problems with the perceptron algorithm
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e If the data is inseparable (due to noise, for example), there is no
guarantee for convergence or accuracy.

* Averaged perceptron is an algorithmic modification that helps with
the issue.

— Average the weight vectors, across all or a last part of iterations

Note: Frequently the training data is linearly separable! Why?

* For example, when the number of data points is much smaller than
the number of features.

— Perceptron can significantly overfit the data.
- An averaged perceptron may help with this issue, too.

training

test
held-out

accuracy

iterations

Definition} 3.9. Hold-out Method: Hold-out is when you split up your
dataset into a ‘train’ and ‘test’ set. The training set is what the model is
trained on, and the test set is used to see how well that model performs
on unseen data.
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Figure 3.5

We will consider the SVM in Section 5.3.
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Figure 3.6: Classification for three classes.

One-versus-all (one-versus-rest) classification

Figure 3.7: Three weights: w_, w,, and
Wo.

Learning: learn 3 classifiers

* —vs {o,+} = weights w_
* +vs {o,—} = weights w.

* ovs {+,—} = weights w,

Prediction: for a new data sample
X’

y =arg max ¢(wWix).
i€{—,+,0}

OVA (OVR) is readily applicable for classification of general n classes, n >

2.
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3.3. Adaline: ADAptive LInear NEuron

3.3.1. The Adaline Algorithm

¢ (Widrow & Hoff, 1960)
* Weights are updated based on linear activation: e.g.,

p(wix) =wlx.

That is, ¢ is the identity function.

¢ Adaline algorithm is particularly interesting because it illustrates the
key concept of defining and minimizing continuous cost functions,
which will lay the groundwork for understanding more ad-
vanced machine learning algorithms for classification, such as lo-
gistic regression and support vector machines, as well as regression
models.

* Continuous cost functions allow the ML optimization to incorporate
advanced mathematical techniques such as calculus.

Output

=@— Qutput

Net input Activation Threshold
function function

function

Adaptive Linear Neuron (Adaline)

Figure 3.8: Perceptron vs. Adaline
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Algorithm  3.11. Adaline Learning:
Given a dataset {(x",3?) |i=1,2,---, N}, learn
the weights w and bias b = wy:

¢ Activation function: ¢(z) = z (i.e., identity activation)
* Cost function: the SSE

J(w,b) = EZ (y“> — ¢(z"'>))2 , (3.12)

1=1

where 2() = wTx(® 4+ b and ¢ = I, the identity.

The dominant algorithm for the minimization of the cost function is the the
Gradient Descent Method.

Algorithm | 3.12. The Gradient Descent Method uses —V 7 for the
search direction (update direction):

w = w+Aw = w—nVeJ(wW,b),

b = b+A0 = b—nV,.T(w,b), (3.13)
where 1 > 0 is the step length (learning rate).

Computation of V.7 for Adaline:
The partial derivatives of the cost function J w.r.to w; and b read

oJ(w,b) (i) (@) .0

ow. —Z(y — ¢(2 ))% )

0 (w,b) N (3.14)
Thus, with ¢ = I,

Aw = VT (w.b) = 1) (37 - 6(=")) x,
Z’ (3.15)

A= VT (wb) = ) (8- 6()).

You will modify perceptron.py for Adaline; an implementation issue is
considered in Exercise 3.4, p.61.
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*************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* Depending on choices of certain algorithmic parameters, the gradi-
ent descent method may fail to converge to the the global minimizer.

e Data characteristics often determines both successability and speed
of convergence; data preprocessing operations may improve conver-
gence.

* For large-scale data, the gradient descent method is computationally
expensive; a popular alternative is the stochastic gradient descent
method.

*******************

'Hyperparameters

|
|
L e e e e e e e e — -

Definition} 3.13. In ML, a hyperparameter is a parameter whose
value is set before the learning process begins. Thus it is an algorithmic
parameter. Examples are

* The learning rate (1)

* The number of maximum epochs/iterations (n_iter)

Initial
weight

A
\ /_— Gradient J(w)

1
1
1
I}
1

J(W)A

Global cost minimum
> Jmin(W)
w w

Figure 3.9: Well-chosen learning rate vs. a large learning rate

Hyperparameters must be selected to optimize the learning process:

* to converge fast to the global minimizer,

* avoiding overfit.
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3.3.2. Feature Scaling and Stochastic Gradient Descent

Definition}, 3.14. Feature Scaling Preprocessing:

The gradient descent is one of the many algorithms that benefit from
feature scaling. Here, we will consider a feature scaling method called
standardization, which gives each feature of the data the property of a
standard normal distribution.

* For example, to standardize the j-th feature, we simply need to sub-
tract the sample mean 4; from every training sample and divide it by
its standard deviation o;:

7 = M (3.16)

Then, _
F)i=1,2-- 0} ~N(0,1). (3.17)

A A

Global cost minimum

Zero mean and

\Jnit variance
\ >

&

W, > W, &

W, Wi

Figure 3.10: Standardization, which is one of data normalization techniques.

The gradient descent method has a tendency to converge faster
with the standardized data.
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Note: Earlier, we learned how to minimize a cost function with negative
gradients that are calculated from the whole training set; this is why
this approach is sometimes also referred to as batch gradient descent.

* Now imagine we have a very large dataset with millions of data points.

* Then, running with the gradient descent method can be computation-
ally quite expensive, because we need to reevaluate the whole training
dataset each time we take one step towards the global minimum.

* A popular alternative to the batch gradient descent algorithm is the
stochastic gradient descent (SGD).

Algorithm | 3.15. The SGD method updates the weights incrementally
for each training sample:

Given a training set D = {(x,4y)) |i=1,2,--- | n}
1. Fori=1,2,--- . n
w=w -+ 7 (5@ — p(w"x)) x0;
2. If not convergent, shuffle D and goto 1;

(3.18)

* The SGD method updates the weights based on a single training ex-
ample.

* The SGD method typically reaches convergence much faster be-
cause of the more frequent weight updates.

* Since each search direction is calculated based on a single training
example, the error surface is smoother (not noisier) than in the gra-
dient descent method; the SGD method can escape shallow local
minima more readily.

* To obtain accurate results via the SGD method, it is important to
present it with data in a random order, which may prevent cy-
cles with epochs.

* In the SGD method, the learning rate 7 is often set adaptively, de-
creasing over iteration k. For example, 7, = ¢, /(k + c2).




60 Chapter 3. Simple Machine Learning Algorithms for Classification

<> Mini-batch learning

Definition} 3.16. A compromise between the batch gradient descent and
the SGD is the so-called mini-batch learning. Mini-batch learning can
be understood as applying batch gradient descent to smaller subsets of
the training data — for example, 32 samples at a time.

The advantage over batch gradient descent is that convergence is reached
faster via mini-batches because of the more frequent weight updates.
Furthermore, mini-batch learning allows us to replace the for-loop over the
training samples in stochastic gradient descent by vectorized operations
(vectorization), which can further improve the computational efficiency of
our learning algorithm.
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Exercises for Chapter 3

3.1.

3.2.

3.3.

3.4.

Verify (3.8).
Hint: We assumed that the parameter w'*) gave a mistake on x\). For example, let
w®"x(® > 0. Then we must have (y) — V) < 0. Why?

Experiment all the examples on pp. 38-51, Python Machine Learning, 3rd Ed.. Through
the examples, you will learn

(a) Gradient descent rule for Adaline,

(b) Feature scaling techniques, and

(c) Stochastic gradient descent rule for Adaline.

To get the Iris dataset, you have to use some lines on as earlier pages from 31.

Perturb the dataset (X) by a random Gaussian noise GG, of an observable o (so as for
G,(X) not to be linearly separable) and do the examples in Exercise 3.2 again.
Note: In most cases, classifiers become less accurate for noisy data.

Implement a code for Adaline, in the form of perceptron.py, p.50, and verify it by
classifying some appropriate datasets, e.g. the Iris dataset.

Note: This problem is asking you to implement a complete and expandable code for
Adaline; you may adopt parts of the code used in Exercise 3.2.

* The correction terms in Adaline are accumulated from all data points in each iter-
ation. As a consequence, the learning rate n may be chosen smaller as the number
of points increases.

* Implementation: In order to overcome the problem, you may scale the correction
terms by the number of data points.

— Redefine the cost function (3.12):
1 N 2
- = (@) _ (2)
J(w,b) = SN ;:1 (y o(z"))". (3.19)

where () = w'x® + b and ¢ = I, the identity.
— Then the correction terms in (3.15) become correspondingly

= 2L - a0
Ab = U%Z(y(“—sﬁ(z(“))‘

i

(3.20)
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CHAPTER 4

Gradient-based Methods for
Optimization

Optimization is the branch of research-and-development that aims to solve
the problem of finding the elements which maximize or minimize a given
real-valued function, while respecting constraints. Many problems in engi-
neering and machine learning can be cast as optimization problems, which
explains the growing importance of the field. An optimization problem is
the problem of finding the best solution from all feasible solutions.

In this chapter, we will discuss details about

¢ Gradient descent method,
e Newton’s method, and

¢ Their variants.

Contents of Chapter 4

4.1. Gradient Descent Method . . . . ... ... ... .. ... .. ... ... . 64
4.2. Newton’s Method . . . . . . . . . . . . . . . . .. . e 75
4.3. Quasi-Newton Methods . . . . . . . . . . . . . . . . . e 80
4.4. The Stochastic Gradient Method . . . . .. ... ... ... .. ... .......... 84
4.5. The Levenberg—Marquardt Algorithm, for Nonlinear Least-Squares Problems. . . . . 89
Exercises for Chapter4 . . . . . . . . . . . .. 94
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4.1. Gradient Descent Method

The first method that we will de-
scribe is one of the oldest meth-
ods in optimization: gradient de-
scent method, a.k.a steepest de-
scent method. The method was
suggested by Augustin-Louis Cauchy
in 1847 [47]. He was a French math-
ematician and physicist who made
pioneering contributions to mathe-
matical analysis. Motivated by the
need to solve “large" quadratic prob-
lems (6 variables) that arise in As-
tronomy, he invented the method of
gradient descent. Today, this method
is used to comfortably solve problems
with thousands of variables.

Figure 4.1: Augustin-Louis Cauchy

iJet Q c R% d > 1. Given a real-valued function f : QO — R, the general
problem of finding the value that minimizes f is formulated as follows.

min f(x). (4.1)
xeN
In this context, f is the objective function (sometimes referred to as
loss function or cost function). Q C R? is the domain of the function
(also known as the constraint set).
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function in the two-dimensional (2D) space is defined as!

2 212
flz,y) = (1 —x)"+ 100 (y — =) 4.2)
f(x,y) = (1-x)%+100%(y-x2)? . flxy) = (1-x)2+100%(y-x?)?
2500
2 Q ]
2000 i
1500
> 1
1000 %
2\ Yo
500 %
0. 0 %
3 Q
,»\,
-1 .
1 0 1 2

Figure 4.2: Plots of the Rosenbrock function f(z,y) = (1 — z)? + 100 (y — ).

Note: The Rosenbrock function is commonly used when evaluating the
performance of an optimization algorithm; because

* its minimizer x = np.array([1.,1.]) is found in curved valley, and
so minimizing the function is non-trivial, and

* the Rosenbrock function is included in the scipy.optimize pack-
age (as rosen), as well as its gradient (rosen_der) and its Hessian
(rosen_hess).

!The Rosenbrock function in 3D is given as f(z,y,2) = [(1 — 2)? + 100 (y — 22)?] + [(1 — y)? + 100 (2 — y?)?],
which has exactly one minimum at (1,1,1). Similarly, one can define the Rosenbrock function in gen-

eral N-dimensional spaces, for N > 4, by adding one more component for each enlarged dimension.
N-1

That is, f(x) = Z [(1—2;)® +100(z;41 — 27)?], where x = [z1,22,---,2n] € RN. See Wikipedia

i=1
(https://en.wikipedia.org/wiki/Rosenbrock_function) for details.


https://en.wikipedia.org/wiki/Rosenbrock_function
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The gradient V f is a vector (a direction to move) that is
¢ pointing in the direction of greatest increase of the function, and

* zero (Vf = 0) at local maxima or local minima.

The goal of the gradient descent method is to address directly the process
of minimizing the function f, using the fact that —V f(x) is the direction of
steepest descent of [ at x. Given an initial point x,, we move it to the
direction of —V f(xg) so as to get a smaller function value. That is,

x; = Xg — 7 Vf(x0) = f(x1) < f(x0)-

We repeat this process till reaching at a desirable minimum. Thus the
method is formulated as follows.

Algorithm | 4.4. (Gradient descent method)
Given an initial point x, find iterates x,, | recursively using

Xpi1 = Xy — 7 V f(Xn), (4.3)

for some v > 0. The parameter - is called the step length or the learn-
ing rate. [

To understand the basics of gradient descent (GD) method thoroughly, we
start with the algorithm for solving

* unconstrained minimization problems

¢ defined in the one-dimensional (1D) space.
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4.1.1. The gradient descent method in 1D

min f(z), x €S, (4.4)

T

where S is a closed interval in R. Then its gradient descent method reads

Tni1 = Tn — 7 f (x0). (4.5)

Picking the step length v|: Assume that the step length was chosen to

be independent of n, although one can play with other choices as well. The
question is how to select v in order to make the best gain of the method. To
turn the right-hand side of (4.5) into a more manageable form, we invoke
Taylor’s Theorem:?

fla+1) :f(a:)+tf’(:1:)+/x (w+1t—s) f"(s)ds. (4.6)

Assuming that |f”(s)| < L, we have

fla+1) < fa) + 15 @) + 5 L

Now, letting z = z,, and t = —v f/(z,,) reads
f(xn—i-l) - f(xn - Vf/(xn»

1
< fx) = (@) ['(@a) + 5Ly f'(an))? (4.7)
L
= @) = [ @) (v - 37°).
The gain (learning) from the method occurs when
7—§VQ>O = 0<7<%, (4.8)

and it will be best when v — %72 is maximal. This happens at the point

2 Taylor’s Theorem with integral remainder: Suppose f € C"*'[a,b] and zy € [a,b]. Then, for every

n (k) T x
relatl, 1) =Y T @ — )t + Rue), Ralw) = [ (=) 105 ds.




68 Chapter 4. Gradient-based Methods for Optimization

Thus an effective gradient descent method (4.5) can be written as

1 1
Tpi1 = Tp— [ (2) = Ty — Zf’(a:n) = x, — m I (). (4.10)
Furthermore, it follows from (4.7) and (4.9) that
1
f(@ni1) < fl@n) — ﬁ[f'(fcn)]2~ (4.11)

************

Thus it is obvious that the method defines a sequence of points {z,} along
which {f(z,)} decreases.

e If f is bounded from below and the level sets of f are bounded,
{f(z,)} converges; so does {z,}. That is, there is a point = such
that

lim z, =7. (4.12)

n—oo

* Now, we can rewrite (4.11) as

[f/(xn)]Q <2L[f(zn) — f(zpt1)]. (4.13)
Since f(z,) — f(xn4+1) — 0, also f'(z,) — 0.

* When /' is continuous, using (4.12) reads

(@) = lim f'(z,) =0, (4.14)

n—oo

which implies that the limit 7 is a critical point.

* The method thus generally finds a critical point but that could still
be a local minimum or a saddle point. Which it is cannot be decided
at this level of analysis. [
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4.1.2. The full gradient descent algorithm

We can implement the full gradient descent algorithm as follows. The algo-
rithm has only one free parameter: ~.

Algorithm | 4.7. (The Gradient Descent Algorithm).

input: initial guess x, step size v > 0;
forn=20,1,2,--- do

Xn+1 = Xp — 7 Vf(Xn), (4.15)
end for
return x,, . ;

,,,,,,,,,,,,

1
7= 7, where L = max IVAf(x)]. (4.16)
Here || - || denotes an induced matrix norm and V?f(x) is the Hessian
of f defined by
[ 0%f O f O*f ]
8%12 8x18:172 8$16$d
0*f s |
V2f = |Ox0z1  Owy? O0x20z4 | € R, (4.17)
*f  Ff ¥
| 0xy0x1 04019 0xg® |

* However, in practice, the computation of the Hessian (and L) can be
expensive.

,,,,,,,,,,,,

The gradient descent method can be viewed as a simplification of the
Newton’s method (Section 4.2 below), replacing the inverse of Hessian,
(V2f)~!, with a constant ~.
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Here we examine convergence of gradient descent on three examples: a
well-conditioned quadratic, an poorly-conditioned quadratic, and a non-
convex function, as shown by Dr. Fabian Pedregosa, UC Berkeley.

‘Starting Point

‘Optimum

e —

‘Solution

v=0.2

Figure 4.3: On a well-conditioned quadratic function, the gradient descent converges in a
few iterations to the optimum

Starting Point
1
1
1

Optimum
— O

v =0.02

Figure 4.4: On a poorly-conditioned quadratic function, the gradient descent converges and
takes many more iterations to converge than on the above well-conditioned problem. This

is partially because gradient descent requires a much smaller step size on this problem
to converge.

Starting Point

v = 0.02

Figure 4.5: Gradient descent also converges on a poorly-conditioned non-convex problem.
Convergence is slow in this case.


http://fa.bianp.net/teaching/2018/eecs227at/
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*****************************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Note: The convergence of the gradient descent method can be extremely
sensitive to the choice of step size. It often requires to choose the
step size adaptively: the step size would better be chosen small in re-
gions of large variability of the gradient, while in regions with small
variability we would like to take it large.

a step size dependmg on the current iterate and the gradient. In this
procedure, we select an initial (optimistic) step size 7, and evaluate the
following inequality (known as sufficient decrease condition):

f&n = VI(x0)) < f(%n) = = HVf(Xn)H2 (4.18)

If this inequality is verified, the current step size is kept. If not, the step
size is divided by 2 (or any number larger than 1) repeatedly until (4.18)
is verified. To get a better understanding, refer to (4.11) on p. 68, with
(4.9).

The gradient descent algorithm with backtracking line search then becomes

Algorithm| 4.11. (The Gradient Descent Algorithm, with Back-
tracking Line Search).

input: initial guess x, step size 7y, > 0;

forn=20,1,2,--- do

[ initial step size estimate v, ;

while (TRUE) do
if f(x— % Vi) < f(xn) = F IV f(x0)?
break; (4.19)

else v, = 7,/2;

| end while

Xn+1 = Xpn — In vf(xn)a

end for

return x,, ., ;
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The following examples show the convergence of gradient descent with the
aforementioned backtracking line search strategy for the step size.

Starting Point

Optimum
&
Solution

Figure 4.6: On a well-conditioned quadratic function, the gradient descent converges in a
few iterations to the optimum. Adding the backtracking line search strategy for the step
size does not change much in this case.

Starting Point

optimum
)
Solution

Figure 4.7: In this example we can clearly see the effect of the backtracking line search
strategy: once the algorithm in a region of low curvature, it can take larger step sizes. The
final result is a much improved convergence compared with the fixed step-size equivalent.

Starting Point

Optimum

@]

Solution

Figure 4.8: The backtracking line search also improves convergence on non-convex prob-
lems.

See Exercise 1 on p. 94.
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4.1.3. Surrogate minimization: A unifying principle

Now, we aim to solve an optimization problem as in (4.1):

min f(x). (4.20)

xef

mize an approximating function O, (x) [43]:
X1 = arg mi(rzl Qn(x). (4.21)
pdS

We will call Q, a surrogate function. It is also known as a merit
function. A good surrogate function should be:

¢ Easy to optimize.

* Flexible enough to approximate a wide range of functions.

Gradient descent method: Approximates the objective function near x,

with a quadratic surrogate of the form
1
A(x)=c,+ G, (x—x,)+ 7 (x —x,)" (x — x,), (4.22)
Y

which coincides with f in its value and first derivative, i.e.,

Qn(xn) = f(xn) = € =[(xn),
Vo,(x,) =Vf(x,) = G,=Vf(x,). (4.23)

The gradient descent method thus updates its iterates minimizing the fol-
lowing surrogate function:

0, (x) = F(%n) + Vf(xa) - (X — %) + % Ix — %, |2 (4.24)

Differentiating the function and equating to zero reads

Xp41 = arg mxin Qn(x) =x, — vV f(x,). (4.25)
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Although you can choose the step size smartly, there is no guarantee for
your algorithm to converge to the desired solution (the global minimum),
particularly when the objective is not convex.

Here, we consider the so-called Gaussian homotopy continuation
method [53], which may overcome the local minima problem for cer-
tain classes of optimization problems.

* The method begins by trying to find a convex approximation of an op-
timization problem, using a technique called Gaussian smoothing.
* (Gaussian smoothing converts the cost function into a related function,

each of whose values is a weighted average of all the surrounding
values.

* This has the effect of smoothing out any abrupt dips or ascents in the
cost function’s graph, as shown in Figure 4.9.

* The weights assigned the surrounding values are determined by a
Gaussian function, or normal distribution.

s(x,t=3)

\i/ 8(x,t=2)
M

\/l/\/’r Shaamad
W g(x’t=())

Figure 4.9: Smooth sailing, through a Gaussian smoothing.

However, there will be many ways to incorporate Gaussian smoothing; a
realization of the method will be challenging, particularly for ML optimiza-
tion. See P.5 (p. 407).
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4.2. Newton’s Method

4.2.1. Derivation

4.14. The Newton’s method is an iterative method to solve
the unconstrained optimization problem in (4.1), p. 64, when f is twice
differentiable. In Newton’s method, we approximate the objective with a
quadratic surrogate of the form

0,69 = @, 4 @, « (b — 52, & % (x — %) H, (x — x,). (4.26)

Compared with gradient descent, the quadratic term is not fixed to be
the identity but instead incorporates an invertible matrix H .

* A reasonable condition to impose on this surrogate function is that at

x, it coincides with f at least in its value and first derivatives, as
in (4.23).

* An extra condition the method imposes is that
H, =V?f(x,), (4.27)
where V?f is the Hessian of f defined as in (4.17).

* Thus the Newton’s method updates its iterates minimizing the fol-
lowing surrogate function:

Qn(x) — f(xn) + Vf(Xn) ’ (X - Xn) + i (X T Xn)TVQf(Xn) (X T Xn)'

27
(4.28)

* We can find the optimum of the function differentiating and equat-
ing to zero. This way we find (assuming the Hessian is invertible)

Xp 41 = arg min Q,(x) =x, — v [V*f(x,)] - Vf(xp). (4.29)

Note: When v = 1, Q,,(x) in (4.28) is the second-order approximation of
the objective function near x,,.
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faster towards a local maximum or minimum than the gradient descent.

* In fact, every local minimum has a neighborhood such that, if we start
within this neighborhood, Newton’s method with step size ¥ = 1 con-
verges quadratically assuming the Hessian is invertible and Lips-
chitz continuous.

points of f,i.e., X such that Vf(x) = 0. Let
X1 = X, + AX. (4.30)

Then
Vi(xn1) = VF(x, + Ax) = VF(x,) + Vf(x,) Ax + O(|Ax]?).

Truncating high-order terms of Ax and equating the result to zero reads

Ax = — (V2f(x,)) " VF(x0). (4.31)

Only the difference from the gradient descent algorithm is to compute the
Hessian matrix V?f(x,) to be applied to the gradient.

Algorithm 4.17. (Newton’s method).

input: initial guess x, step size v > 0;
forn=20,1,2,--- do

Xn1 = Xn — 7 [V2F(x0)] " VI(%0); (4.32)
end for
return x,, . ;
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For the three example functions in Section 4.1.2, the Newton’s method per-
forms better as shown in the following.

Starting Point

Optimum

v=1

Figure 4.10: In this case the approximation is exact and it converges in a single iteration.

‘Starting Point

Optimum

®

v=1

Figure 4.11: Although badly-conditioned, the cost function is quadratic; it converges in a
single iteration.

Starting Point

Optimum

o

Solution

v=1

Figure 4.12: When the Hessian is close to singular, there might be some numerical insta-
bilities. However, it is better than the result of the gradient descent method in Figure 4.5.
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4.2.2. Hessian and principal curvatures

curvature of a function. The eigenvalues and eigenvectors of the Hes-
sian have geometric meaning:

* The first principal eigenvector (corresponding to the largest eigen-
value in modulus) is the direction of greatest curvature.

* The last principal eigenvector (corresponding to the smallest eigen-
value in modulus) is the direction of least curvature.

* The corresponding eigenvalues are the respective amounts of these
curvatures.

The eigenvectors of the Hessian are called principal directions, which
are always orthogonal to each other. The eigenvalues of the Hessian
are called principal curvatures and are invariant under rotation and
always real-valued.

and its eigenvalue-eigenvector pairs be given as {(\;, u;)}, j=1,2,--- ,d.

e Then, given a vector v € R?, it can be expressed as

d
V= Z gjuja
j=1
and therefore ;
1
H_lv = Zé-j)\—uj, (4.33)
j=t

where components of v in leading principal directions of H have
been diminished with larger factors.

e Thus the angle measured from 7! v to the least principal direc-
tion of H becomes smaller than the angle measured from v.

e It is also true when v is the gradient vector (in fact, the negation of
the gradient vector).
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Note: The above observation can be rephrased mathematically as fol-
lows. Let u, be the least principal direction of H. Then

angle(uy, H 'v) < angle(uy, v), Vv, (4.34)
where

a-b
angle(a,b) = arccos <m>

This implies that by setting v = —V f(x,), the adjusted vector H 'v is
a rotation (and scaling) of the steepest descent vector towards the least
curvature direction.

Rotate and scale the gradient vector to face towards the min-
imizer by a certain degree. This operation may make the Newton’s
method converge much faster than the gradient descent method.

(x—h)*  (y—Fk)

a? + b2
the vector — [V2f(z, y)]_1 Vf(x,y) is always facing towards the minimizer
(h, k). See Exercise 2. [

z = f(x,y) = (4.35)
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4.3. Quasi-Newton Methods

Note: The central issue with Newton’s method is that we need to be able
to compute efficiently the Hessian matrix and its inverse.

* For ML applications, the dimensionality of the problem can be of
the order of thousands or millions; computing the Hessian or its
inverse is often impractical.

* Because of these reasons, Newton’s method is rarely used in prac-
tice to optimize functions corresponding to large problems.

* Luckily, Newton’s method can still work even if the Hessian is re-
placed by a good approximation.

Note: One of the most popular quasi-Newton methods is the BFGS
algorithm, which is named after Charles George Broyden [9], Roger
Fletcher [21], Donald Goldfarb [24], and David Shanno [72].

gradients. Can we use these gradients to iteratively construct an ap-
proximation of the Hessian?

r-- -~ -~ - -~ -~"-~"-~"- -~ -~ -"-" """ - " -~ -~~~ .~ " .~ "~ "= " _-—~-°=-- "
|
|

'‘Derivation of BFGS algorithm

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* At each iteration of the method, we consider the surrogate function:
1
(x)=c,+ G, (x—x,)+ 5 (x—x,)" H, (x —x,), (4.36)
where in this case H, is an approximation to the Hessian matrix,
which is updated iteratively at each stage.

¢ A reasonable thing to ask to this surrogate is that its gradient coin-
cides with V f at the last two iterates x,,,1 and x,:

VOi1(Xns1) = Vf(Xnt1),

VQui(x) = Vf(x2). (43D
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* From the definition of Q,,_1:

1
Qn1(x) =Cpp1 + Grpr - (X — Xpq1) + 3 (x — Xpt1)" Hpp1 (X — Xp11),

we have

in—l—l(Xn—H) - in+1(Xn) - Gn—|—1 - in—H (Xn) - _Hn—|—1 (Xn - Xn—l—l)-

Thus we reach at the following condition on H,,  :

H, (X041 —Xn) = Vf(X01) = V(%) (4.38)
which is the secant equation.
* Let
Sp = Xpt1 — X, and y, = Vf(x,41) — Vf(x,).

Then H, .8, = y,., which requires to satisfy the curvature condition
Yo - Sn >0, (4.39)

with which H, | becomes positive definite. (Pre-multiply s’ to the secant
equation to prove it.)

* Inorder to maintain the symmetry and positive definiteness of H,, 1,
the update formula can be chosen as®

H, , = H,+ouu? + pvv’. (4.40)

* Imposing the secant condition H, s, = y, and with (4.40), we get the
update equation of H,, :

YnYn _ (H80)(H ps,)"

H = H, +
o ! Yn-Sn Sp - Hnsn

(4.41)

e Let B, = H ', theinverse of H,. Then, applying the Sherman-Morrison
formula, we can update B, ., = H ;il as follows.

T T T
S S S8
B,., — (1_ nYn )Bn(l— YnSn )+ nn_ (4.42)
Yn - Sn Yn - Sn Yn - 8Sn
See Exercise 4.4.
SRank-one matrices: Let A be an m x n matrix. Then rank(A4) = 1 if and only if there exist column

vectors v € R™ and w € R" such that 4 = vw?’.
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Now, we are ready to summarize the BFGS algorithm.

Algorithm | 4.23. (The BFGS algorithm). The n-th step:

1. Obtain the search direction: p, = B,(—V f(x,)).

2. Perform line-search to find an acceptable stepsize -,.
3. Set s,, = v, p, and update x,,;1 = X,, + S,,.

4. Gety, = Vf(xn1) — Vf(x2).

5. Update B = H ':

B. (I_ Sny )B (I_ yn85)+ SnSp
= n .
! Yn - Sn Yn - Sn Yn-Sn

* The algorithm begins with By, an estimation of H, .
It is often better when B, = H; .

* The resulting algorithm is a method which combines the low-cost of
gradient descent with the favorable convergence properties of
Newton’s method.
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Examples, with the BFGS algorithm

Starting Point

Optimum
]
Solution

Figure 4.14: BFGS, on the well-conditioned quadratic objective function.

Starting Point

Optimum
©
Solution

Figure 4.15: On the poorly-conditioned quadratic problem, the BFGS algorithm
quickly builds a good estimator of the Hessian and is able to converge very fast towards
the optimum. Note that this, just like the Newton method (and unlike gradient descent),
BFGS does not seem to be affected (much) by a bad conditioning of the problem.

Starting Point

Optimum

&
Solution

Figure 4.16: Even on the ill-conditioned nonconvex problem, the BFGS algorithm also
converges extremely fast, with a convergence that is more similar to Newton’s method than
to gradient descent.
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4.4. The Stochastic Gradient Method

The stochastic gradient method (SGM), introduced by Robbins-Monro
in 1951 [63], is

* one of the most widely-used methods for large-scale optimization, and

¢ one of the main methods behind the current Al revolution.

Note: The SGM was considered earlier in Section 3.3.1, as a variant
of the gradient descent method for Adaline classification. Here we will
discuss it in details for more general optimization problems.

* The stochastic gradient method (a.k.a. stochastic gradient descent
or SGD) can be used to solve optimization problems in which the ob-
jective function is of the form

f(z) = E[fi(z)],
where the expectation is taken with respect to i.

¢ The most common case is when ¢ can take a finite number of values,
in which the problem becomes

XERP

min f(x), f(x)= %Z fi(x). (4.43)
=1

* The SGM can be motivated as an approximation to gradient descent
in which at each iteration we approximate the gradient as

VF(x,) ~ Vfi(x). (4.44)
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We can write the full stochastic gradient algorithm as follows. The algo-
rithm has only one free parameter: ~.

Algorithm | 4.25. (Stochastic Gradient Descent).

input: initial guess x(, step size sequence v, > 0;
forn=20,1,2,--- do

Choose i € {1,2,--- ,m} uniformly at random;
(4.45)
Xn+1 = Xp — f}/nvfz(xn)a
end for

return x,, . ;

The SGD can be much more efficient than gradient descent in the
case in which the objective consists of a large sum, because at each
iteration we only need to evaluate a partial gradient and not the full gradi-
ent.

able by SGD since

Cax - blF = S (Ax by (4.46)

1=1

where A4, is the i-th row of A.
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lfStep Size for the SGD

* The choice of step size is one of the most delicate aspects of the SGD.

For the SGD, the backtracking line search is not an option since
it would involve to evaluate the objective function at each iteration,
which destroys the computational advantage of this method.

* Two popular step size strategies exist for the SGD: constant step
size and decreasing step size.

(a) Constant step size: In the constant step size strategy,

Tn =7

for some pre-determined constant ~.

The method converges very fast to neighborhood of a local mini-
mum and then bounces around. The radius of this neighborhood
will depend on the step size v [44, 51].

(b) Decreasing step size: One can guarantee convergence to a local
minimizer choosing a step size sequence that satisfies

nyn =oo and Z%% < 0. (4.47)
n=1 n=1
The most popular sequence to verify this is
C
Y = —, (4.48)
n

for some constant C'. This is often referred to as a decreasing
step-size sequence, although in fact the sequence does not need
to be monotonically decreasing.
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Examples, with SGD

Starting Point

“
\
~
\\
\.f’g_\ raaV

vie<d Optimum
‘r-&y

Solution

v=0.2
Figure 4.17: For the well-conditioned convex problem, stochastic gradient with constant
step size converges quickly to a neighborhood of the optimum, but then bounces around.

Starting Point
i

|
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1

1

4

]

Optimum
@]

\pwm

Solution

Figure 4.18: Stochastic Gradient with decreasing step sizes is quite robust to the choice
of step size. On one hand there is really no good way to set the step size (e.g., no equivalent
of line search for Gradient Descent) but on the other hand it converges for a wide range of
step sizes.
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********************************
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Quesiton. Why does the SGD converge, despite its update being a
very rough estimate of the gradient?

To answer this question mathematically, we must first understand the un-
biasedness property of its update.

Fmmmm e —— -
|
|

Looooocoooomoooo o

Let E, denote the expectation with respect to the choice of random sam-
ple () at iteration n. Then since the index ¢ is chosen uniformly at
random, we have

En[Vfi,(xn)] = vai(xn)P(in = 1)
Zi:l m (4.49)
= — > Vii(xa) = Vf(xa)

This is the crucial property that makes SGD work. For a full proof, see
e.g. [7].
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4.5. The Levenberg-Marquardt Algorithm, for
Nonlinear Least-Squares Problems

The Levenberg-Marquardt algorithm (LMA), a.k.a. the damped
least-squares (DLS) method, is used for the solution of nonlinear
least-squares problems which arise especially in curve fitting.

* In fitting a function y(z;p) of an independent variable » and a pa-
rameter vector p € R" to a set of m data points (z;, y;), it is customary
and convenient to minimize the sum of the weighted squares of
the errors (or weighted residuals) between the measured data y;
and the curve-fit function y(z;; p).

m

f(p) = Z [yz'—@(%;l))r

i1 Ni
= (y—3®)"'W (y —3(p))

where 7; is the measurement error for y; and the weighting matrix
W is defined as

(4.50)

W = diag{1/n?} € R™™,

* However, more formally, W can be set to the inverse of the mea-
surement error covariance matrix; more generally, the weights can
be set to pursue other curve-fitting goals.

Definition} 4.28. The measurement error (also called the observa-
tional error) is the difference between a measured quantity and its true
value. It includes random error and systematic error (caused by a
mis-calibrated instrument that affects all measurements).

Note: The goodness-of-fit measure in (4.50) is called the chi-squared
error criterion because the sum of squares of normally-distributed
variables is distributed as the y-squared distribution.
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If the function y(z; p) is nonlinear in the model parameters p, then the
minimization of the y-squared function f with respect to the parame-
ters must be carried out iteratively:

p (= p+ Ap. (4.51)

The goal of each iteration is to find the parameter update Ap that re-
duces f. We will begin with the gradient descent method and the Gauss-
Newton method.

4.5.1. The gradient descent method

Recall: The gradient descent method is a general minimization method
which updates parameter values in the “steepest downhill” direction:
the direction opposite to the gradient of the objective function.

* The gradient descent method converges well for problems with sim-
ple objective functions.

* For problems with thousands of parameters, gradient descent meth-
ods are sometimes the only workable choice.

The gradient of the objective function with respect to the parameters is

0 0

op! = 2(y - y(p))'W 8p(y—§(p))
~ 20y -3 w [2E] (4.52)

= 2(y—-y(p)'WJ,

where J = a*‘gé) € R™" is the Jacobian matrix. The parameter update
Ap that moves the parameters in the direction of steepest descent is given

by

Apga=7J" W (y —y(p)), (4.53)

where v > 0 is the step length.
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4.5.2. The Gauss-Newton method

The Gauss-Newton method is a method for minimizing a sum-of-
squares objective function.

e It assumes that the objective function is approximately quadratic
near the minimizer [6], and utilizes an approximate Hessian.

* For moderately-sized problems, the Gauss-Newton method typically
converges much faster than gradient-descent methods [52].

* The function evaluated with perturbed model parameters may be locally
approximated through a first-order Taylor series expansion.

. . Iy N
y(p +Ap) =~ y(p) + [%} Ap = y(p) + JAp. (4.54)

Substituting the approximation into (4.50), p. 89, we have

fPp+Ap) = yWy -2y Wg(p) +5p)' W5 (p)

~ (4.55)
—2(y - ¥(p))"W JAp + (JAp)"W JAp.

Note: The above approximation for f(p + Ap) is quadratic in the pa-
rameter perturbation Ap.

The parameter update Ap can be found from 0f/0Ap = 0:

0 .
9Ap (p+Ap)~ —2(y —y(p))' W J +2(JAp)' WJ =0, (4.56)

and therefore the resulting normal equation for the Gauss-Newton up-
date reads

TTWJ] Apg = J"W(y —5(p)). (4.57)

Note: The matrix J'W J € R"" is an approximate Hessian of the
objective function. Here, we require m > n; otherwise, the approximate
Hessian must be singular.
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4.5.3. The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm adaptively varies the parameter
updates between the gradient descent and the Gauss-Newton methods:

[J"WJ + M| App, = J"W(y — 5(p)), (4.58)

where A\ > 0 is the damping parameter. Small values of A\ result in a
Gauss-Newton update and large values of it result in a gradient descent
update.

gorithm.
* The damping parameter ) is often initialized to be large so that
first updates are small steps in the steepest-descent direction.

* As the solution improves, )\ is decreased; the Levenberg-
Marquardt method approaches the Gauss-Newton method, and the
solution typically accelerates to the local minimum [49, 52].

e If any iteration happens to result in a bad approximation, e.g.,

f(p+ Apm) > f(P),

then )\ is increased.

rL--~"-"~"~"~>"~"~"~“"~"=>"~" =" =" “~" =~ " "~ -“"~“°~"°-" .~ ~°° al
|
|

Acceptance of the Step

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

There have been many variations of the Levenberg-Marquardt method, par-
ticularly for acceptance criteria.
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*************
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f(p) = (y-5(0) W (y - 5(p). @50
y(P+ Apm) ~ ¥(p)+ JApuw. (4.54)

Then the Sum of Squared Error (SSE), f(p+ Apw,), can be approximated
by

fP+Apm) = (y—5+Apwm) W (y —5(p + Apm))

R T R (4.59)
~ (y—[F(P) +JApw]) W (y — [¥(p) + JApwm)).
e At the k-th step, we first compute
— + A m
pr(Apm) = Af (pt)IA f (pTWrn ) —
fP)—(y—Y—JApwm) W (y =3 — JApp) (4.60)

) [0) = fp+Apw)
AP, (\eApi + I W (y — 9(p))

[« (4.58)]

* Then the step is accepted when p;(Apy,) > €, for a threshold ¢4 > 0.

An example implementation reads

Initialize py, Ao, and ¢p; (e.g. A\ = 0.01 & ¢ = 0.1)
Compute Apy, from (4.58);
Evaluate p; from (4.60);
If p. > eo:

Pi+1 = Pk + APim; Aer1 = A - max[1/3,1 — (2px)°)]; v = 2;
otherwise: A\, 1 = A\pvp; Vi1 = 214,

(4.61)




94 Chapter 4. Gradient-based Methods for Optimization

Exercises for Chapter 4

4.1. (Gradient descent method). Implement the gradient descent algorithm (4.15) and
the gradient descent algorithm with backtracking line search (4.19).

(a) Compare their performances with the Rosenbrock function in 2D (4.2).
(b) Find an effective strategy for initial step size estimate for (4.19).

4.2. (Net effect of the inverse Hessian matrix). Verify the claim in Example 4.21.

4.3. (Newton’s method). Implement a line search version of the Newton’s method (4.32)
with the Rosenbrock function in 2D.

(a) Recall the results in Exercise 1. With the backtracking line search, is the New-
ton’s method better than the gradient descent method?
(b) Now, we will approximate the Hessian matrix by its diagonal. That is,

*r o

0x? def | 022  Oxdy
P R R R T (4.62)

Oy? Jyox  0y?

How does the Newton’s method perform when the Hessian matrix is replaced by
D,?

4.4. (BFGS update). Consider H, ., and B, ;; in (4.41) and (4.42), respectively:

Yo¥n  (Husn)(Hasn)"

Hn+1 = H,+

Yn - Sn Sp - Hnsn ’
T T T
SnY¥Yn, nSn SnS,
Bo. = (I——y>Bn(I— Y >+ .
Yn - Sn Yn - Sn Yn - Sn

(a) Verify the the secant condition H, s, = y,.
(b) Verify H,, 1B, .1 = I, assuming that H,B,, = I.

Continued on the next page —
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4.5. (Curve fitting; Optional for undergraduates). Consider a set of data consisting
of four points

[1 2 3 4

z; 0.0 1.0 2.0 3.0
y, | 1.1 26 7.2 21.1

Fit the data with a fitting function of the form

7(z,p) = ac’™, where p = [a,b], (4.63)

by minimizing the sum of the square-errors:

(a) Implement the three algorithms introduced in Section 4.5: the gradient descent
method, the Gauss-Newton method, and the Levenberg-Marquardt method.

(b) Ignore the weight vector W, i.e., set W = 1.

(¢) For each method, set py = [ag, by] = [1.0,0.8].

(d) Discuss how to choose v for the gradient descent and ) for the Levenberg-Marquardt.

Hint: The Jacobian for this example must be in R**?; more precisely,

1 0
0 e ael
J = %y(xvp) - 62b 2a €2b 3
63b 3a 63b

because we have y(z,p) = [a, ae’, ae®, ae®|! from (4.63) and {z;}.
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CHAPTER D

Popular Machine Learning Classifiers

In this chapter, we will study a selection of popular and powerful machine
learning algorithms, which are commonly used in academia as well as in

the industry. While learning about the differences between several super-
vised learning algorithms for classification, we will also develop an intuitive

appreciation of their individual strengths and weaknesses.

The topics that we will learn about throughout this chapter are as follows:

* Introduction to the concepts of popular classification algorithms such
as logistic regression, support vector machine (SVM), decision
trees, and k-nearest neighbors.

* Questions to ask when selecting a machine learning algorithm

¢ Discussions about the strengths and weaknesses of classifiers with lin-

ear and nonlinear decision boundaries

Contents of Chapter 5

5.1. Logistic Sigmoid Function . . . . . . . .. .. ... ... . ... ... 929
5.2. Classification via Logistic Regression. . . . . . . .. ... ... ... ... ........ 103
5.3. Support Vector Machine . . . ... ... . .. . . .. . ... 110
54. Decision Trees . . . . . . . . . e e e e e e e e 130
5.5. k-Nearest Neighbors . . . . . . . . . . . . . . . . . e 137
Exercises for Chapter 5. . . . . . . . . . ... e 139
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Choosing an appropriate classification algorithm for a particular prob-
lem task requires practice:

e Each algorithm has its own quirks/characteristics and is based
on certain assumptions.

* No Free Lunch theorem: No single classifier works best across all
possible scenarios.

* In practice, it is recommended that you compare the perfor-
mance of at least a handful of different learning algorithms
to select the best model for the particular problem.

Eventually, the performance of a classifier, computational power as well
as predictive power, depends heavily on the underlying data that are
available for learning. The five main steps that are involved in training
a machine learning algorithm can be summarized as follows:

1. Selection of features.

2. Choosing a performance metric.

3. Choosing a classifier and optimization algorithm.
4. Evaluating the performance of the model.

5. Tuning the algorithm.
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5.1. Logistic Sigmoid Function

A logistic sigmoid function (or logistic curve) is a common “S" shape

curve with equation:
L

fz) =+ upr=rnt
where L denotes the curve’s maximum value, z( is the sigmoid’s midpoint,
and £ is the logistic growth rate or steepness of the curve.

(5.1)

In statistics, the logistic model is a widely used statistical model that
uses a logistic function to model a binary dependent variable; many more
complex extensions exist.

5.1.1. The standard logistic sigmoid function

Setting L = 1, k = 1, and 2y = 0 gives the standard logistic sigmoid
function:

s(z) = —. (5.2)

Figure 5.1: Standard logistic sigmoid function s(z) =1/(1 + e %).
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T

B 1 €
S lde T 14er

s(z)

* The standard logistic function is the solution of the simple first-
order non-linear ordinary differential equation

d 1
—y=y(l — 0)=- 5.3
=yl —y), y(0)=3 (5.3)
It can be verified easily as
, e(1+e")—e"-e” e’
— f— — - . .4
S(x) N irop s f@0-s@). G
e Jiseven: s'(—x) = §'(z).
* Rotational symmetry about (0,1/2):
1 1 Zere e
(@) (=) 1+€_”+1+69” 2+et+e” (5.5)
. /s(x) dx = / ] j_ dx = In(1+ e*), which is known as the softplus
ex

function in artificial neural networks. It is a smooth approxi-
mation of the the rectifier (an activation function) defined as

f(x) = 2" = max(z,0).

(5.6)

Soiiphus
Pacibar

Figure 5.2: The rectifier and it smooth approximation, softplus function In(1 + €7).
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5.1.2. The logit function

Logistic regression uses the sigmoid function for activation. We first wish to
explain the idea behind logistic regression as a probabilistic model.

* Let p be the probability of a particular event (having class label y = 1).

* Then the odds ratio of the particular event is defined as

I—p

* We can then define the logit function, which is simply the logarithm
of the odds ratio (log-odds):

logit(p) = In - b - (5.7)

* The logit function takes input values in (0, 1) and transforms them to

values over the entire real line,

which we can use to express a linear relationship between fea-
ture values and the log-odds:

logit(p(y=1|x)) = wozg +wix + - + Wiy = W' X, (5.8)

where p(y = 1|x) is the conditional probability that a particular sample
(given its features x) belongs to class 1.

predicting the probability

that a certain sample belongs to a particular class, which is the inverse
form of the logit function:

p(y = 1]x) = logit™ (w'x). (5.9)

Quesiton. What is the inverse of the logit function?
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Fe—————————
!
!

p
1—p

logit(p) = In

Solution.

Ans: logit ™' (z) = the standard logistic sigmoid function.

14e2’

1.0 A

0.0 -

Figure 5.3: The standard logistic sigmoid function, again.

Note: The Sigmoid Function as an Activation Function

* When the standard logistic sigmoid function is adopted as an activa-
tion function, the prediction may be considered as the probability
that a certain sample belongs to a particular class.

* This explains why the logistic sigmoid function is one of most popular
activation functions.
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5.2. Classification via Logistic Regression

Logistic regression is a probabilistic model.

* Logistic regression maximizes the likelihood of the parameter
w; in realization, it is similar to Adaline.

* Only the difference is the activation function (the sigmoid function),
as illustrated in the figure:

Predicted class label

Logistic Regression Conditional probability that a

sample belongs to class | given its

Figure 5.4: Adaline vs. Logistic regression.

* The prediction (the output of the sigmoid function) is interpreted as
the probability of a particular sample belonging to class 1,

o(2) = ply = 1jx; W), (5.10)

given its features x parameterized by the weights w, z = w'x.

fication (class labels) but also for class-membership probability.

* For example, logistic regression is used in weather forecasting (to
predict the chance of rain).

e Similarly, it can be used to predict the probability that a patient has
a particular disease given certain symptoms.

— This is why logistic regression enjoys great popularity in the field
of medicine.
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5.2.1. The logistic cost function

Logistic regression incorporates a cost function in which the likeli-
hood is maximized.'

Definition} 5.5. The binomial distribution with parametersn andp €
[0,1] is the discrete probability distribution of the number of successes
in a sequence of n independent experiments, each asking a success—
failure question, with probability of success being p.

* The probability of getting exactly k successes in n trials is given by
the probability mass function

flk,n,p) = P(k;n, p) = oCip"(1 — p)"*. (5.11)

Definition}, 5.6. (Likelihood). Let X, X5, ---, X,, have a joint den-

sity function f(X;, Xo, -+, X,,|0). Given X1 = x1, Xo = x9, -+, X, = z,
observed, the function of 0 defined by

L(0) = L(0|zy, xo, -+, xy) = f(x1, T2, -+, T,|0) (5.12)

is the likelihood function, or simply the likelihood.

Note: The likelihood describes the joint probability of the observed
data, as a function of the parameters of the chosen statistical model.

* The likelihood function indicates which parameter values are more
likely than others, in the sense that they would make the observed
data more probable.

* The maximum likelihood estimator selects the parameter values
(0 = w) that give the observed data the largest possible probability.

Note that the Adaline minimizes the sum-squared-error (SSE) cost function defined as J(w) =
1 . 1\ 2 . N . .
B Z (d)(z(’)) — y(i)) , where z() = w7x() using the gradient descent method; see Section 3.3.1.
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****************************************************
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* Assume that the individual samples in our dataset are independent
of one another. Then we can define the likelihood L as

L(w) = P(ylx;w) = I Py [x"; w)
= 1z, ()" (1-06) ™,

where 20 = wlx(),

(5.13)

* In practice, it is easier to maximize the (natural) log of this equation,
which is called the log-likelihood function:

((w) = In(L(w)) = Z ¥ (6(21)) + (1 = y)In (1 - 6(=))]
- (5.14)

* Firstly, applying the log function reduces the potential for numerical
underflow, which can occur if the likelihoods are very small.

* Secondly, we can convert the product of factors into a summation of
factors, which makes it easier to obtain the derivative of this function
via the addition trick, as you may remember from calculus.

* We can adopt the negation of the log-likelihood as a cost func-
tion J that can be minimized using gradient descent.

Now, we define the logistic cost function to be minimized:

J(w) = zn: {—y‘i) In (eb(z(i))) } , (5.15)

1=1

where () = wlx(0),

Note: Looking at the equation, we can see that the first term becomes
zero if , and the second term becomes zero if y(® = 1.
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— J(w)ify=1
J(w) if y=0

0.0 0.2 0.4 0.6 0.8 1.0
#(z)

Figure 5.5: Plot of 7(w), when n = 1 (one single-sample):

T(w) = { g, | Tu-L

* (Solid curve, in blue). If we correctly predict that a sample belongs
to class 1, the cost approaches 0.

. . If we correctly predict y = 0, the cost
also approaches 0.

However, if the prediction is wrong, the cost goes towards infinity.

Here, the main point is that we penalize wrong predictions with an
increasingly larger cost, which will enforce the model to fit the sample.
For general n > 1, it would try to fit all the samples in the training
dataset.




5.2. Classification via Logistic Regression 107

5.2.2. Gradient descent learning for logistic regression

Let’s start by calculating the partial derivative of the logistic cost function
(5.15) with respect to the j—th weight, w;:

0Tw) [ @ 1 @) 1 dp(2")
dw; _Zzzll ) t-y )1—¢(2(i)) Ow; (616
where, using 2V = w'x() and (5.4),
3¢(Z(i)) (@) 9z _ (i) (4) (4)
g = 0 G =06 (1-0G) o).

Thus, if follows from the above and (5.16) that
T S [0 (1= 669) + (1= y)o(=)] ol

8wj i1
= =3[9 - o= 2
i=1

and therefore

VI(w) = -3 [y@ . ¢(z<i>)} x(@). (5.17)

Algorithm | 5.9. Gradient descent learning for Logistic Regression is
formulated as

w = w+Aw, b:= b+ Ab, (5.18)
where n > 0 is the step length (learning rate) and

Aw = =¥y J(w,b) = nY |y — o(=?)| x,

. . (5.19)
Ab = VT (w,b) = nZ[y(”—cb(z(”)]-

Note: The above gradient descent rule for Logistic Regression is of the
same form as that of Adaline; see (3.15) on p.56. Only the difference is
the activation function ¢.




108 Chapter 5. Popular Machine Learning Classifiers

5.2.3. Regularization: bias-variance tradeoff

¢ Overfitting is a common problem in ML.

— If a model performs well on the training data but does not gener-
alize well to unseen (test) data, then it is most likely the sign of
overfitting.

— Due to a high variance, from randomness (noise) in the training
data.

- Variance measures the consistency (or variability) of the model
prediction for a particular sample instance.

e Similarly, our model can also suffer from underfitting.

— Our model is not complex enough to capture the pattern in
the training data well, and therefore also suffers from low per-
formance on unseen data.

— Due to a high bias.
- Bias is the measure of the systematic error that is not due to
randomness.
X2 ! \ X7 | . X2 |
\ O o, O
d\ + Ol’q- O:l +
\ + + l\\\
0 °Y + N o 4t
+H 4 +7 4 74
o A . o o~ N o‘"'"b\\ .
Underfitting *1 Good X1 Overfitting
(high bias) compromise (high variance)

Figure 5.6
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Regularization

* One way of finding a good bias-variance tradeoff.
¢ It is useful to prevent overfitting, also handling
— collinearity (high correlation among features)

— filter-out noise from data
— multiple local minima problem

* The concept behind regularization is to introduce additional in-
formation (bias) to penalize extreme parameter (weight) values.

e The most common form of regularization is so-called L? regulariza-
tion (sometimes also called L? shrinkage or weight decay):

—IIWH2 = Zw (5.20)

where )\ is the regularization parameter.

The cost function for logistic regression can be regularized by adding a sim-

ple regularization term, which will shrink the weights during model train-

ing: for z() = wTx(,

n

Tw) = 3 [ (6(:0)) = (1 =y (1= 6(=))] + FIwlE. 621

Note: Regularization
* Regularization is another reason why feature scaling such as stan-
dardization is important.

* For regularization to work properly, we need to ensure that all our
features are on comparable scales.

* Then, via the regularization parameter )\, we can control how well we
fit the training data while keeping the weights small. By increasing
the value of \, we increase the regularization strength.

* See § 6.3 for details on feature scaling.
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5.3. Support Vector Machine

* Support vector machine (SVM), developed in 1995 by Cortes-
Vapnik [12], can be considered as an extension of the Percep-
tron/Adaline, which maximizes the margin.

* The rationale behind having decision boundaries with large margins
is that they tend to have a lower generalization error, whereas
models with small margins are more prone to overfitting.

5.3.1. Linear SVM

Margin

\ Support vectors

X3 \ : X,
' Decision boundary |
N wix =0

~ \‘;I\- + ++
o) AN : \\ + o l

0° IS * negative U X positire
© AN hyperplane o) o yperplane

° O: . wix = -1 Oo e , wix = |
. SVM: X1

Which hyperplane? Maximize the margin

Figure 5.7: Linear support vector machine.

To find an optimal hyperplane that maximizes the margin, let’s begin with
considering the positive and negative hyperplanes that are parallel to the
decision boundary:

wy+wix, = 1,
wo+wlix. = —1. (5.22)
where w = [wy, w, - -, wy]?. If we subtract those two linear equations from
each other, then we have
we(xp —x_)=2
and therefore )
W
— e (xy —x )= —. (5.23)
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Note: w = [wy,wy,--- ,wy]? is a normal vector? to the decision bound-
ary (a hyperplane) so that the left side of (5.23) is the distance between
the positive and negative hyperplanes.

¢See Exercise 5.1.

Maximizing the distance (margin) is equivalent to minimizing its reciprocal
zllw||, or minimizing ||w]|?.

‘Problem 5.10. The linear SVM is formulated as

1 .
min §Hw|\2, subject to
W, Wq

wo+wWIx0 > 1 if y® =1, (5.24)
wo +wix® < -1 if y(i) — —1
Remark 5.11. The constraints in Problem 5.10 can be written as
yD(wo +wix)y—1>0, Vi (5.25)

* The beauty of linear SVM is that if the data is linearly separable,
there is a unique global minimum value.

* Anideal SVM analysis should produce a hyperplane that completely
separates the vectors (cases) into two non-overlapping classes.

* However, perfect separation may not be possible, or it may result
in a model with so many cases that the model does not classify cor-
rectly.

Note: Constrained optimization problems such as (5.24) are typically
solved using the method of Lagrange multipliers.
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5.3.2. The method of Lagrange multipliers

In this subsection, we briefly consider Lagrange’s method to solve the
problem of the form

min / max f(x) subj.to g(x)=c. (5.26)

Jxy)

‘, gxy)=c

x X

mum and minimum values of f(x) subject to g(x) =
(a) Find x and )\ such that

treme values of f (:c y) = 22 + 2y* on the circle 2% + 3% = 1.

20 =2z A (@D

. 2x 2x
Hint: Vf=)\Vgj— [4 ] :)\[2 ] Therefore, { 4y =2y (2
y ! ?+yP=1 G

From 1),z =0or\ = 1.

Ans: min: f(£1,0) = 1; max: f(0,+1) =2
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Lagrange multipliers - Dual variables

| - — —— For simplicity, consider

min, z> subj.to x > 1. (5.27)

35 '.'
at

—>» / | Rewriting the constraint

25

1Y . r—1>0,

introduce Lagrangian (objective):
L(r,0)=2*—a(xr—1). (5.28)

. L A—— - Now, consider

=2 16 =l 05 L} 0= 1 15 2

min, max, L£(z,a) subj.to a > 0.
(5.29)

Figure 5.9: min, 22 subj.to z > 1.

max problem (5.29).

Proof. (1) Let z > 1. = max,>¢{—a(z — 1)} = 0 and o* = 0. Thus,
L(z,a) = 2*. (original objective)

(2 Let 2 = 1. = max,>¢{—a(x — 1)} = 0 and « is arbitrary. Thus, again,
L(z,a) = 2*. (original objective)

(8) Let z < 1. = max,>o{—a(z — 1)} = co. However, min, won’t make this
happen! (min, is fighting max,) That is, when = < 1, the objective L(z, «)
becomes huge as o« grows; then, min, will push " 1 or increase it to become
2 > 1. In other words, min, forces max, to behave, so constraints will
be satisfied. 0

Now, the goal is to solve (5.29). In the following, we will define the dual
problem of (5.29), which is equivalent to the primal problem.
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Recall: The min-max problem in (5.29), which is equivalent to the (orig-
inal) primal problem:

minmax L(z,«) subj.to « >0, (Primal) (5.30)

T (0%

where
L(z,a) =2* —a(z—1).

Definition} 5.15. The dual problem of (5.30) is formulated by swap-
ping min, and max, as follows:

maxmin £(x,«) subj.to o« >0, (Dual) (5.31)

(0% T

The term min, L(z,«) is called the Lagrange dual function and the
Lagrange multiplier « is also called the dual variable.

How to solve it. For the Lagrange dual function min, £(z, «), the minimum
occurs where the gradient is equal to zero.

d «
aﬁ(m,a)—ZE—a—O = T=7. (5.32)

Plugging this to L(z, «), we have

ct= (3)' -a(§ 1) =~

We can rewrite the dual problem (5.31) as
2

max [a _ O‘—] (Dual) (5.33)

a>0 4

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Plugging oo = o* into (5.32) to get z* = 1. Or, using the Lagrangian objective,
we have
L(z,a)=2>=2x—1)=(x—1)*+ 1. (5.34)

***************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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5.3.3. Karush-Kuhn-Tucker conditions and Complemen-
tary slackness

Allowing inequality constraints, the KKT approach generalizes the
method of Lagrange multipliers which allows only equality constraints.

Recall: The linear SVM formulated in Problem 5.10:

1 9 .
minSliwll”,  subj.to (Primal)  (5.35)
y®(wo + wix®) —1>0, Vi=1,2,---,N.

To solve the problem, let’s begin with its Lagrangian:

L([w, wol, o :—Hw|\2 Zaz Nwo + w'x) — 1], (5.36)

where a = [ay, s, - -, ay]?, the dual variables (Lagrange multipliers).

* The primal problem of the SVM is formulated equivalently as

min max L£([w, wg], @) subj.to a >0, (Primal) (5.37)

W,y Q@
while its dual problem reads

max min L([w, wyl, &) subj.to o >0. (Dual) (5.38)

a W,y

* Solve the “min” problem of (5.38) first, using calculus techniques.

Definition} 5.16. Karush-Kuhn-Tucker (KKT) conditions

In optimization, the KKT conditions [36, 42] are first derivative tests
for a solution in nonlinear programming to be optimized. It is also called
the first-order necessary conditions.
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Writing the KKT conditions, starting with Lagrangian stationarity, where
we need to find the first-order derivatives w.r.t. w and wy:

Ve Ll([w,w],a) = w— Z ayx =0 = w= Z oy
9 N

i - _ () — (1) —
awoﬁ([w,wo], a) = ZZ;OW =0 = z;ozzy =0

a; > 0, (dual feasibility)

a; [y (wy + wTx@) — 1] =0, (complementary slackness)

y D (wy +wlx) —1>0. (primal feasibility)

(5.39)
Complementary slackness will be discussed in detail on page 119.

Using the KKT conditions (5.39), we can simplify the Lagrangian:
L([w,wo, ) = —HWH2 Zozzy wp — Zozzy wlxl —I—Zoz,
:—WW 0— Ww+§}% (5.40)

=1
1 2
— Ll e
i=1

Again using the first KKT condition, we can rewrite the first term.
1

3wl = —§(§:aw ). (Ejaw )
_ _%E:EZ%@wwﬁﬁXm'ﬁ”

i=1 j=1

(5.41)

Plugging (5.41) into the (simplified) Lagrangian (5.40), we see that the La-
grangian now depends on « only.
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N N N
1 D .
max {Z =5 Z Z oy Dyl x0 . X(j)} , subj.to
i=1 i=1 j=1 (5.42)
[ (073 Z 0, VZ,

Zi\il iyt = 0.

* We can solve the dual problem (5.42), by using either a generic
quadratic programming solver or the Sequential Minimal Opti-
mization (SMO), which we will discuss in §5.3.6, p. 128.

e For now, assume that we solved it to have o* = [aZ,--- , o] .

n

* Then we can plug it into the first KKT condition to get
N
wh = Z aly@x®, (5.43)
i=1

* We still need to get w;.

bination of the dot products of data samples {x) - x()}, which will be
used when we generalize the SVM for nonlinear decision boundaries;
see §5.3.5.
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,,,,,,,,,,,,,,,,,,,, ~
!
!

.

Assume momentarily that we have wj. Consider the complementary slack-

ness KKT condition along with the primal and dual feasibility conditions:
ot [y (i + wTx) = 1] = 0

(o > 0= yD(w) +wTx)) =1
af <0 (can’t happen) (5.44)

7

=9 .
yz)(w§+wTX(Z))—1>O:>oz;‘=O

(
yD(wi +w'x?) —1<0 (can’t happen).

\

We define the optimal (scaled) scoring function:

fH(x) = wg + w0, (5.45)
Then
aj >0 =y (x)) = scaled margin = 1,
{ Yy (x0)>1 = of =0. (5.46)

Definition} 5.20. The examples in the first category, for which the
scaled margin is 1 and the constraints are active, are called support
vectors. They are the closest to the decision boundary.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
!
!

-

To get w, use the primal feasibility condition:
yD(wi +wTxD)>1 and miny?(w; +wTx?) =1.
If you take a positive support vector (y*) = 1), then

wy =1— min w0 (5.47)
iiyd=1

Here, you'd better refer to Summary of SVM in Algorithm 5.27, p. 123.
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Definition} 5.21. Types of Constraints

* A binding constraint is one where some optimal solution is on the
hyperplane for the constraint (¢ight).

* A non-binding constraint is one where no optimal solution is on
the line for the constraint (loose/slack).

* A redundant constraint is one whose removal would not change
the feasible region.

|Theorem | 5.22. Complementary Slackness
Assume the primal problem (P) has a solution w* and the dual problem
(D) has a solution o*.

(a) If wj > 0, then the j-th constraint in (D) is binding.
(b) If of > 0, then the i-th constraint in (P) is binding.

The term complementary slackness refers to a relationship between the
slackness in a primal constraint and the slackness (positivity) of the associ-
ated dual variable.

* Notice that the number of variables in the dual is the same as the num-
ber of constraints in the primal, and the number of constraints in the
dual is equal to the number of variables in the primal.

* This correspondence suggests that variables in one problem are com-
plementary to constraints in the other.

* We say that a constraint has slack if it is not binding.

Fmmm————————
!
!

If the i-th constraint in (P) is not binding, then o} = 0.
or, equivalently,
If the i-th constraint in (P) has slack, then o} = 0.

See (5.46).
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5.3.4. The inseparable case: Soft-margin classification

When the dataset is inseparable, there would be no separating hyperplane;
there is no feasible solution to the linear SVM.

Figure 5.10: Slack variable: &;.

Let’s fix our SVM so it can accommodate the inseparable case.

* The new formulation involves the slack variable; it allows some
instances to fall off the margin, but penalize them.

* So we are allowed to make mistakes now, but we pay a price.

1. The linear constraints need to be relaxed for inseparable data.

2. Allow the optimization to converge

* under appropriate cost penalization,
* in the presence of misclassifications.

Such strategy of the SVM is called the soft-margin classification.
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Recall: The linear SVM formulated in Problem 5.10:
! 9 )
Ivglqlurol §HW” | S (Primal) (5.48)

1>0, Vi

Let’s change it to this new primal problem:

variable is formulated as

min
W,’lUQ,E i—1

& > 0.

N
1 .
§||wHQ+C’ g ¢ subj.to

[ YD (wy + wix®) > 1 - ¢,

(Primal) (5.49)

Via the variable C, we can then con-
trol the penalty for misclassification.
Large values of C correspond to
large error penalties, whereas we
are less strict about misclassification
errors if we choose smaller values
for C. We can then use the C pa-
rameter to control the width of the
margin and therefore tune the bias-

variance trade-off, as illustrated
in the following figure:

X, X, .
+ i 1 +
o t ot o | 1 T F
+ I
o N o ' 4
o :*: + (o} | +
S [
OO 0\\. oO% : i 0

X1 X1
Small value for

parameter C

Large value for
parameter C

Figure 5.11: Bias-variance trade-off, via C.

The constraints allow some slack of size ¢;, but we pay a price for it in the

objective. That is,

and we pay price & > 0

if @ f(x()) > 1, then & = 0 and penalty is 0. Otherwise, v f(x()) = 1 —¢;
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Form the Lagrangian of (5.49):

N

1 N
E([W,wo],f,a,r) = §HWH2+OZ§Z_ZTZ£Z
=1 =1 (5.50)

N
= aily (wo + w'x) = 14 ¢,
1=1

where o;’s and r;’s are Lagrange multipliers (constrained to be > 0).

After some work, the dual turns out to be

i=1 i=1 j=1 (5.51)
|: 0 < (073 < C, Vi,

ZZ'N:1 O‘iy(i) = 0.

So the only difference from the original problem’s dual, (5.42), is that
a; > 0 is changed to 0 < o; < C. Neat!

See §5.3.6, p. 128, for the solution of (5.51), using the SMO algorithm.




5.3. Support Vector Machine 123
Algebraic expression for the dual problem
Let _ i} o
W) 1
(2)x(2) 1
z— 1" X eRV™m 1= |"| eRV.
V%) ]
Then dual problem (5.51) can be written as
I v 7 . -
Jmax o1 — 5 ZZ'a] subjto a-y=0. (5.52)
Note:
o G =277 ¢ RV*VN is called the Gram matrix. That is,
Gy = yDyl) x0) . x0), (5.53)

ming (QP) problem.
¢ It admits a unique solution.

* The optimization problem (5.52) is a typical quadratic program-

Algorithm | 5.27. (Summary of SVM)
* Training
— Compute Gram matrix: G;; = yVyl) x1 . x0)
— Solve QP to get a® (Chapter11, or §5.3.6)
— Compute the weights: w* = 31", aiyx() (543
— Compute the intercept: wj = 1 — min;, w_; wx (5.47)

* Classification (for a new sample x)
— Compute k; = x - x) for support vectors x(*)
— Compute f(x) = wj + >, alyVk; (= wi +wTx) (5.24)
— Test sign(f(x)).
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5.3.5. Nonlinear SVM and kernel trick

Note: A reason why the SVM is popular is that

* It can be easily kernelized to solve nonlinear classification prob-
lems incorporating linearly inseparable data.

The basic idea behind kernel methods is

* To transform the data to a higher-dimensional space where the
data becomes linearly separable.

For example, for the inseparable data set in Figure 5.12, we define

¢($1, x2) - ($1, T2, I% + .CL’%)

¢ T i_:,-.. 15
L) " L i - |
¢] ""-;::. - {W 10
X, oo . S ——-_‘x--— 05
: = 5 Cehr v

———— 1

5100500051015

-1

e oy,
05 o0 [ 10 15
X
1
| o

-153.00.509 035 10 _1-5-

L

Xy

Figure 5.12: Inseparable dataset, feature expansion, and kernel SVM.

To solve a nonlinear problem using an SVM, we would
(a) @ Transform the training data to a higher-dimensional
space, via a mapping ¢, and (2) train a linear SVM model.

(b) Then, for new unseen data, classify using (1) the same map-
ping ¢ to transform and (2) the same linear SVM model.
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******************

Recall° the dual problem to the soft-margin SVM given in (5.51):

max {Zaz — = Z Zoz ozjy X(j)}, subj.to

1=1 j=1 (554)
0 S o < C, Vi,
Zf\il gy = 0.
Observatlon 5.28. The objective is a linear combination of dot prod-
ucts {x0 } Thus,
e If the kernel SVM transforms the data samples through 0,
the dot product x( - x¥) must be replaced by ¢(x) - ¢(x1)).

* The dot product gb( ) - ¢(x19)) is performed in a higher-dimension,
which may be costly.

Definition} 5.29. In order to save the expensive step of explicit
computation of this dot product (in a higher-dimension), we define a
so-called kernel function:

K(x®D,xW) a2 ¢(x®) - p(xD). (5.55)
One of the most widely used kernels is the Radial Basis Function

(RBF) kernel or simply called the Gaussian kernel:

_ _ (1) _ ()2 _ .
/C(X(Z),XU)) — exp ( B HX - ;( H ) — exp (_,YHX(Z) _ X(J)HQ) : (5.56)
o

where v = 1/(20%). Occasionally, the parameter v plays an important
role in controlling overfitting.

Note: Roughly speaking, the term kernel can be interpreted as a
similarity function between a pair of samples.

This is the big picture behind the kernel trick.
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by K(x,x)) and K(x,x"), respectively.

Kernel SVM: It can also be summarized as in Algorithm 5.27, p. 123;
only the difference is that dot products x(?)-x) and x-x() are replaced

***********************

¢ Polynomial of degree exactly k (e.g. k = 2):
IC(x“), X(j)) — (X(i) .X(j))k

Polynomial of degree up to k: for some ¢ > 0,
K(xD x0)) = (¢4 x0 . x0)k

Sigmoid: L . .
K(xD, x9)) = tanh(ax¥ - x9) 4 b)

Gaussian RBF:

. . (1) _ ()2
IC(X(Z),X(J)) = exp < . HX 20-2( H )

very active area of research!

rE}izample 5.30. (Quadratic kernels). Let K(x,z) = (c +x - z)%

b e e e e o - - o

(c+x- z)2 = <c+ ijzj) (c + erze)
= 2+ 202%23 + Z Z.szjngg

7=1 /=1
= c +Z(\/2_C$j)(\/2_02j) + > (wjme)(2520).
=1 =1

Define a feature expansion as

¢([$1, e 7xm]) - [aﬁaxlx% L T Tp—1, T ma \/_xla \/_mea C];

which is in R”**"+1 Then ¢(x) - ¢(z) = K(x,2) = (¢ +x - 2)%. [

And many others: Fisher kernel, graph kernel, string kernel, ...

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)
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Note: Kernel Functions

¢ Kernels may not be expressed as ¢(x) - ¢(z).

* The mapping ¢ may transform x to infinite dimensions.

* They are a simple and popular way to learn a classifier

* They suffer from inefficient use of data, overfitting, or lack of expres-
siveness

— It can fix these problems using (1) maximum margins and
(2) feature expansion (mapping to a higher-dimension).
— In order to make feature expansion computationally feasible,

we need the (3) kernel trick, which avoids writing out high-
dimensional feature vectors explicitly.

* There is no explicit feature expansion.

* The kernel £(x,z) must be formulated meaningfully.

* The kernel function /C must be considered as
a nonlinear measure for the data to become separable.
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5.3.6. Solving the dual problem with SMO
SMO (Sequential Minimal Optimization) is

* a type of coordinate ascent algorithm,

* but adapted to the SVM so that the solution always stays within the
feasible region.

Recall: The dual problem of the soft-margin SVM, formulated in
(5.51):

N N N
1 NP .
max [Z &= Z Z oziozjy(z)ym x . X(J)}, subj.to
i=1 i=1 j=1 (5.63)
[ 0 < (073 < C, Vi,

ZZ,NZI a;y® = 0.

Quesiton. Start with (5.63). Let’s say you want to hold as, - - - , ayy fixed
and take a coordinate step in the first direction. That is, change «; to
maximize the objective in (5.63). Can we make any progress? Can we
get a better feasible solution by doing this?

Turns out, no. Let’s see why. Look at the constraint in (5.63), 37, ay'") = 0.
This means

N N
aryt = — Z%‘y(i) = o =—y Zoéiy(i)-
i=2 i=2

So, since as, - - - , ay are fixed, o4 is also fixed.

Thus, if we want to update any of the o,’s, we need to update at least
2 of them simultaneously to keep the solution feasible (i.e., to keep the
constraints satisfied).
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e Start with a feasible vector .
¢ Let’s update a; and a3, holding a3, - - - , ay fixed.

Question: What values of o, and az are we allowed to choose?
e The constraint is: a;y" + ayy® Z iy

oy 4

& el
T A}'J+HEJ’2=

Figure 5.13

We are only allowed to choose «; and s on the line.
* When we pick s, we can get a; from

1
Y

over «ay, keeping it within [L, H|. Using (5.64), (5.63) becomes

L.H
a2€[L,H] i=1 j=1

its derivative to O to optimize it —> get «.
¢ After updating o, using (5.64), move to the next iteration of SMO.

ar = (€ —ay®) =y (€ — any?). (5.64)

¢ Optimization for az: The other constraints in (5.63) says 0 <
a1, ag < C. Thus, ay needs to be within [L, H] on the figure (.- oy €
[0, C]). To do the coordinate ascent step, we will optimize the objective

max [ ) (E—auy? +O‘2+ZO‘Z__ZZ%O‘JQ y\) x( } (5.65)

of which the objective is quadratic in a,. This means we can just set

Note: There are heuristics to choose the order of «;’s chosen to update.
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5.4. Decision Trees

Decision tree classifiers are attractive models if we care about
interpretability. As the name decision tree suggests, we can think of this
model as breaking down our data by making decision based on asking a
series of questions. Decision tree was invented by a British researcher,
William Belson, in 1959 [1].

Note: Decision trees are commonly used in operations research,
specifically in decision analysis, to help identify a strategy most likely
to reach a goal, but are also a popular tool in ML.

Internal
" node

Work to do?

Outlook?

Branch

Sunny Rainy
Over-
cast

Go to beach

[ Friends busy? ]
Yes No

‘ Go running

Leaf
node ‘ Stay in ‘

Go to movies

Figure 5.14: A decision tree to decide upon an activity on a particular day.

[Key Idea 5.33. (Decision tree).

e Start at the tree root
e Split the data so as to result in the largest Information Gain (IG)
* Repeat the splitting at each child node until the leaves are pure

(This means the samples at each node all belong to the same class)

F——mm————————
|
|

Leccoomnocoocoooo o -

which can easily lead to overfitting
(We typically set a limit for the maximal depth of the tree)
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5.4.1. Decision tree objective

* Decision tree also needs to incorporate an objective function, to be
optimized via the tree learning algorithm.

* Here, the objective function is to maximize the information gain at
each split, which we define as follows:
N; J

N_P I(D (5.66)

Ms

IG(Dp, f) = I(Dp) —

Jj=1

where
f . the feature to perform the split
Dp : the parent dataset
D; : the dataset of the j-th child node
I . the impurity measure
Np : the total number of samples at the parent note
N; : the number of samples in the j-th child node

* The information gain is simply the difference between the impurity
of the parent node and the average of the child node impurities

— The lower the impurity of the child nodes, the larger the informa-
tion gain.

* However, for simplicity and to reduce the combinatorial search space,
most libraries implement binary decision trees, where each parent
node is split into two child nodes, D; and Dp:

Ny, Np

IG(Dp, f) = I(Dp) = 52 1(Dr) = 72 1(Dp). (5.67)
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Impurity measure?

Commonly used in binary decision trees:
* Entropy

Iu(t) = = Y p(ilt) logy p(ilt) (5.68)
i=1
¢ Gini impurity

Io(t) = 32 plalt) (1= (i) = 1= plilt) (5.69)

¢ Classification error
Ip(t) =1 — max{p(i|t)} (5.70)

where p(i|t) denotes the proportion of the samples that belong to class
i for a particular node ¢.

Mind simulation: When c = 2

e Entropy: It is maximal, if we have a uniform class distribution;
it is 0, if all samples at the node ¢ belong to the same class.

Ig(t)=0, ifp(i=1t)=1orpi=2[t) =0
Ig(t) =1, ifp(i =1|t) = p(i =2|t) = 0.5

= We can say that the entropy criterion attempts to maximize the mu-
tual information in the tree.

¢ Gini impurity: Intuitively, it can be understood as a criterion to min-
imize the probability of misclassification. The Gini impurity is maxi-
mal, if the classes are perfectly mixed.

Ig(t)=1->25,05%=0.5
= In practice, both Gini impurity and entropy yield very similar results.

¢ Classification error: It is less sensitive to changes in the class prob-
abilities of the nodes.

= The classification error is a useful criterion for pruning, but not rec-
ommended for growing a decision tree.
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petal width <= 0.75
gini = 0.6667
samples = 105
value = [35, 35, 35]
class = Setosa

True ‘alse

petal length <= 4.75
gini=0.5
samples =70
value = [0, 35, 35]
class = Versicolor

petal length <= 4.95
gini=0.5
samples = 8
value = [0, 4, 4]
class = Versicolor

gini = 0.4444 gini = 0.4444
samples =6 samples =3
value = [0, 2, 4] value = [0, 1, 2]
class = Virginica class = Virginica

Figure 5.15: A decision tree result with Gini impurity measure, for three classes with
two features (petal length, petal width). Page 99, Python Machine Learning, 3rd Ed..

Quesiton. How can the decision tree find questions such as
‘petal width <= 0.75] 'petal length <= 4.75! ... 7

_______________________ S oo oo oo oo o od
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Algorithm | 5.34. (Decision tree split rule).

1. For each and every feature in Dp, f]@ .

o make a question to split D, into D; and Dp
(e.g. f}k) < fj@, for which £’s?)
o compute the impurities: /(D) and /(Dg)

o compute the information gain:

@)y N Ng
IG(Dp, f;") = 1(Dp) — N—PI(DL) - N—PI(DR)-
2. Let ,
f¥ = arg max IG(Dp, f\"). (5.71)
7/7]

3. Then, the best split question (at the current node) is
fq(k) < fép), for which £’s? (5.72)

The maximum in (5.71) often happens when one of the child impurities
is zero or very small.
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5.4.2. Random forests: Multiple decision trees

Random forests (or random decision forests) are an ensemble learn-
ing method for classification, regression, and other tasks that operates by
constructing multiple decision trees at training time and outputting the
class that is the mode of the predicted classes (classification) or mean
prediction (regression) of the individual trees [32].

* Random forests have gained huge popularity in applications of ML
during the last decade due to their good classification performance,
scalability, and ease of use.

* The idea behind a random forest is to average multiple (deep) de-
cision trees that individually suffer from high variance, to build a
more robust model that has a better generalization performance and
is less susceptible to overfitting.

Algorithm | 5.35. Random Forest.
The algorithm can be summarized in four simple steps:

1. Draw a random bootstrap sample of size n
(Randomly choose n samples from the training set with replace-
ment).

2. Grow a decision tree from the bootstrap sample.

oo

Repeat Steps 1-2 k times.

4. Aggregate the prediction by each tree to assign the class label by
majority vote.

Note: In Step 2, when we are training the individual decision tree:
* instead of evaluating all features to determine the best split at each
node,

* we can consider a random (without replacement) subset of those (of
size d ).
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we don’t have to worry so much about
choosing good hyperparameter values.

* A smaller n increases randomness of the random forest; the bigger n
is, the larger the degree of overfitting becomes.

Default n = size(the original training set), in most implementations

® Default d = v M, where M is the number of features in the training
set

* The only parameter that we really need to care about in practice is
the number of trees k (Step 3).

Typically, the larger the number of trees, the better the performance
of the random forest classifier at the expense of an increased compu-
tational cost.
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5.5. k-Nearest Neighbors

The k-nearest neighbor (k-NN) classifier is a typical example of a
lazy learner.

* It is called lazy not because of its apparent simplicity, but because it
doesn’t learn a discriminative function from the training data,
but memorizes the training dataset instead.

* Analysis of the training data is delayed until a query is made to
the system.

Algorithm| 5.37. (k-NN algorithm). The algorithm itself is fairly
straightforward and can be summarized by the following steps:

1. Choose the number k£ and a distance metric.
2. For the new sample, find the k-nearest neighbors.
3. Assign the class label by majority vote.

Figure 5.16: Illustration for how a new data point (7) is assigned the triangle class label,
based on majority voting, when &k = 5.
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k-NN: pros and cons

e Since it is memory-based, the classifier immediately adapts as we
collect new training data.

* The computational complexity for classifying new samples grows
linearly with the number of samples in the training dataset in the
worst-case scenario.”

* Furthermore, we can’t discard training samples since no training
step is involved. Thus, storage space can become a challenge if we
are working with large datasets.

¢J. H. Friedman, J. L. Bentley, and R.A. Finkel (1977). An Algorithm for Finding Best Matches in
Logarithmic Expected Time, ACM transactions on Mathematical Software (TOMS), 3, no. 3, pp.209—
226. The algorithm in the article is called the KD-tree.

k-NN: what to choose k£ and a distance metric?

* The right choice of k is crucial to find a good balance between
overfitting and underfitting.
(For sklearn.neighbors.KNeighborsClassifier, default n_neighbors = 5.)

* We also choose a distance metric that is appropriate for the features
in the dataset. (e.g., the simple Euclidean distance, along with data
standardization)

* Alternatively, we can choose the Minkowski distance:
e = 1/p
d(x,z) = |x — z||, 2L (Z s — zi|p) . (5.73)
i=1

(For sklearn.neighbors.KNeighborsClassifier, defaultp = 2.)

overfitting due to the curse of dimensionality.®

Since regularization is not applicable for £-NN, we can use feature se-
lection and dimensionality reduction techniques to help us avoid the
curse of dimensionality and avoid overfitting. This will be discussed in
more details later.

%The curse of dimensionality describes the phenomenon where the feature space becomes increas-
ingly sparse for an increasing number of dimensions of a fixed-size training dataset. Intuitively, we
can think of even the closest neighbors being too far away in a high-dimensional space to give a good
estimate.
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Exercises for Chapter 5

5.1. The equation c¢;z1 + 329 + - - - + ¢,2, = d determines a hyperplane in R". Prove that
the vector [¢1, o, -+ - , ¢, is a normal vector of the hyperplane.

5.2. For this problem, you would modify the code used for Problem 3.2 in Chapter 3. For
the standardized data (Xsp),

(a) Apply the logistic regression gradient descent (Algorithm 5.9).
(b) Compare the results with that of Adaline descent gradient.

5.3. (Continuation of Problem 5.2). Perturb the standardized data (Xsp) by a random
Gaussian noise G, of an observable o (so as for G,(Xsp) not to be linearly separable).

(a) Apply the logistic regression gradient descent (Algorithm 5.9) for the noisy data
GU<X SD)-

(b) Modify the code for the logistic regression with regularization (5.21) and apply
the resulting algorithm for G, (Xsp).

(c) Compare their performances

5.4. (Optional for Undergraduate Students) Verify the formulation in (5.51), which is
dual to the minimization of (5.50).

5.5. Experiment examples on pp.84-91, Python Machine Learning, 3rd Ed., in order to
optimize the performance of kernel SVM by finding a best kernel and optimal hyper-
parameters (gamma and C).

Choose one of Exercises 6 and 7 below to implement and experiment. The experiment
will guide you to understand how the LM software has been composed from scratch.
You may use the example codes thankfully shared by Dr. Jason Brownlee, who is
the founder of machinelearningmastery.com.

5.6. Implement a decision tree algorithm that incorporates the Gini impurity measure,
from scratch, to run for the data used on page 96, Python Machine Learning, 3rd Ed..
Compare your results with the figure on page 97 of the book. You may refer to
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/

5.7. Implement a k-NN algorithm, from scratch, to run for the data used on page 106,
Python Machine Learning, 3rd Ed.. Compare your results with the figure on page
103 of the book. You may refer to
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-
scratch/


https://machinelearningmastery.com/
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/

140 Chapter 5. Popular Machine Learning Classifiers



CHAPTER O

Data Preprocessing in Machine
Learning

Data preprocessing (or, data preparation) is a data mining technique,
which is the most time consuming (often, the most important) step in

machine learning.

Contents of Chapter 6

6.1. General Remarks on Data Preprocessing . . .. .. .. ... ... ... .........
6.2. Dealing with Missing Data & Categorical Data . . . . . ... ... ... .........
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6.4. Feature Selection . . . . . . . . . . e e e

6.5. Feature Importance . . . . . . . . . . . . . e e e e

Exercises for Chapter 6 . . . . . . . . . . . . . . e e
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6.1. General Remarks on Data Preprocessing

Data preprocessing is a data mining technique.
* It involves transforming raw data into a understandable and
more tractable format.

* Real-world data is often incomplete, redundant, inconsistent,
and/or lacking in certain behaviors or trends, and is likely to
contain many errors.

¢ Data preprocessing is a proven method of resolving such issues.

¢ Often, data preprocessing is the most important phase of a ma-
chine learning project, especially in computational biology.

summarized as follows.

1. Data Cleaning: In this first step, the primary focus is on handling
missing data, noisy data, detection and removal of outliers, and min-
imizing duplication and computed biases within the data.

2. Data Integration: This process is used when data is gathered from
various data sources and data are combined to form consistent data.

3. Data Transformation: This step is used to convert the raw data
into a specified format according to the need of the model.

(a) Normalization — Numerical data is converted into the specified
range (e.g., feature scaling — ~ N (0, 1)).
(b) Aggregation — This method combines some features into one.

4. Data Reduction: Redundancy within the data can be removed and
efficiently organize the data.

The more disciplined you are in your handling of data, the more
consistent and better results you are likely to achieve.
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not objective, and it is important because ML algorithms learn from
data. Consider the following.

* Preparing data for analysis is one of the most important steps in
any data-mining project — and traditionally, one of the most time
consuming.

* Often, it takes up to 80% of the time.

* Data preparation is not a once-off process; that is, it is iterative
as you understand the problem deeper on each successive pass.

* It is critical that you feed the algorithms with the right data for
the problem you want to solve. Even if you have a good dataset, you
need to make sure that it is in a useful scale and format and that
meaningful features are included.

Questions in ML, in practice

* What would reduce the generalization error?

* What is the best form of the data to describe the problem?
(It is difficult to answer, because it is not objective.)

* Can we design effective methods and/or smart algorithms for
automated data preparation?
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6.2. Dealing with Missing Data & Categorical
Data

6.2.1. Handling missing data

Software: [pandas.DataFrame].isnull().sum() > 1

For missing values, three different steps can be executed.
* Removal of samples (rows) or features (columns):

— Itis the simplest and efficient method for handling the missing
data.

- However, we may end up removing too many samples or features.

Software: pandas.dropna

* Filling the missing values manually:

— This is one of the best-chosen methods.

— But there is one limitation that when there are large data set, and
missing values are significant.

* Imputing missing values using computed values:

— The missing values can also be occupied by computing mean, me-
dian, or mode of the observed given values.

— Another method could be the predictive values that are computed
by using any ML or Deep Learning algorithms.

— But one drawback of this approach is that it can generate bias
within the data as the calculated values are not accurate concern-
ing the observed values.

Software: from sklearn.preprocessing import Imputer
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6.2.2. Handling categorical data

It is common that real-world datasets contain one or more categorical fea-
ture columns. These categorical features must be effectively handled to fit
in numerical computing libraries.

When we are talking about categorical data, we should further distin-
guish between ordinal features and nominal features.
* Mapping ordinal features: e.g.,
M 0
size: | L «—— |1]. (6.1)
XL 2

— This is called an ordinal encoding or an integer encoding.

— The integer values have a natural ordered relationship between
each other; machine learning algorithms may understand and
harness this relationship.

* Encoding nominal features: one-hot encoding, e.g.,

blue 0 1 00
color: [ green | +— |1| «+— |0 1 0]. (6.2)
red 2 001

Software: from sklearn.preprocessing import OneHotEncoder

exists, the integer encoding is not enough.

* In fact, assuming a natural ordering between categories and using
the integer encoding may result in poor performance or unexpected
results.

* The one-hot encoding can be used, although ordinal relationship
exists.
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6.3. Feature Scaling

Note: Feature scaling is a method used to standardize the range of
independent variables or features of the data.

It is one of data normalization methods® in a broad sense.

It is generally performed during the data preprocessing step.

There are some scale-invariant algorithms such as decision trees
and random forests.

Most of other algorithms (we have learned) perform better with fea-
ture scaling.

%In a broad sense, data normalization is a process of reorganizing data, by cleaning and adjusting
data values measured on different scales to a notionally common scale; its intention is to bring the
entire probability distributions of adjusted values into alignment.

There are two common approaches to bring different features onto the same
scale:
* min-max scaling (normalization):
MO
(Z) o j J,min
j,norm

€ [0, 1], (6.3)

Ljmax — Ljmin

where z; i, and z; ;. are the minimum and maximum of the j-th fea-
ture column (in the training dataset), respectively.

e standardization:

= 9 (6.4)

where /; is the sample mean of the j-th feature column and o, is the
corresponding standard deviation.

— The standardized data has the standard normal distribution.
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scaling for many ML methods, especially for optimization algorithms
such as the gradient descent method.

* Reason (1): For many linear models such as the logistic regression and
the SVM, we can easily initialize the weights to O or small random
values close to 0.

< Standardization possibly results in w* small.

* Reason (2): It makes regularization perform more effectively; see
Sections 5.2.3 and 6.4.3 for regularization.

< The minimizer of the penalty term is 0.
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6.4. Feature Selection

6.4.1. Selecting meaningful variables

better on a training dataset than on the test dataset, it is a strong
indicator of overfitting.

* Overfitting means the model fits the parameters too closely
with regard to the particular observations in the training dataset,
but does not generalize well to new data. (The model has a high
variance.)

* The reason for the overfitting is that our model is too complex for
the given training data.

Common solutions to reduce the generalization error (via bias-variance
tradeoff) are listed as follows:

* Collect more training data (often, not applicable)

¢ Introduce regularization (penalty for complexity)

* Choose a simpler model (fewer parameters)

* Reduce the dimensionality (feature selection)

Feature Selection (a.k.a. Variable Selection)
Its objective is four-fold:

* enhancing generalization by reducing overfitting/variance,

* providing faster and more cost-effective predictors,

* reducing training time, and

¢ providing a better understanding of the underlying process that gen-
erated the data.

Recall: Curse of Dimensionality. It describes the phenomenon where
the feature space becomes increasingly sparse for an increasing number
of dimensions of a fixed-size training dataset.
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Methods for “automatic” feature selection

* Filter methods: Filter methods suppress the least interesting
features, after assigning a scoring to each feature and ranking the
features. The methods consider the feature independently, or with re-
gard to the dependent variable.

Examples: Chi-squared test & correlation coefficient scores.

* Wrapper methods: Wrapper methods evaluate subsets of features
which allows, unlike filter approaches, to detect the possible inter-
actions between features. They prepare various combinations
of features, to evaluate and compare with other combinations. The
two main disadvantages of these methods are:

- Increasing overfitting risk, when the data size is not enough.
— Significant computation time, for a large number of variables.
Example: The recursive feature elimination algorithm

* Embedded methods: Embedded methods have been recently pro-
posed that try to combine the advantages of both previous meth-
ods. They learn which features contribute the best to the accuracy of
the model while the model is being created. The most common types of
embedded feature selection methods are regularization methods.

Examples: ridge regression®, LASSOP, & elastic net regularization®

%The ridge regression (a.k.a. Tikhonov regularization) is the most commonly used method of reg-
ularization of ill-posed problems. In machine learning, ridge regression is basically a regularized linear
regression model: miny, Q(X,y;w) + 3||w|3, in which the regularization parameter \ should be learned
as well, using a method called cross validation. It is related to the Levenberg-Marquardt algorithm for
non-linear least-squares problems.

PLASSO (least absolute shrinkage and selection operator) is a regression analysis method that per-
forms both variable selection and regularization in order to enhance the prediction accuracy and inter-
pretability of the statistical model it produces. It includes an L! penalty term: miny, Q(X,y;w) + A|w||;.
It was originally developed in Geophysics [68, (Santosa-Symes, 1986)], and later independently redis-
covered and popularized in 1996 by Robert Tibshirani [75], who coined the term and provided further
insights into the observed performance.

°The elastic net regularization is a regularized regression method that linearly combines the L!
and L? penalties of the LASSO and ridge methods, particularly in the fitting of linear or logistic regres-
sion models.

We will see how L!-regularization can reduce overfitting (serving as a fea-
ture selection method).
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6.4.2. Sequential backward selection (SBS)

The idea behind the sequential backward selection (SBS) algorithm is
quite simple:
* The SBS sequentially removes features one-by-one until the new
feature subspace contains the desired number of features.

* In order to determine which feature is to be removed at each stage,
we need to define the criterion function C, e.g., performance of the
classifier after the removal of a particular feature.

* Then, the feature to be removed at each stage can simply be defined
as the feature that maximizes this criterion; or in more intuitive
terms, at each stage we eliminate the feature that causes the least
performance loss after removal.

Algorithm | 6.6. Sequential Backward Selection
We can outline the algorithm in four simple steps:

1. Initialize the algorithm with & = d, where d is the dimensionality of
the full feature space Fj.

2. Determine the feature fsuch that
= F, — f).
f arg{gg}fc( k= f)
3. Remove the feature ffrom the feature set:
Foa=F—f; k=k—1;

4. Terminate if k equals the number of desired features; otherwise, go
to step 2.
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6.4.3. Ridge regression vs. LASSO

minimization problem can be written as follows:

w' = argmin Q(X,y; W) + AR, (W), (6.5)
where .
Rp(w) = lwlp, p=1,2 (6.6)

* Regularization can be considered as adding a penalty term to the
cost function to encourage smaller weights; or in other words, we
penalize large weights.

* Thus, by increasing the regularization strength (\ 1),

— we can shrink the weights towards zero, and
— decrease the dependence of our model on the training data.

* The minimizer w* must be the point where the LP-ball intersects
with the minimum-valued contour of the unpenalized cost function.

— The variable )\ in (6.5) is a kind of Lagrange multiplier.

W. WZ
Minimi st Minimi t
Miwli3 Allwll,
d W, Wy
)<J\ Xme cost + penalty
Minimize penalty Minimize cost + penalty Minimize penalty (w, =0)
Figure 6.1: L*-regularization (|w|3 = > " w?) and L'-regularization (|w|; =

Z:’il |w ).
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LASSO (L!-regularization). In the right figure, the L'-ball touches the
minimum-valued contour of the cost function at w;, = 0; the optimum
is more likely located on the axes, which encourages sparsity (zero
entries in w*).

‘Remark 6.8. LASSO (L!-regularization)

Lo === -

* We can enforce sparsity (more zero entries) by increasing the reg-
ularization strength ).
* A sparse model is a model where many of the weights are 0 or close

to 0. Therefore L'-regularization is more suitable to create desired
0-weights, particularly for sparse models.

In general, regularization can be understood as adding bias and pre-
ferring a simpler model to reduce the variance (overfitting),
in the absence of sufficient training data, in particular.

e ['-regularization encourages sparsity.
* We can enforce sparsity (more zero entries) by increasing the reg-
ularization strength ).

* Thus it can reduce overfitting, serving as a feature selection
method.

e [l-regularization may introduce oscillation, particularly when the
regularization strength \ is large.

* A post-processing operation may be needed to take into account
oscillatory behavior of L!-regularization.
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‘Example’ 6.10. Consider a model consisting of the weights w =

(wy, -+ ,wy,)" and

m 1 m
Ri(w) =) |wi|, Ra(w)= 5 > wj. (6.7)
i=1 i=1

Let us minimize R,(w), p = 1, 2, using gradient descent.

Solution. The gradients read

VwRi(w) =sign(w), VyRa(w)=w, (6.8)
where 1, if w; >0
81gn(wz) = —1, if w; <0

Thus the gradient descent becomes

Rl v Wil — Wi — )\sign(wk),

Ry @ Wep1 =Wip —Awg = (1 = N wy = (1 = \)F! (6.9)

wo. U

e The L2-gradient is linearly decreasing towards 0 as the weight goes
towards 0. Thus L?-regularization will move any weight towards 0,
but it will take smaller and smaller steps as a weight approaches 0.
(The model never reaches a weight of 0.)

e In contrast, L'-regularization will move any weight towards 0 with
the same step size ), regardless the weight’s value.

— The iterates for minimizing R, may oscillate endlessly near 0.
(e.g., wg=0.2and A = 0.5
=w =-03 =>w=02=w;=—-03 =>w=02 = cee)

— The oscillatory phenomenon may not be severe for real-world prob-
lems where R; is used as a penalty term for a cost function.

- However, we may need a post-processing to take account of os-
cillation, when )\ is set large.
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6.5. Feature Importance

The concept of feature importance is straightforward: it is the increase
in the model’s prediction error after we permuted the feature’s values,
which breaks the relationship between the feature and the true outcome.

* A feature is “important" if shuffling its values increases the
model error, because in this case the model relied on the feature
for the prediction.

* A feature is “unimportant” if shuffling its values leaves the model
error unchanged, because in this case the model ignored the feature
for the prediction.

* The permutation feature importance measurement was introduced
by Breiman (2001) [8] for random forests.

* Based on this idea, Fisher, Rudin, and Dominici (2018) [19] proposed a
model-agnostic version of the feature importance and called it model
reliance.

Algorithm |6.11. Permutation feature importance (FI)

input: Trained model f, feature matrix X, target vector y,
error measure L(f, X,y);

1. Estimate the original model error ¢ = L(f, X,y);
2. For each feature j =1,2,--- ,d; do:

Permute feature j in the data X to get X);

Estimate error /) = £(f, XU) y);

Calculate permutation FI: F1U) = gl /goie (or, £l) — gorie);
3. Sort features by descending F'[;




6.5. Feature Importance 155

To answer the question, you need to decide whether

¢ you want to know how much the model relies on each feature
for making predictions (— training data) or

* how much the feature contributes to the performance of the
model on unseen data (— test data).

There is no research addressing the question of training vs. test data; more
research and more experience are needed to gain a better understanding.
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Exercises for Chapter 6

First, read pp. 135-143, Python Machine Learning, 3rd Ed..

6.1. On pp. 135-143, the sequential backward selection (SBS) is implemented as a
feature selection method and experimented with a k-NN classifier (n_neighbors=5),
using the wine dataset.

(a) Perform the same experiment with the £-NN classifier replaced by the support
vector machine (soft-margin SVM classification).

(b) In particular, analyze accuracy of the soft-margin SVM and plot the result
as in the figure on p. 139.

6.2. On pp. 141-143, the permutation feature importance is assessed from the ran-
dom forest classifier, using the wine dataset.

(a) Discuss whether or not you can derive feature importance for a k-NN classifier.

(b) Assess feature importance with the logistic regression classifier, using the
same dataset.

(c) Based on the computed feature importance, analyze and plot accuracy of the
logistic regression classifier for k_features = 1,2,---,13.



CHAPTER ¢

Feature Extraction: Data Compression

There are two main categories of dimensionality reduction methods:

* Feature selection: Select a subset of the original features.
* Feature extraction: Construct a new feature subspace.

Feature Extraction

* It can be understood as an approach to dimensionality reduction
and data compression.

— with the goal of maintaining most of the relevant information

* In practice, feature extraction is used
— to improve storage space or the computational efficiency

— to improve the predictive performance by reducing the curse
of dimensionality

In this chapter, we will study three fundamental techniques for dimen-
sionality reduction:

* Principal component analysis (PCA)
¢ Linear discriminant analysis (LDA), maximizing class separability

* Kernel principal component analysis, for nonlinear PCA

Contents of Chapter 7

7.1. Principal Component Analysis. . . . . . . . . . . . . . .. ... .. 158
7.2. Singular Value Decomposition . . . . . . . . ... .. ... ... ... ... 164
7.3. Linear Discriminant Analysis . . . . . . . . . . . .. ... . ... ... 180
7.4. Kernel Principal Component Analysis . . .. ... .. ... ... ... ... ....... 197
Exercises for Chapter 7 . . . . . . . . . . ... 204

157
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7.1. Principal Component Analysis

* Principal component analysis (PCA) (a.k.a. orthogonal linear
transformation) was invented in 1901 by K. Pearson [58], as an ana-
logue of the principal axis theorem in mechanics; it was later indepen-
dently developed and named by H. Hotelling in the 1930s [33, 34].

* The PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations (of possibly correlated vari-
ables) to a set of linearly uncorrelated variables called the prin-
cipal components.

* The orthogonal axes of the new subspace can be interpreted as the
directions of maximum variance given the constraint that the new
feature axes are orthogonal to each other:

v

X1

Figure 7.1: Principal components.

* As an unsupervised® linear transformation technique, the PCA is
widely used across various fields — in ML, most prominently for fea-
ture extraction and dimensionality reduction.

* The PCA identifies patterns in data based on the correlation be-
tween features.

* The PCA directions are highly sensitive to data scaling, and we
need to standardize the features prior to PCA.

%The PCA is a unsupervised technique, because it does not use any class label information.
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7.1.1. Computation of principal components

* Consider a data matrix X € RV*%
— each of the NV rows represents a different data point,
— each of the d columns gives a particular kind of feature, and
— each column has zero empirical mean (e.g., after standardization).

* The goal is to find an orthogonal weight matrix W € R%*4 such

that
ZJ=XW (7.1)

maximizes the variance (= minimizes the reconstruction error).

* Here Z € RV*?is called the score matrix, of which columns represent
principal components of X.

*********************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

In order to maximize variance of z;, the first weight vector w; should satisfy

w; = arg max ||z;|*> = arg max || Xwl|?
Iwll=1 Iwll=1
- Wl XT X'w (7.2)
= arg max w- X° Xw = argmax ———=——,
[wll=1 w70 WIW

where the quantity to be maximized can be recognized as a Rayleigh quo-
tient.

'Theorem |7.1. For a positive semidefinite matrix (such as X” X ), the
maximum of the Rayleigh quotient is the same as the largest eigenvalue
of the matrix, which occurs when w is the corresponding eigenvector, i.e.,

wl XT Xw Vi
Wi = arg max = C (XTX)vy = M\vy, (7.3)
L el T wiw e XV =

where )\, is the largest eigenvalue of X7 X € R4,

vector x() can then be given as a score 2\ = x() . w.
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The k-th weight vector can be found by (1) subtracting the first (k — 1) prin-

cipal components from X:
k—1
)?k =X — ZXWiW;TF, (7.4)
i=1

and then (2) finding the weight vector which extracts the maximum vari-

ance from this new data matrix X J
w;, = arg max || Xw|*. (7.5)

Iwl[=1

XTX. That is, the transformation matrix IV is the stack of eigenvec-
tors of X7 X:

W = [Wl‘Wg‘ s |Wd], (XTX) W, = )‘j Wi, W;Wj = 6ij; (76)

where \{ > X\, > .- > )\; > 0.

With W found, a data vector x is transformed to a d-dimensional row vec-
tor of principal components
z = xW, (7.7)

of which components z;, j = 1,2,--- ,d, are decorrelated.

While the weight matrix W € R9%? is the collection of eigenvectors of
XTX, the score matrix Z € RV*4 is the stack of eigenvectors of X X7,
scaled by the square-root of eigenvalues:

Z = [\/ )\1 111‘\/ )\2112|'°'|\/ Adud], (XXT) u; :)\juj, ulelj :6” (78)
See (7.14) and § 7.2.
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7.1.2. Dimensionality reduction

The transformation Z = XW maps data points in R? to a new d-dimensional
space of principal components. Keeping only the first £ principal com-
ponents (k < d) gives a truncated transformation:

Z, = X Wi : xW e RT— 2z e R, (7.9)
where 7, € RV** and W, € R%*. Define the truncated data as

Xy = W = X Wil (7.10)

Quesitons. How can we choose & ?
Is the difference || X — Xj|| small?

sociated with the singular value decomposition (SVD) of X:
X =UxVvT, (7.11)

where
U : n x dorthogonal (the left singular vectors of X.)

Y : d x d diagonal (the singular values of X.)
V' : d x d orthogonal (the right singular vectors of X.)

* The matrix ¥ explicitly reads
Y = diag(oy,09, -+ ,04), (7.12)

where oy > 09 > -+ > 04> 0.
e In terms of this factorization, the matrix X7 X reads

XX =wuxvhlusv? =vsutusvt = veve. (7.13)

e Comparing with the eigenvector factorization of X’ X, we have

- the right singular vectors V = the eigenvectors of XX = V = W
- the square of singular values of X are equal to the eigenvalues of X7 X
:>0'j2:A],,]:1727 7d'
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
|

Further considerations for the SVD

r
|
i g 4

¢ Using the SVD, the score matrix Z reads
Z=XW=USVIW =UZY, (7.14)

and therefore each column of Z is given by one of the left singular
vectors of X multiplied by the corresponding singular value. This form
is also the polar decomposition of Z. See (7.8) on p. 160.

* As with the eigen-decomposition, the SVD, the truncated score ma-
trix 7, € RV** can be obtained by considering only the first k largest
singular values and their singular vectors:

Zr=XW, =UXVIW, = U, (7.15)

h
Where Y = diag(oy, -+ ,0%,0,- -+ ,0). (7.16)

* Now, using (7.15), the truncated data matrix reads
X, =Z2W =W =uswl =u s, vT. (7.17)

1X — Xl = ([UZVT —USZ VT
1U(Z — Z)VT2 (7.18)
= |2 —2Zk|l2 = okt1,

where || - ||2 is the induced matrix L?-norm.

out having to form the matrix X7 X. Computing the SVD is now the
standard way to carry out the PCA. See [27, 79].
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7.1.3. Explained variance

Note: Since we want to reduce the dimensionality of our dataset by com-
pressing it onto a new feature subspace, we only select the subset of the
eigenvectors (principal components) that contains most of the infor-
mation (variance). The eigenvalues define the magnitude of the
eigenvectors, so we have to sort the eigenvalues by decreasing magni-
tude; we are interested in the top k£ eigenvectors based on the values of
their corresponding eigenvalues.

Definition} 7.8. Let \; (=07) be eigenvalues of X' X: (X" X)v; = \jv;.
Define the explained variance ratio of each eigenvalue as
Ai

d
23:1 Aj

and cumulative explained variance as
k k d
cev(A) = Zew()\i) = Z >\i/ Z A, k=1,2,---,d (7.20)
i=1 i=1 J=1

Then, we may choose £ satisfying
cev(Ag—1) < e and cev(\;) > ¢, (7.21)

evr(\;) = ., i=1,2,--- .d, (7.19)

for a tolerance c. (The smallest & such that cev()\;) > ¢.)

o
®
)

o
o
)

—— cumulative explained variance
individual explained variance

Q
IS

Explained variance ratio

e
N

0.0

0 2 4 6 8 10 12 14
Principal component index

Figure 7.2: evr and cev for the wine dataset.
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7.2. Singular Value Decomposition

Here we will deal with the SVD in detail.

' Theorem | 7.9. (SVD Theorem). Let A € R™*" with m > n. Then we
can write

A=UXVT (7.22)

where U € R™*" and satisfies UTU = I, V € R"" and satisfies VIV = I,
and ¥ = diag(oy, 09, -+ ,0,), where

op>092> >0, 2>0.

A — U )y VT : (7.23)

where

U : m x n orthogonal (the left singular vectors of A.)
Y : n x n diagonal (the singular values of A.)
V' . n x n orthogonal (the right singular vectors of A.)

* For some r < n, the singular values may satisfy

g12022"'ZUC>U7«+1:"':%:0- (7.24)

-~

nonzero singular values

In this case, rank(A) = r.
e If m < n, the SVD is defined by considering A”.
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Proof. (of Theorem 7.9) Use induction on m and n: we assume that
the SV D exists for (m — 1) x (n — 1) matrices, and prove it for m x n. We
assume A # 0; otherwise we can take > = 0 and let U and V' be arbitrary
orthogonal matrices.

* The basic step occurs when n = 1 (m > n). We let A = UXVT with
U =A/||All2, = [||A]]s, V = 1.

* For the induction step, choose v so that
Ivll2 =1 and [|A]ls = [|Av]]z > 0.
e Let u = <Y which is a unit vector. Choose U, V such that
U=[u U eR™ and V =[v V] e R""

are orthogonal.

* Now, we write

T iy T AT
- - u e - | u Av u A‘{
vAv = [UT A[VV]_[UTAV UTAV]
Since
Av)T(Av)  ||Av]]3
uTAv:( = 2 — ||Av]|y = ||Al]s = o,
; T~ Tl 14Vl = 4l
U'Av = U'u||Av||; =0,
we have

T
v, [o 0 [1 0]fe 071 0O
Nt e o (Y R

or equivalently

=@l s)(ha]). e

Equation (7.25) is our desired decomposition. []
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7.2.1. Interpretation of the SVD

r-~~_- - -, - -~ -~ - - -/ - - - - -T-T-T-T-T-T-T- .- T T T - -TT T al
|
|

Algebraic interpretation of the SVD

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Let rank(A) = r. let the SVD of Abe A = U X VT, with

U: [ul u un]7
E:diag(alya%'“ 70n)’
V: [Vl Vo Vn]:

and o, be the smallest positive singular value. Since

A=UXV?T «— AV =UZVIV =UZ,

we have
AV = Alvi vy - vy = [Avi Avy - Avy]
. i
— [ul u, un] o (7,26)
L O_
— [0-1111 o, 0 O]
Therefore,
Av;=oju4, j=1,2,---,r
— T J JHgs 5 4l )
A=UXV @{Avj:()’ imrtl o (7.27)
Similarly, starting from AT =V X U7,
ATu; =ojv;, j=1,2,--- 7
T __ T J iVi, ] ) 4y )
A =VXU @{ATujzo, i—r+1-om (7.28)
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* (vj,07),j=1,2,---,r, are eigenvector-eigenvalue pairs of AT A.

ATAV]' = AT(O'lej) = U?Vj, ] = 1, 2, 000 o % (729)

So, the singular values play the role of eigenvalues.

¢ Similarly, we have

AATUj:A(O'jVj):O'2~Uj, ]:1,2, ,T. (730)

J

* Equation (7.29) gives how to find the singular values {s;} and the
right singular vectors V/, while (7.27) shows a way to compute the
left singular vectors U.

¢ (Dyadic decomposition) The matrix A € R"*" can be expressed as

A=) ouv]. (7.31)
j=1
When rank(A) =r < n,
A=) ouv]. (7.32)
j=1

This property has been utilized for various approximations and ap-
plications, e.g., by dropping singular vectors corresponding to small
singular values.
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'Geometric interpretation of the SVD!

-

The matrix A maps an orthonormal basis
B, = {V17V2,"‘ ;Vn}
of R" onto a new “scaled” orthogonal basis
By = {01111,02112, T ;Urur}
for a subspace of R™:
By = {vi,va, -+, v} A By = {111,000y, - -+ , 0.1, } (7.33)

Consider a unit sphere S" ! in R":

Then, Vx € S" 1,

X = T1V]1+TaVy+ -+ TpVy
AX = oyxiuy + osxouy + - - - + 0,20, (7.34)

= yiu; + yus+ -+ yu,,  (y; = o0jzy)

So, we have

Y = 0;T; < ZL"jzﬂ

O3
: e (7.35)
> 25 =1 (sphere) <= Z g_]Z = a < 1 (ellipsoid)

J j=1 J
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UXVT at a time. Assume for simplicity that A € R>*? and nonsingular. Let

[ 3 =27 T
A = . 2] =UXV
—0.8649 0.5019] [4.1306

0.5019 0.8649

Then, for x € S,

Ax =UsV'x =U (2(V'x))

0 0.9684

—0.7497 0.6618
0.6618 0.7497

Original Circle & Vectors

25 - - - - - 25 T
2t e 2+
15F e 150
1+ E 1+
05 4 05
- of 4 > of
0.5 4 051
Ak ] ak

2
I . I I I I 1

Vix — B(VTx)

B(VTx) = US(Vx)

In general,
o VT .81 5 §"~! (rotation in R")
* 3 :e; — oje; (scaling from S" ! to R")
e J:R" — R™ (rotation)
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7.2.2. Properties of the SVD

of A, with

Then,

and )

\

'Theorem|7.13. Let A € R™" with m > n. Let A = USV7 be the SVD

01220, >041="-=0,=0.
( rank(A) = r
Null(A) = Span{v,.1, - ,v,}
¢ Range(A) = Span{uy,---,u} (7.36)

7
§ : T

A = o;W;V;
=il

\

|| A]|2 = o1 (See Exercise 2.)

|| Al|% = o?+---+02 (See Exercise 3.)

min [Ax]]> = o, (m >n) (7.37)
20 ||x][ B '
mo(4) = Al ATl = =

( when m = n,& 3AY)

values

Then

'Theorem| 7.14. Let A € R™ ", m > n, rank(A) = n, with singular

o1 > 09> -0, > 0.

AT e =

I(ATA AT = o 7 58
AT e = o |
[|A(ATA)LAT|), = 1.

of A. Then

Definition}; 7.15. (AT A)"'A” is called the pseudoinverse of A, while
A(ATA)7! is called the pseudoinverse of A”. Let A = ULV be the SVD

(ATA)AT = yy1pT &L 4+ (7.39)
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'Theorem | 7.16. Let A € R™*" with rank(A) = r > 0. Let A= UXV” be
the SVD of A, with singular values

oL > >0 > 0.

Define, fork =1,--- ,r — 1,
k

A = Z ajujva (sum of rank-1 matrices).

j=1
Then, rank(A;) = k and
|A — Agll» = min{||A — B||s| rank(B) < k}

= Ok+1,

|4 A = min{A- BI} |rank(B) <k} 2
= 0/%+1+"'+03-
That is, of all matrices of rank < k, Ay, is closest to A.
Note: The matrix A, can be written as
Ay =UxV7, (7.41)
where ¥ = diag(oy, - ,0%,0,---,0). The pseudoinverse of A; reads
Al = Vvyiut, (7.42)
where
¥ =diag(1/oy, 1/09, --+, 10y, 0,---,0). (7.43)

ECorollaryjl 7.17. Suppose A € R™" has full rank; rank(A) = n. Let

,,,,,,,,,,,, o

o1 > --- > o0, be the singular values of A. Let B € R"*" satisfy
|A — Blls < op.
Then B also has full rank.
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* For A € R™*",
A=UsV! <= UTAV =%,

where U € R™*" and X,V € R™",

¢ Expand )
U — U=[U U] e R™"™  (orthogonal)
¥ o Y= e R™"

O

where O is an (m — n) x n zero matrix.
¢ Then,

UV =[U Uy VIi=UxvT = A (7.44)

mHE 0 m X n
mHE 0

)2 V.
nxn nHxn

12

V.
H D nHxn
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7.2.3. Computation of the SVD

For A € R™*", the procedure is as follows.
1. Form ATA (AT A — covariance matrix of A).

2. Find the eigen-decomposition of A7 A by orthogonalization process,
ie., A =diag(\, -+, \y),

ATA =VAVT,
where V =[v; --- v,]isorthogonal,ie., VIV = I.
3. Sort the eigenvalues according to their magnitude and let

0; = )\j, j=1,2,-~-,n.

4. Form the U matrix as follows,
! A ) =1,2
u;, = — V — LRI T.
J O-j R J ) <y )

If necessary, pick up the remaining columns of U so it is orthogonal.
(These additional columns must be in Null(AAT).)

5- A:UEVT: [ul SR ) PRI L'ln]dlag‘(o-17 70-7”707'.' ’0)

SN ...

””””” a

Lemma' 7.18. Let A € R"*" be symmetric. Then (a) all the eigenvalues

r
|
Lo o E

of A are real and (b) eigenvectors corresponding to distinct eigenvalues
are orthogonal.

Proof. See Exercise 4. 11
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12
‘Example 7.19. Find the SVD for A= | -2 1
”””””” 3 2
Solution.
14 6
T _
1. ATA = [ ; 9].

2. Solving det(ATA — \I) = 0 gives the eigenvalues of AT A
)\1 = 18 and )\2 = 5,

of which corresponding eigenvectors are

3 2 2 -
01[ ],02[ ].:>v VIS Vf”]
3. 01 = VM =V18 = 3V2, 05 = VX2 = V5. So
v _ V18 0
=10 5
7
1 % 11 ! @
_ 1 _ 13 | _ R R
4 ul—U—lAvl—\/—l—gA 2 —\/—1—8\/—1—3 —4 = V231
V13 13 _13
V234
4] 4
1 1 __123 11 \/76;5
UQ—U—2AV2:75A 3 :75\/—1—3 7 = \/_675
VI3 0 0
7 %
234 /65 - 3 2
5. A=USVT = | -4 L [ |VI8 01 Ve Ve
234 /65 0 6| | -2 3
_13 0 - V13 V13
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AT = ATATTAT = veTiuT,

/

1 2
when A= | -2 1
3 2
Solution. From Example 7.19, we have

7 4
234 /65 0 \/g _ 2 3
_13 0 V13 /13
234
Thus,
3. 2 1 0 7. 4 13
AU i G
13 V13 V5 V65 V65

O | =
| I |
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X X X X [ X X X
X X X X X X X
Phase 1 Phase 2
X X X X X X X
—_— —_—

X X X X X X

X X X X

| X X X X | I ] ] )
A B Y

Figure 7.3: A two-phase procedure for the SVD: A = UXV7T.

Algorithm | 7.21. (Golub and Reinsch, 1970) [26]. Let A € R™*",

* Phase 1: It constructs two finite sequences of Householder
transformations to find an upper bidiagonal matrix:

P,---PLAQ.---Q,—2 = B (7.45)

* Phase 2: It is to iteratively diagonalize B using the QR method.

Golub-Reinsch SVD algorithm

¢ It is extremely stable.

* Computational complexity:

— Computation of U, V, and £: 4m?n + 8mn? + 9n3.
— Computation of V and ¥: 4mn? + 8n3.

e Phases 1 & 2 take O(mn?) and O(n?) flops, respectively.
(when Phase 2 is done with O(n) iterations)

¢ Python: U,S,V = numpy.linalg.svd(A)
¢ Matlab/Maple: [U,S,V] = svd(A)
¢ Mathematica: {U,S,V} = SingularValueDecomposition[A]




7.2. Singular Value Decomposition 177

In the absence of round-off errors and uncertainties in the data, the SVD
reveals the rank of the matrix. Unfortunately the presence of errors makes
rank determination problematic. For example, consider

[1/3 1/3 2/37
2/3 2/3 4/3
A=11/3 2/3 3/3 (7.46)
2/5 2/5 4/5
3/5 1/5 4/5)
Obviously A is of rank 2, as its third column is the sum of the first two.
Matlab “svd" (with IEEE double precision) produces

o1 = 2.5987, o0y =0.3682, and o3 = 8.6614 x 107,

What is the rank of A, 2 or 3?2 What if 03 is in O(10713)?

For this reason we must introduce a threshold 7. Then we say that A
has numerical rank r if A has r singular values larger than 7T, that

is,
01209220, >T2>0,412>""" (7.47)

In Matlab

* Matlab has a “rank” command, which computes the numerical rank
of the matrix with a default threshold

T = 2max{m,n}e||Al| (7.48)

where ¢ is the unit round-off error.

e In Matlab, the unit round-off error can be found from the parameter

&« "

eps
eps = 27°% = 2.2204 x 1071°.

¢ For the matrix A in (7.46),
T=2-5-eps-2.5987 =5.7702 x 10~

and therefore rank (A)=2.

See Exercise 5.
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7.2.4. Application of the SVD to image compression

e A c R™"is a sum of rank-1 matrices (dyadic decomposition):

V:[Vla“'avn]a U:[U1,"‘,un],
- 4
A=UsVT =Y ouv], weR", v;eR" (7.49)
i=1
* The approximation
k
Ay =US VT =) o] (7.50)
i=1
is closest to A among matrices of rank< k, and
HA—AkHQ = Ok+1- (751)

* It only takes (m +n) - k words to store u; through u;, and o;v; through
o1V, from which we can reconstruct A,.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
|
|

|

peppers_SVD.m

1 | img = imread('Peppers.png'); [m,n,d]=size(img);
» | [U,S,V] = svd(reshape(im2double(img) ,m, []1));

s | hh---- select k <= p=min(m,n)
4 k = 20,
s | img k = U(:,1:k)*S(1:k,1:k)*V(:,1:k)";

¢ | img_k = reshape(img_k,m,n,d);

7 | figure, imshow(img_k)

The “Peppers” image is in [270, 270, 3] € R?70*810,
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Original (k = 270)

Peppers: Singular values

Singular Yalues

200 -

150 -

100

0 a0

Peppers: Storage: It requires (m + n) - k words.For example, when k = 50,

(m +n) -k = (270 + 810) - 50 = 54,000, (7.52)
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7.3. Linear Discriminant Analysis

Linear discriminant analysis is a method to find a linear combination
of features that characterizes or separates two or more classes of ob-
jects or events.

* The LDA is sometimes also called Fisher’s LDA. Fisher initially formu-
lated the LDA for two-class classification problems in 1936 [20], and
later generalized for multi-class problems by C. Radhakrishna Rao under
the assumption of equal class covariances and normally distributed
classes in 1948 [61].

* The LDA may be used as a linear classifier, or, more commonly, for
dimensionality reduction (§ 7.3.4) for a later classification.

* The general concept behind the LDA is very similar to PCA.!

LDA objective

* The LDA objective is to perform dimensionality reduction.
— So what? PCA does that, too! (2

e However, we want to preserve as much of the class discriminatory
information as possible.

— OK, this is new! 9

LDA
* Consider a pattern classification problem, where we have c classes.

* Suppose each class has N, samples in R?, where k = 1,2, -- ,c.
o Let &), = {x),x?) ... x("W} be the set of d-dimensional samples for
class k.

e Let X € RV be the data matrix, stacking all the samples from
all classes, such that each column represents a sample, where N =
2 N

* The LDA seeks to obtain a transformation of X to Z through projecting
the samples in X onto a hyperplane with dimension ¢ — 1.

ITn PCA, the main idea is to re-express the available dataset to extract the relevant information by re-
ducing the redundancy and to minimize the noise. While (unsupervised) PCA attempts to find the
orthogonal component axes of maximum variance in a dataset, the goal in the (supervised) LDA is to find
the feature subspace that optimizes class separability.
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7.3.1. Fisher’s LDA (classifier): two classes

Let us define a transformation of samples x onto a line [(c — 1)-space, for
c=2]
Z=wlx=w-X, (7.53)

where w € R? is a projection vector.

Of all the possible lines, we would like to select the one that maximizes the
separability of the scalars {z}.

* In order to find a good projection vector, we need to define a measure
of separation between the projections.

* The mean vector of each class in x and z feature space is

1 ~ 1 1 77 T
uk:mZx, uk:EZz:EZWX:Wuk, (7.54)

xEX xEX xEX

1.e., projecting x to z will lead to projecting the mean of x to the
mean of z.

* We could then choose the distance between the projected means
as our objective function:

T(w) = | — fia] = W7 (e — pa)- (7.55)

A the projected means is not a
x5 very good measure, since it
' does not take into account the
! sample distribution within the
--------- 1--- - classes.
| |

! ¢ The maximizer w* of (7.55) must
w7 | be parallel to (1, — p»):

* .
Figure 7.4: The x;-axis has a larger dis- w // (Nl - NQ);
tance between means, while the z,-axis

yields a better class separability. the projection to a parallel line of

(pt, — p) is not an optimal trans-
e However, the distance between| formation.
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Fisher’s LDA: The Key Idea

The solution proposed by Fisher is to maximize a function that rep-
resents the difference between the means, normalized by a measure
of the within-class variability (called the scatter).

* For each class k&, we define the scatter (an equivalent of the variance)

a8 5 = Z (z — )%, z=w'x (7.56)

XEX

* The quantity 5; measures the variability within class X}, after project-
ing it on the z-axis.
* Thus, 3% + 33 measures the variability within the two classes at hand

after projection; it is called the within-class scatter of the projected
samples.

¢ Fisher’s linear discriminant is defined as the linear function w’x
that maximizes the objective function:

~ ~ 2
w" = argmax J(w), where J(w) = % (7.57)
w 81 + 52

* Therefore, Fisher’s LDA searches for a projection where samples from
the same class are projected very close to each other; at the same time,
the projected means are as farther apart as possible.

Figure 7.5: Fisher’s LDA.
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7.3.2. Fisher’s LDA: the optimum projection

Rewrite the Fisher’s objective function:

(11 — fi2)*
. 7.58
J(w) Tr8 ( )
where
R I ELUT I SO LY,
k
xeXy eX},

* In order to express J(w) as an explicit function of w, we first define a
measure of the scatter in the feature space x:

Sw=S14 8, for Sp=> (x—pm)x—pm), (7.59)

XEX)

where S,, € R% is called the within-class scatter matrix of samples x,
while S is the covariance matrix of class .

Then, the scatter of the projection z can then be expressed as

Sio= D) G-m) =) (wix—wi)

XEX) XEX)
= Z WT(X — ) (x — Mk)TW (7.60)
XEX
= wT< Z (x — py)(x — uk)T>w = w!S,w.
xXEX)

Thus, the denominator of the objective function gives
3? +§’§ = w Siw+w. Sw = w! S,w =: §w, (7.61)

where S, is the within-class scatter of projected samples z.

e Similarly, the difference between the projected means (in z-space) can be
expressed in terms of the means in the original feature space (x-space).

(o — ,172)2 = (WTH1 - WTMQ)Q = WTSNl — o) (g — ILQ)T/W
—S, (7.62)

= wiSw =: S,
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dxd jg called the between-class scatter

matrix of the original samples x, while S, is the between-class scatter
of the projected samples z.

where the rank-one matrix S, € R

* Since S, is the outer product of two vectors, rank(S;) < 1.

We can finally express the Fisher criterion in terms of S, and S; as

(1 — fi2)? _ wlSyw
35+ 353 wlS,w

(7.63)

J(w) =

Hence, J(w) is a measure of the difference between class means (en-
coded in the between-class scatter matrix), normalized by a measure of
the within-class scatter matrix.

* To find the maximum of 7 (w), we differentiate it with respect to w and
equate to zero. Applying some algebra leads (Exercise 6)

S iSw = J(w)w. (7.64)

Note that S!S, is a rank-one matrix.

Equation (7.64) is a generalized eigenvalue problem:
SISy W =AW <= S, w = A S, w; (7.65)

the maximizer w* of 7 (w) is the eigenvector associated with the nonzero
eigenvalue \* = 7(w).

‘Summary ' 7.22. Finding the eigenvector of S 1S, associated with the

,,,,,,,,,,,, l

largest eigenvalue yields

w! Syw

(7.66)

*
w = argmax J(w) = arg max )
Sl (w) e wl'S,w

This is known as Fisher’s linear discriminant analysis, although it is
not a discriminant but a specific choice of direction for the projection of the
data down to one dimension.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
|
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .}

We will compute the Linear Discriminant projection for the following two-
dimensional dataset of two classes (c = 2).

lda_Fisher.m

1 m=2; n=5;
2
3 X1=[2,3; 4,3; 2,1; 3,4; 5,4];
4 X2=[7,4; 6,8; 7,6; 8,9; 10,9];
5
6 Mul = mean(X1)'; % Mul = s
7 Mu2 = mean(X2)'; % Mu2 = s
8
9 | 81 = cov(X1,0)*n;
10 S2 = cov(X2,0)*n;
1 Sw = S1+S2; % Sw = [20,13; 13,31]
12
13 Sb = (Mul-Mu2)*(Mul-Mu2)'; % Sb = [19.36,18.48; 18.48,17.64]
14
15 invSw_Sb = inv(Sw)*Sb;
16 [V,L] = eig(invSw_Sb); % Vi = [ 0.9503,0.3113]; L1 = 1.0476
17 % V2 = [-0.6905,0.7234]; L2 = 0.0000
10 10
9l o o o o
sl o
sl o
71
6 o
6| o
N o5t N g o ) o —
at o o o © ? e
3l o o 2 ”—’,g—' V1
\Q O o -8
2 Vz‘\ ‘.—”Q—
o .
1} o .
h
0 ' ' ' 2 ' ' ‘ ‘ '
0 2 4 6 8 10 2 0 2 4 6 8 10 12
x1 x1

Figure 7.6: A synthetic dataset and Fisher’s LDA projection.
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7.3.3. LDA for Multiple Classes

* Now, we have c-classes instead of just two.

* We are now seeking (c—1) projections 21, 29, - - , 2.—1] by means of (c—1)
projection vectors w;, € RY.
* Let W = [wy|ws|---|W._1], a collection of column vectors, such that
g=wix=z=WIxc R (7.67)

e If we have N sample (column) vectors, we can stack them into one ma-
trix as follows.
Z=wrX, (7.68)

where X € RN 17 ¢ R¥x(c=1) gnd Z € RN,

Recall: For the two classes case, the within-class scatter matrix was
computed as

This can be generalized in the c-classes case as:
Sw=> Sk Sp= > (x—m)x—m), (7.69)
k=1 XEX

where p;, = Nik > xex, X, where Nj is the number of data samples in class
X, and S, € R4,

Recall: For the two classes case, the between-class scatter matrix

was computed as
Sy = (k1 — p) (11 — p12)"

For c-classes case, we will measure the between-class scatter matrix
with respect to the mean of all classes as follows:

‘ 1
Sp=Y  Nelpy — ), — )", p= ~ > X, (7.70)
k=1 Vx

where rank(S5;) = c — 1.
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Definition}; 7.23. As an analogue to (7.66), we may define the LDA
optimization, for c classes case, as follows.

T
W* = arg max J (W) = arg max W oW (7.71)

w WIS, W'

Recall: For two-classes case, when we set 8%—&7) = 0, the optimization
problem is reduced to the eigenvalue problem

S 1S, w* = \*w*, where \* = J(w").

For c-classes case, we have (c — 1) projection vectors. Hence the eigenvalue
problem can be generalized to the c-classes case:

S Swr=Nwr, A =JWwp), k=12 ,c—1 (7.72)

Thus, it can be shown that the optimal projection matrix
W* = [whwi|---|w'_|] € R&x(D (7.73)

is the one whose columns are the eigenvectors corresponding to the
eigenvalues of the following generalized eigenvalue problem:

STLS, W = AW, A" = [\, -+, N, (7.74)

where S 1S5, € R™*? and (-) denotes the pointwise product.




188 Chapter 7. Feature Extraction: Data Compression

,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
|

Illustration - 3 classes

-
|
g -

* Let us generate a dataset for each class to illustrate the LDA transfor-
mation.
* For each class:

— Use the random number generator to generate a uniform stream of
500 samples that follows ¢/(0, 1).

— Using the Box-Muller approach, convert the generated uniform stream
to M(0,1).

— Then use the method of eigenvalues and eigenvectors to manip-
ulate the standard normal to have the required mean vector and
covariance matrix .

- Estimate the mean and covariance matrix of the resulted dataset.

20 T T T T T

—y
o
T

w
T

x_2 - the second feature

L
|
0 5 10
x_1 - the first feature

-10 -5 15 20

Figure 7.7: Generated and manipulated dataset, for 3 classes.
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lda_c3.m

1 close all;
2 try, pkg load statistics; end 7% for octave

4 %% uniform stream
5 | U = rand(2,1000); ul = U(:,1:2:end); u2 = U(:,2:2:end);

7 %% Box-Muller method to convert to N(0,1)

s | X = sqrt((-2) .xlog(ul)).*(cos(2xpi.*u2)); % 2 x 500
9 clear ul u2 U;

10
11 %% manipulate for required Mean and Cov
12 Mu = [5;5];

13
14 | Mul= Mu +[-3;7]; Covl =[5 -1; -3 3];
15 | X1 = denormalize(X,Mul,Covl);

16 Mu2= Mu +[-3;-4]; Cov2 =[4 0; 0 4];
17 | X2 = denormalize(X,Mu2,Cov2);

18 Mu3= Mu +[7; 5]; Cov3d =[4 1; 3 3];
19 X3 = denormalize(X,Mu3,Cov3);

20
21 | %4Begin the comptation of the LDA Projection Vectors
22 % estimate mean and covariance

23 N1 = size(X1,2); N2 size(X2,2); N3
2¢ | Mul = mean(X1')'; Mu2 = mean(X2')'; Mu3
25 Mu = (Mul+Mu2+Mu3)/3.;

26
27 % within-class scatter matrix

28 S1 = cov(X1'); S2 = cov(X2'); S3 = cov(X3');
29 Sw = S1+S2+S3;

30
31 % between-class scatter matrix

32 Sbl = N1 * (Mul-Mu)*(Mul-Mu)'; Sb2 = N2 * (Mu2-Mu)*(Mu2-Mu)';
33 | Sb3 = N3 * (Mu3-Mu)*(Mu3-Mu)';

34 Sb = Sb1+Sb2+Sb3;

35
36 % computing the LDA projection

37 | invSw_Sb = inv(Sw)*Sb; [V,D] = eig(invSw_Sb);

38 wl =V(,1); w2 =V(:,2);

39 if D(1,1)<D(2,2), wl = V(:,2); w2 = V(:,1); end

40

size(X3,2);
mean(X3')';

41 lda_c3_visualize;

Figure 7.8: 1da_c3.m
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denormalize.m

function Xnew = denormalize(X,Mu,Cov)
% it manipulates data samples in N(0,1) to something else.

[V,D] = eig(Cov); VsD = Vxsqrt(D);

Xnew = zeros(size(X));
for j=1:size(X,2)

Xnew(:,j)= VsD * X(:,3);
end

%Now, add "replicated and tiled Mu"
Xnew = Xnew +repmat(Mu,1,size(Xnew,2));

lda_c3_visualize.m

figure, hold on; axis([-10 20 -5 20]1);
xlabel('x_1 - the first feature', 'fontsize',12);
ylabel('x_2 - the second feature','fontsize',12);
plot(X1(1,:)',X1(2,:)"', 'ro', 'markersize',4,"linewidth",2)
plot(X2(1,:)',X2(2,:)"','g+"', 'markersize',4,"linewidth",2)
plot(X3(1,:)',X3(2,:)','bd', 'markersize',4,"linewidth",2)

hold off

print -dpng 'LDA_c3_Data.png'

figure, hold on; axis([-10 20 -5 20]1);
xlabel('x_1 - the first feature', 'fontsize',12);
ylabel('x_2 - the second feature','fontsize',12);
plot(X1(1,:)',X1(2,:)"', 'ro', 'markersize',4,"linewidth",2)
plot(X2(1,:)"',X2(2,:)"','g+", 'markersize’',4,"linewidth",2)
plot(X3(1,:)',X3(2,:)"','bd', 'markersize',4,"linewidth",2)

plot (Mul(1) ,Mul(2),'c.', 'markersize',20)

plot (Mu2(1) ,Mu2(2), 'm.', 'markersize',20)

plot (Mu3(1) ,Mu3(2),'r."', 'markersize',20)

plot (Mu(1) ,Mu(2), 'k*', 'markersize',15,"linewidth",3)
text (Mu(1)+0.5,Mu(2)-0.5, '\mu', 'fontsize',18)

t = -5:20; linel_x = t*wl(1); linel_y = t*wl(2);
plot(linel_x,linel_y, 'k-',"linewidth",3);
t = -5:10; line2_x = t*w2(1); line2_y = t*w2(2);
plot(line2_x,line2_y, 'm--',"linewidth",3);

hold off

print -dpng 'LDA_c3_Data_projection.png'

J#Project the samples through wi
wk = wl;
zl_wk = wk'*X1l; z2_wk = wk'*X2; z3_wk = wk'*X3;
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z1l_wk_Mu = mean(zl_wk); zl_wk_sigma = std(zl_wk);
z1_wk_pdf = mvnpdf(zl_wk',zl_wk_Mu,zl_wk_sigma);

z2_wk_Mu = mean(z2_wk); z2_wk_sigma = std(z2_wk);
z2_wk_pdf = mvnpdf (z2_wk',z2_wk_Mu,z2_wk_sigma);

z3_wk_Mu = mean(z3_wk); z3_wk_sigma = std(z3_wk);
z3_wk_pdf = mvnpdf(z3_wk',z3_wk_Mu,z3_wk_sigma);

figure, plot(zl_wk,zl_wk_pdf,'ro',z2_wk,z2_wk_pdf,'g+',...
z3_wk,z3_wk_pdf, 'bd')

xlabel('z','fontsize',12); ylabel('p(z|wl)','fontsize',12);

print -dpng 'LDA_c3_Xwl_pdf.png'

%Project the samples through w2
wk = w2;
zl_wk = wk'*xX1; z2_wk = wk'*X2; z3_wk = wk'x*X3;

zl_wk_Mu = mean(zl_wk); zl_wk_sigma = std(zl_wk);
z1_wk_pdf = mvnpdf(zl_wk',zl_wk_Mu,zl_wk_sigma);

z2_wk_Mu = mean(z2_wk); z2_wk_sigma = std(z2_wk);
z2_wk_pdf = mvnpdf(z2_wk',z2_wk_Mu,z2_wk_sigma);

z3_wk_Mu = mean(z3_wk); z3_wk_sigma = std(z3_wk);
z3_wk_pdf = mvnpdf (z3_wk',z3_wk_Mu,z3_wk_sigma);

figure, plot(zl_wk,zl wk_pdf,'ro',z2_wk,z2_wk_pdf,'g+',...
z3_wk,z3_wk_pdf, 'bd')

xlabel('z', 'fontsize',12); ylabel('p(z|w2)', 'fontsize',12);

print -dpng 'LDA_c3_Xw2_pdf.png'

191
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x_2 - the second feature

-10 - 15 20
x_1 - the first feature

Figure 7.9: wi (solid line in black) and w} (dashed line in magenta).

o wi=1[0.85395,0.52036]7, w} = [—0.62899,0.77742]7.

* Corresponding eigenvalues read

A1 =3991.2, A\ =1727.7.
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Figure 7.10: Classes PDF, along the first projection vector wj; A\; = 3991.2.
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Figure 7.11: Classes PDF, along the second projection vector wi; \, = 1727.7.

Apparently, the projection vector that has the highest eigenvalue pro-
vides higher discrimination power between classes.
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7.3.4. The LDA: Dimensionality Reduction

Let X € RYV*? be the data matrix, in which each row represents a sam-
ple.

We summarize the main steps that are required to perform the LDA for
dimensionality reduction.
1. Standardize the d-dimensional dataset (d is the number of features).
2. For each class j, compute the d-dimensional mean vector p;.

3. Construct the within-class scatter matrix S, (7.69) and the
between-class scatter matrix S, (7.70).

4. Compute the eigenvectors and corresponding eigenvalues of the ma-
trix S 1S, (7.72).

5. Sort the eigenvalues by decreasing order to rank the corresponding
eigenvectors.

6. Choose the k eigenvectors that correspond to the k£ largest eigenvalues
to construct a transformation matrix

W = [wy|wo| - |wy] € R, (7.75)

the eigenvectors are the columns of this matrix.

7. Project the samples onto a new feature subspace: X — 7 := XW.

e rank(S,;'S,) < c— 1; we must have k < ¢ — 1.

* The projected feature Z;; is xV) - w; in the projected coordinates and
(x . w;)w; in the original coordinates.
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* The LDA produces at most (c — 1) feature projections.

- If the classification error estimates establish that more features
are needed, some other method must be employed to provide those
additional features.

* The LDA is a parametric method, since it assumes unimodal Gaus-
sian likelihoods.

— If the distributions are significantly non-Gaussian, the LDA pro-
jections will not be able to preserve any complex structure of the
data, which may be needed for classification.

* The LDA will fail when the discriminatory information is not in the
mean but rather in the variance of the data.
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'LDA vs. PCA|
: T T
i ° Class 1 _
. Class 2

mmm= LDA direction
' =1 PCA direction

X_2 - the second feature
W

-10 5 0 5 10 15
Xx_1 - the first feature

Figure 7.12: PCA vs. LDA.

@ The (supervised) LDA classifier must work better than the (unsuper-
vised) PCA, for datasets in Figures 7.9 and 7.12.

Recall: Fisher’s LDA was generalized under the assumption of equal class
covariances and normally distributed classes.

9 However, even if one or more of those assumptions are (slightly) violated,
the LDA for dimensionality reduction can still work reasonably well.
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7.4. Kernel Principal Component Analysis

The kernel principal component analysis (kernel PCA) [70] is an ex-
tension of the PCA using kernel techniques and performing the origi-
nally linear operations of the PCA in a kernel Hilbert space.

Recall: (PCA). Consider a data matrix X € RV*%
o each of the NV rows represents a different data point,
o each of the d columns gives a particular kind of feature, and
o each column has zero empirical mean (e.g., after standardization).

* The goal of the standard PCA is to find an orthogonal weight matrix

Wi € R™* such that
Z=XW., k<d, (7.76)

where 7, € RV** is call the truncated score matrix and 7, = ~7.
Columns of Z represent the principal components of X.

* (Claim 7.3, p. 160). The transformation matrix W, turns out to be the
collection of normalized eigenvectors of X7 X:

Wi = [wiwa| - [wi], (XTX)w; = \w;, wiw, =0, (7.77)

where \; > Xy > --- > X\, > 0.
¢ (Remark 7.4, p.160). The matrix Z, € RY** is scaled eigenvectors of
XX
Zr = [VawmV o] [Vaew), (XXT)w; = \uy, ulu; =5
(7.78)
* A data (row) vector x (new or old) is transformed to a k-
dimensional row vector of principal components

z = xW, € R>¥, (7.79)

* (Remark 7.5, p.161). Let X = U VT be the SVD of X, where
¥ = diag(oy,09,--- ,0q), 01 >03>--->042>0.

Then,

VEW; of=), j=12,--.d,

Zk = [0‘1 111|O'2 112| s ‘O'k U.k].

(7.80)
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7.4.1. Principal components of the kernel PCA

Note: Let C = % XTX, the covariance matrix of X. Then,

N N
1 N T 1 L
_ E i) < (%) dxd I E : (),.(2)
C = N 2 X( )X( - R s C]k = N £ ZE’] l’k . (781)

Here, we consider x(/) as a column vector (when standing alone), while it
lies in X as a row.

* The kernel PCA is a generalization of the PCA, where the dataset X
is transformed into a higher dimensional space (by creating non-
linear combinations of the original features):

o X e RV & (X)) e RV, d < p, (7.82)

and the covariance matrix is computed via outer products between
such expanded samples:

N
= %Z Sx)p(x ) = LX) H(X) € RV, (7.83)

* To obtain the eigenvectors — the principal components — from the
covariance matrix, we should solve the eigenvalue problem:

Cv = \v. (7.84)
e Assume (7.84) is solved.
— Let,for \y >\ > - 2> N> - >\, >0,
Vi = [vi|va|--- [vi] €ERP** | Cvj = \jvy, vivj =0y (7.85)

— Then, the score matrix Z; (principal components) for the ker-

1 PCA read
ne reads Ty = $(X)Vi € RV (7.86)

which is an analogue to (7.76).

However, it is computationally expensive or impossible to solve the
eigenvalue problem (7.84), when p is large or infinity.
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expressed as hnear combination of data points:

N
vV = Z o gb(x(i)). (7.87)
i=1

Proof. Since C'v = \v, we get

~ Z o(x Ty = v
and therefore

V= Z o(xo(x)v = — Z[sb(x(“) V] o(x), (7.88)

where ¢(x() - v is a scalar and «; := (¢(x?) - v)/(AN). O

Note:
* The above claim means that all eigenvectors v with A # 0 lie in the
span of ¢(xV), - , 6(x(M).

* Thus, finding the eigenvectors in (7.84) is equivalent to finding the
coefficients a = (ay, ag, -+, ay)?.
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,,,,,,,,,,,,,,,,, -
|

How to find o

-
|
U 4

* Let Cv; = A\jv; with \; # 0. Then, (7.87) can be written as

N
vi=> ayo(x) = ¢(X) o (7.89)
(=1

By substituting this back into the equation and using (7.83), we get
1
Cvj=Av; = N¢(X)T¢(X)¢(X)Taj = 0(X)" ey (7.90)

and therefore
%W( )o(X) (X)D(X) e = A ¢(X)p(X) ;. (7.91)

Let K be the similarity (kernel) matrix:

K 2L ¢(X)p(X)T € RV, (7.92)

Then, (7.91) can be rewritten as
K’aj = (N)) Kay;. (7.93)

* We can remove a factor of K from both sides of the above equation:®
Kaj = ,ujaj s ,LL]' = N/\] (794)

which implies that o; are eigenvectors of K.

It should be noticed that o; are analogues of u;, where X =
Uxv7.

%This will only affects the eigenvectors with zero eigenvalues, which will not be a principle component
anyway.

Note: There is a normalization condition for the o; vectors:
Vil =1 = lleyll = 1/ /.
1 = vivi= (X)) o(X) aj = o] $(X)p(X) ;=789
= ajKa; = aj (i) = py [layll? < (7.99)

(7.95)
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7.4.2. Computation of the kernel PCA

trix K be given as

7

* Then, referring (7.78) derived for the standard PCA, we may conclude
that the k principal components for the kernel PCA are

Ay, = [Vioa || - - - |Viwog] € RYF, (7.97)

¢ It follows from (7.86), (7.89), and (7.95)-(7.96) that for a new point x,
its projection onto the principal components is:

VT PP PN SR P
Zj QS(X) Vj \//TJ¢(X) ;a€j¢(x ) \//Tjgz:;&@gb()() ¢(X )
N
= \/%_jz:ozgle(x,X(@) = \/LM_jIC(x,X)Taj.
=1

(7.98)
That is, due to (7.95) and (7.96), when v; is expressed in terms of o,
it must be scaled by 1/, /11;.

r--- -~ -~-~-~---=--"-"-" - - -" " —"—" " - " -~ " "~ -~"~" "~ " "~ " Z-“T """ - - °-"°-"=—°=°-°-7 al
| |

Construction of the kernel matrix K

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* The kernel trick is to avoid calculating the pairwise dot products of
the transformed samples ¢(x) explicitly by using a kernel function.

¢ For a selected kernel function /C,

K(x®, xD)  Ko(xD, x@))

IC(X(Q),X(I)) IC(X(Q),X(Q)) c RVXN (7.99)

K™ x@) K™, x@) ... KxW, xM)

where K is called the kernel function.®

%As for nonlinear SVM, the most commonly used kernels are the polynomial kernel, the hyperbolic
tangent (sigmoid) kernel, and the Gaussian Radial Basis Function (RBF) kernel. See (5.57)-(5.60), p. 126.
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* In general, ¢(x¥) may not be zero mean.

e Thus K = ¢(X)¢(X)? would better be normalized before start finding
its eigenvectors and eigenvalues.

Centered features:

N
3x) = p(xM) — %Z sx™), Vi, (7.100)

[
H
=y
¢
(@]
o
=
-
D
[¢2]

)
o
-]
(ol
[y
=]

(0)]
~
[¢"]
]
=]
e
[
-
0]

k
N N
1 : (7.101)
i k k
Z;C(X( ) xW)) — ~ Z;C(X( ), x)

_ (), x0)
k=1 k=1
1 N
—I—m Z K(x® x)
kl=1

¢ In a matrix form

K=K-K1, —1,K+1, K1 (7.102)

1/N?

where 1, is an N x N matrix where all entries are equal to 1/N.
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¢ Pick a kernel function K.

For data X € RV*? construct the kernel matrix

K = [KxD, x0)] e RNV, (7.103)

Normalize the kernel matrix K:

~

K=K-K1, -1, K+1, K1, .. (7.104)

Solve an eigenvalue problem:

I?aj = ,ujaj, a-Taj = (5” (7105)

7

Then, the k£ principal components for the kernel PCA are
A = [pion |poas| - - - |urog] € RM>F k< N. (7.106)

For a data point x (new or old), we can represent it as

N N

5 = ¢(x)v; = ¢x)" ) ayo(x) = Y aukx,x), j=12-- k
=1 =1

(7.107)

Note: Formulas in (7.106)-(7.107) are alternatives of (7.97)-(7.98).

*******************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* With an appropriate choice of kernel function, the kernel PCA can give
a good re-encoding of the data that lies along a nonlinear manifold.

* The kernel matrix is in (N x N)-dimensions, so the kernel PCA will
have difficulties when we have lots of data points.
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Exercises for Chapter 7

7.1. Read pp. 145-158, Python Machine Learning, 3rd Ed., about the PCA.

(a) Find the optimal number of components k* which produces the best classifica-
tion accuracy (for logistic regression), by experimenting the example code with
n_components = 1,2, ,13.

(b) What is the corresponding cumulative explained variance?

7.2. Let A € R™*". Prove that ||A||; = o1, the largest singular value of A. Hint: Use the

following
[Avila  or||ul]

[[v1]2 N [[v1ll2

and arguments around Equations (7.34) and (7.35) for the opposite directional in-
equality.

=01 = ||All2 > 01

7.3. Recall that the Frobenius matrix norm is defined by

||A||F: (ZZ|aij|2>1/27 AGRmxn'

i=1 j=1

Show that ||A||r = (07 + - - + 02)'/2, where o, are nonzero singular values of A. Hint:
You may use the norm-preserving property of orthogonal matrices. That is, if U is
orthogonal, then ||UB||s = ||B||2 and ||UB||r = || B||F-

7.4. Prove Lemma 7.18. Hint: For (b), let Av;, = \;v;,i = 1,2, and \; # ). Then

(A1vy) - ve = (Avy) - v = vy - (Avy) = vy - (Agva).

J/

~
.- A is symmetric

For (a), you may use a similar argument, but with the dot product being defined for
complex values, i.e.,

where V is the complex conjugate of v.
7.5. Use Matlab to generate a random matrix A € R®*% with rank 4. For example,

A = randn(8,4);

A(:,5:6) = A(:,1:2)+A(:,3:4);
[Q,R] = qr(randn(6));

A = AxQ;

(a) Print out A on your computer screen. Can you tell by looking if it has (numerical)
rank 47?

(b) Use Matlab’s “svd" command to obtain the singular values of A. How many are
“large?" How many are “tiny?" (You may use the command “format short e" to get
a more accurate view of the singular values.)

(c) Use Matlab’s “rank" command to confirm that the numerical rank is 4.
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(d) Use the “rank" command with a small enough threshold that it returns the value
6. (Type “help rank" for information about how to do this.)

Verify (7.64). Hint: Use the quotient rule for 8%—5:” and equate the numerator to zero.

Try to understand the kernel PCA more deeply by experimenting pp. 175-188, Python
Machine Learning, 3rd Ed.. Its implementation is slightly different from (but equiv-
alent to) Summary 7.27.

(a) Modify the code, following Summary 7.27, and test if it works as expected as in
Python Machine Learning, 3rd Ed..

(b) The datasets considered are transformed via the Gaussian radial basis function
(RBF) kernel only. What happens if you use the following kernels?

K1 (x®,x0)) = (a; + b1x) - x0))? (polynomial of degree up to 2)
ICo(xW, %) = tanh(ay + byx@ -x))  (sigmoid)

Can you find a; and b;, i = 1, 2, appropriately?
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CHAPTER 8

Cluster Analysis

Cluster analysis or clustering is the task of finding groups of objects
such that the objects in a group will be similar (or related) to one another

and different from (or unrelated to) the objects in other groups. It is a main
task of exploratory data mining, and a common technique for statisti-
cal data analysis, used in many fields, including machine learning, pat-
tern recognition, image analysis, information retrieval, bioinformatics, data

compression, and computer graphics.

and Kroeber in 1932 [16], introduced to psychology by Zubin in 1938
[84] and Robert Tryon in 1939 [76], and famously used by Cattell begin-
ning in 1943 [11] for trait theory classification in personality psychol-

ogy.

Contents of Chapter 8

8.1. Basics for Cluster Analysis. . . . . . . . . . . . . . e 208
8.2. K-Means and K-Medoids Clustering . . . . . ... ... . ... ... ... ...... 219
8.3. Hierarchical Clustering . . . . . . . . . . . . . . . . . e 232
8.4. DBSCAN: Density-based Clustering . . . ... ... ... ... ... ........... 239
8.5. Cluster Validation . . . . . . . . . . . . e 244
8.6. Self-Organizing Maps . . . . . . . . . . . . e e 255
Exercises for Chapter 8 . . . . . . . . . . ... 268
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8.1. Basics for Cluster Analysis

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized

|
|
-

Applications of Cluster Analysis

* Understanding

— group related documents or browsings
— group genes/proteins that have similar functionality, or
— group stocks with similar price fluctuations

e Summarization
— reduce the size of large data sets

,,,,,,,,,,,,,,,,,,,,,,,,, ~
|
|

-

* Supervised classification — Uses class label information

* Simple segmentation — Dividing students into different registration
groups alphabetically, by last name

* Results of a query — Groupings are a result of an external specification

Clustering uses only the data (unsupervised learning):
to discover hidden structures in data
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8.1.1. Quality of clustering

* A good clustering method will produce high quality clusters with
— high intra-class similarity
— low inter-class similarity

* The quality of a clustering result depends on both the similarity
measure and its implementation

* The quality of a clustering method is also measured by its ability to
discover some or all of the hidden patterns

***********************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* Dissimilarity/Similarity/Proximity metric: Similarity is ex-
pressed in terms of a distance function d(i, j)
* The definitions of distance functions are usually very different for

interval-scaled, boolean, categorical, ordinal ratio, and vector vari-
ables.

* There is a separate “quality” function that measures the “goodness” of
a cluster.

* Weighted measures: Weights should be associated with different vari-
ables based on applications and data semantics.

* It is hard to define “similar enough” or “good enough”
- the answer is typically highly subjective
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*************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Figure 8.2: How many clusters?
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Figure 8.5: Six clusters.
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**********************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* Distances are normally used to measure the similarity or dissimilar-
ity between two data objects

* Some popular ones include: Minkowski distance
d(i, §) = llxi = Xgllp = (Jzaa — zal” + w2 — 20l - |wia — wjal?)?, (8.1)
where x;, x; € R, two d-dimensional data objects.

— When p = 1, it is Manhattan distance
— When p = 2, it is Euclidean distance

® Other Distances: Also, one can use weighted distance, parametric
Pearson product moment correlation, or other dissimilarity measures

® Various similarity measures have been studied for
— Binary variables
— Nominal variables & ordinal variables
— Ratio-scaled variables
— Variables of mixed types
— Vector objects




212 Chapter 8. Cluster Analysis

8.1.2. Types of clusters

* Center-based clusters
* Contiguity/connectivity-based clusters
* Density-based clusters

* Conceptual clusters

Note: (Well-separated clusters). A cluster is a set of objects such that
an object in a cluster is closer (more similar) to every/some of points
in the cluster, than any points not in the cluster.

,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
|

Center-based Clusters

r
|
L e e e e e e e e e e e e e = -

* The center of a cluster is often

- a centroid, the average of all the points in the cluster, or
- a medoid, the most representative point of a cluster.

* A clusteris a set of objects such that an object in a cluster is closer (more
similar) to the “center” of a cluster, than to the center of any other

clusters.

Figure 8.6: Well-separated, 4 center-based clusters.
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* Contiguous cluster (nearest neighbor or transitive)

® A cluster is a set of points such that a point in a cluster is closer (or
more similar) to one or more other points in the cluster, than to any
points not in the cluster.

P
/o
\ ! ® -0
", §
N\
et

Figure 8.7: 8 contiguous clusters.

,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
|
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

* A cluster is a dense region of points, which is separated by low-density
regions, from other regions of high density.

* Used when the clusters are irregular or intertwined, and when noise

-

Figure 8.8: 6 density-based clusters.
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LI A
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'Conceptual Clusters

b e e e e e e f e m e — - E

* Points in a cluster share some general property.

— Conceptual clusters are hard to detect, because they are often none
of the center-based, contiguity-based, or density-based.

— Points in the intersection of the circles belong to both.

* Find clusters that minimize or maximize an objective function.

* Enumerate all possible ways of dividing the points into clusters and
evaluate the “goodness” of each potential set of clusters by using the
given objective function. (NP-Hard)

e Can have global or local objectives. Typically,

- Partitional clustering algorithms have global objectives

- Hierarchical clustering algorithms have local objectives
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
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Problem Types

e P (Polynomial Time): Problems which are solvable in polyno-
mial time (when running on a deterministic Turing machine?).

* NP (Non-deterministic Polynomial Time): Decision problems
which can be verified in polynomial time.

e NP-Hard: These are at least as hard as the hardest problems in
NP, in both solution and verification.

e NP-Complete: These are the problems which are both NP and NP-
Hard.

%A Turing machine is a theoretical machine that manipulates symbols on a strip of tape according to
a table of rules. A deterministic Turing machine is a theoretical machine, used in thought experiments
to examine the abilities and limitations of algorithms. In a deterministic Turing machine, the set of
rules impose at most one action to be performed for any given situation. In a nondeterministic Turing
machine, it may have a set of rules that prescribes more than one action for a given situation [13].

Problem Type | Verifiable in P-time | Solvable in P-time
P Yes Yes

NP Yes Yes or No
NP-Complete Yes Unknown
NP-Hard Yes or No Unknown

Quesiton. P = NP? (P versus NP problem)

® This one is the most famous problem in computer science, and one
of the most important outstanding questions in the mathematical
sciences.

* In fact, the Clay Institute is offering one million dollars for a solu-
tion to the problem.

— It’s clear that P is a subset of NP.

— The open question is whether or not NP problems have deter-
ministic polynomial time solutions.
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8.1.3. Types of clustering and Objective functions

¢ Partitional clustering
* Hierarchical clustering (agglomerative; divisive)
* Density-based clustering (DBSCAN)

r-- -~ -~ -~ .-~ ‘.-~ ~"T~"T"T—_“~" " - -~~~ ~"~-"=7/=7°7 "
|
|

'Partitional Clustering

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Divide data objects into non-overlapping subsets (clusters) such that
each data object is in exactly one subset

° ® x/ ¢ ® j/ \\“‘“«L _ /
[ ® /
I|
\ -
® e
T @ -
T ~
o / \
{ o \'\I
® ® |
] ® /

|"\
’ e 4

Figure 8.10: Original points & A partitional clustering

Examples are

* K-Means, Bisecting K-Means
¢ K-Medoids (PAM: partitioning around medoids)
e CLARA, CLARANS (Sampling-based PAMs)
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

e Exclusive (hard) vs. Non-exclusive (soft)

— In non-exclusive clusterings, points may belong to multiple clus-
ters.

* Fuzzy vs. Non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with some
membership weight between 0 and 1

— Membership weights must sum to 1

— Probabilistic clustering has similar characteristics
¢ Partial vs. Complete

— In some cases, we only want to cluster some of the data
* Homogeneous vs. Heterogeneous

— Cluster of widely different sizes, shapes, and densities
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¢ Typically used in partitional clustering

— K-Means minimizes the Sum of Squared Errors (SSE):

K
SSE=> "> lx—ml3, (8.2)

i=1 xeC;

where x is a data point in cluster C; and p; is the center for cluster
C; as the mean of all points in the cluster.

* Mixture models: assume that
the dataset is a “mixture” of a
number of parametric statistical
distributions
(e.g., Gaussian mixture models).

Negative log-likelihood predicted by a GMM
0

46.4

215

10.0

4.6

2.2

1.0

-20
—=20

Figure 8.12: A two-component Gaussian
mixture model: data points, and equi-
probability surfaces of the model.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
|
|
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e Hierarchical clustering algorithms typically have local objectives
* Density-based clustering is based on local density estimates

* Graph based approaches: Graph partitioning and shared nearest
neighbors

We will consider the objective functions when we talk about individual
clustering algorithms.
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8.2. K-Means and K-Medoids Clustering

* Given
— X, a dataset of NV objects
— K, the number of clusters to form

* Organize the objects into K partitions (KX < N), where each partition
represents a cluster

* The clusters are formed to optimize an objective partitioning cri-
terion:

— Objects within a cluster are similar

— Objects of different clusters are dissimilar

8.2.1. The (basic) K-Means clustering

¢ Partitional clustering approach
¢ Each cluster is associated with a centroid (mean)
¢ Each point is assigned to the cluster with the closest centroid

e Number of clusters, K, must be specified

Algorithm 8.1. Lloyd’s algorithm (a.k.a. Voronoi iteration):
(Lloyd, 1957) [48]

1. Select K points as the initial centroids;

2. repeat
3. Form K clusters by assigning all points to the closest centroid;
4, Recompute the centroid of each cluster;

5. until (the centroids don’t change)
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Figure 8.13: Lloyd’s algorithm: The Voronoi diagrams, the given centroids (®), and the

iteration=1

Chapter 8. Cluster Analysis

iteration=2

iteration=3

iteration=15

.

%

3

+ + +

- -

updated centroids (—I—), for iteration = 1, 2, 3, and 15.
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¢ Initial centroids are often chosen randomly.
— Clusters produced vary from one run to another.

The centroid is (typically) the mean of the points in the cluster.

“Closeness” is measured by Euclidean distance, cosine similarity,
correlation, etc..

The K-Means will converge typically in the first few iterations.

— Often the stopping condition is changed to “until (relatively few
points change clusters)” or some measure of clustering doesn’t
change.

Complexity is O(N * d x K = I), where
N: the number of points
d: the number of attributes
K: the number of clusters
I: the number of iterations

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
|
|
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* Most common measure is Sum of Squared Error (SSE):

K
SSE=3"3" |x— i (8.3)

i=1 xeC;

where x is a data point in cluster C; and pu; is the center for cluster C;.

* Multiple runs: Given sets of clusters, we can choose the one with the
smallest error.
* One easy way to reduce SSE is to increase K, the number of clusters.

— A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K.

The K-Means is heuristic to minimize the SSE.
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Figure 8.14: K-Means clustering example.



8.2. K-Means and K-Medoids Clustering

223

The chance of selecting one centroid from each cluster is small.
* Chance is relatively small when K is large
¢ If clusters are the same size, n, then

# of ways to select a centroid from each cluster

P =
# of ways to select K centroids
KInk K!
-~ (Kn)K KK

* For example, if K = 5 or 10, then probability is:

5!/5° = 0.0384, 10!/10' = 0.00036.

way, and sometimes they don’t.

* Sometimes the initial centroids will readjust themselves in “right”
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Figure 8.15: Importance of choosing initial centroids.
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[Solutions to Initial Centroids Problem]

* Multiple runs
— Helps, but probability is not on your side

Sample and use hierarchical clustering to determine initial cen-
troids

Select more than K initial centroids and then, among these initial
centroids

— Select most widely separated

Post-processing

* Bisecting K-Means
— Not as susceptible to initialization issues

* Pre-processing

— Normalize the data

— Eliminate outliers
* Post-processing

— Eliminate small clusters that may represent outliers
— Split “loose” clusters, i.e., clusters with relatively high SSE

— Merge clusters that are “close” and that have relatively low SSE

* Can use these steps during the clustering process — ISODATA
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8.2.2. Bisecting K-Means algorithm

A variant of the K-Means that can produce a partitional or a hierarchical
clustering

1. Initialize (a list of clusters), containing all points.
2. Repeat

(a) Select a cluster from the list of clusters
(b) for : =1 to iter_runs do
Bisect the selected cluster using the basic K-Means
end for

(¢) Add the two clusters from the bisection with the lowest
SSE to the list of clusters.

until (the list of clusters contains K clusters)

o T o o
Py _-. [a Ono o 7 .'-T:'-.-" oo O
“a ¥: 7o o
o
¢ 0C o otf o DA
.1 ) . A
" A 270 A .f. Y -_I* A, + _ﬂ
[a] L .
il
(a) lteration 1. (b) Iteration 2. (c) Iteration 3.

Figure 8.16: Bisecting K-Means algorithm, with K = 4.

Note: The bisecting K-Means algorithm is not as susceptible to initial-
ization issues as the basic K-Means clustering.
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Limitations of K-Means Algorithms
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* The K-Means have problems when clusters are of differing

- sizes, densities, and non-globular shapes

* The K-Means have problems when the data contains outliers
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Figure 8.19: The K-Means with 2 non-globular clusters.
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e Use a larger number of clusters

e Several clusters represent a true cluster
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Figure 8.21: Unequal-densities.
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Figure 8.22: Non-spherical shapes.
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'Overcoming the K-Means Outlier Problem

O |

* The K-Means algorithms are sensitive to outliers.

— Since an object with an extremely large value may substantially
distort the distribution of the data.

¢ Solutions:

(a) Instead of taking the mean value of the object in a cluster as a ref-
erence point, medoids can be used, which is the most centrally
located object in a cluster.

(b) Develop an effective outlier removal algorithm. We will do
it as a project which combines clustering and supervised learning
for classification.
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8.2.3. The K-Medoids algorithm
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The K-Medoids algorithm (or PAM algorithm) is a clustering al-
gorithm similar to the K-Means algorithm. Both the K-Means and
K-Medoids algorithms are partitional (breaking the dataset up into
groups) and both attempt to minimize the distance between points la-
beled to be in a cluster and a point designated as the center of that clus-
ter. The K-Medoids chooses data points as centers (medoids) and can
be used with arbitrary distances, while the K-Means only minimizes
the squared Euclidean distances from cluster means. The PAM method
was proposed by (Kaufman & Rousseeuw, 1987) [37] for the work with
L'-norm and other distances.

* Find representative objects, called medoids, in clusters.

* The PAM (partitioning around medoids) starts from an initial set of
medoids and iteratively replaces one of the medoids by one of the
non-medoids if it improves the total distance of the resulting clus-
tering.

* The PAM works effectively for small datasets, but does not scale
well for large data sets.

e CLARA (Clustering LARge Applications): sampling-based method
(Kaufmann & Rousseeuw, 1990) [38]

¢ CLARANS: CLARA with randomized search (Ng & Han, 1994) [54]

clusters (called medoids).

Initialization: select K representative objects;
Associate each data point to the closest medoid;
while (the cost of the configuration decreases) :
[ For each medoid m and each non-medoid data point o :
swap m and o;
associate each data point to the closest medoid;
recompute the cost (sum of distances of points to their medoid);
| If the total cost of the configuration increased, undo the swap;
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* The PAM is more robust than the K-Means in the presence of noise
and outliers, because a medoid is less influenced by outliers or other
extreme values than a mean.

* The PAM works efficiently for small datasets but does not scale well
for large data sets.

* The run-time complexity of the PAM is O(K (N — K)?) for each itera-
tion, where N is the number of data points and K is the number of
clusters.

= CLARA (Clustering LARge Applications): sampling-based method
(Kaufmann & Rousseeuw, 1990) [38]

The PAM finds the best K-medoids among a given data, and the CLARA
finds the best K-medoids among the selected samples.

8.2.4. CLARA and CLARANS

****************************************************

CLARA (Clustering LARge Applications)
e Sampling-based PAM (Kaufmann & Rousseeuw, 1990) [38]

¢ It draws multiple samples of the dataset, applies the PAM on each
sample, and gives the best clustering as the output.

@ Strength: deals with larger data sets than the PAM.

S Weakness:

— Efficiency depends on the sample size.
— A good clustering based on samples will not necessarily represent
a good clustering of the whole data set, if the sample is biased.

* Medoids are chosen from the sample:

6 The algorithm cannot find the best solution if one of the best K-
Medoids is not among the selected samples.
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*********************************************

 CLARANS (“Randomized” CLARA)

e CLARANS (CLARA with Randomized Search) (Ng & Han; 1994,2002)
[54, 55]

The CLARANS draws sample of neighbors dynamically.

— CLARANS draws a sample of neighbors in each step of a search,
while CLARA draws a sample of nodes at the beginning of a
search.

The clustering process can be presented as searching a graph where
every node is a potential solution, that is, a set of K medoids.

If a local optimum is found, the CLARANS starts with new ran-
domly selected node in search for a new local optimum.

Finds several local optimums and output the clustering with the best
local optimum.

@ It is more efficient and scalable than both the PAM and the CLARA;
handles outliers.

@ Focusing techniques and spatial access structures may further im-
prove its performance; see (Ng & Han, 2002) [55] and (Schubert &
Rousseeuw, 2018) [71].

© Yet, the computational complexity of the CLARANS is O(N?), where
N is the number of objects.

6 The clustering quality depends on the sampling method.
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8.3. Hierarchical Clustering

8.3.1. Basics of AGNES and DIANA
Hierarchical clustering can be divided into two main types: agglomerative
and divisive.

Step0 Stepl Step2 Step3 Stepd Agglomerative
' l . . . (AGNES)

Divisive
(DIANA)

T J T T T
Step4 Step3 Step2 Stepl Step0

Figure 8.23: AGNES and DIANA

Agglomerative hierarchical clustering

(a.k.a. AGNES: Agglomerative Nesting). It works in a bottom-up manner.
e Each object is initially considered as its own singleton cluster (leaf).

* At each iteration, the two closest clusters are merged into a new
bigger cluster (nodes).

* This procedure is iterated until all points are merged into a single
cluster (root).

* The result is a tree which can be plotted as a dendrogram.

Divisive hierarchical clustering

(a.k.a. DIANA: Divisive Analysis). It works in a top-down manner; the
algorithm is an inverse order of the AGNES.

* It begins with the root, where all objects are included in a single cluster.
* Repeat: the most heterogeneous cluster is divided into two.

¢ Until: all objects are in their own cluster.
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Note: Agglomerative clustering is good at identifying small clusters,
while divisive hierarchical clustering is good for large clusters.
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e The optimum cost is O(N?), because it uses the proximity matrix. (N
is the number of points)

* In practice, O(NN?) in many cases.

— There are O(N) steps and at each step the proximity matrix of size
O(N?) must be updated and searched.

— Complexity can be reduced to O(N?log(N)) for some approaches.

,,,,,,,,,,,,,, ~
|
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* Greedy: Once a decision is made to combine two clusters, it cannot be
undone.

* No global objective function is directly minimized.
* Most algorithms have problems with one or more of:
— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and non-convex shapes
— Chaining, breaking large clusters
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* Recall that K-Means or K-Medoids requires

— The number of clusters K
— An initial assignment of data to clusters
— A distance measure between data d(x;, x;)

* Hierarchical clustering requires only a similarity measure between
groups/clusters of data points.
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8.3.2. AGNES: Agglomerative clustering

Quesiton. How do we measure the similarity (or dissimilarity) between
two groups of observations?

A number of different cluster agglomeration methods (i.e, linkage meth-
ods) have been developed to answer to the question. The most popular
choices are:

* Single linkage

Complete linkage

Group linkage

Centroid linkage

Ward’s minimum variance

1. Single linkage: the similarity of the closest pair
dsp(G,H) = min d(i, 7). (8.4)

1€G,jeH

* Single linkage can produce “chaining”, where a sequence of
close observations in different groups cause early merges of those
groups

¢ It tends to produce long “loose” clusters.

2. Complete linkage: the similarity of the furthest pair

der(G,H) = e d(i, 7). (8.5)

* Complete linkage has the opposite problem; it might not merge
close groups because of outlier members that are far apart.

¢ It tends to produce more compact clusters.
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3. Group average: the average similarity between groups

1
daa(G, H) = Nl >N d(i. ). (8.6)

1€G jeH

— Group average represents a natural compromise, but depends
on the scale of the similarities. Applying a monotone transforma-
tion to the similarities can change the results.

4. Centroid linkage: It computes the dissimilarity between the cen-
troid for group G (a mean vector of length d variables) and the centroid
for group H.

5. Ward’s minimum variance: It minimizes the total within-cluster
variance. More precisely, at each step, the method finds the pair of
clusters that leads to minimum increase in total within-cluster
variance after merging. It uses the squared error (as an objective
function).
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e Each level of the resulting tree is a segmentation of data
* The algorithm results in a sequence of groupings

¢ It is up to the user to choose a natural clustering from this se-
quence

r -~ -~~~ “~"“"=-=-=-~- a

'‘Dendrogram

* Agglomerative clustering is monotonic

— The similarity between merged clusters is monotone decreas-
ing with the level of the merge.

* Dendrogram: Plot each merge at the dissimilarity between the two
merged groups

— Provides an interpretable visualization of the algorithm and

data
— Useful summarization tool, part of why hierarchical clustering
is popular
Dendrogram
A B D
|
E
| 1
A B C D E F

Figure 8.24: Six observations and a dendrogram showing their hierarchical clustering.

* The height of the dendrogram indicates the order in which the clus-
ters were joined; it reflects the distance between the clusters.

* The greater the difference in height, the more dissimilarity.

* Observations are allocated to clusters by drawing a horizontal line

through the dendrogram. Observations that are joined together below
the line are in the same clusters.
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Figure 8.25: Single link clustering of six points.
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Figure 8.26: Complete link clustering of six points.

¢ Pros: more robust against noise (no chaining)

* Cons: Tends to break large clusters; biased towards globular clusters
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Figure 8.27: Average link clustering of six points.

* Compromise between single and complete links

Ward’s Minimum Variance Method

-
|
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when two clusters are merged

function.)

* Biased towards globular clusters.

* Less susceptible to noise and outliers

e Similarity of two clusters is based on the increase in squared error

* Hierarchical analogue of the K-Means; it can be used to initialize
the K-Means. (Note that the K-Means works with a global objective
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8.4. DBSCAN: Density-based Clustering

In density-based clustering:

* Clusters are defined as areas of higher density than the remainder
of the data set. (core points)

* Objects in sparse areas are usually considered to be noise and border
points.

* The most popular density-based clustering method is
- DBSCAN?® (Ester, Kriegel, Sander, & Xu, 1996) [18].

%Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

*************

* Given a set of points, it groups points that are closely packed together
(points with many nearby neighbors),

— marking as outliers points that lie alone in low-density regions.

¢ Itis one of the most common clustering algorithms and also most
cited in scientific literature. (Citation #: 28,008, as of Apr. 15, 2023)

— In 2014, the algorithm was awarded the test of time award® at

the leading data mining conference,
KDD 2014: https:/www.kdd.org/kdd2014/.

%The test of time award is an award given to algorithms which have received substantial attention in
theory and practice.
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*********************************
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¢ Consider a dataset to be clustered.

* Let € be a parameter specifying the radius of a neighborhood with
respect to some point.

e In DBSCAN clustering, the points are classified as core points,
reachable points, and outliers, as follows:

— A point p is a core point if at least m (=minPts) points are within
distance ¢ of it (including p itself).

— A point q is directly reachable from p if point ¢ is within dis-
tance € from the core point p.
(Points are only said to be directly reachable from core points.)

— A point ¢ is reachable from p if there is a path p,--- ,p, with
p1 = p and p,, = g, where each p,; is directly reachable from p;.
(Note that this implies that all points on the path must be core
points, with the possible exception of ¢.)

— All points not reachable from any other points are outliers or
noise points.

* Now, a core point forms a cluster together with all points (core or
non-core) that are reachable from it.

— Each cluster contains at least one core point;
non-core points can be part of a cluster, but they form its “edge”,
since they cannot be used to reach more points.

— A non-core reachable point is also called a border point.

User parameters:

* ¢: the radius of a neighborhood

* minPts: the minimum number of points in the c-neighborhood
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************************************

Illustration of the DBSCAN

|
-

Figure 8.28: Illustration of the DBSCAN, with m (= minPts) = 4.

* Point A and 5 other red points are core points. They are all reachable
from one another, so they form a single cluster.

* Points B and C are not core points, but are reachable from A (via
other core points) and thus belong to the cluster as well.

* Point N is a noise point that is neither a core point nor directly-
reachable.

Note: Reachability is not a symmetric relation since, by definition,
no point may be reachable from a non-core point, regardless of distance.
(A non-core point may be reachable, but nothing can be reached from it.)

Definition}, 8.3. Two points p and ¢ are density-connected if there
is a point ¢ such that both p and ¢ are reachable from c. Density-
connectedness is symmetric.

A DBSCAN cluster satisfies two properties:

1. All points within the cluster are mutually density-connected.

2. If a point is density-reachable from any point of the cluster, then
it is part of the cluster as well.
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DBSCAN: Pseudocode:

r
|
[ —

DBSCAN
DBSCAN(D, eps, MinPts)
C=0 # Cluster counter
for each unvisited point P in dataset D
mark P as visited
NP = regionQuery(P, eps) # Find neighbors of P
if size(NP) < MinPts
mark P as NOISE
else
cC=C+1
expandCluster (P, NP, C, eps, MinPts)

expandCluster(P, NP, C, eps, MinPts)
add P to cluster C
for each point Q in NP
if Q is not visited
mark Q as visited
NQ = regionQuery(Q, eps)
if size(NQ) >= MinPts
NP = NP joined with NQ
if Q is not yet member of any cluster
add Q to cluster C

Figure 8.29: Original points (left) and point types of the DBSCAN clustering with eps=10
and MinPts=4 (right): core (green), border (blue), and noise (red).

Note: In Pseudocode: Line 7 may classify a border point as noise,
which would be corrected by Lines 20-21.
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* Resistant to Noise
* Can handle clusters of different shapes and sizes

* Eps and MinPts depend on each other and can be hard to specify

* Varying densities
* High-dimensional data

.o (MinPts=4, Eps=9.75). Sl (MinPts=4, Eps=9.92)

Figure 8.31: The DBSCAN clustering. For both cases, it results in 3 clusters.

Overall, DBSCAN is a great density-based clustering algorithm.
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8.5. Cluster Validation

8.5.1. Basics of cluster validation

* For supervised classification (= using class label), we have a variety of
measures to evaluate how good our model is.

o Accuracy, precision, recall
* For cluster analysis (= unsupervised), the analogous question is:

How to evaluate the “goodness” of the resulting clusters?

* But “clusters are in the eye of the beholder”!
* Yet, we want to evaluate them. Why?

o To avoid finding patterns in noise

o To compare clustering algorithms

o To compare two sets of clusters

o To compare two clusters

Aspects of Cluster Validation

1. Understanding the clustering tendency of a set of data,
(i.e., distinguishing non-random structures from all the retrieved).

2. Validation Methods?

¢ External validation: Compare the results of a cluster analysis
to externally known class labels (ground truth).

¢ Internal validation: Evaluating how well the results of a cluster
analysis fit the data without reference to external information —
use only the data.

3. Compare clusterings to determine which is better.
4. Determining the “correct” number of clusters.

For 2 and 3, we can further distinguish whether we want to evaluate the
entire clustering or just individual clusters.
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Definition} 8.4. Precision and Recall

Precision is the fraction of relevant instances among all the retrieved,
while recall (a.k.a. sensitivity) is the fraction of relevant instances that
were retrieved.

relevant elements

false negatives true negatives

true positives  false positives

retrieved elements

How many retrieved How many relevant
items are relevant? iterns are retrieved?
Precision = —— Recall = —

Figure 8.32: Illustration of precision and recall, Wikipedia.

Note: Therefore, both precision and recall are about relevance of
the retrieval, measured respectively from all the retrieved instances
and all the relevant instances in the database.
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Numerical measures for judging various aspects of cluster validity are
classified into the following three types.

¢ External Measures: Used to measure the extent to which cluster
labels match externally supplied class labels.
— Entropy, Purity, Rand index
— Precision, Recall

* Internal Measures: Used to measure the goodness of a clustering
structure without respect to external information.

— Correlation, Similarity matrix
— Sum of Squared Error (SSE), Silhouette coefficient

* Relative Measures:

— Used to compare 2 different clusterings or clusters.
— Often an external or internal measure is used for this function,
e.g., SSE or entropy

Definition}, 8.5. The correlation coefficient pxy between two random
variables X and Y with expected values ;1x and iy and standard devia-
tions oy and oy is defined as

cov(X,Y)  E[(X — pux)(Y — py)]

OxX0y OxX0y

PXY = COI’I’(AX7 Y) =

e[-1,1. (8.7

If X and Y are independent, pxy = 0. (The reverse may not be true.)

Note: The correlation between two vectors u and v is the cosine of

the angle between the two vectors.
u-Vv

corr(u,v) = (8.8)

Al vl

The correlation between two matrices can be defined similarly, by con-
sidering the matrices as vectors.
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* T'wo matrices

— Proximity matrix® (P € RV*Y)
— Incidence matrix (/ € RV*Y)

* One row and one column for each data point
* An entry is 1 if the associated pair of points belong to the same cluster
* An entry is 0 if the associated pair of points belongs to different clusters

e Compute the correlation between the two matrices

— Since the matrices are symmetric, only the correlation between
N(N —1)/2 entries needs to be calculated.

¢ High correlation indicates that points that belong to the same clus-
ter are close to each other.

Example: For K-Means clusterings of two data sets, the correlation
coefficient are:
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Figure 8.33: prI = —0.924. Figure 8.34: prI = —0.581.

* Not a good measure for some density- or contiguity-based clus-
ters (e.g., single link HC).

A proximity matrix is a square matrix in which the entry in cell (i,j) is some
measure of the similarity (or distance) between the items to which row i and column j
correspond.
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Order the similarity matrix with respect to cluster labels and inspect

visually.
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Figure 8.36: Clusters in random data are not so crisp.
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Figure 8.37: Similarity matrix for cluster validation, for DBSCAN.

8.5.2. Internal and external measures of cluster validity

___________________________ 1
I
I

___________________________ 8|

* (Average) SSE is good for comparing two clusterings or two clusters.

K
SSE =Y " |jx— . (8.9)

i=1 xeC;

¢ [t can also be used to estimate the number of clusters

10 I I
Look for
10 clusters °r " thE knee
6L H
w
- e . s %
- M 4
2_
0 i i i
o 5 10 15 20 25 30
Mumber of Clusters

Figure 8.38: Estimation for the number of clusters.
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¢ Cluster cohesion: Measure how closely related are objects in a cluster

- Example: Within-cluster sum of squares (WSS=SSE)

K
WSS =Y ") |lx— (8.10)

=1 xeC;

* Cluster separation: Measures how distinct or well-separated a clus-
ter is from other clusters

- Example: Between-cluster sum of squares (BSS)

K
BSS =3 |G — 8.11)
i=1

¢ Total sum of squares: 7SS = WSS + BSS

— TSSis a constant for a given data set (independently of the number
of clusters)
— Example: a cluster {1,2,4,5} can be separated into two clusters

{1,2} U {4,5}. It is easy to check the following.
* 1 cluster: 7SS =WSS+ BSS =10+ 0 = 10.
% 2 clusters: 7SS =WSS+ BSS= 149 = 10.

*****************************

'Silhouette Coefficient

|
I -

¢ Silhouette coefficient combines ideas of both cohesion and sepa-
ration, but for individual points. For an individual point i:
— Calculate a(i) = average distance of i to all other points in its cluster
— Calculate b(i) = min {average distance of i to points in another cluster}
— The silhouette coefficient for the point i is then given by
s(i) =1 —a(i)/b(7). (8.12)
— Typically, s(i) € [0, 1].
— The closer to 1, the better.

* We can calculate the average silhouette width for a cluster or a
clustering
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‘The silhouette plot for the various clusters. “The visualization of the clustered data.
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Figure 8.39: n_clusters = 2;
average silhouette score = 0.705.
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Figure 8.42: n_clusters = 5;
average silhouette score = 0.564.
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Figure 8.40: n_clusters = 3;
average silhouette score = 0.588.

[ X = E E B
The silhouette coefficient values Feature space for the 1st feature.

Figure 8.41: n_clusters = 4;
average silhouette score = 0.651.

https://scikit-learn.org

Figure 8.43: n_clusters = 6;
average silhouette score = 0.450.

® The silhouette plot shows that
(n_clusters = 3, 5, and 6) are
bad picks for the data, due to

- the presence of clusters with below
average silhouette scores

— wide fluctuations in the size of the
silhouette plots
¢ Silhouette analysis is ambiva-
lent in deciding between 2 and
4.

e When n_clusters = 4, all the
silhouette subplots are more or
less of similar thickness.



https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
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'Another way of Picking K with Silhouette Analysis
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Figure 8.44: Average silhouette coefficient vs. number of clusters.
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* Entropy”

— For cluster j, let p;; be the probability that a member of cluster j
belongs to class 7, defined as

pij = ny;/ Nj, (8.13)

where N is the number of points in cluster j and n;; is the number
of points of class i in cluster ;.

— The entropy of each cluster j is defined as
L
ey = Zpij logs pij, (8.14)
i=1

where L is the number of classes and

— The total entropy is calculated as the sum of entropies of each clus-
ter weighted by the size of each cluster: for N = Zf{: . N,

1 K
e= N;Nj ej. (8.15)

¢ Purity
— The purity of cluster j is given by

purity ; = max p;;. (8.16)

— The overall purity of a clustering is

K
1
purity = N Z Nj purity ;. (8.17)
j=1

%The concept of entropy was introduced earlier in § 5.4.1. Decision tree objectives, when we defined
impurity measures. See (5.68) on p. 132.
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The following is a claim in an old book by (Jain & Dubes, 1988) [35].
However, today, the claim is yet true.

“The validation of clustering structures is the most difficult and frus-
trating part of cluster analysis. Without a strong effort in this direction,
cluster analysis will remain a black art accessible only to those true be-
lievers who have experience and great courage.”
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8.6. Self-Organizing Maps

8.6.1. Basics of the SOM

¢ Self-Organizing Map (SOM) refers to a process in which the inter-
nal organization increases automatically without being guided or man-
aged by an outside source.

— This process is due to local interaction with simple rules.
— Local interaction gives rise to a global structure.

e Why SOM?
A high-dimensional dataset is represented as an one/two-dimensional
discretized pattern using self-organizing maps or Kohonen maps.

e Advantage of SOM?
The primary benefit of employing an SOM is that the data is sim-
ple to read and comprehend. Grid clustering and the decrease of
dimensionality make it simple to spot patterns in the data.

We can interpret emerging global structures as learned structures,
which in turn appear as clusters of similar objects.

Note: The SOM acts as a unsupervised clustering algorithm and a
powerful visualization tool as well.

* It considers a neighborhood structure among the clusters.

@ The SOM is widely used in many application domains, such as econ-
omy, industry, management, sociology, geography, text mining, etc..

@ Many variants have been suggested to adapt the SOM to the pro-
cessing of complex data, such as time series, categorical data, nominal
data, dissimilarity or kernel data.

© However, the SOM has suffered from a lack of rigorous results on
its convergence and stability.
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Simple local rules (en.wikipedia.org/wiki/Conway’s_Game_of_Life):
Suppose that every cell interacts with its eight neighbors.

* Any live cell with fewer than two live neighbors dies, as if
caused by under-population.

* Any live cell with two or three live neighbors lives on to the
next generation.

* Any live cell with more than three live neighbors dies, as if by
overcrowding.

* Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction.

Figure 8.45: Still life, oscillator, and spaceship.


https://en.wikipedia.org/wiki/Conway's_Game_of_Life
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SOM Architecture
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* A feed-forward neural network architecture based on competi-
tive learning®, invented by Teuvo Kohonen in 1982 [39].

» Neurobiological studies indicate that different sensory inputs (motor?,
visual, auditory, etc.) are mapped onto corresponding areas of the cere-
bral cortex in an orderly fashion.

— Our interest is in building artificial topographic maps that
learn through self-organization in a neurobiologically inspired
manner.

2One particularly interesting class of unsupervised system is based on competitive
learning, in which the output neurons compete amongst themselves to be activated,
with the result that only one is activated at any one time. This activated neuron is
called a winner-takes-all neuron or simply the winning neuron. Such competi-
tion can be induced/implemented by having lateral inhibition connections (nega-
tive feedback paths) between the neurons. The result is that the neurons are forced to

organize themselves.
*Motor output is a response to the stimuli received by the nervous system.

* The principal goal of an SOM is to transform an incoming sig-
nal pattern of arbitrary dimension into a one/two-dimensional dis-
crete map, and to perform this transformation adaptively in a topo-
logically ordered fashion.

— We therefore set up our SOM by placing neurons at the nodes of a
one/two-dimensional lattice.
— Higher dimensional maps are also possible, but not so common.

* The neurons become selectively tuned, and the locations of the
neurons so tuned (i.e. the winning neurons) become ordered, and a
meaningful coordinate system for the input features is created on
the lattice.

— The SOM thus forms the required topographic map of the input
patterns.

* We can view this as a non-linear generalization of principal com-
ponent analysis (PCA).
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***************************

'Versions of the SOM
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e Basic version: a stochastic process

¢ Deterministic version:

— For industrial applications, it can be more convenient to use a
deterministic version of the SOM, in order to get the same results
at each run of the algorithm when the initial conditions and the
data remain unchanged (repeatable!).

— To address this issue, T. Kohonen has introduced the batch SOM
in 1995 [40].

(a) Repeatability
(b) Optimality

(c) Convergence

(d) Interpretability

'Indeterministic Issue & Deterministic Clustering

L e o e e e e e e e  mmm o E

=
|
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Clustering algorithms are to partition objects into groups based on their
similarity.

* Many clustering algorithms face indeterministic issue.

— For example, the standard K-means algorithm randomly selects
its initial centroids, which causes to produce different results in
each run.

¢ There have been several studies on how to achieve deterministic
clustering.

(a) Multiple runs
(b) Initialization, using hierarchical clustering approaches and PCA
(c) Elimination of randomness (Zhang et al., 2018) [83]
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8.6.2. Kohonen SOM networks

We will see some details of the Kohonen SOM network or Kohonen
network.

* The Kohonen SOM network has a feed-forward structure with a
single computational layer arranged in rows and columns.

¢ Each neuron is fully connected to all the source nodes in the input
layer

o SN 7 Computational layer

© 0 0o 0 o Input layer

Figure 8.46: Kohonen network.

*******************************************
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Originally, the SOM algorithm was defined for data described by numer-
ical vectors which belong to a subset X of R¢.

* Continuous setting: the input space X C R? is modeled by a proba-
bility distribution with a density function f,

* Discrete setting: the input space X comprises N data points

d
X1, X2,y " 7XN€R :

Here the discrete setting means a finite subset of the input space.
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*******************************************
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I{’reliminaryh 8.7. The self-organization process involves four major
components:

1. Initialization: All the connection weights are initialized with
small random values.

2. Competition: For each input pattern, the neurons compute their re-
spective values of a discriminant function which provides the basis
for competition.

* The particular neuron with the smallest value of the discrim-
inant function is declared the winner.

3. Cooperation: The winning neuron determines the spatial lo-
cation of a topological neighborhood of excited neurons, thereby
providing the basis for cooperation among neighboring neurons.
(smoothing the neighborhood of the winning neuron)

4. Adaptation: The excited neurons decrease their individual values
of the discriminant function in relation to the input pattern through
suitable adjustment of the associated connection weights, such that
the response of the winning neuron to the subsequent application of a
similar input pattern is enhanced.

(making the winning neuron look more like the observation)

tive learning.
* The output neurons compete amongst themselves to be activated,
with the result that only one is activated at any one time.

¢ This activated neuron is called a winner-takes-all neuron or sim-
ply the winning neuron.

* Such competition can be implemented by having lateral inhibition
connections (negative feedback paths) between the neurons.

* The result: The neurons are forced to organize themselves.
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* The input space is d-dimensional (i.e. there are d input units).

* The connection weights between the d input units and the kth
output neuron (in the computational layer) can be written

W1k

Wi = ka ’ k::ln'“?Ko (818)

Wak

where K is the total number of neurons in the computational layer.

Definition}; 8.9. We can define the discriminant function to be the
squared Euclidean distance between the input vector x and the weight
vector w;, for each neuron k:

d
(%) = [|x = wi|[* = ) (2 — wi)”. (8.19)

1=1

Thus, the neuron whose weight vector comes closest to the input vector (i.e.
is most similar to it) is declared the winner; see Preliminary 8.7, item 2.
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In neurobiological studies, it is found that there is lateral interaction
between a set of excited neurons.

* When one neuron fires, its closest neighbors tend to get excited more
than those further away.

* There is a topological neighbourhood that decays with distance.

Definition} 8.10. Neighbourhood Function

* Let us take K units on a regular lattice
(string-like for 1D, or grid-like for 2D).

e If L ={1,2,--- , K} and t is the time, a neighborhood function h(t)
is defined on K x K. It has to satisfy the following properties:

(a) his symmetric with hy, = 1,

(b) his depends only on the distance dist(k, ) between units £ and ¢ on
the lattice, and

(c) h decreases with increasing distance.
* Several choices are possible for h.

— The most classical is the step function; equal to 1 if the distance
between k and / is less than a specific radius (this radius can de-
crease with time), and 0 otherwise.

— Another very classical choice is a Gaussian-shaped function

dist?(k, 6))

2 (8.20)

hie(t) = exp < —

where 0%(t) can decrease over time to reduce the intensity and
the scope of the neighborhood relations. A popular time depen-
dence is an exponential decay:

o(t) = ogexp(—t/7,). (8.21)
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The SOM must involve an adaptive (learning) process by which

* the outputs become self-organized and

* the feature map between inputs and outputs is formed.

********************************************

Learning Rule in the Adaptive Process

| |
| |
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* The point of the topographic neighborhood is twofold:

— The winning neuron gets its weights updated.

— Its neighbors will have their weights updated as well, although
by not as much as the winner itself.

* An appropriate weight update rule is formulated as
Awy = n(t) - hix) p(t) - (x —wg), VkeKk, (8.22)

where /(x) is the index of the winning neuron and 7(¢) is a learning
rate (0 < n(t) < 1, constant or decreasing).

* The effect of each weight update is to move the weight vectors
w;. of the winning neuron and its neighbors towards the input vector
X.

- Repeated presentations of the training data thus leads to topo-
logical ordering.

* Maximal at the winning neuron.
e Symmetric about that neuron.
* Decreases monotonically to zero as the distance goes to infinity.

* Translation invariant (i.e., independent of the location of the win-
ning neuron).
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8.6.3. The SOM algorithm and its interpretation

The stages of the SOM can be summarized as follows.

Algorithm | 8.12. The Stochastic SOM

e Initialization: A connection weight w; € R is attached to each unit
k, whose initial values are chosen at random and denoted by

W(0) = [w1(0), wa(0), - - - , wi (0)].
e Fort =0,1,2,---

(a) Sampling: A data point x is randomly drawn (according to the
density function f or from the finite set X)

(b) Matching: The best matching unit is defined by
[(x) = argmin ||x — wy(t)]|* (8.23)
kek

(c) Updating: All the weights are updated via
Wk(t S 1) = Wk(t) S Awk, VEk e IC, (8.24)
where, as defined in (8.22),
Awy = n(t) - by p(t) - (x — wy).

(d) Continuation: Keep returning to the sampling step until the
feature map stops changing.

Results of the SOM

¢ After learning, cluster C} can be defined as the set of inputs closer to
wy than to any other one.
* The Kohonen map is the representation of
— the weights or
— the cluster contents,

displayed according to the neighborhood structure.
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Figure 8.47: Data approximation: One-dimensional SOM vs. PCA.

SOM is a red broken line with squares, 20 nodes. The first principal component is pre-
sented by a blue line. Data points are the small gray circles. The fraction of variance
unexplained in this example is 6.86% for SOM and 23.23% for PCA.

(“Self-organizing map”, Wikipedia)
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* The quantization property: the weights represent the data space
as accurately as possible, as do other quantization algorithms.

— To get a better quantization, the learning rate 7(¢) decreases with
time as well as the scope of the neighborhood function h.

* The self-organization property, that means that the weights pre-
serve the topology of the data:

— close inputs belong to the same cluster (as do any clustering
algorithms) or to neighboring clusters.
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Theoretical Issues
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* The algorithm is easy to define and to use, and a lot of practical studies
confirm that it works.

— However, the theoretical study of its convergence when ¢ tends to
oo remains without complete proof and provides open problems.

— The main question is to know if the solution obtained from a finite
sample converges to the true solution that might be obtained from
the true data distribution.

e When ¢ tends to oo, the R?-valued stochastic processes [w(t)]i=12... i
can present oscillations, explosion to infinity, convergence in distribu-
tion to an equilibrium process, convergence in distribution or almost
sure to a finite set of points in R?, etc.. Some of the open questions are:

— Is the algorithm convergent in distribution or almost surely, when
t tends to co?

— What happens when 7(t) is constant? (when it decreases?)
— If a limit state exists, is it stable?

— How to characterize the organization?
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Note: The SOM algorithm may start from an initial state of complete
disorder, and it will gradually lead to an organized representation of ac-
tivation patterns drawn from the input space.

There are two identifiable phases of the adaptive process:

1. Ordering or Self-organizing phase — during which the topologi-
cal ordering of the weight vectors takes place.

* Typically this will take as many as 1000 iterations of the SOM
algorithm.

* Careful consideration needs to be given to the choice of neigh-
bourhood and learning rate parameters.

2. Convergence phase — during which the feature map is fine tuned
and comes to provide an accurate statistical quantification of the
input space.

* Typically the number of iterations in this phase will be at least
500 times the number of neurons in the network.
* Again, the parameters must be chosen carefully.
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Exercises for Chapter 8

8.1. We will experiment the K-Means algorithm following the first section of Chapter 11,
Python Machine Learning, 3rd Ed., in a little bit different fashion.

(a) Make a dataset of 4 clusters (modifying the code on pp. 354—-355).

(b) For K =1,2,---,10, run the K-Means clustering algorithm with the initialization
init=’k-means++’.

(c) For each K, compute the within-cluster SSE (distortion) for an elbow analysis
to select an appropriate K. Note: Rather than using inertia_ attribute, imple-
ment a function for the computation of distortion.

(d) Produce silhouette plots for K = 3,4, 5,6.

8.2. Now, let’s experiment DBSCAN, following Python Machine Learning, 3rd Ed., pp. 376—
381.

(a) Produce a dataset having three half-moon-shaped structures each of which con-
sists of 100 samples.

(b) Compare performances of K-Means, AGNES, and DBSCAN.
(Set n_clusters=3 for K-Means and AGNES.)

(c) For K-Means and AGNES, what if you choose n_clusters much larger than 3 (for
example, 9, 12, 15)?

(d) Again, for K-Means and AGNES, perform an elbow analysis to select an appro-
priate K.



CHAPTER 9

Neural Networks and Deep Learning

Deep learning is a family of machine learning methods based on learning
data representations (features), as opposed to task-specific algorithms.
Learning can be supervised, semi-supervised, or unsupervised [3, 5, 69].

Contents of Chapter 9
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9.1. Basics for Deep Learning

******************************************

'Conventional Machine Learning

|
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¢ Limited in their ability to process data in their raw form

¢ Feature!!

— Coming up with features:
Difficult, time-consuming, requiring expert knowledge.

— Tuning the features: We spend a lot of time, before and during
learning.

Feature Learning
Representation Algorithm

Examples of features: Histogram of oriented gradients (HOGQG),
the scale-invariant feature transform (SIFT) (Lowe, 1999) [50], etc.

*********************************
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* Discover representations, automatically
= The machine is fed with raw data

* Deep Learning methods are representation-learning methods with
multiple levels of representation/abstraction

— Simple non-linear modules = higher and abstract representation
— With the composition of enough such transformations, very com-
plex functions can be learned.
¢ Key Aspects
- Layers of features are not designed by human engineers.

- Learn features from data using a general-purpose learning pro-
cedure.
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* Image recognition [23, 29, 41]
® Speech recognition [29, 66]
¢ Natural language understanding [23, 73, 81]

— Machine translation
— Image 2 text
— Sentiment analysis

- Question-answering (QA) machine:
IBM’s Watson, 2011, defeated legendary Jeopardy champions
Brad Rutter and Ken Jennings, winning the first place prize of
$1 million

* Many other domains

— Predicting the activity of potential drug molecules
— Analyzing particle accelerator data
— Reconstructing brain circuits

— Predicting the effects of mutations in non-coding DNA on gene ex-
pression and disease

e Image-based Classifications: Deep learning has provided break-
through results in speech recognition and image classification.
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* Why is it generally better than other methods on image, speech,
and certain other types of data? Short answers:

— Deep learning means using a neural network with several lay-
ers of nodes between input and output

— The series of layers between input & output do feature identifi-
cation and processing in a series of stages, just as our brains
seem to do.

* Multi-layer neural networks have been more than 30 years (Rina
Dechter, 1986) [14]. What is actually new?

— We have always had good algorithms for learning the weights in
networks with 1 hidden layer.

But these algorithms are not good at learning the weights for net-
works with more hidden layers

— The New are: methods for training many-layer networks

r---~-~-~-~-~"-~ -~ - ~" - -~ - " """ -~ -"-_ -~ " -" """ -~~~ " T"T"T"Z """ °="°=_-°=7°7 al
| |
| |

Terms: Al vs. ML vs. Deep Learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

¢ Artificial intelligence (Al): Intelligence exhibited by machines

* Machine learning (ML): An approach to achieve Al
* Deep learning (DL): A technique for implementing ML

— Feature/Representation-learning

— Multi-layer neural networks (NN)

- Back-propagation
(In the 1980s and 1990s, researchers did not have much luck, except
for a few special architectures.)

— New ideas enable learning in deep NNs, since 2006
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¢ Nothing more than a practical application of the chaln rule,
for derivatives

* Forsaken because poor local minima
¢ Revived around 2006 by unsupervised learning procedures with unla-
beled data
— CIFAR (Canadian Institute for Advanced Research): [4, 30, 31, 46]
— Recognizing handwritten digits or detecting pedestrians

— Speech recognition by GPUs, with 10 or 20 times faster
(Raina et al., 2009) [60] and (Bengio, 2013) [2].

— Local minima become rarely a problem.

¢ Convolutional neural network (CNN)

— Widely adopted by computer-vision community
(LeCun et al., 1989) [45]

* Activations
— Non-linear functions: max(z,0) (ReLU), tanh(z), 1/(1 + e¢™*)

********************************************************************
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¢ Interpretability: Although ML has come very far, researchers still
don’t know exactly how deep training nets work.

— If we don’t know how training nets actually work,
= how do we make any real progress?

* One-Shot Learning: We still haven’t been able to achieve one-shot
learning. Traditional networks need a huge amount of data, and
are often in the form of extensive iterative training.

— Instead, we should find a way to enable neural networks to learn,
using just a few examples.

— Current neural networks are gradient-and-iteration-based;
= can we modify/replace it?
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9.2. Neural Networks

Recall: In 1957, Frank Rosenblatt invented the perceptron algorithm:
T

)

* For input values: x = (x1, 29, -+ , 24)
e Learn weight vector: w = (wy, ws, - -+, wg)’

* Get the net input z = wizy + wors + -+ - + wWyrgy = W- X
* (Classify, using the activation function

1 if z>46, B
$(z) = { —1 otherwise, A Ehll)

or, equivalently,

1 if 2 >0, B
$(2) = { —1 otherwise, - bw-x, (9.2)

where b = —0 is the bias. (See (3.2) and (3.3), p. 46.)

kal

o) m » output

x3

Figure 9.1: Perceptron: The simplest artificial neuron.

Perceptron is the simplest artificial neuron:

* It makes decisions by weighting up evidence.

* However, it is not a complete model for decision-making!
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* Perceptron as a building block:

— What the example illustrates is how a perceptron can weigh
up different kinds of evidence in order to make decisions.

hidden layers

output layer

input layer 1

Figure 9.2: A complex network of perceptrons.

¢ It should seem plausible that a complex network of perceptrons
could make quite subtle decisions.

********************************************
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* Thresholding. A small change in the weights or bias of any single
perceptron in the network can sometimes cause the output of that per-
ceptron to completely flip, say from —1 to 1.

— That flip may then cause the behavior of the rest of the net-
work to completely change in some very complicated way.

* We can overcome this problem by introducing a new type of artificial
neuron, e.g., a sigmoid neuron.
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9.2.1. Sigmoid neural networks

Recall: The logistic sigmoid function is defined as

o(z) = . (9.3)

0.5

Figure 9.3: The standard logistic sigmoid function o(2) = 1/(1 + e 7).

lrSigmoid Neural Networks

S 4

=
|
|

* They are built with sigmoid neurons.
* The output of a sigmoid neuron with inputs x, weights w, and bias b is

1
o(z) = l+exp(—b—w-x)’ ©4)

which we considered as the logistic regression model in Section 5.2.
¢ Advantages of the sigmoid activation:

— It allows calculus to design learning rules. (¢/ = o(1 — o))

— Small changes in weights and bias produce a corresponding
small change in the output.

0 output Aw, + 0 output

Aoutput ~ ;
outpu 8wj J 8b

AD. (9.5)

small change in any weight (or bias)

cayses a mmall change in the output
w4 Aw

output+Aoutput

Figure 9.4: Aoutput is a linear combination of Aw; and Ab.
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************************************************************
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* The leftmost layer is called the input layer, and the neurons within
the layer are called input neurons.

The rightmost layer is the output layer.

The middle layers are called hidden layers.

The design of the input and output layers in a network is of-
ten straightforward. For example, for the classification of hand-
written digits:
— If the images are in 28 x 28 grayscale pixels, then we’d have 784(=
28 x 28) input neurons.
— It is heuristic to set 10 neurons in the output layer. (rather than
4, where 2* = 16 > 10)

There can be quite an art to the design of the hidden layers.

— In particular, it is not possible to sum up the design process
for the hidden layers with a few simple rules of thumb.

— Instead, neural networks researchers have developed many de-
sign heuristics for the hidden layers, which help people get the
behavior they want out of their nets.

— For example, such heuristics can be used to help determine how
to trade off the number of hidden layers against the accuracy
and the time required to train the network.
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9.2.2. A simple network to classify handwritten digits

* The problem of recognizing handwritten digits has two components:
segmentation and classification.

SO0H/q9A _ S04 |/ 92

Figure 9.5: Segmentation.

e We'll focus on algorithmic components for the classification of individ-
ual digits.

r--- - - - T T -T-T--== al
|
.

'MNIST Dataset

L e e e e m oo E

A modified subset of two datasets collected by NIST (US National Insti-
tute of Standards and Technology):

* The first part contains 60,000 images (for training)
* The second part is 10,000 images (for test)

Each image is in 28 X 28 grayscale pixels.

input layar

{784 naurona) \

Figure 9.6: A sigmoid network having a hidden layer.
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What the Neural Network Will Do

P
|
L e e e e e e e e e e e e e e e e e e e e e e e e e m— == E

hidden Lugper
{n = 15 nevrana)

* Let’s concentrate on the first
output neuron, the one that is
trying to decide whether or not
the input digit is a 0.

¢ It does this by weighing up ev- ...
idence from the hidden layer of *
neurons.

© ® - @ @m B & W B oC

* What are those hidden neurons doing?

— Let’s suppose for the sake of argument that the first neuron
in the hidden layer may detect whether or not an image like the
following is present

.

It can do this by heavily weighting input pixels which overlap
with the image, and only lightly weighting the other inputs.

— Similarly, let’s suppose that the second, third, and fourth
neurons in the hidden layer detect whether or not the following
images are present

f

L #

— As you may have guessed, these four images together make up
the 0 image that we saw in the line of digits shown in Figure 9.5:

,

— So if all four of these hidden neurons are firing, then we can
conclude that the digit is a 0.
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******************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

e Dataset: {(x,y?)},i=1,2,--- N

- y®? For example, if an image x) depicts a 2, then
y” =(0,0,1,0,0,0,0,0,0,0)".

¢ Cost function

1 , .
CW.B) = 5= lIy" —ax")|P, (9.6)

where W denotes the collection of all weights in the network, B all the
biases, and a(x(")) is the vector of outputs from the network when x
1s input.

* Gradient descent method

5] 5]+ [35) o0

=]

Note: To compute the gradient VC', we need to compute the gradients
V(. separately for each training input, x(, and then average them:

where

1
Ve =~ Z V.. (9.8)

¢ Unfortunately, when the number of training inputs is very large, it
can take a long time, and learning thus occurs slowly.

* An idea called stochastic gradient descent can be used to speed
up learning.
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*************************************

Stochastic Gradient Descent

| |
L e e e e e e e e e e e e e e e e e e e = -

The idea is to estimate the gradient VC' by computing VC. ;) for a small
sample of randomly chosen training inputs. By averaging over this
small sample, it turns out that we can quickly get a good estimate of
the true gradient V('; this helps speed up gradient descent, and thus
learning.

* Pick out a small number of randomly chosen training inputs (m < N):

which we refer to as a mini-batch.
* Average V(5w to approximate the gradient VC'. That is,

1 i def 1
E;voﬂm ~ VO = N;vcx(”' (9.9)

* For classification of handwritten digits for the MNIST dataset, you
may choose: batch_size = 10.

Note: In practice, you can implement the stochastic gradient descent as
follows. For an epoch,

e Shuffle the dataset

* For each m samples (selected from the beginning), update (W, B)
using the approximate gradient (9.9).
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network.py (by Michael Nielsen)

A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network. Gradients are calculated

using backpropagation. """

#i### Libraries

# Standard library
import random

# Third-party libraries
import numpy as np

class Network(object):
def __init__(self, sizes):
"""The list ~“sizes™~ contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. """

self .num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self .weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:]1)]

def feedforward(self, a):
"""Return the output of the network if "~a
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

is input."""

def SGD(self, training data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The ~“training_data’ is a list of tuples
" (x, y) " representing the training inputs and the desired
outputs. """

if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_datalk:k+mini_batch_size]
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for k in xrange(0O, n, mini_batch_size)]
for mini_batch in mini_batches:

self.update_mini_batch(mini_batch, eta)
if test_data:

print "Epoch {0}: {1} / {2}".format(

j, self.evaluate(test_data), n_test)

else:

print "Epoch {0} complete".format(j)

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ~"mini_batch™ is a list of tuples ~~(x, y) °, and ~“eta "
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self .weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):
""'"Return a tuple "~ (nabla_b, nabla_w) "~ representing the
gradient for the cost function C_x. ~"nabla_b™" and
“"nabla_w’ " are layer-by-layer lists of numpy arrays, similar
to ““self.biases™” and "~ “self.weights ™ ."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] #list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())

283
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93 for 1 in xrange(2, self.num_layers):

94 z = zs[-1]

95 sp = sigmoid_prime(z)

96 delta = np.dot(self.weights[-1+1].transpose(), delta) * sp
97 nabla_b[-1] = delta

98 nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())
99 return (nabla_b, nabla_w)

100

101 def evaluate(self, test_data):

102 test_results = [(np.argmax(self.feedforward(x)), y)

103 for (x, y) in test_datal

104 return sum(int(x == y) for (x, y) in test_results)

105

106 def cost_derivative(self, output_activations, y):

107 """Return the vector of partial derivatives \partial C_x /
108 \partial a for the output activations."""

109 return (output_activations-y)

110

11 | #### Miscellaneous functions

1z | def sigmoid(z):

113 return 1.0/(1.0+np.exp(-2))

114

115 | def sigmoid_prime(z):

116 return sigmoid(z)*(1-sigmoid(z))

The code is executed using

Run_network.py

1 import mnist_loader
2 | training_data, validation_data, test_data = mnist_loader.load_data_wrapper ()

4 import network
5 n_neurons = 20
6 net = network.Network([784 , n_neurons, 10])

8 n_epochs, batch_size, eta = 30, 10, 3.0
9 net.SGD(training data , n_epochs, batch_size, eta, test_data = test_data)

len(training_data)=50000, len(validation_data)=10000, len(test_data)=10000
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Validation Accuracy

Validation Accuracy
: 9006 / 10000
: 9128 / 10000
: 9202 / 10000
: 9188 / 10000
: 9249 / 10000

Epoch
Epoch
Epoch
Epoch
Epoch

> W NN -, O

Epoch 25: 9356 / 10000
Epoch 26: 9388 / 10000
Epoch 27: 9407 / 10000
Epoch 28: 9410 / 10000
Epoch 29: 9428 / 10000

© w 3 o - w N

—
(=1

=
=

¢ scikit-learn’s SVM classifier using the default settings: 9435/10000
¢ A well-tuned SVM: ~98.5%
* Well-designed (convolutional) NN: 9979/10000 (only 21 missed!)

Note: For well-designed neural networks, the performance is close
to human-equivalent, and is arguably better, since quite a few of
the MNIST images are difficult even for humans to recognize with confi-
dence, e.g.,

O 111521\ E]5][(
AU E L

Figure 9.7: MNIST images difficult even for humans to recognize.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

* Let all the complexity be learned, automatically, from data
¢ Simple algorithms can perform well for some problems:

(sophisticated algorithm) < (simple learning algorithm + good training data)
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9.3. Back-Propagation

¢ In the previous section, we saw an example of neural networks that
could learn their weights and biases using the stochastic gradient de-
scent algorithm.

* In this section, we will see how to compute the gradient, more
precisely, the derivatives of the cost function with respect to
weights and biases in all layers.

® The back-propagation is a practical application of the chain
rule for the computation of derivatives.

* The back-propagation algorithm was originally introduced in the

1970s, but its importance was not fully appreciated until a famous
1986 paper by Rumelhart-Hinton-Williams [65], in Nature.

9.3.1. Notations

* Let’s begin with notations which let us refer to weights, biases, and
activations in the network in an unambiguous way.

wf,: the weight for the connection from the k-th neuron in the

(¢ — 1)-th layer to the j-th neuron in the ¢-th layer
b:  the bias of the j-th neuron in the /-th layer
ai:  the activation of the j-th neuron in the /-th layer

layer 1 layer 2 layer 3

w}k is the weight from the & neuron
in the {I — 1)*® layer to the j*® neuron
in the I* layer

Figure 9.8: The weight wf,.
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layer 1 layer 2 layer 3

Figure 9.9: The bias b} and activation a’.
e With these notations, the activation a§ reads
¢ ¢ -1, 3l
k

where the sum is over all neurons £ in the (¢ — 1)-th layer. Denote the
weighted input by
2= what™ + b, (9.11)
k
* Now, define

W' = [wf,] : the weight matrix for layer /

b' = [6]  : the bias vector for layer ¢ 9.12)
z' = [2f]  : the weighted input vector for layer ¢ '
a' =[a’] : the activation vector for layer ¢

* Then, (9.10) can be rewritten (in a vector form) as

al = o(z") = c(W'a"™ ! +- b, (9.13)
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9.3.2. The cost function

The Cost Function: With the notations, the quadratic cost function

(9.6) has the form '

_ L 2
C= ﬁ; ly(x) —a™(x)|[%, (9.14)
where N is the total number of training examples, y(x) is the correspond-
ing desired output for the training example x, and L denotes the number
of layers in the network.

*********************************************

'Two Assumptions for the Cost Function

|
|
L e e e e e e e e e e e — o -

1. The cost function can be written as an average
1
C= EX: Cy, (9.15)

over cost functions Cy for individual training examples x.

2. The cost function can be written as a function of the outputs from the
neural network (a’).

Remark' 9.1. Thus the cost function in (9.14) satisfies the assumptions,

r
|
Lo === -

1

Ce=5lly(0 — 2 I = 5 (0 —ak)2.  ©9.16)

* The reason we need the first assumption is because what the back-
propagation actually lets us do is compute the partial derivatives
dC, /0w, and C, /Y, for a single training example.

— We then can recover 9C/0w), and 0C/0b; by averaging over
training examples.

¢ With the assumptions in mind, we may focus on computing the
partial derivatives for a single example.
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9.3.3. The four fundamental equations behind the back-
propagation

The back-propagation is about understanding ~Aow changing the weights
and biases in a network changes the cost function, which means com-
puting the partial derivatives 9C /0w, and 9C'/db.

Definition}; 9.2. Define the learning error (or, error) of neuron j in
layer ( by

¢ det OC
0j ==

R (9.17)

The back-propagation will give us a way of computing §° = [6;] for every
layer ¢, and then relating those errors to the quantities of real interest,
dC /0w, and OC' /9.

'Theorem | 9.3. Suppose that the cost function C satisfies the two as-
sumptions in Section 9.3.2 so that it represents the cost for a single train-
ing example. Assume the network contains L layers, of which the feed-
forward model is given as in (9.10):
aﬁ—a : Z—Zwkak +b€ (=23,---,L.
Then,
oC
(a) 5JL = WUI(ZJ'L)7
(b) § Zwé—&-léf—H /ZE’ ¢=L—1,---,2
oc (9.18)
(C) W:(SJ’ 622,"',[/,
J
(d) 8—(Z:ai_1(5§ (=2 L.
ow i
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Proof. Here, we will prove (b) only; see Exercise 1 for the others. Using the
definition (9.17) and the chain rule, we have

41 41
5= 0 _ > 00 05 _ > 05 o, (9.19)

P9z Aoyt 02 A 02
Note o Z Er1gl 4 g Z i ¢
+1 w +1 b +1 ,w -I-l b +1 (920)
Differentiating it, we obtaln
(41
02 = Zwijlaa(z D _ wi}rl ’(zf) (9.21)

8z§ 0z f

i

Substituting back into (9.19), we complete the proof. 0

]I)eﬁnltlonﬁ 9.4. A frequently used algebralc operation is the element-
wise product of two vectors/matrices, which is called the Hadamard
product or the Schur product, and defined as

(C ® d)j = Cj Clj. (922)

H ; m - Bi] - E] - (9.23)

® In Numpy, A*B denotes the Hadamard product of A and B, while A.dot (B)
or A@B produces the regular matrix-matrix multiplication.

* For example,

a vector form as
(a) 6" =V.C oo (zh),
Mb) & = (WEHTE" Yoo (z), (=L—-1,---,2,
(¢) VyC =4, (=92 L,
(d) VyC =d a7, (=2 L.

(9.24)
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*******************************************
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Algorithm 9.6. Let’s summarize the back-propagation algorithm:

1. Input x: Set the corresponding activation a' for the input layer.
2. Feed-forward:

zgzwgag_l—l—bg; aﬁza(zé); 522’3’...’[1

3. Output error §*:
6L =V,.C 0o d(zh);

4. Back-propagate the error:
5 = ((W€+1)T5£+1) o Jl(zﬁ); (= L—1-- 2

5. The gradient of the cost function:

VO =085 VpeC =8N, ¢=2,-.. L

r---~--- - -/, - - -~ - - -"-"----"-"-" - .- - - - -"__-. - - - - T - - T - . TZ-TTTT_- a
|
|

An SDG Learning Step, Based on a Mini-batch

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1. Input a set of training examples of size m;
2. Initialize: AW =0and AB = 0;
3. For each training example x:

(a) Apply the back-propagation algorithm to find
VieCx = 8% VO = 4@ N, ¢=2,... L

(b) Update the gradient:

AB = AB+ [VpCx| - |VpeCxl;
AW = AW + [Vy2COyl - | Vipre Cxl;

4. Gradient descent: Update the biases and weights

B=B-1AB. w=w—21Aw:
m m

See the method “update_mini_batch”, Lines 55—69 in network.py, p. 282.
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* The four fundamental equations satisfy independently of choices of
the cost function C and the activation o.

* A consequence of (9.24.d) is that if a~! is small (in modulus), gradient
term 0C/OW* will also tend to be small. In this case, we’ll say the
weight learns slowly, meaning that it’s not changing much during
gradient descent.

— In other words, a consequence of (9.24.d) is that weights output
from low-activation neurons learn slowly.

— The sigmoid function o becomes very flat when a(sz) 1S approxi-
mately 0 or 1. When this occurs we will have ¢’ (zJL) ~ 0. So, a weight
in the final layer will learn slowly if the output neuron is either low
activation (= 0) or high activation (=~ 1). In this case, we usually say
the output neuron has saturated and, as a result, the weight is
learning slowly (or stopped).

e Similar remarks hold also in other layers and for the biases as well.

* Summing up, weights and biases will learn slowly if
— either the in-neurons (upwind) are in low-activation
— or the out-neurons (downwind) have saturated.

r-.- -~ -~ .-~ -~"-~"—-"-"-"-"-"-"-"“~"~"Z”--~" "~ " -~ “~"~- "~ “ - " ~" """ -=-==-°- al
| |
| |

Designing Activation Functions

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The four fundamental equations can be used to design activation func-
tions which have particular desired learning properties.

* For example, suppose we were to choose a (non-sigmoid) acti-
vation function o so that o’ is always positive, and never gets
close to zero.

— That would prevent the slow-down of learning that occurs
when ordinary sigmoid neurons saturate.

* Learning accuracy and efficiency can be improved by finding
more effective cost and activation functions.
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9.4. Deep Learning: Convolutional Neural Net-
works

In this section, we will consider deep neural networks; the focus is on un-
derstanding core fundamental principles behind them, and applying those
principles for the easy-to-understand context of the MNIST problem.

g 4

written digits, as shown in the following images:

S04/ 92

Figure 9.10: A few images in the MNIST dataset.

A neural network can be built, with three hidden layers, as follows:

hidden layer 1  hidden layer 2 hidden layer 3

input layer

Figure 9.11

* Let each of hidden layers have 30 neurons:
— n_weights = 28%-30 4+ 30- 30+ 30-30 + 30 - 10 = 25,620
— n_biases =30+ 30 + 30 4+ 10 = 100

* Optimization is difficult
— The number of parameters to teach is huge (low efficiency)
— Multiple local minima problem (low solvability)
— Adding hidden layers is not necessarily improving accuracy

In fully-connected networks, deep neural networks have been
hardly practical, except for some special applications.
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duce a classification accuracy better than 98%, for the MNIST hand-
written digit dataset.

* But upon reflection, it’s strange to use networks of fully-
connected layers to classify images.

— The network architecture does not take into account the spatial
structure of the images.

— For instance, it treats input pixels which are far apart and close
together, on exactly the same footing.

What if, instead of starting with a network architecture which is tabula
rasa (blank mind), we use an architecture which tries to take advan-
tage of the spatial structure? Could it be better than 99%?

9.4.1. Introducing convolutional networks

Here, we will introduce convolutional neural networks (CNN),
which use a special architecture which is particularly well-adapted to
classify images.

¢ The architecture makes the convolutional networks fast to train.
® This, in turn, helps train deep, many-layer networks.

* Today, deep CNNs or some close variants are used in most neural net-
works for image recognition.

¢ CNNs use three basic ideas:

(a) local receptive fields,
(b) shared weights and biases, &
(c) pooling.
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input neurons
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* In CNNs, the geometry of neurons (units) in the input layer is
exactly the same as that of images (e.g., 28 x 28).
(rather than a vertical line of neurons as in fully-connected networks)

* As per usual, we’ll connect the input neurons (pixels) to a layer of
hidden neurons.

— But we will not connect fully from every input pixel to every hid-
den neuron.

— Instead, we only make connections in small, localized regions of
the input image.

— For example: Each neuron in the first hidden layer will be con-
nected to a small region of the input neurons, say, a 5 x 5 region
(Figure 9.12).

* That region in the input image is called the local receptive field for
the hidden neuron.




296 Chapter 9. Neural Networks and Deep Learning

* We slide the local receptive field across the entire input image.

— For each local receptive field, there is a different hidden neuron in
the first hidden layer.

input neyrona input neurona
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Figure 9.13: Two of local receptive fields, starting from the top-left corner.
(Geometry of neurons in the first hidden layer is 24 x 24.)

Note: We have seen that the local receptive field is moved by one pixel
at a time (stride_length=1).

¢ In fact, sometimes a different stride length is used.

— For instance, we might move the local receptive field 2 pixels to
the right (or down).

— Most software gives a hyperparameter for the user to set the stride
length.
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Recall that each hidden neuron has a bias and 5 X 5 weights connected
to its corresponding local receptive field.

* In CNNs, we use the same weights and bias for each of the 24 x 24
hidden neurons. In other words, for the (j, k)-th hidden neuron, the
output is:

4 4
o (b +3 % wp,qaﬁpm) , (9.25)

p=0 ¢q=0
where o is the neural activation function (e.g., the sigmoid function),
b is the shared value for the bias, and w,, is a 5 x 5 array of shared
weights.

— The weighting in (9.25) is just a form of convolution; we may

rewrite it as

al =o(b+wxa’). (9.26)

— So the network is called a convolutional network.
* We sometimes call the map, from the input layer to the hidden layer,
a feature map.

— Suppose the weights and bias are such that the hidden neuron
can pick out a feature (e.g., a vertical edge) in a particular local
receptive field.

— That ability is also likely to be useful at other places in the image.
— And therefore it is useful to apply the same feature detector
everywhere in the image.
* We call the weights and bias defining the feature map the shared
weights and the shared bias, respectively.

* A set of the shared weights and bias defines clearly a kernel or filter.

To put it in slightly more abstract terms, CNNs are well adapted to the
translation invariance of images.®

%Move a picture of a cat a little ways, and it’s still an image of a cat.
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* The network structure we have considered so far can detect just a
single localized feature.

* To do more effective image recognition, we’ll need more than one
feature map.

* Thus, a complete convolutional layer consists of several different
feature maps:

28 % 28 input heurons firgt hidden layer: 3 X 24 X 24 neutrons

J

|l

-

Figure 9.14: A convolutional network, consisting of 3 feature maps.

Modern CNNs are often built with 10 to 50 feature maps, each associated
to a r x r local receptive field: r =3 ~ 9.

EEEED
o
DAL

™

Figure 9.15: The 20 images corresponding to 20 different feature maps, which are ac-
tually learned when classifying the MNIST dataset (r = 5).

The number of parameters to learn

A big advantage of sharing weights and biases is that it greatly reduces
the number of parameters involved in a convolutional network.

* Convolutional networks: (5 x 5+ 1) * 20 = 520

* Fully-connected networks: (28 x 28 + 1) % 20 = 15,700
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* CNNs also contain pooling layers, in addition to the convolutional
layers just mentioned.

* Pooling layers are usually used right after convolutional layers.
e What they do is to simplify the information in the output from the
convolutional layer.

hidden neurons {output from feature map)
max-pooling unita

oo,
L5 =

Figure 9.16: Pooling: summarizing a region of 2 x 2 neurons in the convolutional layer.

From Figure 9.14: Since we have 24 x 24 neurons output from the convo-
lutional layer, after pooling we will have 12 x 12 neurons for each feature
map:

28 % 28 input neurona 3 % 24 X 24 neyrona

3% 12 X 12 neyrona
|

—

Figure 9.17: A convolutional network, consisting of 3 feature maps and pooling.

1. max-pooling: simply outputs the maximum activation in the 2 x 2
input neurons.

2. L*-pooling: outputs the L?-average of the 2 x 2 input neurons.
P g p
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9.4.2. CNNs, in practice

28 x 28 AN

Ax12x 12

=

|
ooooqfoooo

Figure 9.18: A simple CNN of three feature maps, to classify MNIST digits.

* To form a complete CNN by putting all these ideas, we need to add
some extra layers, below the convolution-pooling layers.

— Figure 9.18 shows a CNN that involves an extra layer of 10 output
neurons, for the 10 possible values for MNIST digits.

¢ The final layer of connections is a fully-connected layer. e.g.,:
— Let filter_shape =(20, 1,5,5), poolsize =(2,2)
(20 feature maps; 1 x 5 x 5 kernel; 2 x 2 pooling)
— Then, the number of parameters to teach:
(52 +1)-20 +(20-122+1) - 10 = 29, 330.
— Classification accuracy for the MNIST dataset < 99%

* Add a second convolution-pooling layer:

— Its input is the output of the first convolution-pooling layer.
— Let filter_shape =(40, 20,5,5), poolsize =(2,2)
— The output of the second convolution-pooling layer: 40 x 42
— Then, the number of parameters to teach:

(52+1)-20 + (5> +1)-40 + (40-4*+1)-10 = 7,970
— Classification accuracy for the MNIST dataset > 99%

¢ Add a fully-connected layer (up the output layer):

— Let choose 40 neurons: — 27,610 parameters
— Classification accuracy =~ 99.5%

* Use an ensemble of networks
— Using 5 CNNs, classification accuracy = 99.67% (33 missed!)
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Figure 9.19: The images missed by an ensemble of 5 CNNs. The label in the top right is
the correct classification, while in the bottom right is the label classified output.

* (Better representatlon). The use of translation invariance by the
convolutional layer will reduce the number of parameters it needs to
get the same performance as the fully-connected model.

¢ (Convolution kernels). The filters try to detect localized features,
producing feature maps.

¢ (Efficiency). Pooling simplifies the information in the output from
the convolutional layer.

— That, in turn, will result in faster training for the convolutional
model, and, ultimately, will help us build deep networks using
convolutional layers.

¢ [fully-connected hidden layers try to collect information for more
widely formed features.

CNN - Convolutional Neural Networks - Miner and the Jeweler
Y@@ (Musical) (Rap)


https://www.youtube.com/watch?v=O5K1i5QU8ak
https://www.youtube.com/shorts/ALpB--m-0eA
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* Keras
— A high-level ANN application programming interface (API)

— It can run on top of TensorFlow, Theano, and Microsoft Cognitive
Toolkit (CNTK).

— Keras focuses on being modular, user-friendly, and extensible.
— Written in Python

¢ Tensorflow

- Low and High API levels: An end-to-end open-source deep
learning framework developed by Google in 2015

— It is a symbolic math library used for neural networks = fast!
— Tensorflow is difficult to use and debug.
— Written in Python, C++, CUDA

e Pytorch

— Low and High API levels: It is a deep learning framework based
on Torch, developed by Facebook in 2017, and taken over by the
PyTorch Foundation (part of Linux Foundation) in late 2022.

— It has outstanding community support and development.
— Pytorch is much easier to use and debug than Tensorflow.

— Written in Lua

You will experience one of them; see Exercise 9.3.

* Currently, Keras is most popular due to its simplicity and long history.
¢ Pytorch is most rapidly growing.
— It can be viewed as a trade-off between Keras and Tensorflow.
— It is particularly good for natural language processing appli-
cations.
— Mathematicians and experienced researchers will find
Pytorch better than Keras, for many applications.
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Exercises for Chapter 9

9.1.

9.2

9.3.

Complete proof of Theorem 9.3. Hint: The four fundamental equations in (9.18) can
be obtained by simple applications of the chain rule.

The core equations of back-propagation in a network with fully-connected layers are
given in (9.18). Suppose we have a network containing a convolutional layer, a max-
pooling layer, and a fully-connected output layer, as in the network shown in Fig-
ure 9.18. How are the core equations of back-propagation modified?

(Exploring and designing a deep network). Popular deep learning packages are
summarized on page 302. Choose one of them to design a CNN for the MNIST dataset.
For each one, if you choose a simple CNN, its test accuracy will become approximately
99%. You can make it better through appropriate additions and modifications. For
example, you may try:

(a) Set multiple convolution-pooling layers.
(b) Choose various number of hidden layers and units on each layer.
(c) Select various activation functions.

Explore the package of your choice yourself, to design a CNN showing an accuracy
better than 99.5%.
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10.1. Introduction to Data Mining

Miowews S . T Z - T T T T a
| |
| |

Why Mine Data?

L e e e e e e e e e e e — - - ]

Commercial Viewpoint
* Lots of data is being collected and warehoused.

— Web data, e-commerce
— Purchases at department/grocery stores
- Bank/Credit Card transactions

e Computers have become cheaper and more powerful.

* Competitive pressure is strong.

— Provide better, customized services for an edge (e.g. in Customer
Relationship Management)

Scientific Viewpoint
* Data collected and stored at enormous speeds (GB/hour)

— Remote sensors on a satellite

— Telescopes scanning the skies

— Microarrays generating gene expression data

— Scientific simulations generating terabytes of data

* Traditional techniques infeasible for raw data

* Data mining may help scientists

- in classifying and segmenting data
- in Hypothesis Formation
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Mining Large Data Sets - Motivation

* There is often information “hidden” in the data that is not readily
evident.
* Human analysts may take weeks to discover useful information.

* Much of the data is never analyzed at all.

- Data gap becomes larger and larger.

‘'What is Data Mining?'

e Data mining is a process to turn raw data into useful informa-
tion/patterns.

— Non-trivial extraction of implicit, previously unknown and poten-
tially useful information from data.

— Exploration & analysis, by automatic or semi-automatic means, of
large quantities of data in order to discover meaningful patterns.

- Patterns must be: valid, novel, understandable, and poten-
tially useful.

Note: Data mining is also called Knowledge Discovery in Data
(KDD).

Origins of Data Mining

* Draws ideas from machine learning/Al, pattern recognition, statis-
tics, and database systems.
* Traditional Techniques may be unsuitable, due to

— Enormity of data
- High dimensionality of data

— Variety: Heterogeneous, distributed nature of data
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¢ Prediction Methods

— Use some variables to predict unknown or future values of other
variables.

* Description Methods
— Find human-interpretable patterns that describe the data.

Data Mining Tasks

¢ Classification [Predictive]

— Given a collection of records (training set), find a model for class
attribute as a function of the values of other attributes.

* Regression [Predictive]
— Predict a value of a given continuous valued variable based on the
values of other variables, assuming a linear or nonlinear model of
dependency.

Clustering [Descriptive]

— Given a set of data points and a similarity measure among them,
find clusters such that data points in one cluster are more similar
to one another than points in other clusters.

Association Rule Discovery [Descriptive]
— Given a set of records each of which contain some number of items
from a given collection, produce dependency rules which will pre-
dict occurrence of an item based on occurrences of other items.

Sequential Pattern Discovery [Descriptive]
— Given is a set of objects, with each object associated with its own
timeline of events, find rules that predict strong sequential depen-
dencies among different events.

Deviation/Anomaly Detection [Predictive]
— Detect significant deviations from normal behavior.
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e Scalability

* Dimensionality

Complex and Heterogeneous Data

— Spatial and temporal data
— Point and interval data

— Categorical data

— Graph data

— semi/un-structured Data

Data Quality
* Data Ownership and Distribution
* Privacy Preservation

* Streaming Data

********************

Related Fields

| |
P -

Machine

Learning Yisualization

Data Mining and
Knowled ge Discovery

Statistics Catabases

Figure 10.1: Related fields.



310

Chapter 10. Data Mining

10.2. Vectors and Matrices in Data Mining

Note: Often the data are numerical, and the data points can be seen as
vectors in a high-dimensional vector space. Ensembles of data points
can then be organized as matrices. In such cases it is natural to use
concepts and techniques from linear algebra. Here, we present a modifi-
cation of Numerical Linear Algebra in Data Mining (Eldén, 2006) [17].

10.2.1. Two Examples

trleval Con31der the followmg set of five documents. Key words, referred
to as terms, are marked in boldface.

Document 1:
Document 2:
Document 3:
Document 4:

Document 5:

The Google matrix P is a model of the Internet.

P;; is nonzero if there is a link from web page ;j to i.

The Google matrix is used to rank all web pages.

The ranking is done by solving a matrix eigenvalue
problem.

England dropped out of the top 10 in the FIFA ranking.

* Counting the frequency of terms in each document we get the following

result.

Term Docl Doc2 Doc3 Doc4 Docb
eigenvalue 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
web 0 1 1 0 0

The set of terms is called the dictionary.
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e Each document is represented by a vector in R’ | and we can organize
the data as a term-document matrix,

00010
00001
000¢O0T1
10100
A= 10000 g 0.
10110
01100
00111
0110 0]

¢ Assume that we want to find all documents that are relevant with respect
to the query “ranking of web pages”. This is represented by a query vec-
tor, constructed in an analogous way as the term-document matrix, using
the same dictionary.

c R, (10.2)

:»—x»—w—ooooooo

Thus the query itself is considered as a document.

¢ Now, the information retrieval task can be formulated as a mathematical
problem: find the columns of A that are close to the vector q.

— To solve this problem we use some distance measure in R'°.
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trix A €¢ R™*",

e It is common that m is large, of the order 10°, say.

* The matrix A is sparse, because most of the documents only con-
tain a small fraction of the terms in the dictionary.

* In some methods for information retrieval, linear algebra tech-
niques, such as singular value decomposition (SVD), are used
for data compression and retrieval enhancement.

Note: The very idea of data mining is to extract useful informa-
tion from large and often unstructured datasets. Therefore

* the methods must be efficient and often specially designed for
large problems.

Fe—————————
!
!

information from all the web pages available on the Internet, is performed
by search engines.

* The core of the Google search engine is a matrix computation, prob-
ably the largest that is performed routinely.

* The Google matrix P is assumed to be of dimension of the order
billions (2005), and it is used as a model of (all) the web pages on the
Internet.

* In the Google Pagerank algorithm, the problem of assigning ranks
to all the web pages is formulated as a matrix eigenvalue problem.
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* Let all web pages be ordered from 1 to n, and let i be a particular web
page.

e Then O, will denote the set of pages that i is linked to, the outlinks. The
number of outlinks is denoted N; = |O,|.

* The set of inlinks, denoted I;, are the pages that have an outlink to 1.

* Now define () to be a square matrix of dimension n, and let
_ [ 1/N;, if there is a link from j to 1,
@iy = { 0, otherwise. (10.3)

— This definition means that row i has nonzero elements in those posi-
tions that correspond to inlinks of i.

— Similarly, column j has nonzero elements equal to 1/N; in those posi-
tions that correspond to the outlinks of j.

— Thus, the sum of each column is either O or 1.

* The following link graph illustrates a set of web pages with outlinks and
inlinks.

OF ~(2) -(3)

(i) ) .®

Figure 10.2: A link graph, for six web pages.

The corresponding link matrix becomes

0 1/3 0 0 0 0

/3 0 0 0 0 0

o0 1/3 0 0 1/3 1/2
=135 00 0 13 0 (10.4)

1/3 1/3 0 0 0 1/2

0 0 1 0 1/3 0]
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* Define a pagerank vector r, which holds the ranks of all pages.

* Then, the vector » can be found as the eigenvector corresponding to the
eigenvalue A = 1 of Q:
Qr = Ar. (10.5)

We discuss numerical aspects of the Pagerank computation in Section 10.4.

10.2.2. Data compression: Low rank approximation

Note: Rank Reduction.

* One way of measuring the information contents in a data matrix is to
compute its rank.

* Obviously, linearly dependent column or row vectors are redundant.

* Therefore, one natural procedure for extracting information from a
data matrix is to systematically determine a sequence of lin-
early independent vectors, and deflate the matrix by subtracting
rank one matrices, one at a time.

¢ It turns out that this rank reduction procedure is closely related to
matrix factorization, data compression, dimensionality reduc-
tion, and feature selection/extraction.

* The key link between the concepts is the Wedderburn rank reduc-
tion theorem.

'Theorem | 10.4. (Wedderburn, 1934) [78]. Suppose A € R™ ", f € R™,
and g € R™. Then

AfglA
w

rank(A _ ) — rank(A) —1 < w=glAf#0. (10.6)
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Algorithm | 10.5. Wedderburn rank-reduction process.
Based on Wedderburn rank reduction theorem, a stepwise rank reduc-
tion procedure can be defined.

e Let AV = A.
* Define a sequence of matrices {A®)}:
. A0 ) (OT 46)
Wi
where ) € R” and ¢®) € R™ such that
wi = g A0 FO £ . (10.8)

* The sequence defined in (10.7) terminates when r = rank(A(D),
since each time the rank of the matrix decreases by one. The matri-
ces A" are called Wedderburn matrices.

decomposition called the rank-reduction decomposition.
A=FQ'q, (10.9)

where -
= (fy,---,£) eR™7, £, = AD @)

diag(wy, -+ ,w,) € R™", (10.10)
- (gb T 7g7“) S Rnxr? gi = A(z) g

Q) 2 )
I

Theorem 10.4 can be generalized to the case where the reduction of rank is
larger than one, as shown in the following theorem.

'Theorem | 10.7. (Guttman, 1957) [28]. Suppose A € R™" [ e Rk,
and G € R™**. Then

rank(A — AFR'GTA) = rank(A) — rank(AFR™'GT A)
<= R = GTAF is nonsingular.

(10.11)
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Note: There are many choices of F' and G that satisfy the condition
(10.11).
* Therefore, various rank-reduction decompositions are possible.

* It is known that several standard matrix factorizations in numerical
linear algebra are instances of the Wedderburn formula:

— Gram-Schmidt orthogonalization,

- singular value decomposition,

— QR and Cholesky decomposition, and
— the Lanczos procedure.

Relation between the truncated SVD and the Wedderburn rank
reduction process

* Recall the truncated SVD (7.17), page 162.
¢ In the rank reduction formula (10.11), define the error matrix £ as

E=A—-AFR'GTA=A—- AF(GTAF)™'G" A, (10.12)

where F € R"™* and G € R™**,

¢ Assume that £ < rank(A) = r, and consider the problem

min||E||= min [|A— AF(GTAF)"'GT 4], (10.13)

FeRnxk GeRmxk
where the norm is orthogonally invariant such as the L?>-norm and
the Frobenius norm.

® According to Theorem 7.16, p.171, the minimum error is obtained
when
(AF)(GTAF) Y(GTA) = U VT = U B VL, (10.14)

which is equivalent to choosing

F=V, G=U. (10.15)
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10.3. Text Mining

Definition}; 10.8. Text mining is methods that extract useful informa-
tion from large and often unstructured collections of texts.

¢ A related term is information retrieval.

* A typical application is search in data bases of abstract of scientific
papers.

— For instance, in medical applications one may want to find all the
abstracts in the data base that deal with a particular syndrome.

— So one puts together a search phrase, a query, with key words that
are relevant for the syndrome.

— Then the retrieval system is used to match the query to the docu-

ments in the data base, and present to the user all the documents
that are relevant, preferably ranked according to relevance.

9. the use of induced hypothermia in heart surgery, neurosurgery,

head injuries and infectious diseases. (10.16)

We will refer to this query as Q9 in the sequel.

Note: Another well-known area of text mining is web search engines.

* There the search phrase is usually very short.

* Often there are so many relevant documents that it is out of the
question to present them all to the user.

* In that application the ranking of the search result is critical for
the efficiency of the search engine.

* We will come back to this problem in Section 10.4.
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A number of public domain software are available.

R
- textmineR

* Python

- nltk (natural language toolkit)
- spaCy (written in Cython)

In this section

We will review one of the most common methods for text mining, namely
the vector space model (Salton et al., 1975) [67].

e In Example 10.1, we demonstrated the basic ideas of the construction
of a term-document matrix in the vector space model.

* Below we first give a very brief overview of the preprocessing that is
usually done before the actual term-document matrix is set up.

* Then we describe a variant of the vector space model: Latent Seman-
tic Indexing (LSI) (Deerwester et al., 1990) [15], which is based on
the SVD of the term-document matrix.

10.3.1. Vector space model: Preprocessing and query match-
ing

Note: In information retrieval, keywords that carry information about
the contents of a document are called terms.

* A basic task is to create a list of all the terms in alphabetic order, a
so called index.

* But before the index is made, two preprocessing steps should be
done:

(a) removal of stop words
(b) stemming
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¢ Stop words are words that one can find in virtually any document.

® The occurrence of such a word in a document does not distinguish this
document from other documents.

* The following is the beginning of one stop list

a, able, about, above, according, accordingly, across, actually, after, after-
wards, again, against, ain’t, all, allow, allows, almost, alone, along, already,
also, although, always, am, among, amongst, an, and, ...

® Various sets of stop words are available on the Internet, e.g.
https://countwordsfree.com/stopwords.

,,,,,,,,,,,, -
|
|
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e Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem.

¢ Clearly, from the point of view of information retrieval, no information
is lost in the following reduction.

3\

computable
computation
computing > —> comput
computed

computational )

* Public domain stemming algorithms are available on the Internet, e.g.
the Porter Stemming Algorithm
https://tartarus.org/martin/PorterStemmer/.
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The Term-Document Matrix
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¢ The term-document matrix A € R™*", where

m = the number of terms in the dictionary
n = the number of documents

* It is common not only to count the occurrence of terms in docu-
ments but also to apply a term weighting scheme.

¢ Similarly, document weighting is usually done.

Qj; = fij log(n/nz), (1017)
where

* f;;j is term frequency,
the number of times term i appears in document j,

e 1, 1s the number of documents that contain term ¢
(inverse document frequency).

If a term occurs frequently in only a few documents, then both factors
are large. In this case the term discriminates well between different
groups of documents, and it gets a large weight in the documents where
it appears.
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Normally, the term-document matrix is sparse: most of the matrix elements
are equal to zero.

p.317, the matrix is 4163 x 1063, with 48263 non-zero elements, i.e. approxi-
mately 1%. (It includes 30 query columns.) The first 500 rows and columns
of the matrix are illustrated in Figure 10.3.

0=
fo0f: = iR :_

wop o

N S S e

250}, -

300} LW

ggof e e

" . gl' )
400f " ’
500 oo C e Lt R ¥
0 100 200 300 400 500
nz = 2685

Figure 10.3: The first 500 rows and columns of the Medline matrix. Each dot represents a
non-zero element.
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* The query is parsed using the same dictionary as the documents, giv-
ing a vector g € R™.

* Query matching is the process of finding all documents that are con-
sidered relevant to a particular query q.
* This is often done using the cosine distance measure: All docu-
ments {a;} are returned for which
q-aj

> tol, (10.18)
all [1ay]]

where tol is user-defined tolerance.

Medhne collectlon With tol = 0.19 only a single document is considered rel-
evant. When the tolerance was lowered to 0.17, then three documents are
retrieved.

* Irrelevant documents may be returned.

— For a high value of the tolerance, the retrieved documents are likely
to be relevant.

— When the cosine tolerance is lowered, irrelevant documents may be
returned relatively more.

Definition} 10.13. In performance modelling for information retrieval,
we define the following measures:
1, T,

P = T (precision) R = B

(recall), (10.19)

where

T, = the number of relevant documents retrieved
T; = the total number of documents retrieved

B, = the total number of relevant documents in the database

See Definition 8.4 and Figure 8.32, p.245.
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low recall.

Note: With the cosine measure:

* We see that with a large value of tol, we have high precision, but

* For a small value of tol, we have high recall, but low precision.

collection using the cosine measure, in order to obtain recall and precision

as illustrated in Figure 10.4.

* In the comparison of different methods, it is more illustrative to draw

the recall versus precision diagram.

¢ Ideally a method has high recall at the same time as the precision is
high. Thus, the closer the curve is to the upper right corner, the better

the method is.

PRECISION (3%

o
a

L
10

L
20

Figure 10.4: Recall versus precision diagram for query matching for Q9, using the vector

space method.
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10.3.2. Latent Semantic Indexing

Latent Semantic Indexing (LSI) is based on the assumption

* that there is some underlying latent semantic structure in the
data that is corrupted by the wide variety of words used

* and that this semantic structure can be enhanced by projecting the
data onto a lower-dimensional space using the singular value de-
composition.

Algorithm | 10.15. Latent Semantic Indexing (LSI)

e Let A=UXV" be the SVD of the term-document matrix.

* Let Aj be its approximation of rank k:
Ay = UpSp Vi = Up(ShVy) =: UpDy, (10.20)
where V;, € R™* g0 that D, € RF*",

— The columns of U, live in the document space and are an orthogo-
nal basis that we use to approximate all the documents.

— Column j of D;, holds the coordinates of document j in terms of the
orthogonal basis.

* Note that
q' A, = q"UpDy, = (Ul q)" D), € R™™. (10.21)

* Thus, in query matching, we compute the coordinates of the query in
terms of the new document basis and compute the cosines from

COS 8] o qk ( kej)

= . q,.=Ulq. (10.22)
1G] [ Dreyl]” ¥+~ 7* 14

* This means that the query-matching is performed in a k-dimensional
space.
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‘Example’ 10.16. Query matching is carried out for Q9 in the Medline
collection, approximating the matrix using the truncated SVD with of rank
100 (k = 100). The recall-precision curve is given in Figure 10.5. It is seen

that for this query, the LSI improves the retrieval performance.

FRECISION %)

100

o) -

]

L
20

1
a0

1
40

1
ab
RECALL {3%)

1
1]

1
70

1
a1

1
a0

100

Figure 10.5: Recall versus precision diagram for query matching for Q9, using the full

vector space method (solid curve) and the rank 100 approximation (dashed).
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trix A € R and the query vector g € R, of which the query is “ranking
of web pages”. See pages 310-311 for details.

Document 1: The Google matrix P is a model of the Internet.

Document 2: P;; is nonzero if there is a link from web page j to i.
Document 3: The Google matrix is used to rank all web pages.

Document 4: The ranking is done by solving a matrix eigenvalue problem.
Document 5: England dropped out of the top 10 in the FIFA ranking.

000T1O0 0
00001 0
00001 0
1 01 00 0
10000 10%5 0 10
A:01OOOER,q:OGR.
1 0110 0
01 100 1
00111 1
01 1 0 0 1]

* (Eldén, 2006) [17]

“Obviously, Documents 1-4 are relevant with respect to the query,
while Document 5 is totally irrelevant. However, we obtain the fol-
lowing cosines for query and the original data

(0 0.6667 0.7746 0.3333 0.3333)

We then compute the SVD of the term-document matrix, and use a rank
2 approximation. After projection to the two-dimensional subspace the
cosines, computed according to (10.22), are

(0.7857 0.8332 0.9670 0.4873 0.1819)

It turns out that Document 1, which was deemed totally irrelevant for the
query in the original representation, is now highly relevant. In addition,
the scores for the relevant Documents 2-4 have been reinforced. At the
same time, the score for Document 5 has been significantly reduced.”

However, I view it as a warning.
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10.4. Eigenvalue Methods in Data Mining

Note: An Internet search performs two major operations, using a
search engine.

(a) Traditional text processing. The aim is to find all the web pages
containing the words of the query.

(b) Sorting out.

* Due to the massive size of the Web, the number of hits is likely
to be much too large to be handled by the user.

* Therefore, some measure of quality is needed to sort out the
pages that are likely to be most relevant to the particular query.

When one uses a web search engine, then typically the search phrase is
under-specified.

the search phrase “university”:

® The result: links to universities, including Mississippi State University,
University of Arizona, University of Washington - Seattle, University of
Wisconsin—-Madison, The University of Texas at Austin, and University
of Southern California - Los Angeles.

* The total number of web pages relevant to the search phrase was more
than 7 billions.

all the web pages that agrees rather well with a common-sense quality
measure.

* Google assigns a high rank to a web page, if it has inlinks from
other pages that have a high rank.

* We will see that this “self-referencing” statement can be formu-
lated mathematically as an eigenvalue problem.
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10.4.1. Pagerank

Note: Google uses the concept of Pagerank as a quality measure of web
pages. It is based on the assumption that

the number of links to and from a page give information
about the importance of a page.

* Let all web pages be ordered from 1 to n, and let ¢ be a particular web
page.

¢ Then O; will denote the set of pages that i is linked to, the outlinks.
The number of outlinks is denoted N; = |O;].

* The set of inlinks, denoted I;, are the pages that have an outlink to i.

Note: In general, a page i can be considered as more important the
more inlinks it has.

* However, a ranking system based only on the number of inlinks is easy
to manipulate.

— When you design a web page i that you would like to be seen by
as many as possible, you could simply create a large number of
(information-less and unimportant) pages that have outlinks to i.

* In order to discourage this, one may define the rank of 7 in such a
way that if a highly ranked page j, has an outlink to ¢, this should
add to the importance of .

¢ Here the manner is:

the rank of page i is a weighted sum of the ranks of the
pages that have outlinks to 1.
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Definition} 10.20. The preliminary definition of Pagerank is

= J%’ i=1,2-- n. (10.23)

JeI;

That is, the weighting is such that the rank of a page j is divided evenly
among its outlinks.

* Asin (10.3)-(10.4), p. 313, let @ be a square matrix of dimension n,

and let
_ | 1/N;, if there is a link from j to i,
@i = { 0, otherwise, (10.24)
where () is sometimes called the normalized web matrix.
® Then, (10.23) can be written as
Ar=Qr, A=1, (10.25)

i.e., r is an eigenvector of () with eigenvalue \ = 1.

* However, it is not clear that Pagerank is well-defined, because we do
not know if there exists an eigenvalue equal to 1.

Modify the matrix (Q to have an eigenvalue )\ = 1.

¢ Assume that a surfer visiting a web page, always chooses the next page
among the outlinks with equal probability.

¢ Assume that the random surfer never get stuck.

— In other words, there should be no web pages without outlinks
(such a page corresponds to a zero column in Q).

* Therefore the model is modified so that zero columns are replaced by
a constant value in each position.
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¢ Define the vectors

0 ]
o= 1 cR'. d- 622 d = { (1) i}i\év:wge (10.26)
1] | d |
* Then the modified matrix is defined
P=Q+ %edT. (10.27)

* Then P is a column-stochastic matrix, of which columns are prob-
ability vectors. That is, it has non-negative elements (P > 0) and the
sum of each column is 1.

¢ Furthermore,
1
elP=elQ+ —eled! =elQ +d" = ¢, (10.28)
n

which implies that A = 1 is a left eigenvalue and therefore a right
eigenvalue. Note that

elP=el <= PTe=e,

det(A — \I) = det(AT — \I). (10.29)

* Now, we define the Pagerank vector r as a unique eigenvector of P
with eigenvalue \ = 1,
Pr=r. (10.30)

¢ However, uniqueness is still not guaranteed.

— To ensure this, the directed graph corresponding to the matrix
must be strongly connected

— Equivalently, in matrix terms, P must be irreducible.

— Equivalently, there must not exist any subgraph, which has no
outlinks.
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The uniqueness of the eigenvalue is guaranteed by the Perron-Frobenius
theorem.

' Theorem | 10.22. (Perron-Frobenius) If A € R"™*" is nonnegative,
then

* p(A) is an eigenvalue of A.

* There is a nonnegative eigenvector x such that Ax = p(A)x.

' Theorem | 10.23. (Perron-Frobenius) If A € R"*" is nonnegative and
irreducible, then

* p(A) is an eigenvalue of A.
* p(A) > 0.
* There is a positive eigenvector x such that Ax = p(A)x.

* p(A) is a simple eigenvalue.

' Theorem | 10.24. (Perron) If A € R"™*" is positive, then

®* Theorem 10.23 holds, and in addition,
* |\| < p(A) for any eigenvalue A with \ # p(A).

* The largest eigenvalue in magnitude is equal to 1.

* There is a unique corresponding eigenvector r satisfying »r > 0 and
||r||1 = 1, this is the only eigenvector that is non-negative.

® IfA>0,then|\| <1,i=2,3,--- ,n.

tions about its structure,

* it is highly probable that the link graph is not strongly connected,

* which means that the Pagerank eigenvector of P may not be
well-defined.
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10.4.2. The Google matrix

To ensure connectedness, i.e., to make it impossible for the random
walker to get trapped in a subgraph, one can add, artificially, a link
from every web page to all the other. In matrix terms, this can be
made by taking a convex combination of P and a rank one matrix.

One billion dollar idea, by Sergey Brin and Lawrence Page in 1996

* The Google matrix is the matrix
1
G=aP+(1- oz)ﬁeeT, (10.31)

for some « satisfying 0 < a < 1, called the damping factor.
® Obviously G is irreducible (since G > 0) and column-stochastic.”

¢ Furthermore,

e’G=ae'P+ (1 - a)eTleeT =ae’ 4+ (1 —a)e’ =e’. (10.32)
n

* The pagerank equation reads

Gr = [aP+ (1 —a)leeT}r = r. (10.33)
n

%A n x n matrix is called a Markov matrix if all entries are nonnegative and the sum of each column
vector is equal to 1. A Markov matrix are also called a stochastic matrix.
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Note: The random walk interpretation of the additional rank one term
is that each time step a page is visited, the surfer will jump to any page
in the whole web with probability 1 — « (sometimes referred to as tele-
portation).

* Recall (10.27): P =Q + ledT, which can be interpreted as follows.
n

When a random surfer visits a web page of no outlinks, the
surfer will jump to any page with an equal probability 1/n.

1
* The convex combination in (10.31): G = aP + (1 — «) ﬁeeT'

Although there are outlinks, the surfer will jump to any page
with an equal probability (1 — «)/n.

trix P be {1, :\2, A3, -+, A\n}. Then, the eigenvalues of G = aP + (1 —
a)Leel are {1, ads, ads, -+, A\, }.
* This means that even if P has a multiple eigenvalue equal to 1, the
second largest eigenvalue in magnitude of G is equal to «.

the search biased towards certain kinds of web pages. Therefore, it is
referred to as a personalization vector.
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10.4.3. Solving the Pagerank equation

Now, we should solve the Pagerank equation, an eigenvalue problem
Gr=r, (10.34)

where r > 0 with |||, = 1.

* (G is a full matrix, although it is not necessary to construct it explicitly.
¢ n represents the number of all web pages, which is order of billions.

* It is impossible to use sparse eigenvalue algorithms that require
the storage of more than very few vectors.

The only viable method so far for Pagerank computations on the whole
web seems to be the power method.

* The rate of convergence of the power method depends on the ratio of
the second largest and the largest eigenvalue in magnitude.

* Here, we have
11— AP = 0@h), (10.35)
due to Proposition 10.27.

* In view of the huge dimension of the Google matrix, it is non-trivial
to compute the matrix-vector product. We will consider some details.
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Recall: It follows from (10.24), (10.27), and (10.31) that the Google
matrix is formulated as

1
G=aP+(1—a)—eel, (10.36)
n
where 1
P=Q+ —ed”.
n

Here @ is the link matrix and e and d are defined as in (10.26).

Derivation|10.30. Let z = Gy.

e Normalization-free: Since G is column-stochastic (e’ G = e7),
|zl = e’z = e’ Gy = e’y = ||y]|1. (10.37)

Thus, when the power method begins with y(* with ||[y?||; = 1, the
normalization step in the power method is unnecessary.

* Let us look at the multiplication in some detail:
I 7 e
z = [ozPJr(l—a)ﬁee }y = ony+BE, (10.38)

where
B =adly+(1—a)ey. (10.39)

* Apparently we need to know which pages lack outlinks (d), in order to
find 5. However, in reality, we do not need to define d. It follows from
(10.37) and (10.38) that

f=1—aelQy=1-— ||aQy || (10.40)
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Algorithm| 10.31. The following Matlab code implements the matrix
vector multiplication: z = Gy.

zhat = alphaxQx*y;

beta = 1-norm(zhat,1);

z = zhat + betaxv;

residual = norm(y-z,1);
Here v is (1/n)e or a personalization vector; see Remark 10.28.

Note:
* From Proposition 10.27, we know that the second eigenvalue of the
Google matrix is a)o.
* A typical value of o = 0.85.
* Approximately k = 57 iterations are needed to reach 0.85% < 107,

* This is reported to be close the number of iterations used by Google.

The 15 Percent Rule - Google PageRank
Y@ (Rap) (Acoustic Pop)


https://www.youtube.com/shorts/7pTylDNjwtA
https://www.youtube.com/watch?v=fuSflRWgiC4

10.4. Eigenvalue Methods in Data Mining 337

Exercises for Chapter 10

10.1. Consider Example 10.17, p.326. Compute vectors of cosines, for each subspace ap-
proximations, i.e., with A, where £ =1,2,--- 5.

10.2. Verify equations in Derivation 10.30, p.335, particularly (10.38), (10.39), and (10.40).

10.3. Consider the link matrix @ in (10.4) and its corresponding link graph in Figure 10.2.
Find the pagerank vector r by solving the Google pagerank equation.

* You may initialize the power method with any vector () satisfying ||r®||, = 1.

* Set o = 0.85.
* Let the iteration stop, when residual < 107*.

10.4. Now, consider a modified link matrix Q, by adding an outlink from page (4) to (5) in
Figure 10.2. Find the pagerank vector 7, by setting parameters and initialization the
same way as for the previous problem.

¢ Compare r with 7.
¢ Compare the number of iterations for convergence.
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Quadratic Programming

Quadratic programming (QP) is the process of solving a constrained
quadratic optimization problem. That is, the objective f is quadratic and
the constraints are linear in several variables x € R". Quadratic program-
ming is a particular type of nonlinear programming. Its general form is

1
min f(x) := §XTAX —x’b, subj.to

k= (11.1)

Dx < d,

where A € R™" is symmetric, C € R™*", D € RP*" b € R", c € R™, and
d € RP.

. In this chapter, we will study various meth-
e B ods for solving the QP problem (11.1), involv-
AT ing

¢ the method of Lagrange multipliers,

¢ direct solution methods, and

® jterative solution methods.
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11.1. Equality Constrained Quadratic Program-
ming

If only equality constraints are imposed, the QP (11.1) reduces to

. 17 T -
Inin f(x) = 7X Ax —x"b, subj.to (11.2)

Cx =c,

where A € R"™", C € R™" m < n. For the time being we assume that C'
has full row rank m and m < n.

To solve the problem, let’s begin with its Lagrangian:
1
L(x,A) = 5XTAX —x'b — Alc - Ox), (11.3)

where A € R™ is the the associated Lagrange multiplier. Then, we have
ViL(x,A) = Ax — b+ CTA. (11.4)

The KKT conditions (first-derivative tests) for the solution x € R" of
(11.2) give rise to the following linear system

ER-n

=K

where the second row is the primal feasibility.

Let Z € R"*("=™) be a matrix whose columns span the null space of C, N'(C),
1.e.,

CZ =0 or Span(Z) = N(C). (11.6)

Definition}; 11.1. The matrix K in (11.5) is called the KKT matrix and
the matrix ZT AZ is referred to as the reduced Hessian.

Note: Now, a question is: “Is the KKT matrix nonsingular?"
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Definition}; 11.2. Let A be a symmetric matrix. We say that A is (pos-
itive) semidefinite, and we write A = 0, if all eigenvalues of A are
nonnegative. We say that A is (positive) definite, and write A > 0, if
all eigenvalues of A are positive.

semidefinite (A = 0) and C € R"™" has full row rank m < n. Then
the following are equivalent.

(@) N'(A) N N(C) = {0}

(b) Cx =0, x#0=x"Ax > 0.

(c) ZTAZ is positive definite (- 0), where Z € R"*("~™) js a matrix for
which Span(Z) = N (C).

(d) A+ CTQC »~ 0 for some Q > 0.

Proof. See Exercise 1. 11

1. A> 0.

2. A=U"U for some U.

3. xI'Ax > 0 for all x € R".

4. All principal minors of A are nonnegative.

5. There exist x;, Xa,--- ,X;, € R" such that
k
A= inxiT. (11.7)
i=1

Definition}; 11.5. For A, B € R"*", we define the dot product of ma-
trices as

A-B=> ) Ay;Bj;=tr(A"B). (11.8)

i=1 j=1




342 Chapter 11. Quadratic Programming

e IfA,B>0,then A-B >0,and A- B =0 implies AB = 0.
* A symmetric matrix A is semidefinite if A- B > 0 for every B > 0.

'Theorem |11.7. (Existence and uniqueness). Assume that C' € R™*"
has full row rank m < n and that the reduced Hessian Z* AZ is positive
definite. Then, the KKT matrix K is nonsingular and therefore the
KKT system (11.5) admits a unique solution (x*, \").

Proof. Suppose that x € N (A)NN(C), x # 0. = Ax = Cx = 0 and therefore

-l e

which implies the KKT matrix K is singular.

Now, we assume that the KKT matrix is singular. That is, there are
x € R", z € R™, not both zero, such that

<[ =16 SIE =

Ax+CTz =0 and Ox = 0. (11.10)

which implies

It follows from the above equations that
0=x"Ax +x'CTz = x" Ax,

which contradicts (b) in Lemma 11.3, unless x = 0.

In the case (i.e., x = 0), we must have z # 0. But then C7z = 0 contracts the
assumption that C has full row rank. [

Note: More generally, the nonsingularity of the KKT matrix is equiva-
lent to each of statements in Lemma 11.3.
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'Theorem | 11.8. (Global minimizer of (11.2)). Let the assumptions
in Theorem 11.7 be satisfied and (x*, \*) the unique solution of the KKT
system (11.5). Then x* is the unique global solution of the QP (11.2).

Proof. When m = n, the theorem is trivial; we may assume m < n.
Let F = {x € R" | Cx = c}, the feasible set.

Clearly, x* is a solution of (11.2), i.e., x* € F.

Let x € F be another feasible point and p := x* — x # 0.

Then x = x* — p and
1

fx) = 5" =p) A —p) - (x"—p)'b
1 (11.11)
= ipTAp — plAx* + p'b + f(x¥).

Now, (11.5) implies that Ax* = b — CTA* and thus
pTAX* _ pT(b _ OT)\*) _ pr . pTOT)\* _ pr,

where we have used Cp = C(x* — x) = ¢ — ¢ = 0. Hence, (11.11) reduces to

f(x) = %pTAp + f(x"). (11.12)

Since p € N(C), we can write p = Zy, for some nonzero y € R" ™, and
therefore

f(x) = %yTZTAZy—Ff(X*). (11.13)

Since ZTAZ =~ 0, we deduce f(x) > f(x*); consequently, x* is the unique
global minimizer of (11.2). [
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' Theorem |11.9. Let the assumptions in Theorem 11.7 be satisfied. Then
the KKT matrix K has exactly n positive and m negative eigenvalues.

Proof. From Lemma 11.3, A + CTC > 0; also see (11.89), p.365. Therefore there exists a
nonsingular matrix R € R™*" such that

RT(A+CT"C)R=1. (11.14)
Let CR = UXV{ be the singular value decomposition of CR, where U € R™*™,
Y = diag(oy, 09, ,0m), and Vi € R™™, Let 1, € R™ (™™ guch that
V=[V1 Vy
is orthogonal, and define
S =[ 0] € R,

Then, we have
CR=USVT (11.15)

and therefore
VIRT(A+ CTC)RV = VIR ARV + (CRV)"CRV = 1I.

It follows from (11.15) that S = UTC' RV and therefore
STS = (UTCRV)'UTCRV = (CRV)TCRV.
Thus we have A := VI RTARV = I — STS is diagonal; we can write
A =VTRTARV =diag(1 —0?,1—03,---,1—0%,1,---,1). (11.16)

m?

Now, applying a congruence transformation to the KKT matrix gives

VIRT 01[A CT][RV 0 A ST
{ 0 UTHC OHO U}:{S 0} (1L17)

and the inertia of the KKT matrix is equal to the inertia of the matrix on the right.!
Applying a permutation to the matrix on the right of (11.17) gives a block diagonal matrix
with n diagonal blocks

|:)\Z O-OZ:|7 221727am; [Al:|7 Z:m+1777n7 (1118)

g;
where )\; are as in (11.16). The eigenvalues of the 2 x 2-blocks are

2 ) ) 4

i.e., one eigenvalue is positive and one is negative. So we can conclude that there are
m + (n —m) = n positive eigenvalues and m negative eigenvalues. [

AU

!Sylvester’s law of inertia is a theorem in matrix algebra about certain properties of the coefficient
matrix of a real quadratic form that remain invariant under a change of basis. Namely, if A is the symmetric
matrix that defines the quadratic form, and S is any invertible matrix such that D = SAS7 is diagonal, then
the number of negative elements in the diagonal of D is always the same, for all such S; and the same goes
for the number of positive elements.
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11.2. Direct Solution for the KKT System

Recall: In (11.5), the KKT system for the solution x € R" of (11.2) reads

LR

=K

where the second row is the primal feasibility.

For direct solutions of the KKT system (11.19), this section considers sym-
metric factorization, the range-space approach, and the null-space approach.

11.2.1. Symmetric factorization

A method to solve the KKT system (11.19) is to provide a symmetric fac-
torization of the KKT matrix:

PKPT = LDLT, (11.20)

where P is a permutation matrix (appropriately chosen), L is lower triangu-
lar with diag(L) = I, and D is block diagonal. Based on (11.20), we rewrite
the KKT system (11.19) as

P rz] ~ PK m — PKPT(P [ﬂ) — LDLT(P [ﬂ ).

Thus it can be solved as follows.

solve Ly, =P rz]

solve Dy, =y,

solve Lly; =1y, (11.21)

ES

set [i*] = Py,
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In python, scipy.linalg.1dl is available.

1dl_test.py

10

11

12

13

14

15

import numpy as np
from scipy.linalg import 1dl

A = np.array(L[ 2, -1, 0],
[-1, 0, -11,
[0, -1, 411)
LO,D,P = 1d1(A, lower=1) # Use the default: the lower matrix

print ('LO=\n",L0)

print('D=\n',D)

print('P=\n',P)

print ('LO*D*LO"T=\n',L0.dot (D) .dot(LO.T), '\n#---------—- ")

P_LO = LO[P,:] # the row permutation of 'LO'
print ('P*xLO=\n',P_LO)

© e = (=2} ot > w »o -

= = = e = = =
e = (=2} ot > w 34 - (=3

—
©

Result * As one can see from the result,
L(E=[ . . 0 P*L0 is a lower triangular matrix.
05 -0.25 1. ] The output LO of Python function
[ 0. 1. 0. 1] 1d1 is permuted as
D=
(tt2. 0. 0.1 Lo = P'L. (11.22)
[0. 4. 0. 1
[0. 0. -0.75]1]
P= * Reference: [10] J.R. Bunch and
[0 2 11 L. Kaufman, Some stable methods
LO*D*LO~T= .. : .
[[ 2. -1. 0.] for calculating inertia and solving
[-1. 0. -1.] symmetric linear systems, Math.
Lo e Comput. 31, 1977, pp.163-179.
P*L0=
[[1 0. 0. ]
[ 0. 1. 0. 1
[-0.5 -0.25 1. 1]
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11.2.2. Range-space approach

Recall: The KKT system for the solution x € R” of (11.2) is given by

BOR-E e

=K

where the second row is the primal feasibility.

The range-space approach applies, when A € R"*" is symmetric posi-
tive definite. Block Gauss elimination of the primal variable x leads to the
Schur complement system

CA'CTA = CA™'b —c, (11.24)

where S := CA~1CT € R™™ is the Schur complement. See Exercise 2.

Note: Once the optimal Lagrange multipliers A\* is determined from
(11.24), the minimizer x* can be obtained by solving the first equation

of the KKT system
Ax = b—CT A" (11.25)

'Theorem | 11.10. Suppose that A € R"*" is symmetric positive definite,
C € R™", m < n, such that rank(C) = m. Let S = CA~'CT be the
Schur complement associated with the KKT-matrix. Then S is sym-
metric positive definite on R™.

Proof. See Exercise 3. 11

Remark' 11.11. The range-space approach is particularly effective,

r
|
Lo === -

* The matrix A is well conditioned and efficiently invertible.
(e.g., diagonal or block-diagonal)

e Its inverse A~! is known explicitly.
(e.g., by means of a quasi-Newton updating formula)

* The number of equality constraints (m) is small.

Note that C € R"*" and it can be considered as a map C' : R" — R™,
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11.2.3. Null-space approach

The null-space approach does not require regularity of A and thus
has a wider range of applicability than the range-space approach. The
method begins with some assumptions.

1. Assume that C' € R™*" has full row rank m.

2. Assume that Z7AZ = 0, where Z € R™ (=™ is a matrix for which Span(Z) = N(C)
and CZ = 0; see (11.6).

3. Let Y € R"™™ be a matrix such that [ Z] € R"*" is nonsingular.
4. Partition the vector x € R" according to
X =Ywy + Zwg, (11.26)

where wy € R, w; € R,

5. Substitute (11.26) into the second equation of (11.19) to have
Cx=CYwy + C’OZ wy; =c = (CYwy =c, (11.27)
i.e. Ywy is a particular solution of Cx = c.

6. Furthermore, wy is well determined by (11.27). -.- Since C' € R™*" has full row rank
m and [Y Z] € R"*" is nonsingular, the product C[Y Z] = [CY 0] € R™*" has full
row rank m and therefore C'Y € R"*™ is nonsingular. [J

7. On the other hand, substituting (11.26) into the first equation of (11.19), we get
Ax +CT'\ = AYwy + AZwy +CT A =b. (11.28)
Multiplying Z7 and observing Z7C*T = (CZ)T = 0 yield
ZTAZwy =7"b — ZT AY wy. (11.29)

The reduced KKT system (11.29) can be solved easily e.g. by a Cholesky factoriza-
tion of the reduced Hessian Z7 AZ ¢ R(r—m)x(n=m),

8. Once wy and w, have been computed as solutions of (11.27) and (11.29), respectively,
x* is obtained from (11.26).

9. When Lagrange multipliers \* is to be computed, we multiply (11.28) by Y7 and
solve the resulting equation:

(CY)Y'X* =YTb — YT Ax*, (11.30)
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11.3. Linear Iterative Methods

Consider a linear algebraic system
Ax = b, (11.31)

for which we assume that A € R"*" is invertible.

* Linear iterative methods begin with splitting the matrix A by
A=M—N, (11.32)

for some invertible matrix M.

* Then, the linear system equivalently reads
Mx = Nx + b. (11.33)
* Associated with the splitting is an iterative method
Mx* = Nx"! 4+ b, (11.34)
or, equivalently,
xF = MY Nx"' 4 b) =x""1 4+ M (b - Ax" ), (11.35)

for an initial value x°.

Note: Methods differ for different choices of M.

* M must be easy to invert (efficiency), and

e M~! =~ A~! (convergence).
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11.3.1. Convergence theory

e [et

ek:X—Xk.

¢ It follows from (11.33) and (11.34) that the error equation reads
Mer = Net! (11.36)

or, equivalently,
e = M IN e (11.37)

¢ Since
A< IMTIN - [l < MNP - e (11.38)
< e < IMEENYE -l |

le

a sufficient condition for the convergence is

|MIN|| < 1. (11.39)

Definition} 11.13. Let o(B) be the spectrum, the set of eigenvalues of
the matrix B, and p(B) denote the spectral radius defined by

B) = il
p(B) ﬁ?f?éﬂ |

'Theorem | 11.14. The iteration converges if and only if

p(M~'N) < 1. (11.40)

11.3.2. Graph theory: Estimation of the spectral radius

Definition}; 11.15. A permutation matrix is a square matrix in which
each row and each column has one entry of unity, all others zero.
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Definition}; 11.16. For n > 2, an n x n complex-valued matrix A is
reducible if there is a permutation matrix P such that

A A
0 A |’

PAPT — [

where A;; and A, are respectively r x r and (n —r) x (n —r) submatrices,
0 < r < n. If no such permutation matrix exists, then A is irreducible.

The geometrical interpretation of the concept of the irreducibility by means
of graph theory is useful.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
!
!

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .}

in the plane, which we will call

nodes or nodal points.

Pi ;] * For any nonzero entry a;; 0&)4, we

connect P, to P; by a path F,P;, di-

Figure 11.1: The directed paths for nonzero rected from the node P, to the node

Qiq and Q5.
P;; a nonzero a;; is joined to itself
by a directed loop, as shown in Fig-
ure 11.1.
P1 e In this way, every n X n matrix
A can be associated a directed
graph G(A). For example, the ma-
P2 P3 trix
Figure 11.2: The directed graph G(A) for A
in (11.41). 2 -1 0
A=| -1 2 -1 (11.41)
* Given A = [a;;] € C™", consider n 0 -1 2

distinct points has a directed graph shown in Fig-

P, Py, P, ure 11.2.
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Definition}; 11.17. A directed graph is strongly connected if, for any
ordered pair of nodes (F;, P;), there is a directed path of a finite length

—  — —
PiPk17 Pk1Pk27 T Pkrflpkr:j’

connecting from P, to P;.

The theorems to be presented in this subsection can be found in [77] along
with their proofs.

|Theorem |11.18. An n x n complex-valued matrix A is irreducible if and
only if its directed graph G(A) is strongly connected.

11.3.3. Eigenvalue locus theorem

For A = [Clij] e Ccnn, let

A=) lay| (11.42)
j=1
J#i
Theorem| 11.19. (Eigenvalue locus theorem) Let A = [a;;] be an

irreducible n x n complex matrix. Then,

1. (Gerschgorin [22]) All eigenvalues of A lie in the union of the disks
in the complex plane

|z —ay| <A, 1<i<n. (11.43)

2. (Taussky [74]) In addition, assume that )\, an eigenvalue of A, is a
boundary point of the union of the disks |z — a;;| < A;. Then, all then
circles |z — a;;| = A; must pass through the point )\, i.e., |\ — a;;| = A;
forall1 <i<n.
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2 =1 0
A= -1 2 -1
0 -1 2

A =1,Ay =2,and A3 = 1. Since a;; = 2, fori = 1,2, 3,
A —2] <2

for all eigenvalues )\ of A. [

~
!
,,,,,,,,,,,,,,, |

Definition}; 11.21. An n x n complex-valued matrix A = [a;;] is diago-
nally dominant if

j=1

J#
for all 1 <i < n. Ann x n matrix A is irreducibly diagonally dominant if
A is irreducible and diagonally dominant, with strict inequality holding
in (11.44) for at least one .

'Theorem | 11.22. Let A be an n x n strictly or irreducibly diagonally
dominant complex-valued matrix. Then, A is nonsingular. If all the di-
agonal entries of A are in addition positive real, then the real parts of all
eigenvalues of A are positive.




354 Chapter 11. Quadratic Programming

11.3.4. Regular splitting and M-matrices

Definition}; 11.24. For n x n real matrices, A, M, and N, A= M — N is
a regular splitting of A if M is nonsingular with M~ > 0, and N > 0.

'Theorem |11.25. If A = M — N is a regular splitting of A and A~ > 0,
then

p(A™'N)
1+ p(A-IN)
Thus, the matrix M ' N is convergent and the iterative method of (11.34)
converges for any initial value x°.

p(M™IN) = <1 (11.45)

Definition}; 11.26. An n x n real matrix A = [a;;] with a;; < 0 for all ¢ # j
is an M-matrix if A is nonsingular and A~! > 0.

Theorem |11.27. Let A = (a;;) be an n x n M-matrix. If M is any n x n
matrix obtained by setting certain off-diagonal entries of A to zero, then
A= M — N is a regular splitting of A and p(M~!N) < 1.

'Theorem| 11.28. Let A be an n x n real matrix with A~! > 0, and
A = My — Ny = My — Ny be two regular splittings of A. If Ny > N; > 0,
where neither N, — Ny nor N; is null, then

1> p(My'Ny) > p(M;Ny) > 0. (11.46)
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11.4. Iterative Solution of the KKT System

Recall: The KKT system for the solution x € R” of (11.2) is given by

EOR-E e

=K

where the second row is the primal feasibility.

When the direct solution of the KKT system (11.47) is computationally
too costly, the alternative is to use an iterative method. An iterative
solver can be applied

¢ either to the entire KKT system

* or to the special structure of the KKT matrix, as in the range-
space and null-space approach, and based on regular splitting® of
specifically transformed matrices of K.

%For n x n real matrices, A, M, and N, A = M — N is a regular splitting of A if M is nonsingular
with M~ >0, and N > 0.

The transforming null-space iteration does not require regularity of A
and therefore has a wider range of applicability than the transforming
range-space iteration. Here we will deal with the transforming range-
space iteration only for simplicity.

11.4.1. Krylov subspace methods

The KKT matrix K € Rt™mx(+m) g jndefinite; if C has full row rank
m, then K has exactly n positive and m negative eigenvalues, as shown in
Theorem 11.9. Therefore, for iterative methods for the solution of entire
KKT system, appropriate candidates are Krylov subspace methods like

¢ GMRES (Generalized Minimum RESidual) and
e QMR (Quasi Minimum Residual).
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11.4.2. The transforming range-space iteration

Assumption. The matrix A € R"*" is symmetric positive definite (SPD)
and A has an easily invertible SPD approximation A such that A—'A ~ I.

1. We choose L € R("*m)x(n+m) a5 3 lower triangular block matrix

I 0
L::!_Cg}l<4, (11.48)

which gives rise to the regular splitting of L K:
AT

AI—A4) 0
0 3

LK =
C(I—A14) 0

= M1 — MQ, (1149)

where S = —CA~1CT ¢ R™™, (Note My = M, — LK ~ 0.)
2. Let
¥ = (x,A)7, B:=(bc)
Then the KKT system (11.47) gives LK = (M; — M) ¢ = L3 so that

My = My + L3

= (M), — LK) + LB = My + L(B — K). (11.50)

3. Given an initialization 1, € R"+™)*("+m) we compute 1), ; by means of
the transforming range-space iteration

Y = (I —M{'LK);, + M 'Lg

(11.51)
= 4+ M'L(B — Ky), k> 0.
Implementation of (11.51):
compute 7, = (T,(Cl),?“k) = B — Ktby;
(1)
_ Ty .
compute L7y = —Cﬁ—lr,(jhrr,(f) ) (11.52)
solve MiAY, = Lry;
set Vi1 = P + Ay
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11.5. Active Set Strategies for Convex QP Prob-
lems

Recall: Quadratic programming formulated in a general form (11.1):

1
min f(x) = EXTAX —x'b, subj.to
Xk (11.53)

Cx =c,
Dx < d,

where A € R™", C € R™", D € RP*" and b € R", c € R™, d € R?.
Here, we assume A is SPD.

Definition}, 11.29. The inequality constraint in (11.53) can be written
as

9i(x) <0, i=1,2,---,p.

Given a point x in the feasible region, a constraint g;(x) < 0 is called
active at x if g;(x) = 0 and inactive if g;(x) # 0. The active set at
x is made up of those constraints that are active at the current point.
(Equality constraints are always active.)

Note: The active set is particularly important in optimization theory,
because it determines which constraints will influence the final result of
optimization. For example,

* For linear programming problem, the active set gives the hyper-
planes that intersect at the solution point.

* In quadratic programming, the solution is not necessarily on one
of the edges of the bounding polygon; an estimation of the active
set gives us a subset of inequalities to watch while searching the
solution, which reduces the complexity of the search [57].
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11.5.1. Primal active set strategy

We rewrite the matrices C' and D in the form
C, D,
C=1|:1],C;,eR", D=|:|, D;eR" (11.54)
C, D,

Then the inequality constraints in (11.53) can be equivalently stated as

DIx <d;, i=1,2,---,p. (11.55)

(C; and D; are row vectors; we will deal with them like column vectors.)

The primal active set strategy is an iterative procedure:

¢ Given a feasible iterate x;., &k > 0, we determine its active set
Toe(xr) C {1,2,--- ,p} (11.56)

and consider the corresponding constraints as equality constraints,
whereas the remaining inequality constraints are disregarded.

* Setting
p=xX,—X, 7= Ax;—Db, (11.57)
we find .
f(x)=f(xr—p) = épTAp —T.p +8, (11.58)

where g = %X%Axk — b'x;.

* Then the equality constrained QP problem to be solved for the (k+1)-st
iteration step is:

1 :
pr = arg min (—pTAp — r;‘fp), subj.to
peR” 2

Cp = 0 (11.59)
DTp =0, i€ T,.(xz).

* The new iterate is then obtained according to
Xp1 = Xp — Pk, (11.60)

where o, is chosen such that x; | stays feasible.
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mined as follows.
* For each i € Z,.(x;), we have

D;'rxk—i—l = D?Xk — OékDZTpk = D?Xk S dz (1161)
o If D?pk > 0 for some i & Z,,.(xx), it follows that
D;TFX]H_l = DZTX/€ - Osz;rpk < DZTX/€ < dz (1162)
* On the other hand, if D] p; < 0 for some i ¢ Z,.(x;), we have
T T T di — Dz'TXk
Di X1 = Dz Xip — OékDZ- Pr: < dl — qi < — 7 - (1163)
—D; pi
* Consequently, in order to guarantee feasibility, we choose
L D'x, —d; |
i = min(l, @), where @y =  min =% (11.64)
el DIeec0 Dipr

set of blocking constraints:

T
Tu(pr) = {Z ¢ Zoo(x1) | DIpy <0, =ioh =1 < 1},
D; p

(11.65)

Then we specify Z,.(xx.1) by adding the most restrictive blocking con-
straint to Z,.(xy):

def

Tae(i1) 2 Too(i) U {5 € Tu(py) | (11.66)

For such a j (the index of the newly added constraint), we clearly have
D;‘-FX]H_l = D?Xk — Osz?pk = D?Xk — &ijTpk = dj (1167)

and therefore 7Z,.(x;+1) contains active constraints only.
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11.6. Interior-point Methods

Interior-point methods are iterative schemes where the iterates approach
the optimal solution from the interior of the feasible set. For simplicity, we
consider inequality-constrained quadratic programming problems of
the form

. 1 5 T :
)I(IGI]IRI}L Q(X) — §X Ax — x b, Sllb_].tO (1168)

Dx < d,
where A € R"" is SPD, D € RP*", and b € R" and d € RP.

Note: Its Lagrangian reads
p

L0x,p) £= Q)+ > p(DIx — dy). (11.69)

i=1

where p = (1, pa, -+ ,pp)" and D = [Dy,--- , D,]", and therefore

ViLl(x,pn) = ViQ(x)+ D' = Ax — b+ D7 p. (11.70)
Thus the KKT conditions for (11.68) are stated as
Ax+D'u—b = 0,
Dx—-d < 0,
pwiDx—d); = 0, i=1,2,--,p, (11.71)
Hi > 07 Z:1727 y P-

{1 (Dx — d); = 0} is the complementary slackness.

By introducing a slack variable z = d — Dx, the above conditions can
be equivalently formulated as follows:

Ax+DTu—b = 0,
Dx+z—-d = 0,
wizi = 0, i=1,2---p, (11.72)
Wiy 2 = 0, 22172,’p

The interior-point method begins with replacing 1,2, = 0 by p;z; = 0 >
Oforalli=1,2,---,p, and enforces 0 \ 0.
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Equation (11.72) can be rewritten as a constrained system of nonlinear

equations. We define the nonlinear map
Ax+DTpu—b
Dx+z—-d |, (11.73)
ZMe

def

F(x,p,2)

where
Z:dlag(21, 7Zp)7 M:dlag(,LLl, )up)) e:(l)... ,l)T.

Definition}; 11.32. (Central path). The set of points (x,, ., %), T > 0,
satisfying

0
Fx;p,2;,)= 10|, 2z p>0, (11.74)

Te

is called the central path.

Newton’s method:

* Given a feasible iterate (x, u,z) = (xx, i, zr), we introduce a duality

measure 0: [P

z'
p 2 =
* The idea is to apply Newton’s method to (11.73) to compute
(X060, Myps Zop) ON the central path, where o € [0, 1] is an algorithm pa-
rameter.

* The Newton increments (Ax, Au, Az) solve the linear system

Ax 0
VF(x,p,z) |Ap| = —-F(x,pu,z)+ | 0 |, (11.76)
Az obe
where A DT 0
VF(x,p,z) D o I
0o zZ2 M

* The new iterate (xj41, f4,11, Zx+1) 1s then determined by means of
(Xkt1, Bpp1s Zevt) = (Xn, B, 21) + a(AX, Ap, Az), (11.77)

with o chosen such that the new iterate stays feasible.
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11.7. Logarithmic Barriers

Recall: The inequality-constrained quadratic programming prob-
lem in (11.68):
1

. T _ T ;
)Erel]%i@(x) = 5 Ax —x" b, subj.to (11.78)

Dx < d,

where A € R"" is SPD, D € RP*", and b € R" and d € R?.

Algorithms based on barrier functions are iterative methods where the it-
erates are forced to stay within the interior of the feasible set:

Fi Ly eR" | DTx—d; <0, 1<i<p). (11.79)

Barrier functions commonly have the following properties:
e They are smooth within 7™,
e They approach co as x approaches the boundary of 7™,

e They are infinite outside F™*.

Definition}, 11.33. (Logarithmic barrier function). For the QP prob-
lem (11.78), the objective functional

def

p
Bs(x) = Q(x) — ) log(d; — D[x), >0, (11.80)
1=1

is called the logarithmic barrier function.” The parameter [ is re-
ferred to as the barrier parameter.

%The function log stands for the natural logarithm (In), as commonly accepted in the literature of
computational algorithms.




11.7. Logarithmic Barriers 363

'Theorem | 11.34. (Properties of the logarithmic barrier function)
[80, (Wright,1992)]. Assume that the set S of solutions of (11.78) is
nonempty and bounded and that the interior F™ of the feasible set is
nonempty. Let {(;} be a decreasing sequence of barrier parameters with

Br — 0, as k — oo. (11.81)
Then there holds:
1. For any (8 > 0, the logarithmic barrier function Bg(x) is convex in
F* and attains a minimizer xz € F™,
2. There is a unique minimizer; any local minimizer x3 is also a

global minimizer of B(x).

3. If {x3, | k € N} is a sequence of minimizers, then there exists N' C N

such that § ,
x3 —+x €8, keN.

4. If Q* is the optimal value of the objective functional () in (11.78),
then for any sequence {xp, } of minimizers,

Q(xp,) = QF, DBs.(x5,) = QF, as k — oo. (11.82)

Objective: In the following:

We will have a closer look at the relation between a minimizer of B(x)
and the solution of the KKT system, a point (x, i) satisfying the KKT
conditions for (11.78).
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Recall: The KKT conditions for (11.78) are given in (11.71), p. 360:
VxQx) + DTjs = Ax ~ b+ Dlpp = 0.
Dx—d <0,
pi(Dx—d); = 0, i=1,2,---,p, (11.83)
wi > 0, i=1,2,---,p.

If x4 is a minimizer of B(x), we obviously have

p
VxBs(xp) = VxQ(xs) + Zd_L
=1 7

D; = 0. 11.84
BT, (11.84)

Definition}, 11.35. Perturbed (or, approximate) complementarity
is the vector zg € R? having its components

B .
i =284 = ————, 1<i<np. 11.85
(25) “ d; — D;TFXB ' ( )

In terms of the perturbed complementarity, (11.84) can be stated as

p
ViQ(xg) + Y 25:D; =0. (11.86)
=1

Rewrite the first of the KKT conditions (11.83) as

p
VxQ(x) + Y pD; = 0. (11.87)
1=1

* Obviously, (11.87) looks the same as (11.86).

* Apparently, the 2nd and the 4th KKT conditions in (11.83) are sat-
isfied by (x, p) = (x3,23).

e However, the 3rd KKT condition does not hold true, because it fol-
lows readily from (11.85) that

254(di — Dlx3) = B >0, 1<i<p. (11.88)
As  — 0, the minimizer x3 and the associated zs come closer and

closer to satisfying the 3rd KKT condition. This is why zs is called
perturbed (approximate) complementarity.
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Exercises for Chapter 11

11.1.

11.2.
11.3.

11.4.
11.5.

Recall the KKT matrix

c 0

Here, we assume that A € R™*" is symmetric and (positive) semidefinite (A > 0) and
C € R™*" has full row rank m < n. Show the following are equivalent.

(@) N(A) N A(C) = {0}.

(b) Cx =0, x# 0= xTAx > 0.

(c) ZT AZ is positive definite (= 0), where Z € R ("™ is a matrix for which Span(Z) =
N(C).

) A+ CTQC = 0 for some Q = 0.

K:{A CT}.

When (c) is considered, you may assume m < n.

Hint: (a)<(b): Use contradictions. For example, N(A) N N(C) # {0}. = Ix €
N(A)NN(C), x #0. = Ax = 0 and Cx = 0 and therefore x" Ax = 0, which is a
contradiction; this implies (a)<(b).

(b)<=(c): Let Cx =0, x # 0. = x must have the form x = Zy for some 'y # 0. (why?)
= xI'Ax =y'Z"PZy > 0.

(b)&(d): If (b) holds, then

x (A4 CTC)x = x"Ax + ||Cx|* > 0. (11.89)
= (d) holds with () = I. On the other hand, if (d) holds for some () = 0, then
x (A +C0TQC)x = xTAx + xTCTQCx >0, x#0. (11.90)

When Cx = 0, x” Ax must be positive.

Now, you should fill out missing gaps: (a)=-(b) and (b)=-(c).

Derive the Schur complement system (11.24) from the KKT system (11.19).

Suppose that A € R™*" is symmetric positive definite, C € R™*", m < n, such that
rank(C) = m. Let S = CA7'C” be the Schur complement associated with the KKT-
matrix, as in (11.24). Show that S is symmetric positive definite on R™.

Hint: You may begin with claiming that C*x +# 0 for every nonzero x € R™. (Figure
out why)

Verify the splitting (11.49).

Recall the dual problem of linear SVM in (5.52):

max [o-1— %aTGa} subj.to a-y =0, (11.91)

0<asC
where G = ZZ" and G;; = y®y) x() . x(0),

(a) Ignoring momentarily the inequality constraints on the dual problem, 0 < a < C,
prove that the problem has a unique solution. Hint: Formulate the KKT system
for the problem and check if it satisfies a statement in Lemma 11.3. You may use
the fact that G = ZZ7 >~ 0.
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(b) Now, considering the inequality constraints, discuss why the problem is yet ad-
mitting a unique solution a*.

11.6. Consider the following equality-constrained QP problem

min 322 + 2% + 222 — 2yz — 8z — 3y — 3z, subj.to
(z,y,2)ER3

r+z=1,
y+z=3.

(11.92)

Begin with pencil-and-paper:
(a) Formulate the KKT system for (11.92) of the form (11.5) by identifying A € R3*3,
C € R?*3, and vectors b € R? and c € R2.
(b) Solve the QP problem (11.92) by the null-space approach. In particular, spec-
ify the matrices Y and Z and compute wy and w.
Now, use your computer:
(c¢) Implement the null-space algorithm presented in Section 11.2.3 to find the min-
imizer of (11.92) numerically.
(d) Implement the range-space (Schur complement) method presented in Section 11.2.2
to find the minimizer of (11.92) numerically.

11.7. Now, consider the following inequality-constrained QP problem

min Q(x) := (v1 — 1)? + 2(z9 — 2)* + 2(w3 — 2)? — 27115, subj.to
pdS
1 +x9—3w3 < 0, (1193)
41’1 — X9 -+ X3 S 1.

Implement the interior-point method with the Newton’s iterative update, pre-
sented in Section 11.6, to solve the QP problem (11.93).
(a) As in Exercise 6, you should first formulate the KKT system for (11.93) by iden-
tifying A € R®*3, D € R**3, and vectors b € R? and d € R2.
(b) Choose a feasible initial value (xq, ), Zo)-
(c) Select the algorithm parameter o € [0, 1] appropriately for Newton’s method.
(d) Discuss how to determine «in (11.77) in order for the new iterate (x;1, 4,11, Zk+1)
to stay feasible.
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A.1. Optimization: Primal and Dual Problems

A.1.1. The Lagrangian

,,,,,,,,,,,,

min f(x)
subj.to hi(x) <0, i=1,---,m (Primal) (A.1.1)
Cb():o ]:1,,])

We define its Lagrangian £ : R” x R™ x R? — R as

Lx a,B) = f(x)+ Z aifii(x) + Z Big;(x) (A.1.2)
— (%) +a-hx) + 8- qx),

where o = (aq, ag, -+, ) > 0and B = (64, Bo, -- -, 5,) are Lagrange
multipliers.

Definition}; A.2. The set of points that satisfy the constraints,

C XL (xeR"|h(x) <0 and g(x) = 0}, (A.1.3)

is called the feasible set.

***********

f(x) = max L(x,a,3), x€C. (A.1.4)

a>0,8
The maximum is taken iff a satisfies

Proof. When x € C, we have h(x) < 0 and g(x) = 0 and therefore

Lx,a,B) = f(x)+o-h(x)+8-q(x) < f(x)
Clearly, the last inequality becomes equality iff (A.1.5) holds. [
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369
Remark; A4. Recall £(x,a,8) = f(x) + - h(x) + 8- q(x) and
C={x]|h(x) <0 and g(x) = 0}. It is not difficult to see

max L(x,a,3) =00, x¢C. (A.1.6)

a>0,3

'Theorem| A.5. Let f* be the optimal value of the primal problem

(A.1.1):
f* = min f(x).
xeC
Then f* satisfies
ff= m}in 61;1;%% L(x,a,3). (A.1.7)

Note: The minimum in (A.1.7) does not require x in C.

Proof. For x € C, it follows from (A.1.4) that

f*=min f(x) = min max L(x, a, 3). (A.1.8)

xeC xeC a>0,06

When x ¢ C, since (A.1.6) holds, we have

I}Elgl(lzl (g%’% L(x,a, B) = 0. (A.1.9)

The assertion (A.1.7) follows from (A.1.8) and (A.1.9). [

The primal problem (A.1.1) is equivalent to the minimax problem

min max L(X, a, (3), (Primal) (A.1.10)

X a>0,8

where
Lix,a.B) = [(x)+a-h(x)+ 8- q(x).

Here the minimum does not require x in the feasible set C.
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A.1.2. Lagrange Dual Problem

Given a Lagrangian L(x, a, 3), we define its Lagrange dual function as

g(e, f) <= min L(x, e, B)

. (A.1.11)
= min {f(x)+a -h(x)+8 qkx)}.
'Claim' A.7. Lower Bound Property
g(e, B) < f*, for a > 0. (A.1.12)

Proof. Let o > 0. Then for x € C,
f(x) > Lix, @, B) > min L(x, , B) = g(a, B).

Minimizing over all feasible points x gives f* > g(a,3). U

Definition} A.8. Given primal problem (A.1.1), we define its Lagrange
dual problem as

maxmin L(x, a, 3)
af X (Dual) (A.1.13)
subj.to a >0

Thus the dual problem is a maximin problem.

,,,,,,,,,,,,

g" = max min L(x, &, 3). (A.1.14)




A.1. Optimization: Primal and Dual Problems 371

Although the primal problem is not convex, the dual problem is
always convex (actually, concave).

'Theorem | A.10. The dual problem (A.1.13) is a convex optimization
problem. Thus it is easy to optimize.

Proof. From the definition,
g(e.B) = min £(x, . 8) = min {/(x) + & h(x) + B a(x)},

which can be viewed as pointwise infimum of affine functions of « and 3.
Thus it is concave. Hence the dual problem is a concave maximization
problem, which is a convex optimization problem. [

,,,,,,,,,,,,,,

¢ It is equivalent to the minimax problem

min max L(x, a, 3), (Primal) (A.1.15)

x «>0,0
where the Lagrangian is defined as

L(x,a,0) = f(x)+a-h(x)+06-q(x). (A.1.16)

¢ Its dual problem is a maximin problem

max min £(x, a, 3), (Dual) (A.1.17)

a>0.0 x
and the dual function is defined as
g(a,8) = min L(x, a, 3). (A.1.18)
* The Lagrangian and Duality
— The Lagrangian is a lower bound of the objective function.

f(x) > L(x,a,8), for xe(C, a>0. (A.1.19)

— The dual function is a lower bound of the the primal optimal.

g(a, B) < f*. (A.1.20)

— The dual problem is a convex optimization problem.
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A.2. Weak Duality, Strong Duality, and Com-
plementary Slackness

Recall: For an optimization problem of the form

min f(x)
subj.to hi(x) <0, i=1,---,m (Primal) (A.2.1)
gj(x) =0, j=1---,p

the Lagrangian £ : R"” x R™ x R? — R is defined as

LxB) = FO)+ Y aihi(x)+ D Bia(x)

= (A.2.2)
= f(x)+a-h(x)+8 qx),
where o = (ay, ag, -+, o) > 0 and B8 = (B4, Bo, -+, B,) are Lagrange
multipliers.
* The problem (A.2.1) is equivalent to the minimax problem
min iy L(x, o, 3). (Primal) (A.2.3)
* Its dual problem is a maximin problem
max min £(x, a, 3), (Dual) (A.2.4)

a>0,0 x

and the dual function is defined as

g(a,B) = mxin L(x,a,B). (A.2.5)
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A.2.1. Weak Duality

'Theorem | A.12. The dual problem yields a lower bound for the primal
problem. That is, the minimax f* is greater or equal to the maximin g*:

f* = min max L(x,a,3) > max min L(x,a,3) = ¢ (A.2.6)

x a>0,8 a>0,8 x

Proof. Let x* be the minimizer, the primal optimal. Then
L(x,a,3) >min L(x,a,3) = L(x", a0, 3), Vx, a>0, 0.
Let (a*, 8%) be the maximizer, the dual optimal. Then

L(x,a*, () = IE%},% Lx,aB)>LxaB), Vx, a>0, 0.

It follows from the two inequalities that for all x, a > 0, 3,

L(x,a",B") = max L(x,,3) > min L(x, o, B) = L(x, o, B). (A.2.7)

a>0,8

Notice that the left side depends on x, while the right side is a function of
(a, B). The inequality holds true for all x, a > 0, 3.
—> We may take min and ni%% respectively to the left side and the right

side, to conclude (A.2.6). O

Definition} A.13. Weak and Strong Duality

(a) It always holds true that /* > ¢*, called as weak duality.

(b) In some problems, we actually have f* = ¢*, which is called strong
duality.
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A.2.2. Strong Duality

' Theorem | A.14. Slater’s Theorem

If the primal is a convex problem, and there exists at least one strictly
feasible x, satisfying the Slater’s condition:

h(X) <0 and qX) =0, (A.2.8)

then strong duality holds.

A conception having close relationship with strong duality is the duality
gap.

Definition} A.15. Given primal feasible x and dual feasible (a, 3), the
quantity

F(%) — g(ex.B) = f(x) — min L(x, o, f) (A.2.9)
is called the duality gap.

From the weak duality, we have

fx)—g(e,8) > fF—g">0

Furthermore, we declare a sufficient and necessary condition for duality
gap equal to O.

**************

(a) x is the primal optimal solution,
(b) (e, B) is the dual optimal solution, and
(c) the strong duality holds.

Proof. From definitions and the weak duality, we have

fx)>f">9 >g(a, B).

The duality gap equals to 0, iff the three inequalities become equalities. [
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A.2.3. Complementary Slackness

Assume that strong duality holds, x* is the primal optimal, and (a*, 8%)
is the dual optimal. Then

def

Fx) = glar,B) L min Lix, o, 8)
= min {f(x) + Zafhi

< —I—Za*h(x)—i—z,ﬁqj(x
< i),

hence two inequalities hold with equality.

|| Mﬁs

(A.2.10)

* The primal optima x* minimizes L(x, a*, 3").

* The complementary slackness holds:
a‘hi(x*)=0, forall i=1,--- m, (A.2.11)

which implies that
a; >0 = h(x") =0, hi(x") <0 = a; =0. (A.2.12)

Note: Complementary slackness says that

e If a dual variable is greater than zero (slack/loose), then the corre-
sponding primal constraint must be an equality (tight.)

* If the primal constraint is slack, then the corresponding dual vari-
able is tight (or zero).

pr1ma1 dual algorlthms The basic idea is

1. Start with a feasible dual solution o.

2. Attempt to find primal feasible x such that (x, a) satisfy complemen-
tary slackness.

3. If Step 2 succeeded, we are done; otherwise the misfit on x gives a
way to modify «. Repeat.
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A.3. Geometric Interpretation of Duality

Recall: For an optimization problem of the form

min f(x)
subj.to h;(x) <0, i=1,---,m (Primal) (A.3.1)

the Lagrangian £ : R” x R™ x R” — R is defined as

Lx,a,8) = f(x) +Zozihi(x) +Z B,q;(x)

— = (A.3.2)
= fx)+a-h(x)+8 q(x),
where o = (Ckl, Qgy vy am) Z 0 and /6 - (617 627 ) 6}7) are Lagrange
multipliers.
* The problem (A.3.1) is equivalent to the minimax problem
min e L(x, o, 3). (Primal) (A.3.3)
* Its dual problem is a maximin problem
ni%}é min L(x, o, 3), (Dual) (A.3.4)
and the dual function is defined as
g(a, B) = min L(x, o, B). (A.3.5)

Definition}; A.18. Given a primal problem (A.2.1), we define its epi-
graph (supergraph) as

A={(r,s,t) | h(x) <r, q(x)=s, f(x)<t, for some x € R"}. (A.3.6)
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Geometric-interpretation| A.19. Here are the geometric interpreta-
tion of several key values.

(a) f* is the lowest projection of A to the the t-axis:

f* = min{t | h(x) <0, g(x) =0, f(x) <t}

— min{t] (0,0,7) € A}. (A.3.7)

(b) g(a, B) is the intersection of the ¢-axis and a hyperplane of normal
vector (a, 3,1):

def

g(@.B) 2L min {f(x)+ o h(x)+ 8- q(x)}

A.3.8
= min{(c, 3,1)"(r,s,t) | (r,s,t) € A}. ( )

This is referred to as a nonvertical supporting hyperplane, be-
cause the last component of the normal vector is nonzero (it is 1).

(c) g* is the highest intersection of the t-axis and all nonvertical

supporting hyperplanes of .A. Notice that o > 0 holds true for
each nonvertical supporting hyperplane of A.

From the geometric interpretation of /* and ¢*, we actually have an equiv-
alent geometric statement of strong duality:

'Theorem | A.20. The strong duality holds, iff there exists a nonvertical
supporting hyperplane of A passing through (0,0, f*).

Proof. From weak duality f* > g¢*, the intersection of the t-axis and a
nonvertical supporting hyperplane cannot exceed (0,0, f/*). The strong du-
ality holds, i.e, f* = g%, iff (0,0, f*) is just the highest intersection, meaning
that there exists a nonvertical supporting hyperplane of A passing through
(0,0, f*). O
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*************

min 22+ 1
X

: (A.3.9)
subj.to x> 1.

Solution. A code is implemented to draw a figure, shown at the end of
the solution.

* Lagrangian: The inequality constraint can be written as —x + 1 < 0.
Thus the Lagrangian reads

L(x,a) = 2 +1+a(—2+1) =x*—ax+a+1
o o’ (A.3.10)

2
= - =) —— 1
(x 2> 4+a+ ,

and therefore the dual function reads (when x = «/2)

2

g(a) =min L(z,a) = —% +a + 1. (A.3.11)

************

o We may obtain it by applying a calculus technique:

0
il —Or —q = A.3.12
aIE(:JU,oz) r—a =0, (A.3.12)

and therefore © = /2 and (A.3.11) follows.

Equation (A.3.12) is one of the Karush-Kuhn-Tucker (KKT) con-
ditions, the first-order necessary conditions, which defines the
relationship between the primal variable (z) and the dual
variable ().

o Using the KKT condition, (A.3.11) defines the dual function g(a) as
a function of the dual variable («).

o The dual function g(«) is concave, while the Lagrangian is an affine
function of a.
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e Epigraph: For the convex problem (A.3.9), its epigraph is defined as
A={(r,t)| -z +1<r, 2*+1<t, forzecR}. (A.3.13)
To find the edge of the epigraph, we replace inequalities with equalities:
—x+1l=r *4+1=t (A.3.14)
and define ¢ as a function of r:
t=a?+1=(—r+1)>%+1 (A.3.15)

See Figure A.1, where the shaded region is the epigraph of the problem.

16

14 1

10 1

Figure A.1: The epigraph of the convex problem (A.3.9), the shaded region, and strong
duality.

The Primal Optimal: For a feasible point point z,
—z41<0 — r=—a+4+1<0.

Thus the left side of the t-axis in A corresponds to the feasible set; it
follows from (A.3.15) that

f*=min{t | (0,t) € A} = 2. (A.3.16)
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* Nonvertical Supporting Hyperplanes: For the convex problem, it fol-
lows from a Geometric-interpretation (A.3.8) that

g(a) = min {ar +t}. (A.3.17)
(rt)eA

For each (r,t), the above reads
o2
ar +t=g(a) = _Z—i_OH_l’

where (A.3.11) is used. Thus we can define a family of nonvertical sup-
porting hyperplanes as
042
t = —ozr—z—l-oz—l—l, (A.3.18)

which is a line in the (r,¢)-coordinates for a fixed a. Figure A.1 depicts
two of the lines: o = 0 and o = 2.

¢ Strong Duality: Note that on the t-axis (r = 0), (A.3.18) reads

2

1
t = —% +a+l= —Z(a —2)% 42, (A.3.19)

of which the maximum ¢* = 2 when a = 2. Thus we can conclude

F=g =7 (A.3.20)

strong duality holds for the convex problem. [
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duality_convex.py
import numpy as np
from matplotlib import pyplot as plt

# Convex: min f(x), s.t. x >=1 (i.e., -x+1 <= 0)
def f(x): return x**2+1
def g(r,alpha): return -alpha*r+(-alpha*x2/4+alpha+1)

#--- Epigraph: t= f(r)

r = np.linspace(-3,4,100); x = -r+1
t = f(x); mint = t.min(); maxt = t.max()

plt.fill_between(r,t,maxt,color='cyan',alpha=0.25)
plt.plot(r,t,color='cyan')

plt.xlabel(r'$r$' ,fontsize=15); plt.ylabel(r'$t$',fontsize=15)
plt.text(-1,12,r'$\cal A$',fontsize=16)

plt.plot([0,0], [mint-3,maxt],color='black',ls='-"') # t-axis
plt.yticks(np.arange(-2,maxt,2)); plt.tight_layout()

#--- Two Supporting hyperplanes

r = np.linspace(-2.5,2,2)
plt.plot(r,g(r,2),color="'blue',ls="'-")
plt.plot(r,g(r,0),color="'blue',ls="'--")

#--- Add Texts

p=2.1

plt.text(p,g(p,0),r'$\alpha=0$',fontsize=14)
plt.text(p,g(p,2),r'$\alpha=2$',fontsize=14) # the optimal
plt.plot (0,2, 'r*' ,markersize=8)
plt.text(0.1,1.9,r'$f *=g~*=2$' ,fontsize=14)

plt.savefig('png-duality-example.png',bbox_inches='tight')
plt.show()
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min z* — 50x2 + 25z

7T (A.3.21)
subj.to = > —2.

Solution. For the nonconvex problem, a code is implemented similar to
duality_convex.py on p.381.

600 1 1000

400 7501

500 A
200 4

250 4

—200 4

—250
—400 1

—500 4
—600 1

=750

—800 1 .

Figure A.2: The nonconvex problem: (left) The graph of y = f(z) and (right) the epigraph
and weak duality.

* The Lagrangian of the problem (A.3.21) reads
L(z,a) = 2* — 500% + 252 + a(—z — 2); (A.3.22)
its epigraph is defined as
A={(rt)| —z—2<r, 2'—502+ 25z <t, forsomez}, (A.3.23)

which is shown as the cyan-colored region in Figure A.2.

* The primal optimal f* is obtained by projecting the negative side of the
epigraph (r < 0) to the ¢t-axis and taking the minimum, f* ~ —501.6.

* The dual optimal g* is computed as the highest intersection of the t-axis
and all nonvertical supporting hyperplanes of A, ¢* ~ —673.4.

* For the nonconvex problem, there does not exist a supporting hyperplane
of A passing through (0, f*), thus strong duality does not hold.
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P.1. Data Preparation for Heterogeneous Datasets

(From Remark 6.2). Data preparation is difficult because the pro-
cess is not objective, and it is important because ML algorithms learn
from data. Consider the following.

* Data preparation is one of the most important steps in any data-
mining project — and traditionally, one of the most time consuming.

& Datasets may involve missing values.
D 1In many cases, datasets are saved in various formats.

¢ Often, it takes up to 80% of the time.

* Data preparation is not a once-off process; that is, it is iterative as
you understand the problem deeper on each successive pass.

Objectives. In this project, you will combine and sort data values saved
in multiple Excel files.

¢ Excel Data

- Excel is easy to use and analyze data.
— However, the whole data is often saved in multiple files.

— If you would like to employ powerful Python libraries effectively,
the data must be combined and sorted meaningfully.

— The trimmed data can also be saved in an Excel file. In this case,
you may enjoy both advantages of Python and benefits of Excel.

¢ Python for Data Preparation:

— Use Python for combing and sorting data values.
— Save the trimmed data into an Excel file.
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A modelcode is implemented for your convenience. Download the code to

untar. Then you will see two files and a directory including two Excel data
files.

File Edit View Insert Format Styles Sheet Data
- Mm% kR
Cambria + | N ~- B I U A-.

Al + fx Z~= NAICS

B C p | E | F |
CS | year ‘:nmmemhur-l’rdd

2 | 311 2014/4.67E+08 104.044
3 | 316 2008 1094878 100.234
4 | 321 2002| 4567000 80.428
5 | 326 2009 7E+07  98.385
6 | 322 200857809552 97.656
i 321 2003| 5753000 81.785
8 | 334 2016(1.79E+08 95.892
9 336 2017 7.78E+08 100
10 | 315 2020/ 4299864 110.955
11 311 2020 6E+08 101.51%9
12 332 2021 2.26E+08 103.665
13 316 2002| 783000 70.178
14 337 200618187000 99.121
_15 332 200433992000 97.895
16 | 325 2019 S5E+H08 93.335
A7 324 2017|3.67E+08 100
_18 | 314 2005 7189000 142.839
19 315 200%| 5179000 83.82%9

20 331 2010/1.12E+08  99.542

Figure P.1: data-ECommerce-Labor_Prod.xlsx

File Edit View Insert Format Styles Sheet Data Tools Window Help
-E-Y-I Ry KBB4 - QW B-BE-TASK BlPE Q-4 R sfE-1E ©
Cambria - n |~ BIUA-©.= = = =_ ®M-%74[ 000 =5 [O-£2-B-=- &8 4

i
H
H

Al - | fx £ - = |Naics

B [ ¢ [ o [ E | F [l o[ w [ o [ o T koM nN[Toll Pl ol r [ s [ 1 [ vl v [ w x|
1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 [ 2009 | 2010 [ 2011 | 2012 [ 2013 | 2014 | 2015 [ 2016 | 2017 | 2018 | 2019 | 2020 | 2021

2 311 4.26E+08|4.35E+08 4.51E+08| 4.6E+08 4.83E+08 5.12E+08 5.32E+08 5.37E+08 5.9E+08 6.5E+08 6.27E+08 6.49E+08 7.09E+08 7.39E+08 7.63E+08 7.94E+08|7.74E+08 7.65E+08 7.84E+08| 7.85E+08 BE+0B B.27E+08 SE+08
3 312 1.07E+08 1.12E+08 1.19E+08 1.06E+08 1.09E+08 1.14E+08 1.24E+08 1.24E+08 1.28E+08 1.25E+08 1.28E+08|1.31E+08 1.35E+08 1.42E+08 1.47E+08 1.47E+08 1.55E+08 1.55E+08 1.56E+08 1.56E+08 1.57E+08 1.56E+08 1.66E+08
4 313543060005211200015681000155490001258800010898000}4 000 ?0003618500032052395263240002933100030890000 3E+07315394693130800029385000281290002790533227811403267160502430898026521078
5 3143268900033654000319710003180700031261000336360003502200033264000288810002683633621366000209690002236800022048000228893822521100024855000247360002298374422658822226994082111161023698648
6 31552305000 6E+075459800014515000386680003287300031401000 3E+0714096000191395931390900013366000127840001273900012052793114660001097400010513000 1E+07 9740308 1E+07 8360915 9410887
7 316 9653000/ 9647000 8834000/ 6299000 5784000 5812000 6181000 5941000 5615000 5211979 4327000 4953000 5665000 5203000 5103974 5132000 4991000 4919000 4808453 4601292 4531878| 4012943 4745541
8 321773110007366%000372500003898500072119000 1E+08 1.12E+08 1.12E+08, 1E+083776482955000000 TEHO7 7E+07779130003861758924924000777 18000 1E+08 1.08E+08| 1.14E+08 1.07E+08 1.18E+08 1.55E+08
9 322 1.57E+08 1.65E+08 1.56E+08 1.54E+08 1.51E+08 1.55E+08 1.62E+08 1.69E+08 1.76E+08 1.79E+08 1.62E+08 1.7E+08 1.76E+08 1.81E+08 1.86E+08 1.87E+08 1.85E+08 1.82E+08 1.85E+08 1.91E+08 1.92E+08 1.82E+08 2E+08
10 323 1E+08 1E+08 1E+0875388000726630007359500076922000 1E+08 1E+08786341183291900032410000323800003197900032425482316290003104%000326930003090079033310469309779587422012578051062
1 324 1.63E+08 2.35E+08 2.19E+08 2.15E+08 2.47E+08 3.3E+08 4.76E+08 5.47E+08|6.16E+08 7.7E+08 5E+08 6.27E+08 8.38E+08|8.51E+08 8.53E+08 7.86E+08|5.08E+08 4.3E+08 5.48E+08 6.73E+08 6E+08 3.58E+08 6.1E+08
12 325 4.2E+08|4.49E+08 4.38E+08| 4.6E+08 4.87E+08 5.41E+08 6.11E+08 6.57E+08 7.24E+08 7.39E+08 6.24E+08 7E+08 7.73E+08 7.95E+08 7.86E+08 7.87E+08 7.37E+08 7.23E+08 7.56E+08| 7.58E+08 7.32E+08|6.92E+08 8.32E+08
13 326 1.72E+08|1.78E+08 1.71E+08|1.74E+08 1.78E+08 1.85E+08 2E+08 2.11E+08 2.1E+08 2E+08 1.71E+08 1.89E+08 2E+08 2.19E+08 2.26E+08 2.34E+08|2.37E+08 2.36E+08 2.37E+08 2.52E+08 2. 49E+08 2.34E+08 2.73E+08
14 3277615300077329000248610007526500076923000 1E+08 1.15E+08 1.26E+08 1.28E+08 1.15E+08 FEHO7 PE+077258500078464000 1.06E+08 1.13E+08 1.18E+08 1.23E+08 1.27E+08 1.3E+08 1.34E+08 1.33E+08 1.44E+08
15 331 1.57E+08 1.57E+08 1.38E+08 1.39E+08 1.38E+08 1.82E+08 2E+08 2.34E+08 2.57E+08 2.83E+08 1.69E+08 2.33E+08 2.79E+08 2.68E+08 2.63E+08 2.65E+08 2.28E+08 2.07E+08 2.21E+08 2.53E+08 2.36E+08 2E+08 2.81E+08
16 332 2.57E+08 2.68E+08 2.53E+08 2.47E+08 2.46E+08 2.61E+08 2.89E+08 3.17E+08|3.45E+08 3.58E+08 2.81E+08|2.94E+08 3.24E+08 3.4E+08 3.47E+08 3.57E+08 3.49E+08 3.36E+08 3.45E+08 3.73E+08 3.76E+08 3.46E+08 3.93E+08
17 333 2.77E+08|2.92E+08 2.67E+08|2.53E+08 2.57E+08 2.72E+08 3E+08 3.27E+08 3.52E+08 3.56E+08 2.88E+08 3.18E+08 3.65E+08 4.07E+08 3.94E+08 4E+08 3.78E+08 3.48E+08 3.57E+08| 3.9E+08 3.93E+08|3.55E+08 4E+08
18 334 4.67E+08|5.11E+08 4 29E+08|3.58E+08 3.53E+08 3.66E+08 3.73E+08 3.91E+08 4E+08 3.84E+08 3.21E+08 3.31E+08 3.38E+08 3.39E+08 3.09E+08 3E+08! 3E+08 2.94E+08 3.1E+08 3.16E+08 3.17E+08 3.08E+08 3.24E+08
19 335 1.18E+08 1.25E+08 1.14E+08 1E+08 1E+08 1.05E+08 1.12E+08 1.19E+08| 1.3E+08 1.3E+08 1.05E+08 1.1E+08 1.19E+08 1.24E+08 1.24E+08 1.26E+08 1.25E+08 1.24E+08 1.22E+08 1.3E+08 1.32E+08|1.29E+08 1.43E+08
20 336 6.76E+08 6.4E+H08 6E+08 6.38E+08 6.61E+08 6.62E+08 6.91E+08 7E+08|7.45E+08 6.73E+08  5.4E+08 6.37E+08 6.92E+08|7.88E+08 8.41E+08 9.12E+08|9.49E+08 9.49E+08 9.62E+08| 9.9E+08 9.38E+08 8.17E+08 8.79E+08
21 337726590007510700072147000772420007542300078279000341810003561800035534000 BE+07 6E+0739048000522850003670600058218886 7E+0773946000746850007446909277755883748576837072628975706751
22 339 1.08E+08/1.15E+08 1.16E+08 | 1.27E+08 1.29E+08 1.32E+08/1.43E+08 1.5E+08/1.48E+08 1.53E+08 1.44E+08| 1.5E+08 1.53E+08 1.5E+08 1.56E+08 1.52E+08 1.53E+08 1.55E+08 1.4BE+08 1.54E+08 1.53E+08 1.44E+08 1.61E+08

Figure P.2: data-Total-Sale.xlsx
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DATA_Preparation.py
import numpy as np

import os,sys

from util_DATA_Prep import *

file_ELP = './dataFiles/data-ECommerce-Labor_Prod.xlsx'
file_ TS = './dataFiles/data-Toal-Sale.xlsx'
B l___

# Read Excel files

B o .

DATA_ELP, header_ELP = load_data(file_ELP)
DATA_TS, header_TS = load_data(file_TS)

H o
# Combine and Sort

# Combine the above for <DATA> and <header>

# 1in the order ['NAICS', 'year', 'Total', 'E-commerce', 'Labor-Prod']
# Sort: First, with 'NAICS code' and then with 'year'

H o

# Implement a function or two into "util_DATA_Prep.py" to complete

H o

# You can save the trimmed "DATA" to an Excel file:

+H+

First, you should get combined <DATA> and <header>

util_DATA_Prep.py

10

11

12

import numpy as np
import pandas as pd

def load_data(excelfile):
df = pd.read_excel(excelfile)
df .fillna(0,inplace=True) #replace nan(=empty spot) by O
DATA = df.values; header = df.columns.tolist()
print('@Q' ,excelfile)
print('  DATA.dtype,DATA.shape =',DATA.dtype,DATA.shape)
print (' header =',header)

return DATA,header
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* Download a modelcode: project-Data-Preparation.tar. The data is a
part of the North American Industry Classification System (NAICS)
database, for which the USA Federal has been collecting data.

* Implement a function or two to complete the project.
— Combine two excel files and sort data values.
Combining order: NAICS’, ’year’, "Total’, 'E-commerce’, ‘Labor-Prod’]
Sorting: First, with 'NAICS code’ and then with ’year’
— Save the data into an Excel file, say “Trimmed-DATA.xlsx”, which

looks like
A B C D E F
1 || NAICS | year | Total | E-commerce | Labor-Prod
2 311 1999 | 4.26E+8 | 45757000 92.461
3 311 | 2000 | 4.35E+8 | 54837000 93.886
24 311 | 2021 | 9E+8 652192662 99.956
25 312 1999 | 1.07E+8 | 35138000 118.993
484 339 |2021 | 1.61E+8| 96050779 102.872

* Open <Trimmed-DATA xlsx> in Excel.
For (NAICS=311), draw a figure of three curves for
(Total, E-commerce, Labor-Prod) vs. (year).

Report: Start with a one-page summary note.

* Add your whole code.
* Export <Trimmed-DATA.xlsx> as PDF to attach.
e Attach the figure, drawn in Excel.



https://skim.math.msstate.edu/LectureNotes/data/project-Data-Preparation.tar
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P.2. Effective Preprocessing Technique for Fill-
ing Missing Data

(From Remark 6.2). Data preparation is difficult because the pro-
cess is not objective, and it is important because ML algorithms learn
from data. Consider the following.

* Preparing data for analysis is one of the most important steps in any
data-mining project — and traditionally, one of the most time consum-
ing.

¢ Often, it takes up to 80% of the time.

* Data preparation is not a once-off process; that is, it is iterative as
you understand the problem deeper on each successive pass.

* Removal of samples (rows) or features (columns):
It is the simplest and efficient method for handling the missing data.

) However, we may end up removing too many samples or features.

* Filling the missing values manually:
This is one of the best-chosen methods.

& But there is one limitation that when there are large data set, and
missing values are significant.

¢ Imputing missing values using computed values:
The missing values can also be occupied by computing mean, me-
dian, or mode of the observed given values. Another method could
be the predictive values that are computed by using any ML or Deep
Learning algorithm.

& But one drawback of this approach is that it can generate bias
within the data as the calculated values are not accurate concerning
the observed values.
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Objectives.
¢ Algorithm Development:

— Think a good strategy or two for filling the missing values, if it
is to be done manually.

— What information available from the dataset is useful and help us
build a good strategy?

— Suggestions: Use near-values to interpolate; try to employ the
concept of feature importance, if available.

e Comparisons:

— For the Wine dataset, for example, erase r% data values in ran-
dom; r = 5, 10, 20.

— Compare your new filling strategy with (1) the simple sample re-
moval method and (2) the imputation strategy using mean, me-
dian, or mode.

- Perform accuracy analysis for various classifiers, e.g., logistic
regression, support vector machine, and random forests.
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P.3. mCLESS

Note: Some machine learning algorithms are considered as black
boxes, because

* the models are sufficiently complex and

* they are not straightforwardly interpretable to humans.
Lack of interpretability in predictive models can undermine trust

in those models, especially in health care, in which so many decisions
are — literally — life and death issues [59].

1. Understand the strengths and weaknesses of the model
2. Better feedback

3. Enhanced probability of adoption and success

4. Discover insights

,,,,,,,,,,,,,,,,,,,,,,, —
|
|

,,,,,,,,,,,,,,,,,,,,,,, -

* Develop an interpretable machine learning algorithm.

— Formulated with the least-squares error.
— We call it the Multi-Class Least-Error-Square Sum (mCLESS).

* Compare it with traditional methods, for various datasets.
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P.3.1. Review: Simple classifiers

The Perceptron [64] (or Adaline) is the simplest artificial neuron that
makes decisions for datasets of two classes by weighting up evidence.

* Inputs: feature values x = [z1, 22, -+ , x4]
e Weight vector and bias: w = [wy, ws, - - -, wg]?, wy
* Net input:
Z=Wo+ W1 T1+wWeTg+ -+ WgTy (P.3.1)
e Activation: ]
1, if 2> 40
$(z) = { 0, otherwise, U2

where 0 is a threshold. When the logistic sigmoid function is chosen
for the activation function, i.e., ¢(z) = 1/(1 4+ e™*), the resulting
classifier is called the Logistic Regression.

7777777777 a

[Remark‘ P.2. Note that the net input in (P.3.1) represents a hyper-

,,,,,,,,,, ol

plane in R,
* More complex neural networks can be built, stacking the simple ar-
tificial neurons as building blocks.
* Machine learning (ML) is to train weights from datasets of an arbi-

trary number of classes.

— The weights must be trained in such a way that data points in a
class are heavily weighted by the corresponding part of weights.

* The activation function is incorporated in order

(a) to keep the net input restricted to a certain limit as per
our requirement and, more importantly,

(b) to add nonlinearity to the network.
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P.3.2. The mCLESS classifier

Appendix P. Projects

Here we present a new classifier which is based on a least-squares formu-

lation and able to classify datasets having arbitrary numbers of classes. Its

nonlinear expansion will also be suggested.

Two-layer Neural Networks

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\i‘
]
]
-

_4 T T T = T T T T
-2 0 2 4 6 8 10

Figure P.3: A synthetic data of three classes.

* In order to describe the proposed algorithm effectively, we exemplify
a synthetic data of three classes, as shown in Figure P.3, in which
each class has 100 points.

* A point in the c-th class is expressed as

x\9 = [ gc),xéc)] = [z1,22,¢] ¢=0,1,2,

where the number in () in the superscript denotes the class that the
point belongs to.

* Let’s consider an artificial neural network of the identity activation
and no hidden layer, for simplicity.
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A set of weights can be trained in a way that points in a class are
heavily weighted by the corresponding part of weights, i.e.,

w9 + w2 + Pl = 6, = { o it (P.3.3)

where §;; is called the Kronecker delta and w(()j ) is a bias for the class j.

* The weights can be determined by the least-squares method.

* We will call the algorithm the Multi-Class Least-Error-Square
Sum (mCLESS).

******************************************

'mCLESS: Algebraic Formulation

|
|
L e e e e e e e e e e e e e e e e e e e e e e e e e e — = -

Training

* Dataset: We express the dataset { X, y} used for Figure P.3 by

11  T12 C1
o1 T22 C2

X=|"7 "7l eRV? y=1|"], (P.3.4)
IN1 TN2 CN

where ¢; € {0, 1,2}, the class number.

* The algebraic system: It can be formulated using (P.3.3).

— Define the information matrix:

I z11 z12
1 @91 2

A= _ c RV*3, (P.3.5)

1 xn1 zNo

Note. The information matrix can be made using
A = np.column_stack((np.ones([N,]),X))
— The weight matrix to be learned is:

w® L, @
0 0 0
W= [w? wl w?] = w§0) wil) w?) : (P.3.6)
© a2

Wy Wy Wy
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where the j-th column weights heavily points in the j-th class.
— Define the source matrix:

B =[5, ] € RN, (P.3.7)

For example, if the i-th point is in Class 0, then the i-th row of B is
[1,0,0].

* Then the multi-column least-squares (MC-LS) problem reads
W = arg mmi/n | AW — BHQ, (P.3.8)
which can be solved by the method of normal equations:

(ATA)W = ATB, ATA e R¥, (P.3.9)

* The output of training: The weight matrix w.

Note: The normal matrix A A is occasionally singular, particularly for
small datasets. In the case, the MC-LS problem can be solved using the
singular value decomposition (SVD).

Prediction

The prediction step in the mCLESS is quite simple:

(a) Let [z, 25] be a new point.
(b) Compute

—

[17 Ty, 5172] W = [p07p17p2]7 W € R3><3. (P310)

Note. Ideally, if the point [z}, 9] is in class j, then p; is near 1, while
others would be near 0. Thus p; is the largest.

(¢) Decide the class c:

c = np.argmax([py, p1, po], axis = 1). (P.3.11)
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Experiment|P.3. mCLESS, with a Synthetic Dataset

* As a data preprocessing, the dataset X is scaled column-wisely so that
the maximum value in each column is 1 in modulus.

® The training is carried out with randomly selected 70% the dataset.

* The output of training, /W, represents three sets of parallel lines.

— Let [w(()j), ng), wéj)]T be the j-th column of . Define L;(z1,22) as
Li(z1,29) = w(()j) + ng)xl - U);j)l'g, j=0,1,2. (P.3.12)

— Figure P.4 depicts L;(z1,22) = 0 and L;(x;,22) = 1 superposed on
the training set.

¢ It follows from (P.3.11) that the mCLESS can be viewed as an one-
versus-rest (OVR) classifier; see Section 3.2.3.

-—= Lo(¥1,X2)=0
— Lo(x1, x2)=1
075 ~— Lilx,x)=0
— Li(x1,x2)=1
0.50 La(x1, %2)=10
La(x1, x2)=1 ¢

Figure P.4: Lines represented by the weight vectors. mCLESS is interpretable!

The whole algorithm (training-prediction) is run 100 times, with ran-
domly splitting the dataset into 70:30 parts respectively for training and
prediction; which results in 97.87% and 0.00171 sec for the average ac-
curacy and e-time. The used is a laptop of an Intel Core 17-10750H CPU
at 2.60GHz.
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P.3.3. Feature expansion

¢ The mCLESS so far is a linear classifier.

¢ As for other classifiers, its nonlinear expansion begins with a data
transformation, more precisely, feature expansion.

* For example, the Support Vector Machine (SVM) replaces the dot
product of feature vectors (point) with the result of a kernel function
applied to the feature vectors, in the construction of the Gram matrix:

K(xi,x;) = o(xi) - 0(x;),
where o is a function for feature expansion.

— Thus, without an explicit expansion of feature vectors, the SVM
can incorporate the effect of data transformation effectively. Such
a technique is called the kernel trick. See Section 5.3.5.

e However, the mCLESS does not incorporate dot products between
points.

— As a result, we must perform feature expansion without a
kernel trick, which results in an augmented normal matrix, ex-
panded in both column and row directions.




P3. mCLESS 397

¢ A feature expansion is expressed as

{x=[w1,azz,---,xd] SN {>§=[$17$2""7f’5d’0("” r (P3.13)

w = [wg, wy, -+, Wy W = [wp, wy, -+, Wy, Wit1)

where () is a feature function of x.

* Then, the expanded weights must be trained to satisfy

(1, X0 wl) = w(()j) + w%j)scgi) +- 4+ wc(ij)xg) + wéﬁla(x(i)) = ¢;;, (P.3.14)

for all points in the dataset. Compare the equation with (P.3.3).

* The corresponding expanded information and weight matrices read

- ‘ - [ L© L0 (c-1)]
\ 0 0 0
Lo o oo 2 o(x) 0 (1) (C-1)
1 z X T :O-X) Wy wy 1
A= o MO W= N 1l
:. N
Looxy ave o wva o(xx) 0T
) ) | War1 Warr 0 Wapn |
(P.3.15)

where A € RV*(@+2) 1)/ ¢ RH+2*C and C is the number of classes.

* Feature expansion can be performed multiple times. When « features
are added, the optimal weight matrix W € R@+1+0)xC jg the least-
squares solution of

(ATA)W = A" B, (P.3.16)

where AT A ¢ R@+1+a)x(d+1+a) gnd B is the same as in (P.3.7).

F-——————==-
|
|

will focus on the feature function of the form
o(x) =[x —pll, (P.3.17)

the Euclidean distance between x and a prescribed point p.
Now, the question is: “How can we find p?”
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synthetic_data.py
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import numpy as np
import matplotlib.pyplot as plt
from GLOBAL_VARIABLES import *

def generate_data(n,scale,theta):
# Normally distributed around the origin
x = np.random.normal(0,1, n); y = np.random.normal(0,1, n)
P = np.vstack((x, y)).T
# Transform
sx,sy = scale
S = np.array([[sx,0], [0,sy]])
c,s = np.cos(theta), np.sin(theta)
R = np.array([[c,-s],[s,c]]).T #T, due to right multiplication
return P.dot(S).dot(R)

def synthetic_data():

N=0

plt.figure()

for i in range(N_CLASS):
scale = SCALE[i]; theta = THETA[i]; N+=N_D1
D1 = generate_data(N_D1,scale,theta) +TRANS[i]
D1 = np.column_stack((D1,i*np.ones([N_D1,1])))
if i==0: DATA = D1
else: DATA = np.row_stack((DATA,D1))
plt.scatter(D1[:,0],D1[:,1],s=15,c=COLOR[i] ,marker=MARKER[i])

np.savetxt (DAT_FILENAME,DATA,delimiter=","',fmt=FORMAT)
print (' saved: %s' %(DAT_FILENAME))

#xmin,xmax = np.min(DATA[:,0]), np.max(DATA[:,0])
ymin,ymax = np.min(DATA[:,1]), np.max(DATA[:,1])
plt.ylim([int(ymin)-1,int (ymax)+1])

plt.title('Synthetic Data: N = '+str(N))
myfigsave (FIG_FILENAME)
if __name__ == '__main__':

plt.show(block=False); plt.pause(5)

if __name__ == '__main__"':

synthetic_data()
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GLOBAL_VARIABLES.py
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import numpy as np
import matplotlib.pyplot as plt

N_D1 = 100
FORMAT = '%.3f','%.3f",'%d"

SCALE = [[1,1],[1,2],[1.5,11]; TRANS = [[0,0],[6,0],[3,4]]
#SCALE = [[1,1],[1,1],[1,1]11; TRANS = [[0,0],[4,0],[8,0]]
THETA = [0,-0.25%np.pi, O]

COLOR = ['r','b','c']

MARKER = ['.','s','+',"*']

LINESTYLE = [['r--','r-'],['b--",'b-"1,['c--", " 'c-']]

N_CLASS = 1en(SCALE)

DAT_FILENAME = 'synthetic.data'
FIG_FILENAME = 'synthetic-data.png'
FIG_INTERPRET = 'synthetic-data-interpret.png'

def myfigsave(figname):
plt.savefig(figname,bbox_inches='tight')
print(' saved: %s' %(figname))
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1. Implement mCLESS:

* Training. You should implement modules for each of (P.3.5) and
(P.3.7). Then use Xtrain and ytrain to get A and B.

* Test. Use the same module (implemented for A) to get Atest from
Xtest. Then perform P = (Atest)*WW as in (P.3.10). Now, you can
get the prediction using

prediction = np.argmax(P,axis=1);
which may be compared with ytest to obtain accuracy.

2. Use following datasets:

¢ Synthetic datasets. Generate two different synthetic datasets:
(1) Use Line 7 in GLOBAL_VARIABLES. py
(2) Use Line 8 in GLOBAL_VARIABLES. py

* Real datasets. Use public datasets such as iris and wine.
To get the public datasets, you may use:
from sklearn import datasets
data_readl = datasets.load_iris()
data_read2 = datasets.load_wine()

3. Compare the performance of mCLESS with

® LogisticRegression(max_iter = 1000)

® KNeighborsClassifier(5)

® SVC(gamma=2, C=1)

®* RandomForestClassifier (max_depth=5, n_estimators=50, max_features=1)

See Section 1.4.

4. (Optional for Undergraduate Students) Add modules for feature
expansion, as described on page 397.

¢ For this, try to an interpretable strategy to find an effective point p such
that the feature expansion with (P.3.17) improves accuracy.

* Experiment Steps 1-3.

5. Report your experiments with the code and results.

You may start with the machine learning modelcode in Section 1.4; add
your own modules.
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P.4. Noise-Removal and Classification

Machine Learning Tasks
* Many algorithms are sensitive to outliers or noise:

— An object with extreme values may substantially distort the dis-
tribution of the data.

* A good dataset is often better than a good algorithm.

*********************

Project Objectives

| |
| |
R -

* Develop efficient noise-removal algorithms,
— using e.g., the £-NN and the Clustering-PCA.

* Merge the noise-removal algorithms to classification.

* Test and tune the resulting algorithms for public-domain datasets.

For each of selected datasets, you will design the best model for
noise-removal and classification.

********************

Confidence Region

| |
| |
P E

A confidence score indicates the likelihood that a machine learning
model assigns the respective intent correctly.

Definition} P.6. A confidence region is the region where a new point
belongs to a specified class, given a confidence score/value.
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Algorlthm 5.37, p.137. (k-NN algorithm). The algorithm itself is
fairly straightforward and can be summarized by the following steps:

1. Choose the number k£ and a distance metric.

2. For the new sample, find the k-nearest neighbors.

3. Assign the class label by majority vote.

X2
A
o A xala
Oig(MaiA Predict
O A
o X
o O\\-—I- A
+ ++
o
+
o + 4

Figure 5.16: Illustration for how a new data point (?) is assigned the triangle class label,
based on majority voting, when &k = 5.

° Select k.
* Set a confidence value ¢ < k.
Then the confidence region for a class can be defined as the region

where the k-NN of a point includes at least £ points from the same class.
For example, kK = 5 and £ = 4.

may be 1ncorporated, the goal is to keep grouped data p01nts.
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*******

Recall: (PCA), p.197. Consider a data matrix X € RV*¢:
o each of the IV rows represents a different data point,
o each of the d columns gives a particular kind of feature, and
o each column has zero empirical mean (e.g., after standardization).

* The goal of the standard PCA is to find an orthogonal weight matrix

Wi € R™* such that
Zo=XW, k<d, (P4.1)

where 7, € RV** ig call the truncated score matrix and 7, = Z7.
Columns of Z represent the principal components of X.
* (Claim 7.3, p. 160). The transformation matrix W, turns out to be the
collection of normalized eigenvectors of X7 X:
Wk — [Wl‘Wg‘ s |Wk], (XTX) Wj — )‘j Wj, WZ-TW]' = 5ij7 (P42)

where \{ >\, > - > )\, > 0.
* (Remark 7.4, p.160). The matrix 7, € RY** is scaled eigenvectors of
DO.CE
2y = [\/)\Tuﬂ\/)\:ug\ e |\/)\7kuk], (XXT) u; = \;ju;, u;-ruj =
(P.4.3)
e A data (row) vector x (new or old) is transformed to a k-
dimensional row vector of principal components

z = xW, € R, (P4.4)

* (Remark 7.5, p.161). Let X = U VT be the SVD of X, where
¥ = diag(oy,09,--- ,04), 012>2022>--->0q2>0.

Then,

VEW; oi=), j=1,2,--,d,

Zk = [0’1 U_1|02 u2| te ‘O'k U_k].

(P.4.5)
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Figure P.5: A synthetic dataset of three classes.

* For each class, one may perform PCA along with the SVD.
for ¢ in range(nclass):
Xc = X[y==c]; CC = np.mean(Xc,axis=0)
U, s, VI = svd(Xc-CC,full_matrices=False)
o Let p© =cClc], VD = [v{? ... v}, and aj@ — s[j], the jth singular value
for Class c. Define an anisotropic distance as

d _ 4 0) .y
Y9(x) = Z((X “(c)) . )2‘ (P4.6)

J=1 J

— It is implemented in the function aniso_dist2, in util_PCA.py.

— For r > 0, ¥(x) = 72 assigns an ellipse. [

Definition; P.10. The minimum-volume enclosing ellipsoid
(MVEE) is the ellipsoid of smallest volume that fully contains all the
objects.
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rl9 ° = max 79 (x). (P.4.7)

max X_GX(C)

Then %) (x) = O approximates the MVEE relatively well.
See Figure P.6 (a).

(a) (b)

MVEE MVEE

T T T T T T T T T T T T T
=2 0 2 4 6 8 10 -2 0 2 4 6 8 10

Figure P.6: Approximate MVEEs for: (a) the dataset and (b) the confidence regions.

e Either set a threshold 6 > 0
® or aportion (0 < p < 1.

The confidence region for a class can be defined as the region where

(a) either the points x satisfy 7(?)(x) < ¢
(as a result of a histogram analysis)

(b) or only the p-portion of the near-center points are picked from the
dataset ordered by the anisotropic distances.

Figure P.6(b) shows the confidence regions, for p = 0.9.

Note: You must first find confidence regions for the training dataset,
which can be viewed as denoising. You may then begin the training
step with the denoised dataset.
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1. Download PCA-KNN-Denoising.PY.tar:

https://skim.math.msstate.edu/LectureNotes/data/PCA-KNN-
Denoising.PY.tar

2. Compose a denoising-and-classification code, using appropriate
functions from the downloaded package.

* You must implement both denoising algorithms: the £-NN-based
and the PCA-based.

3. Use similar datasets, utilized for Project 1. mCLESS, Section P.3:

* Select a synthetic dataset, using Line 7 or 8 in GLOBAL_VARIABLES. py.

* Real datasets. Use public datasets such as iris and wine.
To get the public datasets, you may use:
from sklearn import datasets
data_readl = datasets.load_iris()
data_read2 = datasets.load_wine()

4. Compare performances of the classifiers with and without denois-
ing
® LogisticRegression(max_iter = 1000)
® KNeighborsClassifier(5)
e SVC(gamma=2, C=1)
® RandomForestClassifier (max_depth=5, n_estimators=50, max_features=1)

5. (Optional for Undergraduate Students)
Add modules for clustering-and-PCA denoising.

¢ For example, the MVEE does not make sense for a half-moon dataset.

Add another dataset, such as
from sklearn.datasets import make_moons
X, y = make_moons(noise=0.2, n_samples=400, random_state=12)

Preform k-Means cluster analysis for each class, with & = 4.

For each cluster in each class, perform the PCA-based denoising.
¢ Carry out Steps 2—4.

6. Report your experiments with the code and results.

Note: You did already the portion: “without denoising”. Undergraduate
students may consider that a class is a cluster. For graduate students, Step
5 will be worth 40% your score.


https://skim.math.msstate.edu/LectureNotes/data/PCA-KNN-Denoising.PY.tar
https://skim.math.msstate.edu/LectureNotes/data/PCA-KNN-Denoising.PY.tar
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P.5. Gaussian Sailing to Overcome Local Min-
ima Problems

* A Gaussian smoothing for a 2D function f(z,y) can be achieved by
storing the function to a 2D-array A, and applying a built-in function
In scipy:

scipy.ndimage.filters.gaussian_filter

which requires a parameter o (standard deviation for Gaussian ker-
nel).

* Alternatively, one can employ an averaging operator; for example,
apply a few iterations of the following convolution

ot 1 1 ¢, 1
S*xA, S= —"lcw & cul, (P.5.1)
(2 + cy)? 1 e 1
for ¢, > 0. Since
1 ¢, 1 1
Co & co| = |cwl| [1 cw 1],
1 ¢, 1 1
the convolution smoothing can be implemented easily and conve-
niently as
SxA ! ([1 1] A)
*x A = ———— Cy | * Cw 1| * :
(2 + cy)? |

which is a horizontal filtering followed by a vertical filtering and fi-
nally a scaling with the factor 1/(2 + ¢, ).

* In this project, you will explore the gradient descent method with line
search (4.19) for the computation of the global minimizer of multiple
local minima problems.
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Tasks to do

1. Go to http://www.sfu.ca/~ssurjano/optimization.html (Virtual Li-
brary of Simulation Experiments) and select three functions of
your interests having multiple local minima. (e.g., two of them are
the Ackley function and Griewank function.)

2. Store each of the functions in a 2D-array A which has dimensions
large enough.

3. Compute
A, = gaussian_filter(A4,0), or A4, =S*S*---xSxA,

t-times

which can be considered as a convex/smooth approximation of the
original function. You can use it for the estimation of f and its
derivatives at x,,.

4. Design a set of o/t-values T (including “0” as the last entry) so
that given an initial point x(, the Gaussian homotopy continuation
method discussed in Remark 4.13 can locate the global minimum,
while the algorithm (4.19) can find only a local minimum, for each
of the functions.

Report. Submit hard copies of your experiences.
e Attach a “summary” or “conclusion” page at the beginning of report.

* Your work process.
* Your code.

* Figures; for each of the functions, include a figure that shows move-
ment of the minimizers for all o’s or t’s in 7.

* Discuss pros and cons of the Gaussian sailing strategy.

You may work in a group of two people; however, you must report individu-
ally.


http://www.sfu.ca/~ssurjano/optimization.html
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P.6. Quasi-Newton Methods Using Partial In-
formation of the Hessian

Consider a unconstrained optimization problem of the form

min f(x), (P.6.1)
x€eRd
and Newton’s method
) -1
Xy 41 = argmin On(x) =%, — 7 [VQf(Xn)] Vf(xn), (P.6.2)
where - o2 o f ]
83312 89518902 o 8x18xd
62f an 82]0
V2f = |Ox2011  Oxo? T Owadrg | ¢ I, (P.6.3)
o2f  f 02 f
_Oxd8x1 89:d0:v2 o 856‘,12 p

Mg — - - 77 A

'Known'. (Remark 4.15). Where applicable, Newton’s method con-
verges much faster towards a local extremum than gradient descent.
Every local minimum has a neighborhood such that, if we start within
this neighborhood, Newton’s method with step size v = 1 converges
quadratically assuming the Hessian is invertible and Lipschitz contin-

uous.

able to compute the inverse Hessian matrix.
* For ML applications, the dimensionality of the problem can be of

the order of thousands or millions; computing the Hessian or its
inverse is often impractical.

* Because of these reasons, Newton’s method is rarely used in prac-
tice to optimize functions corresponding to large problems.

* Luckily, the above algorithm can still work even if the Hessian is
replaced by a good approximation.

* Various “quasi-Newton" methods have been developed so as to ap-
proximate and update the Hessian matrix (without evaluating the
second derivatives).
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Objectives. You are required to perform tasks including the following.
¢ Algorithm Development:
— Note the Newton’s search direction is —H 'V f(x,), where H =
V2f(xy).
— Select a set of k components (k < d) from Vf € R? which would
dominate the search direction. Then, for some permutation P,

PVf(x,) = [%g”;] . (P.6.4)

— Construct H = H (x,,) € R¥* (using finite differences) to solve
Hg=Vf(x). (P.6.5)

— Find a scaling factor o > 0 such that
_pT {N" q ] (P.6.6)
V f(xn)

is the final search direction.
— Suggestions: For d > 10, k =2 ~ 5 and

IVl
fall

112

(P.6.7)

o

e Comparisons:

— Implement (or download codes for) the original Newton’s method
and one of quasi-Newton methods (e.g., BFGS).

— Let’s call our method the partial Hessian (PH)-Newton method.
Compare the PH-Newton with those known methods for: the num-
ber of iterations, the total elapsed time, convergence behavior, and
stability/robustness.

— Test with e.g. the Rosenbrock function defined on R?, d > 10, with
various initial points x;.
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optimization, 63
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Pagerank, 327-329
pagerank equation, 332
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preprocessing, 318
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principal components, 158, 197, 403
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probabilistic clustering, 217
probabilistic model, 103
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quadratic = programming,
constrained, 360, 362
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