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Prologue

This lecture note is organized, following contents in Linear Algebra and Its Applications, 6th Ed.,
by D. Lay, S. Lay, and J. McDonald [1].

Seongjai Kim
December 2, 2023

Learning Objectives
Real-world problems can be approximated as and resolved by systems
of linear equations

Ax = b, A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

 ∈ Rm×n,

where one of {x,b} is the input and the other is the output.

What you would learn, from Linear Algebra:

1. How to Solve Systems of Linear Equations
• Programming with Matlab/Octave

2. Matrix Algebra (Matrix Inverse & Factorizations)
3. Determinants
4. Vector Spaces
5. Eigenvalues and Eigenvectors

• Differential Equations (§5.7)
• Markov Chains (§5.9)

6. Orthogonality and Least-Squares
• Least-Squares Problems
• Machine Learning: Regression Analysis

iii
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CHAPTER 1
Linear Equations

In this first chapter, we study basics of linear equations, including

• Systems of linear equations
• Three elementary row operations
• Linear transformations

Contents of Chapter 1
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1.3. Vector Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2 Chapter 1. Linear Equations

1.1. Systems of Linear Equations

Definition 1.1. A linear equation in the variables x1, x2, · · · , xn is an
equation that can be written in the form

a1 x1 + a2 x2 + · · ·+ an xn = b, (1.1)

where b and the coefficients a1, a2, · · · , an are real or complex numbers.

A system of linear equations (or a linear system) is a collection of one
or more linear equations involving the same variables – say, x1, x2, · · · , xn.
Example 1.2.

(a)

{
4x1 − x2 = 3

2x1 + 3x2 = 5 (b)


2x+ 3y − 4z = 2

x− 2y + z = 1

3x+ y − 2z = −1

• Solution: A solution of the system is a list (s1, s2, · · · , sn) of num-
bers that makes each equation a true statement, when the values
s1, s2, · · · , sn are substituted for x1, x2, · · · , xn, respectively.

• Solution Set: The set of all possible solutions is called the solution
set of the linear system.

• Equivalent System: Two linear systems are called equivalent if
they have the same solution set.

• For example, above (a) is equivalent to{
2x1 − 4x2 = −2

2x1 + 3x2 = 5
R1 ← R1 − R2



1.1. Systems of Linear Equations 3

Remark 1.3. Linear systems may have

no solution : inconsistent system
exactly one (unique) solution
infinitely many solutions

}
: consistent system

Example 1.4. Consider the case of two equations in two unknowns.

(a)

{
−x+ y = 1

−x+ y = 3
(b)

{
x+ y = 1

x− y = 2
(c)

{
−2x+ y = 2

−4x+ 2y = 4

Existence and Uniqueness Questions

Two Fundamental Questions about a Linear System:
1. (Existence): Is the system consistent; that is, does at least one

solution exist?
2. (Uniqueness): If a solution exists, is it the only one; that is, is the

solution unique?

Most systems in real-world are consistent (existence) and
they produce the same output for the same input (uniqueness).
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Solving Linear Systems
Matrix Form
Consider a simple system of 2 linear equations:{

−2x1 + 3x2 = −1

x1 + 2x2 = 4
(1.2)

Such a system of linear equations can be treated much more conveniently
and efficiently with matrix form. In matrix form, (1.2) reads[

−2 3

1 2

]
︸ ︷︷ ︸

coefficient matrix

[
x1

x2

]
=

[
−1

4

]
. (1.3)

The essential information of the system can be recorded compactly in a
rectangular array called a augmented matrix:[

−2 3 −1

1 2 4

]
or

[
−2 3 −1

1 2 4

]
(1.4)

Elementary Row Operations

Tools 1.5. Three Elementary Row Operations (ERO):

• Replacement: Replace one row by the sum of itself and a multiple
of another row

Ri ← Ri + k ·Rj, j 6= i

• Interchange: Interchange two rows
Ri ↔ Rj, j 6= i

• Scaling: Multiply all entries in a row by a nonzero constant
Ri ← k ·Ri, k 6= 0
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Solving (1.2)

System of linear equations Matrix form{
−2x1 + 3x2 = −1 1

x1 + 2x2 = 4 2

[
−2 3 −1

1 2 4

]

1 ↔ 2 : (interchange){
x1 + 2x2 = 4 1

−2x1 + 3x2 = −1 2

[
1 2 4

−2 3 −1

]

2 ← 2 + 2 · 1 : (replacement){
x1 + 2x2 = 4 1

7x2 = 7 2

[
1 2 4

0 7 7

]

2 ← 2 /7: (scaling){
x1 + 2x2 = 4 1

x2 = 1 2

[
1 2 4

0 1 1

]

1 ← 1 − 2 · 2 : (replacement){
x1 = 2 1

x2 = 1 2

[
1 0 2

0 1 1

]

At the last step:

LHS: solution :

{
x1 = 2

x2 = 1
RHS :

[
I 2

1

]

Definition 1.6. Two matrices are row equivalent if there is a se-
quence of EROs that transforms one matrix to the other.
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Example 1.7. Solve the following system of linear equations, using the 3
EROs. Then, determine if the system is consistent.

x2 − 4x3 = 8

2x1 − 3x2 + 2x3 = 1

4x1 − 8x2 + 12x3 = 1

Solution.

Ans: Inconsistency means that there is no point where the three planes meet at.

Example 1.8. Determine the values of h such that the given system is a
consistent linear system

x+ h y = −5

2x− 8y = 6

Solution.

Ans: h 6= −4
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True-or-False 1.9.

a. Every elementary row operation is reversible.

b. Elementary row operations on an augmented matrix never change the
solution of the associated linear system.

c. Two linear systems are equivalent if they have the same solution set.

d. Two matrices are row equivalent if they have the same number of rows.

Solution.

Ans: T,T,T,F
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You should report your homework with your work for problems. You can scan your solutions
and answers, using a scanner or your phone, then try to put in a file, either in doc/docx or pdf.

Exercises 1.1

1. Consider the augmented matrix of a linear system. State in words the next two elemen-
tary row operations that should be performed in the process of solving the system.

1 6 −4 0 1

0 1 7 0 −4

0 0 −1 2 3

0 0 2 1 −6


2. The augmented matrix of a linear system has been reduced by row operations to the

form shown. Continue the appropriate row operations and describe the solution set.
1 1 0 0 4

0 −1 3 0 −7

0 0 1 −3 1

0 0 0 2 4


3. Solve the systems or determine if the systems in inconsistent.

(a)
−x2 − 4x3 = 5

x1 + 3x2 + 5x3 = −2

3x1 + 7x2 + 7x3 = 6
(b)

x1 + 3x3 = 2

x2 − 3x4 = 3

−2x2 + 3x3 + 2x4 = 1

3x1 + 7x4 = −5

4. Determine the value of h such that the matrix is the augmented matrix of a consistent
linear system.[

2 −3 h

−4 6 −5

]
Ans: h = 5/2

5. An important concern in the study of heat
transfer is to determine the steady-state tem-
perature distribution of a thin plate when the
temperature around the boundary is known.
Assume the plate shown in the figure repre-
sents a cross section of a metal beam, with
negligible heat flow in the direction perpen-
dicular to the plate. Let T1, T2, · · · , T4 denote
the temperatures at the four interior nodes of
the mesh in the figure. The temperature at
a node is approximately equal to the average
of the four nearest nodes. For example, T1 =
(10 + 20 + T2 + T4)/4 or 4T1 = 10 + 20 + T2 + T4.

Write a system of four equations whose so-
lution gives estimates for the temperatures
T1, T2, · · · , T4, and solve it.

Figure 1.1
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1.2. Row Reduction and Echelon Forms

1.2.1. Echelon Forms

Terminologies
• A nonzero row in a matrix is a row with at least one nonzero entry.
• A leading entry of a row is the left most nonzero entry in a nonzero

row.
• A leading 1 is a leading entry whose value is 1.

Definition 1.10. Echelon form: A rectangular matrix is in an eche-
lon form if it has following properties.

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry in a row is in a column to the right of leading
entry of the row above it.

3. All entries below a leading entry in a column are zeros.

Row reduced echelon form: If a matrix in an echelon form sat-
isfies 4 and 5 below, then it is in the row reduced echelon form
(RREF), or the reduced echelon form (REF).

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

Example 1.11. Check if the following matrix is in echelon form. If not,
put it in echelon form.0 0 0 0 0

1 2 0 0 1

0 0 3 0 4


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Example 1.12. Verify whether the following matrices are in echelon form,
row reduced echelon form.1 0 2 0 1

0 1 3 0 4

0 0 0 0 0

(a)

2 0 0 5

0 0 0 9

0 1 0 6

(b)

1 1 0

0 0 1

0 0 0

(c)

1 1 2 2 3

0 0 1 1 1

0 0 0 0 4

(d)

1 0 0 5

0 1 0 6

0 0 0 1

(e)

0 1 0 5

0 0 0 6

0 0 1 2

(f)

Uniqueness of the Reduced Echelon Form

Theorem 1.13. Each matrix is row equivalent to one and only one
reduced echelon form.



1.2. Row Reduction and Echelon Forms 11

Pivot Positions
Terminologies

1) A pivot position is a location in A that corresponds to a leading 1
in the reduced echelon form of A.

2) A pivot column is a column of A that contains a pivot position.

Example 1.14. The matrix A is given with its reduced echelon form. Find
the pivot positions and pivot columns of A.

A =

1 1 0 2 0

1 1 1 3 0

1 1 0 2 4

 R.E.F−−−→

1 1 0 2 0

0 0 1 1 0

0 0 0 0 1


Solution.

Remark 1.15. Pivot Positions. Once a matrix is in an echelon form,
further row operations do not change the positions of leading entries.
Thus, the leading entries become the leading 1’s in the reduced eche-
lon form.
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Terminologies

3) Basic variables: In the system Ax = b, the variables that corre-
spond to pivot columns (in [A : b]) are basic variables.

4) Free variables: In the system Ax = b, the variables that correspond
to non-pivotal columns are free variables.

Example 1.16. For the system of linear equations, identify its basic vari-
ables and free variables.

−x1 − 2x2 = −3

2x3 = 4

3x3 = 6

Solution. Hint : You may start with its augmented matrix, and apply row operations.

Ans: Basic variables: {x1, x3}. Free variable: {x2}.
Why “free”?
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The Row Reduction Algorithm

Steps to reduce to reduced echelon form

1. Start with the leftmost non-zero column. This is a pivot column.
The pivot is at the top.

2. Choose a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move a nonzero entry into the pivot position.

3. Use row replacement operations to make zeros in all positions be-
low the pivot.

4. Ignore row and column containing the pivot and ignore all rows
above it. Apply Steps 1–3 to the remaining submatrix. Repeat this
until there are no more rows to modify.

5. Start with right most pivot and work upward and left to make zeros
above each pivot. If pivot is not 1, make it 1 by a scaling operation.

Example 1.17. Row reduce the matrix into reduced echelon form.

A =

 0 −3 −6 4 9

−2 −3 0 3 −1

1 4 5 −9 −7


Solution. R1↔R3−−−−→

 1 4 5 −9 −7

−2 −3 0 3 −1

0 −3 −6 4 9

 R2←R2+2R1−−−−−−−→

1 4 5 −9 −7

0 5 10 −15 −15

0 −3 −6 4 9


R2←R2/5−−−−−→

1 4 5 −9 −7

0 1 2 −3 −3

0 −3 −6 4 9

 R3←R3+3R2−−−−−−−→

1 4 5 −9 −7

0 1 2 −3 −3

0 0 0 −5 0


R3←R3/−5; above the pivot→0−−−−−−−−−−−−−−−−−−→

1 4 5 0 −7

0 1 2 0 −3

0 0 0 1 0

 R1←R1−4R2−−−−−−−→

1 0 −3 0 5

0 1 2 0 −3

0 0 0 1 0



Combination of Steps 1–4 is call the forward phase of the row reduction, while Step
5 is called the backward phase.
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1.2.2. The General Solution of Linear Systems

1) For example, for an augmented
matrix, its R.E.F. is given as1 0 −5 1

0 1 1 4

0 0 0 0

 (1.5)

2) Then, the associated system of
equations reads

x1 − 5x3 = 1

x2 + x3 = 4

0 = 0

(1.6)

where {x1, x2} are basic vari-
ables (∵ pivots).

3) Rewrite (1.6) as
x1 = 1 +5x3

x2 = 4 −x3
x3 is free

(1.7)

4) The system (1.7) can be ex-
pressed as

x1 = 1 +5x3

x2 = 4 −x3
x3 = x3

(1.8)

5) Thus, the solution of (1.6) can be
written asx1x2

x3

 =

1

4

0

+ x3

 5

−1

1

 , (1.9)

in which you are free to choose
any value for x3. (That is why it
is called a “free variable”.)

• The description in (1.9) is called a parametric description of solu-
tion set; the free variable x3 acts as a parameter.

• The solution in (1.9) represents all the solutions of the system (1.5),
which is called the general solution of the system.
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Example 1.18. Find the general solution of the system whose augmented
matrix is

[A|b] =


1 0 −5 0 −8 3

0 1 4 −1 0 6

0 0 0 0 1 0

0 0 0 0 0 0


Solution. Hint : You should first row reduce it for the reduced echelon form.
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Example 1.19. Find the general solution of the system whose augmented
matrix is

[A|b] =


0 0 0 1 2

0 1 3 0 2

0 1 3 2 6

1 0 −9 0 −8


Solution.
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Properties

1) Any nonzero matrix may be row reduced (i.e., transformed by el-
ementary row operations) into more than one matrix in echelon
form, using different sequences of row operations.

2) Once a matrix is in an echelon form, further row operations do not
change the pivot positions (Remark 1.15).

3) Each matrix is row equivalent to one and only one reduced eche-
lon matrix (Theorem 1.13, p. 10).

4) A linear system is consistent if and only if the rightmost column of
the augmented matrix is not a pivot column
–i.e., if and only if an echelon form of the augmented matrix has
no row of the form [0 · · · 0 b] with b nonzero.

5) If a linear system is consistent, then the solution set contains either

(a) a unique solution, when there are no free variables, or
(b) infinitely many solutions, when there is at least one free vari-

able.

Example 1.20. Choose h and k such that the system has

a) No solution b) Unique solution c) Many solutions{
x1 − 3x2 = 1

2x1 + hx2 = k

Solution.

Ans: (a) h = −6, k 6= 2
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True-or-False 1.21.

a. The row reduction algorithm applies to only to augmented matrices for
a linear system.

b. If one row in an echelon form of an augmented matrix is [0 0 0 0 2 0],
then the associated linear system is inconsistent.

c. The pivot positions in a matrix depend on whether or not row inter-
changes are used in the row reduction process.

d. Reducing a matrix to an echelon form is called the forward phase of
the row reduction process.

Solution.

Ans: F,F,F,T
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Exercises 1.2

1. Row reduce the matrices to reduced echelon form. Circle the pivot positions in the final
matrix and in the original matrix, and list the pivot columns.

(a)

1 2 3 4

4 5 6 7

6 7 8 9

 (b)

1 3 5 7

3 5 7 9

5 7 9 1


2. Find the general solutions of the systems (in parametric vector form) whose aug-

mented matrices are given as

(a)

 1 −7 0 6 5

0 0 1 −2 −3

−1 7 −4 2 7

 (b)


1 2 −5 −6 0 −5

0 1 −6 −3 0 2

0 0 0 0 1 0

0 0 0 0 0 0


Ans: (a) x = [5, 0,−3, 0]T + x2[7, 1, 0, 0]

T + x4[−6, 0, 2, 1]T ;
Ans: (b) x = [−9, 2, 0, 0, 0]T + x3[−7, 6, 1, 0, 0]T + x4[0, 3, 0, 1, 0]

T 1

3. In the following, we use the notation for matrices in echelon form: the leading entries
with , and any values (including zero) with ∗. Suppose each matrix represents the aug-
mented matrix for a system of linear equations. In each case, determine if the system is
consistent. If the system is consistent, determine if the solution is unique.

(a)

 ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

 (b)

0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 0

 (c)

 ∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


4. Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c)

many solutions.
x1 + hx2 = 2

4x1 + 8x2 = k

5. Suppose the coefficient matrix of a system of linear equations has a pivot position in
every row. Explain why the system is consistent.

1The superscript T denotes the transpose; for example [a, b, c]T =

ab
c

.
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1.3. Vector Equations

Definition 1.22. A matrix with only one column is called a column
vector, or simply a vector.

For example, [
3

−2

]
∈ R2

 1

−5

4

 ∈ R3

1.3.1. Vectors in Rn

Vectors in R2

We can identify a point (a, b) with a column vector

[
a

b

]
, position vector.

Figure 1.2: Vectors in R2 as points. Figure 1.3: Vectors in R2 with arrows.

Note: Vectors are mathematical objects having direction and length.
We may try to (1) compare them, (2) add or subtract them, (3) multiply
them by a scalar, (4) measure their length, and (5) apply other operations
to get information related to angles.
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1) Equality of vectors: Two vectors u =

[
u1

u2

]
and v =

[
v1

v2

]
are equal

if and only if corresponding entries are equal, i.e., ui = vi, i = 1, 2.

2) Addition: Let u =

[
u1

u2

]
and v =

[
v1

v2

]
. Then,

u + v =

[
u1

u2

]
+

[
v1

v2

]
=

[
u1 + v1

u2 + v2

]
.

3) Scalar multiple: Let c ∈ R, a scalar. Then

cv = c

[
v1

v2

]
=

[
cv1

cv2

]
.

Theorem 1.23. (Parallelogram Rule for Addition) If u and v are
represented as points in the plane, then u + v corresponds to the fourth
vertex of the parallelogram whose other vertices are 0, u, and v.

Figure 1.4: The parallelogram rule.
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Example 1.24. Let u =

[
2

1

]
and v =

[
1

−3

]
.

(a) Find u + 2v and 3u− 2v.

(b) Display them on a graph.

Solution.

Remark 1.25. Let a1 =

[
2

1

]
and a2 =

[
1

−3

]
. Then

x1a1 + x2a2 = x1

[
2

1

]
+ x2

[
1

−3

]
=

[
2x1 + x2

x1 − 3x2

]
=

[
2 1

1 −3

][
x1

x2

]
= [a1 a2]

[
x1

x2

]
. (1.10)

Vectors in Rn

Note: The above vector operations, including the parallelogram rule, are
also applicable for vectors in R3 and Rn, in general.

Algebraic Properties of Rn

For u, v, w ∈ Rn and scalars c and d,

1) u + v = v + u

2) (u + v) + w = u + (v + w)

3) u + 0 = 0 + u = u

4) u + (−u) = (−u) + u = 0
where −u = (−1)u

5) c(u + v) = cu + cv

6) (c+ d)u = cu + du

7) c(du) = (cd)u

8) 1u = u
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1.3.2. Linear Combinations and Span

Definition 1.26. Given vectors v1, v2, · · · , vp in Rn and scalars
c1, c2, · · · , cp, the vector y ∈ Rn defined by

y = c1 v1 + c2 v2 + · · ·+ cp vp (1.11)

is called the linear combination of v1, v2, · · · , vp with weights
c1, c2, · · · , cp.

Example 1.27. Given v1 and v2 in R2, as in the figure below, the collection
of all linear combinations of v1 and v2 must be the same as R2.
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Definition 1.28. A vector equation is of the form
x1 a1 + x2 a2 + · · ·+ xp ap = b, (1.12)

where a1, a2, · · · , ap, and b are vectors and x1, x2, · · · , xp are weights.

Example 1.29. Let a1 =

 0

4

−1

, a2 =

1

6

3

, a3 =

 5

−1

8

, and b =

0

2

3

.

Determine whether or not b can be generated as a linear combination of a1,
a2, and a3.
Solution. Hint : We should determine whether weights x1, x2, x3 exist such that x1a1 +

x2a2 + x3a3 = b, which reads [a1 a2 a3]

x1x2
x3

 = b. (See Remark 1.25 on p.22.)
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Note:

1) The vector equation x1 a1 + x2 a2 + · · ·+ xp ap = b has the same solu-
tion set as a linear system whose augmented matrix is [a1 a2 · · · ap : b].

2) b can be generated as a linear combination of a1, a2, · · · , ap if and only
if the linear system Ax = b whose augmented matrix [a1 a2 · · · ap : b]
is consistent.

Definition 1.30. Let v1, v2, · · · , vp be p vectors in Rn. Then
Span{v1, v2, · · · , vp} is the collection of all linear combinations of
v1, v2, · · · , vp, that can be written in the form c1v1 + c2v2 + · · · + cpvp,
where c1, c2, · · · , cp are weights. That is,

Span{v1, v2, · · · , vp} = {y | y = c1 v1 + c2 v2 + · · ·+ cp vp} (1.13)

Figure 1.5: A line: Span{v} in R3.

Figure 1.6: A plane: Span{u,v} in R3.
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Example 1.31. Determine if b =

 2

−1

6

 is a linear combination of the

columns of the matrix

 1 0 5

−2 1 −6

0 2 8

. (That is, determine if b is in the span

of columns of the matrix.)
Solution.
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Example 1.32. Find h so that

2

1

h

 lies in the plane spanned by a1 =

1

2

3


and a2 =

 2

−1

1

.

Solution.

b ∈ Span{v1, v2, · · · , vp}
⇔ x1 v1 + x2 v2 + · · ·+ xp vp = b has a solution
⇔ [v1 v2 · · · vp : b] has a solution

(1.14)

True-or-False 1.33.

a. Another notation for the vector

[
1

−2

]
is [1 − 2].

b. The set Span{u,v} is always visualized as a plane through the origin.

c. When u and v are nonzero vectors, Span{u,v} contains the line through
u and the origin.

Solution.

Ans: F,F,T
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Exercises 1.3
1. Write a system of equations that is equivalent to the given vector equation; write a

vector equation that is equivalent to the given system of equations.

(a) x1

 6

−1

5

+ x2

−3

4

0

 =

 1

−7

−5

 (b)
x2 + 5x3 = 0

4x1 + 6x2 − x3 = 0

−x1 + 3x2 − 8x3 = 0

2. Determine if b is a linear combination of a1, a2, and a3.

a1 =

 1

−2

0

 , a2 =

0

1

2

 , a3 =

 5

−6

8

 , b =

 2

−1

6

 .
Ans: Yes

3. Determine if b is a linear combination of the vectors formed from the columns of the
matrix A.

(a) A =

 1 −4 2

0 3 5

−2 8 −4

 , b =

 3

−7

−3

 (b) A =

1 −2 −6

0 3 7

1 −2 5

 , b =

 11

−5

9



4. Let a1 =

 1

4

−2

 , a2 =

−2

−3

7

, and b =

4

1

h

. For what value(s) of h is b in the plane

spanned by a1 and a2? Ans: h = −17

5. Construct a 3 × 3 matrix A, with nonzero entries, and a vector b in R3 such that b is
not in the set spanned by the columns of A. Hint : Construct a 3 × 4 augmented matrix in
echelon form that corresponds to an inconsistent system.

6. A mining company has two mines. One day’s operation at mine #1 produces ore that
contains 20 metric tons of copper and 550 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 30 metric tons of copper and 500 kilograms of

silver. Let v1 =

[
20

550

]
and v2 =

[
30

500

]
. Then v1 and v2 represent the “output per day" of

mine #1 and mine #2, respectively.

(a) What physical interpretation can be given to the vector 5v1 ?
(b) Suppose the company operates mine #1 for x1 days and mine #2 for x2 days. Write a

vector equation whose solution gives the number of days each mine should operate
in order to produce 150 tons of copper and 2825 kilograms of silver.

(c) M 2 Solve the equation in (b).

2The mark M indicates that you have to solve the problem, using one of Matlab, Maple, and Mathemat-
ica. You may also try “octave" as a free alternative of Matlab. Attach a copy of your code.
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Programming with Matlab/Octave

Note: In computer programming, important things are

• How to deal with objects (variables, arrays, functions)
• How to deal with repetition effectively
• How to make the program reusable

Vectors and matrices

The most basic thing you will need
to do is to enter vectors and matri-
ces. You would enter commands to
Matlab or Octave at a prompt that
looks like >>.

• Rows are separated by semi-
colons (;) or Enter .

• Entries in a row are separated
by commas (,) or space Space .

For example,

Vectors and Matrices
1 >> u = [1; 2; 3] % column vector
2 u =
3 1
4 2
5 3
6 >> v = [4; 5; 6];
7 >> u + 2*v
8 ans =
9 9

10 12
11 15
12 >> w = [5, 6, 7, 8] % row vector
13 w =
14 5 6 7 8
15 >> A = [2 1; 1 2]; % matrix
16 >> B = [-2, 5
17 1, 2]
18 B =
19 -2 5
20 1 2
21 >> C = A*B % matrix multiplication
22 C =
23 -3 12
24 0 9
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You can save the commands in a file to run and get the same results.
tutorial1_vectors.m

1 u = [1; 2; 3]
2 v = [4; 5; 6];
3 u + 2*v
4 w = [5, 6, 7, 8]
5 A = [2 1; 1 2];
6 B = [-2, 5
7 1, 2]
8 C = A*B

Solving equations

Let A =

 1 −4 2

0 3 5

−2 8 −4

 and b =

 3

−7

−3

 . Then Ax = b can be numerically

solved by implementing a code as follows.

tutorial2_solve.m
1 A = [1 -4 2; 0 3 5; 2 8 -4];
2 b = [3; -7; -3];
3 x = A\b

Result
1 x =
2 0.75000
3 -0.97115
4 -0.81731

Graphics with Matlab

In Matlab, the most popular graphic command is plot, which creates a 2D
line plot of the data in Y versus the corresponding values in X. A general
syntax for the command is

plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)

https://www.mathworks.com/help/matlab/ref/plot.html
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tutorial3_plot.m
1 close all
2

3 %% a curve
4 X1 = linspace(0,2*pi,10); % n=10
5 Y1 = cos(X1);
6

7 %% another curve
8 X2=linspace(0,2*pi,20); Y2=sin(X2);
9

10 %% plot together
11 plot(X1,Y1,'-or',X2,Y2,'--b','linewidth',3);
12 legend({'y=cos(x)','y=sin(x)'},'location','best',...
13 'FontSize',16,'textcolor','blue')
14 print -dpng 'fig_cos_sin.png'

Figure 1.7: fig_cos_sin.png: plot of y = cosx and y = sinx.

Above tutorial3_plot.m is a typical M-file for figuring with plot.

• Line 1: It closes all figures currently open.
• Lines 3, 4, 7, and 10 (comments): When the percent sign (%) appears,

the rest of the line will be ignored by Matlab.
• Lines 4 and 8: The command linspace(x1,x2,n) returns a row vector

of n evenly spaced points between x1 and x2.
• Line 11: Its result is a figure shown in Figure 1.7.
• Line 14: it saves the figure into a png format, named fig_cos_sin.png.
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Repetition: iteration loops

Note: In scientific computation, one of most frequently occurring events
is repetition. Each repetition of the process is also called an iteration.
It is the act of repeating a process, to generate a (possibly unbounded)
sequence of outcomes, with the aim of approaching a desired goal, target
or result. Thus,

• iteration must start with an initialization (starting point) and
• perform a step-by-step marching in which the results of one iteration

are used as the starting point for the next iteration.

In the context of mathematics or computer science, iteration (along with
the related technique of recursion) is a very basic building block in pro-
gramming. Matlab provides various types of loops: while loops, for loops,
and nested loops.

while loop

The syntax of a while loop in Matlab is as follows.
while <expression>

<statements>
end

An expression is true when the result is nonempty and contains all nonzero
elements, logical or real numeric; otherwise the expression is false. Here is
an example for the while loop.

n1=11; n2=20;
sum=n1;
while n1<n2

n1 = n1+1; sum = sum+n1;
end
fprintf('while loop: sum=%d\n',sum);

When the code above is executed, the result will be:

while loop: sum=155
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for loop

A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times. The syntax of
a for loop in Matlab is as following:

for index = values
<program statements>

end

Here is an example for the for loop.
n1=11; n2=20;
sum=0;
for i=n1:n2

sum = sum+i;
end
fprintf('for loop: sum=%d\n',sum);

When the code above is executed, the result will be:

for loop: sum=155

Functions: Enhancing reusability

Program scripts can be saved to reuse later conveniently. For example,
the script for the summation of integers from n1 to n2 can be saved as a form
of function.

mysum.m
1 function s = mysum(n1,n2)
2 % sum of integers from n1 to n2
3

4 s=0;
5 for i=n1:n2
6 s = s+i;
7 end

Now, you can call it with e.g. mysum(11,20).
Then the result reads ans = 155.
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1.4. Matrix Equation Ax = b

A fundamental idea in linear algebra is to view a linear combina-
tion of vectors as a product of a matrix and a vector.

Definition 1.34. Let A = [a1 a2 · · · an] be an m× n matrix and x ∈ Rn,
then the product of A and x denoted by Ax is the linear combination
of columns of A using the corresponding entries of x as weights, i.e.,

Ax = [a1 a2 · · · an]


x1

x2
...
xn

 = x1 a1 + x2 a2 + · · ·+ xn an. (1.15)

A matrix equation is of the form Ax = b, where b is a column vector of
size m× 1.

Example 1.35.

Matrix equation[
1 2

3 4

][
x1

x2

]
=

[
1

−1

] Vector equation

x1

[
1

3

]
+ x2

[
2

4

]
=

[
1

−1

] Linear system

x1 + 2x2 = 1

3x1 + 4x2 = −1

Theorem 1.36. Let A = [a1 a2 · · · an] be an m× n matrix, x ∈ Rn, and
b ∈ Rm. Then the matrix equation

Ax = b (1.16)

has the same solution set as the vector equation

x1 a1 + x2 a2 + · · ·+ xn an = b, (1.17)

which, in turn, has the same solution set as the system with augmented
matrix

[a1 a2 · · · an : b]. (1.18)
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Theorem 1.37. (Existence of solutions): Let A be an m× n matrix.
Then the following statements are logically equivalent (all true, or all
false).

a. For each b in Rm, the equation Ax = b has a solution.

b. Each b in Rm is a linear combination of columns of A.

c. The columns of A span Rm.

d. A has a pivot position in every row.
(Note that A is the coefficient matrix.)

Example 1.38. Let v1 =

0

0

3

, v2 =

 0

−3

9

, and v3 =

 4

−2

−6

.

Does {v1,v2,v3} span R3? Why or why not?
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Example 1.39. Do the vectors


1

0

1

−2

,


3

1

2

−8

, and


−2

1

−3

2

 span R4?

Solution.

True-or-False 1.40.

a. The equation Ax = b is referred to as a vector equation.

b. Each entry in Ax is the result of a dot product.

c. If A ∈ Rm×n and if Ax = b is inconsistent for some b ∈ Rm, then A can-
not have a pivot position in every row.

d. If the augmented matrix [A b] has a pivot position in every row, then
the equation Ax = b is inconsistent.

Solution.

Ans: F,T,T,F
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Exercises 1.4

1. Write the system first as a vector equation and then as a matrix equation.
3x1 + x2 − 5x3 = 9

x2 + 4x3 = 0

2. Let u =

0

0

4

 and A =

 3 −5

−2 6

1 1

. Is u in

the plane R3 spanned by the columns of A?
(See the figure.) Why or why not?

Figure 1.8

3. The problems refer to the matrices A and B below. Make appropriate calculations that
justify your answers and mention an appropriate theorem.

A =


1 3 0 3

−1 −1 −1 1

0 −4 2 −8

2 0 3 −1

 B =


1 3 −2 2

0 1 1 −5

1 2 −3 7

−2 −8 2 −1


(a) How many rows of A contain a pivot position? Does the equation Ax = b have a

solution for each b in R4?
(b) Can each vector in R4 be written as a linear combination of the columns of the

matrix A above? Do the columns of A span R4?
(c) Can each vector in R4 be written as a linear combination of the columns of the

matrix B above? Do the columns of B span R4?
Ans: (a) 3; (b) Theorem 1.37 (d) is not true

4. Let v1 =

 0

0

−2

, v2 =

 0

−3

8

, v3 =

 4

−1

−5

. Does {v1,v2,v3} span R3? Why or why not?

Ans: The matrix of {v1,v2,v3} has a pivot position on each row.

5. Could a set of three vectors in R4 span all of R4? Explain. What about n vectors in Rm

when n < m?

6. Suppose A is a 4 × 3 matrix and b ∈ R4 with the property that Ax = b has a unique
solution. What can you say about the reduced echelon form of A? Justify your answer.
Hint : How many pivot columns does A have?
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1.5. Solution Sets of Linear Systems

Linear Systems Ax = b:
1. Homogeneous linear systems:

Ax = 0; A ∈ Rm×n, x ∈ Rn, 0 ∈ Rm. (1.19)

(a) It has always at least one solution: x = 0 (the trivial solution)
(b) Any nonzero solution is called a nontrivial solution.

2. Nonhomogeneous linear systems:
Ax = b; A ∈ Rm×n, x ∈ Rn, b ∈ Rm, b 6= 0. (1.20)

Note: Ax = 0 has a nontrivial solution if and only if the system has at least
one free variable.

1.5.1. Solutions of Homogeneous Linear Systems

Example 1.41. Determine if the following homogeneous system has a
nontrivial solution. Then describe the solution set.

x1 − 2x2 + 3x3 = 0

−2x1 − 3x2 − 4x3 = 0

2x1 − 4x2 + 9x3 = 0
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Definition 1.42. If the solutions of Ax = 0 can be written in the form

x = c1 u1 + c2 u2 + · · ·+ cr ur, (1.21)

where c1, c2, · · · , cr are scalars and u1, u2, · · · , ur are vectors with size
same as x, then they are said to be in parametric vector form.

Note: When solutions of Ax = 0 is in the form of (1.21), we may say

{The solution set of Ax = 0} = Span{u1, u2, · · · , ur}. (1.22)

Example 1.43. Solve the system and write the solution in parametric
vector form.

x1 + 2x2 − 3x3 = 0

2x1 + x2 − 3x3 = 0

−x1 + x2 = 0
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Example 1.44. Describe all solutions of Ax = 0 in parametric vector form
where A is row equivalent to the matrix.

1 −2 3 −6 5 0

0 0 0 1 4 −6

0 0 0 0 0 1

0 0 0 0 0 0


Hint : You should first row reduce it for the reduced echelon form.
Solution.

A single equation can be treated as a simple linear system.

Example 1.45. Solve the equation of 3 variables and write the solution in
parametric vector form.

x1 − 2x2 + 3x3 = 0

Solution. Hint : x1 is only the basic variable. Thus your solution would be the form of
x = x2v1 + x3v2, which is a parametric vector equation of the plane.
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1.5.2. Solutions of Nonhomogeneous Linear Systems

Example 1.46. Describe all solutions of Ax = b, where

A =

 3 5 −4

−3 −2 4

6 1 −8

 , b =

 7

−1

−4

.
Solution.

Ans: x =

−1

2

0

+ x3

4/3

0

1


The solution of Example 1.46 is of the form

x = p + x3v (= p + tv), (1.23)

where t is a general parameter. Note that (1.23) is an equation of line
through p parallel to v.
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In the previous example, the solution of Ax = b is x = p + t v.

Question: What is “t v"?

Solution. First of all,

Ax = A(p + tv) = Ap + A(tv) = b. (1.24)

Note that x = p + tv is a solution of Ax = b, even when t = 0. Thus,

A(p + tv)t=0 = Ap = b. (1.25)

It follows from (1.24) and (1.25) that

A(t v) = 0, (1.26)

which implies that “t v" is a solution of the homogeneous equation
Ax = 0.

Theorem 1.47. Suppose the equation Ax = b is consistent for some
given b, and let p be a solution. Then the solution set of Ax = b is the
set of all vectors of the form {w = p + uh}, where uh is the solution of
the homogeneous equation Ax = 0.

Corollary 1.48. Let Ax = b have a solution. The solution is unique if
and only if Ax = 0 has only the trivial solution.

True-or-False 1.49.

a. The solution set of Ax = b is the set of all vectors of the form {w =

p + uh}, where uh is the solution of the homogeneous equation Ax = 0.
(Compare with Theorem 1.47, p.42.)

b. The equation Ax = b is homogeneous if the zero vector is a solution.

c. The solution set of Ax = b is obtained by translating the solution of
Ax = 0.

Solution.

Ans: F,T,F
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Exercises 1.5

1. Determine if the system has a nontrivial solution. Try to use as few row operations as
possible.

(a)
2x1 − 5x2 + 8x3 = 0

2x1 − 7x2 + x3 = 0

4x1 − 12x2 + 9x3 = 0

(b)
3x1 + 5x2 − 7x3 = 0

6x1 + 7x2 + x3 = 0

Hint : x3 is a free variable for both (a) and (b).

2. Describe all solutions of Ax = 0 in parametric vector form, where A is row equivalent
to the given matrix.

(a)

[
1 3 −3 7

0 1 −4 5

]
(b)


1 −4 −2 0 3 −5

0 0 1 0 0 −1

0 0 0 0 1 −4

0 0 0 0 0 0


Hint : (b) x2, x4, and x6 are free variables.

3. Describe and compare the solution sets of x1− 3x2 + 5x3 = 0 and x1− 3x2 + 5x3 = 4. Hint :
You must solve two problems each of which has a single equation, which in turn represents a
plane. For both, only x1 is the basic variable.

4. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial solution.

5. (1) Does the equation Ax = 0 have a nontrivial solution and (2) does the equation
Ax = b have at least one solution for every possible b?

(a) A is a 3× 3 matrix with three pivot positions.
(b) A is a 3× 3 matrix with two pivot positions.
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1.7. Linear Independence

Definition 1.50. A set of vectors {v1, v2, · · · , vp} in Rn is said to be
linearly independent, if the vector equation

x1 v1 + x2 v2 + · · ·+ xp vp = 0 (1.27)

has only the trivial solution (i.e., x1 = x2 = · · · = xp = 0). The set of
vectors {v1, v2, · · · , vp} is said to be linearly dependent, if there exist
weights c1, c2, · · · , cp, not all zero, such that

c1 v1 + c2 v2 + · · ·+ cp vp = 0. (1.28)

Example 1.51. Determine if the set {v1,v2} is linearly independent.

1) v1 =

[
3

0

]
, v2 =

[
0

5

]
2) v1 =

[
3

0

]
, v2 =

[
1

0

]

Remark 1.52. Let A = [v1, v2, · · · , vp]. The matrix equation Ax = 0 is
equivalent to x1 v1 + x2 v2 + · · ·+ xp vp = 0.

1. Columns of A are linearly independent if and only if Ax = 0 has
only the trivial solution. (⇔ Ax = 0 has no free variable ⇔ Every
column in A is a pivot column.)

2. Columns of A are linearly dependent if and only if Ax = 0 has a
nontrivial solution. (⇔ Ax = 0 has at least one free variable ⇔ A
has at least one non-pivot column.)
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Example 1.53. Determine if the vectors are linearly independent.

1)

1

0

0

,
0

1

0

 2)

1

0

0

,
0

1

0

,
0

0

1

,
2

1

2


Solution.

Example 1.54. Determine if the vectors are linearly independent.0

2

3

,
 0

0

−8

,
−1

3

1


Solution.
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Example 1.55. Determine if the vectors are linearly independent. 1

−2

0

,
−2

4

1

,
 3

−6

−1

,
2

2

3


Solution.

Note: In the above example, vectors are in Rn, n = 3; the number of vectors
p = 4. Like this, if p > n then the vectors must be linearly dependent.

Theorem 1.56. The set of vectors {v1, v2, · · · , vp} ⊂ Rn is linearly
dependent, if p > n.

Proof. Let A = [v1 v2 · · · vp] ∈ Rn×p. Then Ax = 0 has n equations with
p unknowns. When p > n, there are more variables than equations; this
implies there is at least one free variable, which in turn means that there
is a nontrivial solution.
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Example 1.57. Find the value of h so that the vectors are linearly inde-
pendent. 3

−6

1

,
−6

4

−3

,
9

h

3


Solution.

Example 1.58. (Revision of Example 1.57): Find the value of h so that
c is in Span{a,b}.

a =

 3

−6

1

, b =

−6

4

−3

, c =

9

h

3


Solution.
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Example 1.59. Determine by inspection if the vectors are linearly de-
pendent.

1)

[
1

0

]
,

[
0

1

]
,

[
1

2

]
2)

 1

0

−1

,
0

2

3

,
0

0

0

 3)

1

2

3

,
3

6

9


Solution.

Note: Let S = {v1, v2, · · · , vp}. If S contains the zero vector, then it is
always linearly dependent. A vector in S is a linear combination of other
vectors in S if and only if S is linearly dependent.

True-or-False 1.60.

a. The columns of any 3× 4 matrix are linearly dependent.

b. If u and v are linearly independent, and if {u,v,w} is linearly depen-
dent, then w ∈ Span{u,v}.

c. Two vectors are linearly dependent if and only if they lie on a line
through the origin.

d. The columns of a matrix A are linearly independent, if the equation
Ax = 0 has the trivial solution.

Solution.

Ans: T,T,T,F
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Exercises 1.7

1. Determine if the columns of the matrix form a linearly independent set. Justify each
answer.

(a)


−4 −3 0

0 −1 4

1 0 3

5 4 6

 (b)

 1 −3 3 −2

−3 7 −1 2

0 1 −4 3



2. Find the value(s) of h for which the vectors are linearly dependent. Justify each answer.

(a)

 1

−1

4

,

 3

−5

7

,

−1

5

h

 (b)

 1

5

−3

,

−2

−9

6

,

 3

h

−9


3. (a) For what values of h is v3 in Span{v1,v2}, and (b) for what values of h is {v1,v2,v3}

linearly dependent? Justify each answer.

v1 =

 1

−3

2

, v2 =

−3

9

−6

, v3 =

 5

−7

h

.

Ans: (a) No h; (b) All h

4. Describe the possible echelon forms of the matrix. Use the notation of Exercise 3 in
Section 1.2, p. 19.

(a) A is a 3× 3 matrix with linearly independent columns.
(b) A is a 2× 2 matrix with linearly dependent columns.
(c) A is a 4× 2 matrix, A = [a1, a2] and a2 is not a multiple of a1.
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1.8. Linear Transformations

Example 1.61. Let A ∈ Rm×n and x ∈ Rn.
Then Ax is a new vector in Rm. For example,

A =

[
4 −3 1

2 0 5

]
∈ R2×3, x =

−1

1

3

 ∈ R3.

Then

Ax =

[
4 −3 1

2 0 5

]−1

1

3

 =

[
4 · (−1)− 3 · (1) + 1 · (3)

2 · (−1) + 0 · (1) + 5 · (3)

]
=

[
−4

13

]
︸ ︷︷ ︸

a new vector in R2

.

That is, A transforms vectors to another space.

Definition 1.62. Transformation (function or mapping)
A transformation T from Rn to Rm is a rule that assigns to each vec-
tor x ∈ Rn a vector T (x) ∈ Rm. In this case, we write

T : Rn → Rm

x 7→ T (x)
(1.29)

where Rn is the domain of T , Rm is the codomain of T , and T (x) denotes
the image of x under T . The set of all images is called the range of T .

Range(T ) = {T (x) | x ∈ Rn}

Figure 1.9: Transformation T : Rn → Rm.
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Definition 1.63. Transformation associated with matrix multiplication
is matrix transformation. That is, for each x ∈ Rn, T (x) = Ax, where
A is an m× n matrix. We may denote the matrix transformation as

T : Rn → Rm

x 7→ Ax
(1.30)

Here the range of T is set of all linear combinations of columns of A.

Range(T ) = Span{columns of A}.

Example 1.64. Let A =

[
1 3

0 1

]
. The transformation T : R2 → R2 defined

by T (x) = Ax is called a shear transformation. Determine the image of a
square [0, 2]× [0, 2] under T .
Solution. Hint : Matrix transformations is an affine mapping, which means that they
map line segments into line segments (and corners to corners).
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Example 1.65. Let A =

 1 −3

3 5

−1 7

, u =

[
2

−1

]
, b =

 3

2

−5

, c =

3

2

5

, and

define a transformation T : R2 → R3 by T (x) = Ax.

a. Find T (u), the image of u under the transformation T .
b. Find an x ∈ R2 whose image under T is b.
c. Is there more than one x whose image under T is b?
d. Determine if c is in the range of the transformation T .

Solution.

Ans: b. x =

[
1.5

−0.5

]
; c. no; d. no
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Linear Transformations

Definition 1.66. A transformation T is linear if:

(i) T (u + v) = T (u) + T (v), for all u, v in the domain of T
(ii) T (cu) = cT (u), for all scalars c and all u in the domain of T

Claim 1.67. If T is a linear transformation, then

T (0) = 0 (1.31)

and
T(cu + dv) = cT(u) + dT(v) , (1.32)

for all vectors u, v in the domain of T and all scalars c, d.
We can easily prove that if T satisfies (1.32), then T is linear.

Remark 1.68. The function f(x) = ax is a linear transformation:

f(c x1 + d x2) = a(cx1 + dx2) = c(ax1) + d(ax2) = c f(x1) + d f(x2). (1.33)

Example 1.69. Prove that a matrix transformation T (x) = Ax is linear.

Proof. It is easy to see that

T (cu + dv) = A(cu + dv) = cAu + dAv = c T (u) + d T (v),

which completes the proof, satisfying (1.32).

Remark 1.70. Repeated application of (1.32) produces a useful gener-
alization:

T (c1v1 + c2v2 + · · ·+ cpvp) = c1T (v1) + c2T (v2) + · · ·+ cpT (vp). (1.34)

In engineering physics, (1.34) is referred to as a superposition princi-
ple.
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Example 1.71. Let θ be the angle measured from the positive x-axis coun-
terclockwise. Then, the rotation can be defined as

R[θ] =

[
cos θ − sin θ

sin θ cos θ

]
(1.35)

1) Describe R[π/2] explicitly.

2) What are images of

[
1

0

]
and

[
0

1

]
under R[π/2].

3) Is R[θ] a linear transformation?

Solution.

Figure 1.10: Euler angles (roll,pitch,yaw)
in aerodynamics.

For example, a yaw is a counter-
clockwise rotation of ψ about the z-
axis. The rotation matrix reads

Rz[ψ] =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


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True-or-False 1.72.

a. If A ∈ R3×5 and T is a transformation defined by T (x) = Ax, then the
domain of T is R3.

b. A linear transformation is a special type of function.

c. The superposition principle is a physical description of a linear trans-
formation.

d. Every matrix transformation is a linear transformation.

e. Every linear transformation is a matrix transformation. (If it is false,
can you find an example that is linear but of no matrix description?)

Solution.

Ans: F,T,T,T,F
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Exercises 1.8

1. With T defined by Tx = Ax, find a vector x whose image under T is b, and determine
whether x is unique.

A =

1 −3 2

0 1 −4

3 −5 −9

, b =

 6

−7

−9


Ans: x =

−5−3
1

, unique

2. Answer the following

(a) Let A be a 6× 5 matrix. What must a and b be in order to define T : Ra → Rb by by
Tx = Ax?

(b) How many rows and columns must a matrix A have in order to define a mapping
from R4 into R5 by the rule Tx = Ax?

Ans: (a) a = 5; b = 6

3. Let b =

−1

1

0

 and A =

1 −4 7 −5

0 1 −4 3

2 −6 6 −4

. Is b in the range of the linear transformation

x 7→ Ax? Why or why not?
Ans: yes

4. Use a rectangular coordinate system to plot u =

[
5

2

]
, u =

[
−2

4

]
, and their images under

the given transformation T . (Make a separate and reasonably large sketch.) Describe
geometrically what T does to each vector x in R2.

T (x) =

[
−1 0

0 −1

][
x1

x2

]
5. Show that the transformation T defined by T (x1, x2) = (2x1−3x2, x1+4, 5x2) is not linear.

Hint : T (0, 0) = 0?

6. Let T : R3 → R3 be the transformation that projects each vector x = (x1, x2, x3) onto the
plane x2 = 0, so T (x) = (x1, 0, x3). Show that T is a linear transformation.
Hint : Try to verify (1.32): T (cx+ dy) = T (cx1 + dy1, cx2 + dy2, cx3 + dy3) = · · · = cT (x) + dT (y).
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1.9. The Matrix of A Linear Transformation

Note: In Example 1.69 (p. 53), we proved that every matrix transfor-
mation is linear. The reverse is not always true. However, a linear
transformation defined in Rn is a matrix transformation.

Here in this section, we will try to find matrices for linear transformations
defined in Rn. Let’s begin with an example.

Example 1.73. Suppose T : R2 → R3 is a linear transformation such that

T (e1) =

 5

−7

2

, T (e2) =

−3

8

0

, where e1 =

[
1

0

]
, e2 =

[
0

1

]
.

Solution. What we should do is to find a matrix A ∈ R3×2 such that

T (e1) = Ae1 =

 5

−7

2

, T (e2) = Ae2 =

−3

8

0

. (1.36)

Let x =

[
x1

x2

]
∈ R2. Then

x = x1

[
1

0

]
+ x2

[
0

1

]
= x1e1 + x2e2. (1.37)

It follows from linearity of T that
T (x) = T (x1e1 + x2e2) = x1T (e1) + x2T (e2)

= [T (e1) T (e2)]

[
x1

x2

]
=

 5 −3

−7 8

2 0


︸ ︷︷ ︸

A

x. (1.38)

Now, you can easily check that A satisfies (1.36).

Observation 1.74. The matrix of a linear transformation is decided by
its action on the standard basis.
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1.9.1. The Standard Matrix

Theorem 1.75. Let T : Rn → Rm be a linear transformation. Then
there exists a unique matrix A ∈ Rm×n such that

T (x) = Ax, for all x ∈ Rn.

In fact, with ej denoting the j-th standard unit vector in Rn,

A = [T (e1) T (e2) · · · T (en)] . (1.39)

The matrix A is called the standard matrix of the transformation.

Note: Standard unit vectors in Rn & the standard matrix:

e1 =



1

0
...
...
0


, e2 =


0

1

0
...
0

, · · · , en =



0
...
...
0

1


. (1.40)

Any x ∈ Rn can be written as

x =



x1

x2
...
...

xn


= x1



1

0
...
...
0


+ x2


0

1

0
...
0

+ · · ·+ xn



0
...
...
0

1


= x1e1 + x2e2 + · · ·+ xnen.

Thus
T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= [T (e1) T (e2) · · · T (en)]x,

(1.41)

and therefore the standard matrix reads
A = [T (e1) T (e2) · · · T (en)] . (1.42)
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Example 1.76. Let T : R2 → R2 be a horizontal shear transformation
that leaves e1 unchanged and maps e2 into e2 + 2e1. Write the standard
matrix of T .
Solution.

Ans: A =

[
1 2

0 1

]
.

Example 1.77. Write the standard matrix for the linear transformation
T : R2 → R4 given by

T (x1, x2) = (x1 + 4x2, 0, x1 − 3x2, x1).

Solution.
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Geometric Linear Transformations of R2

Example 1.78. Find the standard matrices for the reflections in R2.

1) The reflection through the x1-axis, defined as R1

[
x1

x2

]
=

[
x1

−x2

]
.

2) The reflection through the line x1 = x2, defined as R2

[
x1

x2

]
=

[
x2

x1

]
.

3) The reflection through the line x1 = −x2 (Define R3 first.)

Solution.

Ans: 3) A3 =

[
0 −1

−1 0

]
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1.9.2. Existence and Uniqueness Questions

Definition 1.79.

1) A mapping T : Rn → Rm is said to be surjective (onto Rm) if each
b in Rm is the image of at least one x in Rn.

2) A mapping T : Rn → Rm is said to be injective (one-to-one) if each
b in Rm is the image of at most one x in Rn.

Figure 1.11: Surjective?: Is the range of T all of Rm?

Figure 1.12: Injective?: Is each b ∈ Rm the image of one and only one x in Rn?

Note: For solutions of Ax = b, A ∈ Rm×n; existence is related to
“surjective"-ness, while uniqueness is granted for “injective" mappings.
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Example 1.80. Let T : R4 → R3 be the linear transformation whose stan-
dard matrix is

A =

1 −4 0 1

0 2 −1 3

0 0 0 −1

 .
Is T onto? Is T one-to-one?
Solution.

Ans: onto, but not one-to-one

Theorem 1.81. Let T : Rn → Rm be a linear transformation with the
standard matrix A. Then,

(a) T maps Rn onto Rm if and only if the columns of A span Rm.
(⇔ every row of A has a pivot position
⇔ Ax = b has a solution for all b ∈ Rm)

(b) T is one-to-one if and only if the columns of A are linearly indepen-
dent.
(⇔ every column of A is a pivot column
⇔ Ax = 0 has “only" the trivial solution)

Example 1.82. Let T (x) =

1 3 0

0 3 4

0 0 4

x. Is T one-to-one? Does T map R3

onto R3?
Solution.
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Example 1.83. Let T (x) =


1 4

0 0

1 −3

1 0

x. Is T one-to-one (1–1)? Is T onto?

Solution.

Example 1.84. Let T (x) =

1 0 0 1

0 1 2 3

0 2 4 6

x. Is T 1–1? Is T onto?

Solution.
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Example 1.85. Let T : R4 → R3 be the linear transformation given by

T (x1, x2, x3, x4) = (x1 − 4x2 + 8x3 + x4, 2x2 − 8x3 + 3x4, 5x4).

Is T 1–1? Is T onto?
Solution.

True-or-False 1.86.

a. A mapping T : Rn → Rm is one-to-one if each vector in Rn maps onto a
unique vector in Rm.

b. If A is a 3 × 2 matrix, then the transformation x 7→ Ax cannot map R2

onto R3.

c. If A is a 3 × 2 matrix, then the transformation x 7→ Ax cannot be one-
to-one. (See Theorem 1.81, p.62.)

d. A linear transformation T : Rn → Rm is completely determined by its
action on the columns of the n× n identity matrix.

Solution.

Ans: F,T,F,T
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Exercises 1.9

1. Assume that T is a linear transformation. Find the standard matrix of T .

(a) T : R2 → R4, T (e1) = (3, 1, 3, 1) and T (e2) = (5, 2, 0, 0), where e1 = (1, 0) and e2 =
(0, 1).

(b) T : R2 → R2 first performs a horizontal shear that transforms e2 into e2−2e1 (leav-
ing e1 unchanged) and then reflects points through the line x2 = −x1.

Ans: (b) shear:

[
1 −2
0 1

]
and reflection:

[
0 −1
−1 0

]
; it becomes

[
0 −1
−1 2

]
.

2. Show that T is a linear transformation by finding a matrix that implements the map-
ping. Note that x1, x2, · · · are not vectors but are entries in vectors.

(a) T (x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x2 + x4)

(b) T (x1, x2, x3) = (x1 − 5x2 + 4x3, x2 − 6x3)

(c) T (x1, x2, x3, x4) = 2x1 + 3x3 − 4x4

3. Let T : R2 → R2 be a linear transformation such that T (x1, x2) = (x1+x2, 4x1+5x2). Find
x such that T (x) = (3, 8).

Ans: x =

[
7

−4

]
4. Determine if the specified linear transformation is (1) one-to-one and (2) onto. Justify

each answer.

(a) The transformation in Exercise 2(a).
(b) The transformation in Exercise 2(b).

Ans: (a) Not 1-1, not onto; (b) Not 1-1, but onto

5. Describe the possible echelon forms of the standard matrix for a linear transformation
T , where T : R4 → R3 is onto. Use the notation of Exercise 3 in Section 1.2.
Hint : The matrix should have a pivot position in each row. Thus there 4 different possible
echelon forms.
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CHAPTER 2
Matrix Algebra

From the elementary school, you have learned about numbers and oper-
ations such as addition, subtraction, multiplication, division, and factor-
ization. Matrices are also mathematical objects. Thus you may de-
fine matrix operations, similarly done for numbers. Matrix algebra is a
study about such matrix operations and related applications. Algorithms
and techniques you will learn through this chapter are quite fundamen-
tal and important to further develop for application tasks.
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2.1. Matrix Operations

Figure 2.1: Matrix A ∈ Rm×n.

Let A be an m× n matrix.
Let aij denotes the entry in row i and
column j. Then, we write A = [aij].

Terminologies
• If m = n, A is called a square matrix.

• If A is an n× n matrix, then the entries a11, a22, · · · , ann are called di-
agonal entries.

• A diagonal matrix is a square matrix (say n× n) whose non-diagonal
entries are zero.
Ex: Identity matrix In.

2.1.1. Sum, Scalar Multiple, and Matrix Multiplication

1) Equality: Two matrices A and B of the same size (say m× n) are
equal if and only if the corresponding entries in A and B are equal.

2) Sum: The sum of two matrices A = [aij] and B = [bij] of the same
size is the matrix A+B = [aij + bij].

3) Scalar multiplication: Let r be any scalar. Then, rA = r[aij] = [raij].
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Example 2.1. Let

A =

[
4 0 5

−1 3 2

]
, B =

[
1 1 1

3 5 7

]
, C =

[
2 −3

0 1

]

a) A+B, A+ C?
b) A− 2B

Solution.
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Matrix Multiplication

Definition 2.2. Matrix Multiplication
If A is an m× n matrix and B is an n× p matrix with columns
b1, b2, · · · , bp, then the matrix product AB is a matrix with columns
Ab1, Ab2, · · · , Abp. That is,

AB = A[b1 b2 · · · bp] = [Ab1 Ab2 · · · Abp] ∈ Rm×p, (2.1)

which is a collection of matrix-vector multiplications.

Matrix multiplication, as a Composition of Two Linear Transfor-
mations. AB’s action on x:

AB : x ∈ Rp 7→
B

Bx ∈ Rn 7→
A

A(Bx) ∈ Rm (2.2)

Figure 2.2

Let A ∈ Rm×n, B ∈ Rn×p, and x = [x1, x2, · · · , xp]T ∈ Rp. Then,

Bx = [b1 b2 · · · bp]x = x1b1 + x2b2 + · · ·+ xpbp

⇒ A(Bx) = A(x1b1 + x2b2 + · · ·+ xpbp)

= x1Ab1 + x2Ab2 + · · ·+ xpAbp

= [Ab1 Ab2 · · · Abp]x
⇒ AB = [Ab1 Ab2 · · · Abp] ∈ Rm×p

(2.3)

where bi ∈ Rn.
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Example 2.3. Let T : R2 → R3 and S : R2 → R2 be such that T (x) = Ax

where A =

 4 −3

−3 5

0 1

 and S(x) = Bx where B =

[
1 4

3 −2

]
. Compute the

standard matrix of T ◦ S.
Solution. Hint : (T ◦ S) (x) = T (S(x)) = T (Bx) = A(Bx) = (AB)x.

Row-Column rule for Matrix Multiplication
If the product AB is defined (i.e. number of columns in A = number of
rows in B) and A ∈ Rm×n, then the entry in row i and column j of AB
is the sum of products of corresponding entries from row i of A and
column j of B. That is,

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj. (2.4)

The sum of products is also called the dot product.
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2.1.2. Properties of Matrix Multiplication

Example 2.4. Compute AB if

A =

[
2 3

1 −5

]
, B =

[
4 3 6

1 −2 3

]
.

Solution.

Example 2.5. Find all columns of matrix B if

A =

[
1 2

−1 3

]
, AB =

[
8 7

7 −2

]
.

Solution.

Ans: B =

[
2 5

3 1

]
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Example 2.6. Find the first column of B if

A =

−2 3

3 3

5 −3

 and AB =

−11 10

9 0

23 −16

.

Solution.

Ans: b1 =

[
4

−1

]

Remark 2.7.

1. (Commutativity) Suppose both AB and BA are defined. Then, in
general, AB 6= BA.

A =

[
3 −6

−1 2

]
, B =

[
−1 1

3 4

]
. Then AB =

[
−21 −21

7 7

]
, BA =

[
−4 8

5 −10

]
.

2. (Cancellation law) If AB = AC, then B = C needs not be true
always. (e.g., A = 0) ⇒ determinant and invertibility

3. (Powers of a matrix) If A is an n× n matrix and if k is a positive
integer, then Ak denotes the product of k copies of A:

Ak = A · · ·A︸ ︷︷ ︸
k times

If k = 0, then Ak is identified with the identity matrix, In.
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Transpose of a Matrix

Definition 2.8. Given an m× n matrix A, the transpose of A is the
matrix, denoted by AT , whose columns are formed from the correspond-
ing rows of A.

Example 2.9. If A =

1 −4 8 1

0 2 −1 3

0 0 0 5

, then AT =

Theorem 2.10. Let A = [aij].

a. AT = [aji]

b. (AT )T = A

c. (A+B)T = AT +BT

d. (rA)T = r AT , for any scalar r

e. (AB)T = BT AT

Note: The transpose of a product of matrices equals the product of their
transposes in the reverse order: (ABC)T = CT BT AT
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True-or-False 2.11.

a. Each column of AB is a linear combination of the columns of B using
weights from the corresponding column of A.

b. The second row of AB is the second row of A multiplied on the right by
B.

c. The transpose of a sum of matrices equals the sum of their transposes.

Solution.

Ans: F(T if A↔ B),T,T

Challenge 2.12.

a. Show that if the columns of B are linearly dependent, then so are the
columns of AB.

b. Suppose CA = In (the n× n identity matrix). Show that the equation
Ax = 0 has only the trivial solution.

Hint : a. The condition means that Bx = 0 has a nontrivial solution.
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Exercises 2.1

1. Compute the product AB in two ways: (a) by the definition, where Ab1 and Ab2 are
computed separately, and (b) by the row-column rule for computing AB.

A =

−1 2

5 4

2 −3

 and B =

[
3 2

2 1

]
.

2. If a matrix A is 5× 3 and the product AB is 5× 7, what is the size of B?

3. Let A =

[
2 −3

−4 6

]
, B =

[
8 4

5 5

]
, and C =

[
5 −2

3 1

]
. Verify that AB = AC and yet

B 6= C.

4. If A =

[
1 −2

−2 5

]
and AB =

[
−1 2 −1

6 −9 3

]
, determine the first and second columns of

B.
Ans: b1 =

[
7

4

]
, b2 =

[
−8
−5

]
5. Give a formula for (ABx)T , where x is a vector and A and B are matrices of appropriate

sizes.

6. Let u =

−2

3

−4

 and v =

ab
c

. Compute uT v, vT u, uvT and vuT .

Ans: uT v = −2a+ 3b− 4c and uvT =

−2a −2b −2c
3a 3b 3c

−4a −4b −4c

.
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2.2. The Inverse of a Matrix

Definition 2.13. An n× n matrix A is said to be invertible (nonsin-
gular) if there is an n× n matrix B such that AB = In = BA, where In
is the identity matrix.

Note: In this case, B is the unique inverse of A denoted by A−1.
(Thus AA−1 = In = A−1A.)

Example 2.14. If A =

[
2 5

−3 −7

]
and B =

[
−7 −5

3 2

]
. Find AB and BA.

Solution.

Theorem 2.15. (Inverse of an n× n matrix, n ≥ 2) An n× n matrix
A is invertible if and only if A is row equivalent to In and in this case any
sequence of elementary row operations that reduces A into In will also
reduce In to A−1.

Algorithm 2.16. Algorithm to find A−1:
1) Row reduce the augmented matrix [A : In]

2) If A is row equivalent to In, then [A : In] is row equivalent to [In :
A−1]. Otherwise A does not have any inverse.
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Example 2.17. Find the inverse of A =

[
3 2

8 5

]
.

Solution. You may begin with

[A : I2] =

[
3 2 1 0

8 5 0 1

]

Ans: A−1 =

[
−5 2

8 −3

]

Example 2.18. Find the inverse of A =

0 1 0

1 0 3

4 −3 8

, if it exists.

Solution.
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Example 2.19. Find the inverse of A =

 1 2 −1

−4 −7 3

−2 −6 4

, if it exists.

Solution.

Theorem 2.20.

a. (Inverse of a 2× 2 matrix) Let A =

[
a b

c d

]
. If ad − bc 6= 0, then A

is invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
(2.5)

b. If A is an invertible matrix, then A−1 is also invertible and
(A−1)−1 = A.

c. If A and B are n× n invertible matrices then AB is also invertible
and (AB)−1 = B−1A−1.

d. If A is invertible, then AT is also invertible and (AT )−1 = (A−1)T .

e. If A is an n× n invertible matrix, then for each b ∈ Rn, the equation
Ax = b has a unique solution x = A−1b.
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Example 2.21. When A, B, C, and D are n× n invertible matrices, solve
for X if C−1(A+X)B−1 = D.
Solution.

Example 2.22. Explain why the columns of an n× n matrix A are linearly
independent when A is invertible.
Solution. Hint : Let x1a1 + x2a2 + · · ·+ xnan = 0. Then, show that x = [x1, x2, · · · , xn]T = 0.

Remark 2.23. (Another view of matrix inversion) For an invertible
matrix A, we have AA−1 = In. Let A−1 = [x1 x2 · · · xn]. Then

AA−1 = A[x1 x2 · · · xn] = [e1 e2 · · · en]. (2.6)

Thus the j-th column of A−1 is the solution of

Axj = ej, j = 1, 2, · · · , n.
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True-or-False 2.24.

a. In order for a matrix B to be the inverse of A, both equations AB = In
and BA = In must be true.

b. If A =

[
a b

c d

]
and ad = bc, then A is not invertible.

c. If A is invertible, then elementary row operations that reduce A to the
identity In also reduce A−1 to In.

Solution.
Ans: T,T,F

Exercises 2.2

1. Find the inverses of the matrices, if exist: A =

[
3 −4

7 −8

]
and B =

 1 −2 1

4 −7 3

−2 6 −4


Ans: B is not invertible.

2. Use matrix algebra to show that if A is invertible and D satisfies AD = I, then D = A−1.
Hint : You may start with AD = I and then multiply A−1.

3. Solve the equation AB + C = BC for A, assuming that A, B, and C are square and B is
invertible.

4. Explain why the columns of an n× n matrix A span Rn when A is invertible. Hint : If A
is invertible, then Ax = b has a solution for all b in Rn.

5. Suppose A is n× n and the equation Ax = 0 has only the trivial solution. Explain why
A is row equivalent to In. Hint : A has n pivot columns.

6. Suppose A is n× n and the equation Ax = b has a solution for each b in Rn. Explain
why A must be invertible. Hint : A has n pivot columns.
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2.3. Characterizations of Invertible Matrices

Theorem 2.25. (Invertible Matrix Theorem) Let A be an n× n ma-
trix. Then the following are equivalent.

a. A is an invertible matrix. (Def: There is B s.t. AB = BA = I)

b. A is row equivalent to the n× n identity matrix.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution x = 0.

e. The columns of A are linearly independent.

f. The linear transformation x 7→ Ax is one-to-one.

g. The equation Ax = b has unique solution for each b ∈ Rn.

h. The columns of A span Rn.

i. The linear transformation x 7→ Ax maps Rn onto Rn.

j. There is a matrix C ∈ Rn×n such that CA = I

k. There is a matrix D ∈ Rn×n such that AD = I

l. AT is invertible and (AT )−1 = (A−1)T .

More statements will be added in the coming sections.

Note: Let A and B be square matrices. If AB = I, then A and B are both
invertible, with B = A−1 and A = B−1.
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Example 2.26. Use the Invertible Matrix Theorem to decide if A is invert-
ible:

A =

 1 0 −2

3 1 −2

−5 −1 9


Solution.

Example 2.27. Can a square matrix with two identical columns be invert-
ible?
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Example 2.28. An n× n upper triangular matrix is one whose entries
below the main diagonal are zeros. When is a square upper triangular ma-
trix invertible?

Theorem 2.29. (Invertible linear transformations)

1. A linear transformation T : Rn → Rn is said to be invertible if
there exists S : Rn → Rn such that S ◦ T (x) = T ◦ S(x) = x for all
x ∈ Rn. In this case, S = T−1.

2. Also, if A is the standard matrix for T , then A−1 is the standard
matrix for T−1.

Example 2.30. Let T : R2 → R2 be a linear transformation such that

T

[
x1

x2

]
=

[
−5x1 + 9x2

4x1 − 7x2

]
. Find a formula for T−1.

Solution.
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Example 2.31. Let T : Rn → Rn be one-to-one. What can you say about
T ?
Solution. Hint : T : 1-1⇔ Columns of A is linearly independent

True-or-False 2.32. Let A be an n× n matrix.

a. If the equation Ax = 0 has only the trivial solution, then A is row
equivalent to the n× n identity matrix.

b. If the columns of A span Rn, then the columns are linearly independent.

c. If A is an n× n matrix, then the equation Ax = b has at least one
solution for each b ∈ Rn.

d. If the equation Ax = 0 has a nontrivial solution, then A has fewer than
n pivot positions.

e. If AT is not invertible, then A is not invertible.

f. If the equation Ax = b has at least one solution for each b ∈ Rn, then
the solution is unique for each b.

Solution.
Ans: T,T,F,T,T,T
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Exercises 2.3

1. An m× n lower triangular matrix is one whose entries above the main diagonal are
0’s. When is a square upper triangular matrix invertible? Justify your answer. Hint :
See Example 2.28.

2. Is it possible for a 5× 5 matrix to be invertible when its columns do not span R5? Why
or why not?

Ans: No

3. If A is invertible, then the columns of A−1 are linearly independent. Explain why.

4. If C is 6× 6 and the equation Cx = v is consistent for every v ∈ R6, is it possible that
for some v, the equation Cx = v has more than one solution? Why or why not?

Ans: No

5. If the equation Gx = y has more than one solution for some y ∈ Rn, can the columns of
G span Rn? Why or why not?

Ans: No

6. Let T : R2 → R2 be a linear transformation such that T (x1, x2) = (6x1− 8x2, −5x1 + 7x2).
Show that T is invertible and find a formula for T−1. Hint : See Example 2.30.
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2.5. Solving Linear Systems by Matrix Factor-
izations

2.5.1. The LU Factorization/Decomposition

In industrial and business applications, the linear system is often sparse
and to be solved for multiple right-sides:

Ax = b1, Ax = b2, Ax = b3, · · · . (2.7)

The LU factorization is very useful for these common problems. (The in-
verse of a matrix usually becomes a full matrix.)

Definition 2.33. Let A ∈ Rm×n. The LU factorization of A is

A = LU, (2.8)

where L ∈ Rm×m is a unit lower triangular matrix and
U ∈ Rm×n is an echelon form of A (upper triangular matrix):

Remark 2.34. Let Ax = b be to be solved. Then Ax = LUx = b,
which reads {

Ly = b,

Ux = y.
(2.9)

Each algebraic equation can be solved efficiently, via substitutions.

Definition 2.35. Every elementary row operation can be expressed
as a matrix to be left-multiplied.

• Such a matrix is called an elementary matrix.
• Every elementary matrix is invertible.
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Example 2.36. Let A =

 1 −2 1

2 −2 3

−3 2 0

.

a) Reduce A to an echelon matrix, using replacement operations.
b) Express the replacement operations as elementary matrices.
c) Find their inverse.

Solution. a) b) & c)

A =

 1 −2 1

2 −2 3

−3 2 0


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Algorithm 2.37. (LU Factorization Algorithm) The following
derivation introduces an LU factorization. Let A ∈ Rm×n. Then

A = ImA

= ImE
−1
1 E1A

= ImE
−1
1 E−12 E2E1A = (E2E1)

−1E2E1A

=
...

= ImE
−1
1 E−12 · · ·E−1p Ep · · ·E2E1A︸ ︷︷ ︸

an echelon form

= (Ep · · ·E2E1)
−1︸ ︷︷ ︸

L

Ep · · ·E2E1A︸ ︷︷ ︸
U

(2.10)
where each Ei is the elementary matrix for a replacement operation.

Remark 2.38. The LU factorization algorithm (without pivoting) uses
a sequence of “replacement” row operations to get

A
Ep···E2E1−−−−−−−−→ U = Ep · · ·E2E1A

I
(Ep···E2E1)

−1

−−−−−−−→ L = I E−11 E−12 · · ·E−1p
(2.11)
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Example 2.39. Find the LU factorization of A =

 3 −1 1

9 1 2

−6 5 −5

.

Solution. (Forward Phase: Gauss Elimination)

A =

 3 −1 1

9 1 2

−6 5 −5

 E1:R2←R2−3R1−−−−−−−−−→
E2:R3←R3+2R1

 3 −1 1

0 4 −1

0 3 −3


E3:R3←R3−3

4R2−−−−−−−−−→

 3 −1 1

0 4 −1

0 0 −9
4

 = U

(2.12)

Collect the “replacement” row operations and their inverse:

A→ U : R2 ← R2−3R1 =⇒ R3 ← R3+2R1 =⇒ R3 ← R3−3
4R2

E3E2E1A = U =⇒ A = (E3E2E1)
−1U

L = I(E3E2E1)
−1 = I E−11 E−12 E−13

I → L : R2 ← R2+3R1 ⇐= R3 ← R3−2R1 ⇐= R3 ← R3+
3
4R2

(2.13)

Now we construct L = I E−11 E−12 E−13 = E−11 E−12 E−13 I:

I =

 1 0 0

0 1 0

0 0 1

 E−1
3 :R3←R3+

3
4R2−−−−−−−−−−→

 1 0 0

0 1 0

0 3
4 1


E−1

2 :R3←R3−2R1−−−−−−−−−−→
E−1

1 :R2←R2+3R1

 1 0 0

3 1 0

−2 3
4 1

 = L.

(2.14)

Note: The matrix L simply collects

• all the constants of “inverse replacements”,
• which are the same as ratios to pivot values.
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Example 2.40. Find the LU factorization of A =

 3 −1 1

9 1 2

−6 5 −5

.

Solution. (Practical Implementation):

A =

 3 −1 1

9 1 2

−6 5 −5

 E1:R2←R2−3R1−−−−−−−−−→
E2:R3←R3+2R1

 3 −1 1
3 4 −1

-2 3 −3


E3:R3←R3− 3

4R2−−−−−−−−−→

 3 −1 1
3 4 −1

-2 3
4 −9

4


(2.15)

from which we can get

L =

 1 0 0

3 1 0

−2 3
4 1

 , U =

 3 −1 1

0 4 −1

0 0 −9
4

 . (2.16)

Matlab-code 2.41. The LU factorization (overwritten; without pivoting)
can be implemented as

lu_nopivot_overwrite.m
1 function A = lu_nopivot_overwrite(A)
2

3 [m,n] = size(A);
4 for k = 1:m-1
5 A(k+1:m, k) = A(k+1:n,k)/A(k,k); %ratios to pivot
6 for i = k+1:m
7 A(i,k+1:n) = A(i,k+1:n) - A(i,k)*A(k,k+1:n);
8 end
9 end

Self-study 2.42. Find the LU factorization of

A =

 4 3 −5

−4 −5 7

8 8 −8


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2.5.2. Solutions of Triangular Algebraic Systems

Lower-Triangular Systems

• Consider the n× n system

Ly = b, (2.17)

where L = [`ij] is a nonsingular, lower-triangular matrix (`ii 6= 0).
• It is easy to see how to solve this system if we write it in detail:

`11 y1 = b1

`21 y1 + `22 y2 = b2

`31 y1 + `32 y2 + `33 y3 = b3
... ...

`n1 y1 + `n2 y2 + `n3 y3 + · · ·+ `nn yn = bn

(2.18)

• The first equation involves only the unknown y1 and therefore

y1 = b1/`11. (2.19)

• With y1 just obtained, we can determine y2 from the second equation:

y2 = (b2 − `21 y1)/`22. (2.20)

• With y1, y2 known, we can solve the third equation for y3, and so on.

Algorithm 2.43. Forward Substitution/Elimination
In general, once we have y1, y2, · · · , yi−1, we can solve for yi using the ith
equation of (2.18):

yi = (bi − `i1 y1 − `i2 y2 − · · · − `i,i−1 yi−1)/`ii

=
1

`ii

(
bi −

i−1∑
j=1

`ij yj

) (2.21)
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Upper-Triangular Systems

• Consider the system
U x = y, (2.22)

where U = [uij] ∈ Rn× n is nonsingular, upper-triangular.
• Writing it out in detail, we get

u11 x1 + u12 x2 + · · ·+ u1,n−1 xn−1 + u1,n xn = y1

u22 x2 + · · ·+ u2,n−1 xn−1 + u2,n xn = y2
... =

...
un−1,n−1 xn−1 + un−1,n xn = yn−1

un,n xn = yn

(2.23)

• It is clear that we should solve the system from bottom to top.

Matlab-code 2.44. (Back Substitution):

for i=n:-1:1

if(U(i,i)==0), error(’U: singular!’); end

x(i)=y(i)/U(i,i);

y(1:i-1)=y(1:i-1)-U(1:i-1,i)*x(i);

end

(2.24)
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In practice, the LU factorization incorporates partial pivoting for an en-
hanced stability.

Algorithm 2.45. Gauss Elimination with Partial Pivoting
To get the solution of Ax = b:

1. Factorize A into A = P TLU (⇔ PA = LU ), where
P = permutation matrix
L = unit lower triangular matrix (i.e., with 1’s on the diagonal)
U = upper-triangular matrix

Matlab: [L,U,P] = lu(A)

2. Solve Ax = P TLUx = b

(a) r = Pb (permuting b)
(b) Ly = r (forward substitution)
(c) Ux = y (back substitution)

Example 2.46. (Revisit of Example 2.36) Use the LU factorization to
solve the linear system Ax = b, where

A =

 1 −2 1

2 −2 3

−3 2 0

, b =

−2

1

1

.
Solution.

forward_sub.m
1 function y = forward_sub(L,b)
2 % function y = forward_sub(L,b)
3

4 [m,n] = size(L);
5 y = zeros(m,1); y(1)=b(1)/L(1,1);
6

7 for i=2:m
8 y(i) = ( b(i) - L(i,1:i-1)*y(1:i-1) ) / L(i,i);
9 end
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back_sub.m
1 function x = back_sub(U,y)
2 %function x = back_sub(U,y)
3

4 [m,n] = size(U);
5 x = zeros(m,1); x(m)=y(m)/U(m,m);
6

7 for i=m-1:-1:1
8 x(i) = (y(i)-(U(i,i+1:end)*x(i+1:end))) / U(i,i);
9 end

lu_solve.m
1 A = [ 1 -2 1
2 2 -2 3
3 -3 2 0];
4 b = [-2 1 1]';
5

6 x = A\b
7

8 [L,U,P] = lu(A)
9 r = P*b;

10 y = forward_sub(L,r);
11 x = back_sub(U,y)

Output
1 x =
2 1
3 2
4 1
5

6 L =
7 1.00000 0.00000 0.00000
8 -0.33333 1.00000 0.00000
9 -0.66667 0.50000 1.00000

10

11 U =
12 -3.00000 2.00000 0.00000
13 0.00000 -1.33333 1.00000
14 0.00000 0.00000 2.50000
15

16 P =
17 0 0 1
18 1 0 0
19 0 1 0
20

21 x =
22 1
23 2
24 1
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Exercises 2.5
1. (Hand calculation) Solve the equation Ax = b by using the LU factorization given for

A.

A =

 4 3 −5

−4 −5 7

8 6 −8

 =

 1 0 0

−1 1 0

2 0 1


4 3 −5

0 −2 2

0 0 2

 and b =

 2

−4

6

.
Here Ly = b requires replacement operations forward, while Ux = y requires replace-
ment and scaling operations backward.

Ans: x =

1/42
1

.

2. (Hand calculation) When A is invertible, Matlab finds A−1 by factoring A = LU , in-
verting L and U , and then computing U−1L−1. You will use this method to compute the
inverse of A given in Exercise 1.

(a) Find U−1, starting from [U I], reduce it to [I U−1].
(b) Find L−1, starting from [L I], reduce it to [I L−1].
(c) Compute U−1L−1.

Ans: A−1 =

 1/8 3/8 1/4

−3/2 −1/2 1/2

−1 0 1/2

.

3. M 1Use Matlab/Octave to solve the problem in Exercise 1, beginning with [L,U,P]=lu(A)
and following steps in Algorithm 2.45.

4. Let A =

−1 −5 8 4

4 2 −5 −7

−2 −4 7 5

.

(a) Try to see if you can find LU factorization without pivoting.

(b) M Use Matlab/Octave to find the LU factorization of A. Then recover A from
[L,U,P].

5. Find LU factorization (without pivoting) of B =


2 5 4 3

−4 −9 −6 −2

2 7 7 14

−6 −14 −10 −2

.

Ans: U =


2 5 4 3

0 1 2 4

0 0 −1 3

0 0 0 3

.

1All problems marked by M will have a higher credit.
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2.8. Subspaces of Rn

Definition 2.47. A subspace of Rn is any set H in Rn that has three
properties:

a) The zero vector is in H.
b) For each u and v in H, the sum u + v is in H.
c) For each u in H and each scalar c, the vector cu is in H.

That is, H is closed under linear combinations.

Example 2.48.

1. A line through the origin in R2 is a subspace of R2.

2. Any plane through the origin in R3.

Figure 2.3: Span{v1,v2} as a plane through the origin.

3. Let v1, v2, · · · , vp ∈ Rn. Then Span{v1, v2, · · · , vp} is a subspace of Rn.

Definition 2.49. Let A be an m× n matrix. The column space of A
is the set ColA of all linear combinations of columns of A. That is, if
A = [a1 a2 · · · an], then

ColA = {u | u = c1 a1 + c2 a2 + · · ·+ cn an}, (2.25)

where c1, c2, · · · , cn are scalars. ColA is a subspace of Rm.
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Example 2.50. Let A =

 1 −3 −4

−4 6 −2

−3 7 6

 and b =

 3

3

−4

. Determine whether

b is in the column space of A, ColA.
Solution. Clue: 1 b ∈ ColA
⇔ 2 b is a linear combination of columns of A
⇔ 3 Ax = b is consistent
⇔ 4 [A b] has a solution

Definition 2.51. Let A be an m× nmatrix. The null space of A, NulA,
is the set of all solutions of the homogeneous system Ax = 0.

Theorem 2.52. NulA is a subspace of Rn.

Proof.
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Basis for a Subspace

Definition 2.53. A basis for a subspace H in Rn is a set of vectors that
1. is linearly independent, and
2. spans H.

Remark 2.54.

1.

{[
1

0

]
,

[
0

2

]}
is a basis for R2.

2. Let e1 =


1

0

0
...
0

, e2 =


0

1

0
...
0

, · · · , en =


0

0
...
0

1

. Then {e1, e2, · · · , en} is called

the standard basis for Rn.

Basis for NulA

Example 2.55. Find a basis for the null space of the matrix

A =

−3 6 −1 1

1 −2 2 3

2 −4 5 8

.

Solution. [A 0] ∼

1 2 0 1 0

0 0 1 2 0

0 0 0 0 0


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Theorem 2.56. Basis for NulA can be obtained from the parametric
vector form of solutions of Ax = 0. That is, suppose that the solutions of
Ax = 0 reads

x = x1 u1 + x2 u2 + · · ·+ xk uk,

where x1, x2, · · · , xk correspond to free variables. Then, a basis for NulA
is {u1, u2, · · · , uk}.

Basis for ColA

Example 2.57. Find a basis for the column space of the matrix

B =


1 0 −3 5 0

0 1 2 −1 0

0 0 0 0 1

0 0 0 0 0

.

Solution. Observation: b3 = −3b1 + 2b2 and b4 = 5b1 − b2.

Theorem 2.58. In general, non-pivot columns are linear combinations
of pivot columns. Thus the pivot columns of a matrix A form a basis for
ColA.
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Example 2.59. Matrix A and its echelon form is given. Find a basis for
ColA and a basis for NulA.

A =

3 −6 9 0

2 −4 7 2

3 −6 6 −6

 ∼
1 −2 3 0

0 0 1 2

0 0 0 0


Solution.

Ans: BColA = {a1, a3}, BNulA = {[2, 1, 0, 0]T , [6, 0,−2, 1]T}.

True-or-False 2.60.

a. If v1, v2, · · · , vp are in Rn, then Span{v1, v2, · · · , vp} = Col [v1 v2 · · · vp].

b. The columns of an invertible n× n matrix form a basis for Rn.

c. Row operations do not affect linear dependence relations among the
columns of a matrix.

d. The column space of a matrix A is the set of solutions of Ax = b.

e. If B is an echelon form of a matrix A, then the pivot columns of B form
a basis for ColA.

Solution.
Ans: T,T,T,F,F
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Exercises 2.8

1. Let v1 =


1

−2

4

3

, v2 =


4

−7

9

7

, v3 =


5

−8

6

5

, and u =


−4

10

−7

−5

. Determine if u is in the subspace

of R4 generated by {v1,v2,v3}.
Ans: No

2. Let v1 =

−3

0

6

, v2 =

−2

2

3

, v3 =

 0

−6

3

, and p =

 1

14

−9

. Determine if p is in ColA, where

A = [v1 v2 v3].
Ans: Yes

3. Give integers p and q such that NulA is a subspace of Rp and ColA is a subspace of Rq.

A =

 3 2 1 −5

−9 −4 1 7

9 2 −5 1

 B =


1 2 3

4 5 7

−5 −1 0

2 7 11


4. Determine which sets are bases for R3. Justify each answer.

a)

 0

1

−2

,

 5

−7

4

,

6

3

5

 b)

 1

−6

−7

,

 3

−4

7

,

−2

7

5

,

 0

1

−2


Ans: a) Yes

5. Matrix A and its echelon form is given. Find a basis for ColA and a basis for NulA.

A =


1 4 8 −3 −7

−1 2 7 3 4

−2 2 9 5 5

3 6 9 −5 −2

 ∼


1 4 8 0 5

0 2 5 0 −1

0 0 0 1 4

0 0 0 0 0

 Hint : For a basis for ColA, you can just

recognize pivot columns, while you should find the solutions of Ax = 0 for NulA.

6. a) Suppose F is a 5× 5 matrix whose column space is not equal to R5. What can you
say about NulF ?

b) If R is a 6× 6 matrix and NulR is not the zero subspace, what can you say about
ColR?

c) If Q is a 4× 4 matrix and ColQ = R4, what can you say about solutions of equations
of the form Qx = b for b in R4?

Ans: b) ColR 6= R6. Why? c) It has always a unique solution
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2.9. Dimension and Rank

2.9.1. Coordinate Systems

Remark 2.61. The main reason for selecting a basis for a subspace
H (instead of merely a spanning set) is that each vector in H can be
written in only one way as a linear combination of the basis vectors.

Example 2.62. Let B = {b1, b2, · · · , bp} be a basis of H and

x = c1 b1 + c2 b2 + · · ·+ cp bp; x = d1 b1 + d2 b2 + · · ·+ dp bp, x ∈ H.

Show that c1 = d1, c2 = d2, · · · , cp = dp.
Solution. Hint : A property of a basis is that basis vectors are linearly independent

Remark 2.63. For example, if a vector x ∈ R3 is expressed as

x = x1

1

0

0

+ x2

0

1

0

+ x3

0

0

1

 = x1e1 + x2e2 + x3e3, (2.26)

then [x1, x2, x3]
T is called the coordinate vector of x.

Definition 2.64. Suppose the set B = {b1, b2, · · · , bp} is a basis for a
subspace H. For each x ∈ H, the coordinates of x relative to the ba-
sis B are the weights c1, c2, · · · , cp such that x = c1 b1 + c2 b2 + · · ·+ cp bp,
and the vector in Rp

[x]B =

c1...
cp


is called the coordinate vector of x (relative to B) or the B-
coordinate vector of x.
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Example 2.65. Let v1 =

3

6

2

, v2 =

−1

0

1

, x =

 3

12

7

, and B = {v1,v2}.

Then B is a basis for H = Span{v1,v2}, because v1 and v2 are linearly
independent. Determine if x is in H, and if it is, find the coordinate vector
of x relative to B.
Solution.

Figure 2.4: A coordinate system on a plane H ⊂ R3.

Remark 2.66. The grid on the plane in Figure 2.4 makes H “look"
like R2. The correspondence x 7→ [x]B is a one-to-one correspondence
between H and R2 that preserves linear combinations. We call such a
correspondence an isomorphism, and we say that H is isomorphic to
R2.
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2.9.2. Dimension of a Subspace

Definition 2.67. The dimension of a nonzero subspace H (dimH) is
the number of vectors in any basis for H. The dimension of zero subspace
{0} is defined to be zero.

Example 2.68.

a) dimRn = n.
b) Let H be as in Example 2.65. What is dimH?
c) G = Span{u}. What is dimG?

Solution.

Remark 2.69.

1) Dimension of ColA:

dim ColA = The number of pivot columns in A

which is called the rank of A, rankA.
2) Dimension of NulA:

dim NulA = The number of free variables in A

= The number of non-pivot columns in A

Theorem 2.70. (Rank Theorem) Let A ∈ Rm×n. Then

dim ColA+ dim NulA = rankA+ nullityA = n

= (the number of columns in A)

Here, “dim NulA” is called the nullity of A: nullityA
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Example 2.71. A matrix and its echelon form are given. Find the bases
for ColA and NulA and also state the dimensions of these subspaces.

A =


1 −2 −1 5 4

2 −1 1 5 6

−2 0 −2 1 −6

3 1 4 1 5

 ∼


1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1


Solution.

Example 2.72. Find a basis for the subspace spanned by the given vectors.
What is the dimension of the subspace?

1

−1

−2

3

,


2

−3

−1

4

,


0

−1

3

2

,


−1

4

−7

7

,


3

−7

6

−9


Solution.
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Theorem 2.73. (The Basis Theorem) Let H be a p-dimensional sub-
space of Rn. Then

a) Any linearly independent set of exactly p elements in H is automati-
cally a basis for H

b) Any set of p elements of H that spans H is automatically a basis for
H.

Theorem 2.74. (Invertible Matrix Theorem; continued from The-
orem 2.25, p.82)

Let A be an n× n square matrix. Then the following are equivalent.

m. The columns of A form a basis of Rn

n. ColA = Rn

o. dim ColA = n

p. rankA = n

q. NulA = {0}
r. dim NulA = 0

Example 2.75.

a) If the rank of a 9× 8 matrix A is 7, what is the dimension of solution
space of Ax = 0?

b) If A is a 4× 3 matrix and the mapping x 7→ Ax is one-to-one, then what
is dim NulA?

Solution.
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True-or-False 2.76.

a. Each line in Rn is a one-dimensional subspace of Rn.

b. The dimension of ColA is the number of pivot columns of A.

c. The dimensions of ColA and NulA add up to the number of columns of
A.

d. If B = {v1, v2, · · · , vp} is a basis for a subspace H of Rn, then the corre-
spondence x 7→ [x]B makes H look and act the same as Rp.
Hint : See Remark 2.66.

e. The dimension of NulA is the number of variables in the equation
Ax = 0.

Solution.

Ans: F,T,T(Rank Theorem),T,F

Exercises 2.9

1. A matrix and its echelon form is given. Find the bases for ColA and NulA, and then
state the dimensions of these subspaces.

A =


1 −3 2 −4

3 9 −1 5

2 −6 4 −3

4 12 2 7

 ∼


1 −3 2 −4

0 0 5 −7

0 0 0 5

0 0 0 0


2. Use the Rank Theorem to justify each answer, or perform construction.

(a) If the subspace of all solutions of Ax = 0 has a basis consisting of three vectors and
if A is a 5× 7 matrix, what is the rank of A?

Ans: 4

(b) What is the rank of a 4× 5 matrix whose null space is three-dimensional?
(c) If the rank of a 7× 6 matrix A is 4, what is the dimension of the solution space of

Ax = 0?
(d) Construct a 4× 3 matrix with rank 1.



CHAPTER 3
Determinants

In linear algebra, the determinant is a scalar value that can be computed
for a square matrix. Geometrically, it can be viewed as a volume scaling
factor of the linear transformation described by the matrix, x 7→ Ax.

For example, let A ∈ R2×2 and

u1 = A

[
1

0

]
, u2 = A

[
0

1

]
Then the determinant of A (in modulus) is the same as the area of the par-
allelogram generated by u1 and u2.

In this chapter, you will study the determinant and its properties.

Contents of Chapter 3
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109
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3.1. Introduction to Determinants

Definition 3.1. Let A be an n× n square matrix. Then determinant
is a scalar value denoted by detA or |A|.

1) Let A = [a] ∈ R1× 1. Then detA = a.

2) Let A =

[
a b

c d

]
∈ R2× 2. Then detA = ad− bc.

Example 3.2. LetA =

[
2 1

0 3

]
. Consider a linear transformation T : R2 → R2

defined by T (x) = Ax.

1) Find the determinant of A.

2) Determine the image of a rectangle R = [0, 2]× [0, 1] under T .

3) Find the area of the image.

4) Figure out how detA, the area of the rectangle (= 2), and the area of the
image are related.

Solution.

Ans: 3) 12

Note: The determinant can be viewed as a volume scaling factor.
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Definition 3.3. Let Aij be the submatrix of A obtained by deleting row
i and column j of A. Then the (i, j)-cofactor of A = [aij] is the scalar Cij,
given by

Cij = (−1)i+jdetAij. (3.1)

Definition 3.4. For n ≥ 2, the determinant of an n× n matrix A = [aij]
is given by the following formulas:

1. The cofactor expansion across the first row:

detA = a11C11 + a12C12 + · · ·+ a1nC1n (3.2)

2. The cofactor expansion across the row i:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin (3.3)

3. The cofactor expansion down the column j:

detA = a1jC1j + a2jC2j + · · ·+ anjCnj (3.4)

Example 3.5. Find the determinant of A =

1 5 0

2 4 −1

0 −2 0

, by expanding

across the first row and down column 3.
Solution.

Ans: −2
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Example 3.6. Compute the determinant of A =


1 −2 5 2

2 −6 −7 5

0 0 3 0

5 0 4 4

 by a

cofactor expansion.
Solution.

Note: If A is a triangular (upper or lower) matrix, then detA is the
product of entries on the main diagonal of A.

Example 3.7. Compute the determinant of A =


1 −2 5 2

0 −6 −7 5

0 0 3 0

0 0 0 4

.

Solution.
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True-or-False 3.8.

a. An n× n determinant is defined by determinants of (n − 1) × (n − 1)

submatrices.

b. The (i, j)-cofactor of a matrix A is the matrix Aij obtained by deleting
from A its i-th row and j-th column.

c. The cofactor expansion of detA down a column is equal to the cofactor
expansion along a row.

d. The determinant of a triangular matrix is the sum of the entries on the
main diagonal.

Solution.
Ans: T,F,T,F

Exercises 3.1

1. Compute the determinants in using a cofactor expansion across the first row and down
the second column.

a)

3 0 4

2 3 2

0 5 −1

 b)

2 3 −3

4 0 3

6 1 5


Ans: a) 1, b) −24

2. Compute the determinants by cofactor expansions. At each step, choose a row or column
that involves the least amount of computation.

a)


3 5 −6 4

0 −2 3 −3

0 0 1 5

0 0 0 3

 b)


4 0 −7 3 −5

0 0 2 0 0

7 3 −6 4 −8

5 0 5 2 −3

0 0 9 −1 2


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Ans: a) −18, b) 6

3. The expansion of a 3× 3 determinant can be remembered by the following device. Write
a second copy of the first two columns to the right of the matrix, and compute the deter-
minant by multiplying entries on six diagonals:

Figure 3.1

Then, add the downward diagonal products and subtract the upward products. Use this
method to compute the determinants for the matrices in Exercise 1. Warning: This
trick does not generalize in any reasonable way to 4× 4 or larger matrices.

4. Explore the effect of an elementary row operation on the determinant of a matrix. In
each case, state the row operation and describe how it affects the determinant.

a)

[
a b

c d

]
,

[
c d

a b

]
b)

[
a b

c d

]
,

[
a+ kc b+ kd

c d

]
Ans: b) Replacement does not change the determinant

5. Let A =

[
3 1

4 2

]
. Write 5A. Is det (5A) = 5detA?
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3.2. Properties of Determinants

Determinants under Elementary Row Operations

Theorem 3.9. Let A be an n× n square matrix.

a) (Replacement): If B is obtained from A by a row replacement, then
detB = detA.

A =

[
1 3

2 1

]
, B =

[
1 3

0 −5

]

b) (Interchange): If two rows of A are interchanged to form B, then
detB = −detA.

A =

[
1 3

2 1

]
, B =

[
2 1

1 3

]

c) (Scaling): If one row of A is multiplied by k (6= 0), then
detB = k · detA.

A =

[
1 3

2 1

]
, B =

[
1 3

−4 −2

]

Example 3.10. Compute detA, where A =

 1 −4 2

−1 7 0

−2 8 −9

, after applying

a couple of steps of replacement operations.
Solution.

Ans: 15
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Theorem 3.11. Invertible Matrix Theorem (p.82)
A square matrix A is invertible if and only if detA 6= 0.

Claim 3.12. Let A and B be n× n matrices.

a) detAT = detA.

A =

[
1 3

2 1

]
, AT =

[
1 2

3 1

]

b) det (AB) = detA · detB.

A =

[
1 3

2 1

]
, B =

[
1 1

4 2

]
; then AB =

[
13 7

6 4

]
.

c) If A is invertible, then detA−1 =
1

detA
. (∵ det In = 1.)

Example 3.13. Suppose the sequence 5× 5 matrices A, A1, A2, and A3 are
related by following elementary row operations:

A
R2←R2−3R1−−−−−−−→ A1

R3←(1/5)R3−−−−−−−→ A2
R4↔R5−−−−→ A3

Find detA, if A3 =


1 2 3 4 1

0 −2 1 −1 1

0 0 3 0 1

0 0 0 −1 1

0 0 0 0 1


Solution.

Ans: −30
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A Linearity Property of the Determinant Function

Note: Let A ∈ Rn×n, A = [a1 · · · aj · · · an]. Suppose that the j-th col-
umn of A is allowed to vary, and write

A = [a1 · · · aj−1 x aj+1 · · · an].

Define a transformation T from Rn to R by

T (x) = det [a1 · · · aj−1 x aj+1 · · · an]. (3.5)

Then,
T (cx) = cT (x)

T (u + v) = T (u) + T (v)
(3.6)

This (multi-) linearity property of the determinant turns out to have
many useful consequences that are studied in more advanced courses.

True-or-False 3.14.

a. If the columns of A are linearly dependent, then detA = 0.

b. det (A+B) = detA+ detB.

c. If three row interchanges are made in succession, then the new deter-
minant equals the old determinant.

d. The determinant of A is the product of the diagonal entries in A.

e. If detA is zero, then two rows or two columns are the same, or a row or
a column is zero.

Solution.

Ans: T,F,F,F,F
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Exercises 3.2

1. Find the determinant by row reduction to echelon form.
1 3 0 2

−2 −5 7 4

3 5 2 1

1 −1 2 −3


Ans: 0

2. Use determinants to find out if the matrix is invertible.
2 0 0 6

1 −7 −5 0

3 8 6 0

0 7 5 4


Ans: Invertible

3. Use determinants to decide if the set of vectors is linearly independent. 7

−4

−6

,

−8

5

7

,

 7

0

−5


Ans: linearly independent

4. Compute detB6, where B =

1 0 1

1 1 2

1 2 1

.

Ans: 64

5. Show or answer with justification.

a) Let A and P be square matrices, with P invertible. Show that det (PAP−1) = detA.
b) Suppose that A is a square matrix such that detA3 = 0. Can A can be invertible?

Ans: No

c) Let U be a square matrix such that UTU = I. Show that detU = ±1.

6. Compute AB and verify that detAB = detA · detB.

A =

[
3 0

6 1

]
, B =

[
2 0

5 4

]



CHAPTER 4
Vector Spaces

A vector space (also called a linear space) is a nonempty set of objects,
called vectors, which is closed under two operations:

• addition and
• scalar multiplication.

In this chapter, we will study basic concepts of such general vector spaces
and their subspaces.
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4.1. Vector Spaces and Subspaces

Definition 4.1. A vector space is a nonempty set V of objects, called
vectors, on which are defined two operations, called addition and
multiplication by scalars (real numbers), subject to the ten axioms
(or rules) listed below. The axioms must hold for all vectors u,v,w ∈ V
and for all scalars c and d.

1. u + v ∈ V
2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. There is a zero vector 0 ∈ V such that u + 0 = u

5. For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0

6. cu ∈ V
7. c(u + v) = cu + cv

8. (c+ d)u = cu + du

9. c(du) = (cd)u

10. 1u = u

Example 4.2. Examples of Vector Spaces:

a) Rn, n ≥ 1, are the premier examples of vector spaces.

b) Let Pn = {p(t) = a0+a1t
1+· · ·+antn}, n ≥ 1. For p(t) = a0+a1t

1+· · ·+antn

and q(t) = b0 + b1t
1 + · · ·+ bnt

n, define

(p + q)(t) = p(t) + q(t) = (a0 + b0) + (a1 + b1)t
1 + · · ·+ (an + bn)t

n

(cp)(t) = cp(t) = ca0 + ca1t
1 + · · ·+ cant

n

Then Pn is a vector space, with the usual polynomial addition and scalar
multiplication.

c) Let V = {all real-valued functions defined on a set D}. Then, V is a vec-
tor space, with the usual function addition and scalar multiplication.



4.1. Vector Spaces and Subspaces 121

Definition 4.3. A subspace of a vector space V is a subset H of V that
has three properties:

a) 0 ∈ H, where 0 is the zero vector of V

b) H is closed under vector addition: for each u,v ∈ H, u + v ∈ H

c) H is closed under scalar multiplication: for each u ∈ H and each
scalar c, cu ∈ H

Example 4.4. Examples of Subspaces:

a) H = {0}: the zero subspace

b) Let P = {all polynomials with real coefficients defined on R}. Then, P
is a subspace of the space {all real-valued functions defined on R}.

c) The vector space R2 is not a subspace of R3, because R2 6⊂ R3.

d) Let H =


st

0

 : s, t ∈ R

. Then H is a subspace of R3.

Example 4.5. Determine if the given set is a subspace of Pn for an appro-
priate value of n.{

at2 | a ∈ R
}

a) {p ∈ P3 with integer coefficients}b){
a+ t2 | a ∈ R

}
c) {p ∈ Pn | p(0) = 0}d)

Solution.

Ans: a) Yes, b) No, c) No, d) Yes
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A Subspace Spanned by a Set
Example 4.6. Let v1,v2 ∈ V , a vector space. Prove that H = Span{v1,v2}
is a subspace of V .

Solution.

a) 0 ∈ H, where 0 is the zero vector of V

b) For each u,w ∈ H, u + w ∈ H

c) For each u ∈ H and each scalar c, cu ∈ H

Theorem 4.7. If v1, v2, · · · , vp are in a vector space V , then
Span{v1, v2, · · · , vp} is a subspace of V .

Example 4.8. Let H = {(a− 3b, b− a, a, b) | a, b ∈ R}. Show that H is a
subspace of R4.
Solution.
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Self-study 4.9. Let H and K be subspaces of V . Define the sum of H and
K as

H +K = {u + v | u ∈ H, v ∈ K}.

Prove that H +K is a subspace of V .
Solution.

True-or-False 4.10.

a. A vector is an arrow in three-dimensional space.

b. A subspace is also a vector space.

c. R2 is a subspace of R3.

d. A subset H of a vector space V is a subspace of V if the following con-
ditions are satisfied: (i) the zero vector of V is in H, (ii) u, v, and u + v

are in H, and (iii) c is a scalar and cu is in H.

Solution.

Ans: F,T,F,F (In (ii), there is no statement that u and v represent all possible elements of H)
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Exercises 4.1

You may use Definition 4.3, p. 121, or Theorem 4.7, p. 122.

1. Let V be the first quadrant in the xy-plane; that is, let V =

{[
x

y

]
: x ≥ 0, y ≥ 0

}
.

a) If u and v are in V , is u + v in V ? Why?

b) Find a specific vector u in V and a specific scalar c such that cu is not in V . (This is
enough to show that V is not a vector space.)

2. Let H be the set of all vectors of the form

 s

3s

2s

.

a) Find a vector v in R3 such that H = Span{v}.
b) Why does this show that H is a subspace of R3? Ans: a) v =

1

3

2



3. Let W be the set of all vectors of the form

5b+ 2c

b

c

.

a) Find vectors u and v in R3 such that W = Span{u,v}.
b) Why does this show that W is a subspace of R3?

4. Let W be the set of all vectors of the form


s+ 3t

s− t
2s− t

4t

. Show that W is a subspace of R4.

For fixed positive integers m and n, the set Mm× n of all m× n matrices is a vector space,
under the usual operations of addition of matrices and multiplication by real scalars.

5. Determine if the set H of all matrices of the form

[
a b

0 d

]
is a subspace of M2× 2.
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4.2. Null Spaces, Column Spaces, and Linear
Transformations

Note: In applications of linear algebra, subspaces of Rn usually arise
in one of two ways:

a) as the set of all solutions to a homogeneous linear system, or
b) as the set of all linear combinations of certain vectors.

In this section, we study these two descriptions of subspaces.

• The section looks like a duplication of Section 2.8. Subspaces of Rn.
• It aims to practice to use the concept of a subspace.

The Null Space of a Matrix

Definition 4.11. The null space of an m× n matrix A, written as
NulA, is the set of all solutions of the homogeneous equation Ax = 0. In
set notation,

NulA = {x | x ∈ Rn and Ax = 0}

Example 4.12. Let A =

[
1 −3 −2

−5 9 1

]
and v =

 5

3

−2

. Determine if v

belongs to the null space of A.
Solution.

Theorem 4.13. The null space of an m× n matrix A is a subspace
of Rn. Equivalently, the set of all solutions to a system Ax = 0 of m
homogeneous linear equations in n unknowns is a subspace of Rn.

Proof.
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Example 4.14. Let H be the set of all vectors in R4, whose coordinates

a, b, c, d satisfy the equations

{
a− 2b+ 5c = d

c− a = b
. Show that H is a subspace

of R4.

Solution. Rewrite the above equations as{
a− 2b+ 5c− d = 0

−a− b+ c = 0

Then


a

b

c

d

 is the solution of

[
1 −2 5 −1

−1 −1 1 0

]
x = 0. Thus the collection of

these solutions is a subspace.

An Explicit Description of NulA

Example 4.15. Find a spanning set for the null space of the matrix

A =

−3 6 −1 1 −7

1 −2 2 3 −1

2 −4 5 8 −4



Solution. [A 0] ∼

1 −2 0 −1 3 0

0 0 1 2 −2 0

0 0 0 0 0 0

 (R.E.F)
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The Column Space of a Matrix

Definition 4.16. The column space of an m× n matrix A, written
as ColA, is the set of all linear combinations of the columns of A. If
A = [a1 a2 · · · an], then

ColA = Span{a1, a2, · · · , an} (4.1)

Theorem 4.17. The column space of an m× n matrix A is a subspace
of Rm.

Example 4.18. Find a matrix A such that W = ColA.

W =


6a− b
a+ b

−7a

 : a, b ∈ R


Solution.

Remark 4.19. The column space of an m× n matrix A is all of Rm if
and only if the equation Ax = b has a solution for each b ∈ Rm.
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The Contrast Between NulA and ColA

Remark 4.20. Let A ∈ Rm×n.

1. NulA is a subspace of Rn.

2. NulA is implicitly defined; that is, you
are given only a condition (Ax = 0).

3. It takes time to find vectors in NulA.
Row operations on [A 0] are required.

4. There is no obvious relation between
NulA and the entries in A.

5. A typical vector v in NulA has the prop-
erty that Av = 0.

6. Given a specific vector v, it is easy to
tell if v is in NulA. Just compute Av.

7. NulA = {0} ⇔ the equation Ax = 0
has only the trivial solution.

8. NulA = {0} ⇔ the linear transforma-
tion x 7→ Ax is one-to-one.

1. ColA is a subspace of Rm.

2. ColA is explicitly defined; that is, you
are told how to build vectors in ColA.

3. It is easy to find vectors in ColA. The
columns of A are displayed; others are
formed from them.

4. There is an obvious relation between
ColA and the entries in A, since each
column of A is in ColA.

5. A typical vector v in ColA has the prop-
erty that the equation Ax = v is consis-
tent.

6. Given a specific vector v, it may take
time to tell if v is in ColA. Row opera-
tions on [A v] are required.

7. ColA = Rm ⇔ the equation Ax = b
has a solution for every b ∈ Rm.

8. ColA = Rm ⇔ the linear transforma-
tion x 7→ Ax maps Rn onto Rm.
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Kernel (Null Space) and Range of a Linear Transformation

Definition 4.21. A linear transformation T from a vector space V
into a vector space W is a rule that assigns to each vector v ∈ V a unique
vector T (x) ∈ W , such that

(i) T (u + v) = T (u) + T (v) for all u,v ∈ V , and
(ii) T (cu) = cT (u) for all u ∈ V and scalar c

(4.2)

Example 4.22. Let T : V → W be a linear transformation from a vector
space V into a vector space W . Prove that the range of T is a subspace of
W .

Hint : Typical elements of the range have the form T (u) and T (v) for u,v ∈ V . See Defini-

tion 4.3, p. 121; you should check if the three conditions are satisfied.
Solution.

True-or-False 4.23.

a. The column space of A is the range of the mapping x 7→ Ax.

b. The kernel of a linear transformation is a vector space.

c. ColA is the set of all vectors that can be written as Ax for some x.
That is, ColA = {b | b = Ax, for x ∈ Rn}.

d. NulA is the kernel of the mapping x 7→ Ax.

e. ColA is the set of all solutions of Ax = b.

Solution.

Ans: T,T,T,T,F
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Exercises 4.2

1. Either show that the given set is a vector space, or find a specific example to the contrary.

(a)


ab
c

 : a+ b+ c = 2

 (b)


b− 2d

b+ 3d

d

 : b, d ∈ R


Hint : See Definition 4.3, p. 121, and Example 4.18.

2. Let A =

−8 −2 −9

6 4 8

4 0 4

 and w =

 2

1

−2

.

(a) Is w in ColA? If yes, express w as a linear combination of columns of A.

(b) Is w in NulA? Why?
Ans: yes, yes

3. Let V and W be vector spaces, and let T : V → W be a linear transformation. Given a
subspace U of V , let T (U) denote the set of all images of the form T (x), where x ∈ U .
Show that T (U) is a subspace of W .

Hint : You should check if the three conditions in Definition 4.3 are satisfied for all
elements in T (U). For example, for the second condition, let’s first select two arbitrary
elements in T (U): T (u1) and T (u2), where u1,u2 ∈ U . Then what you have to do is to
show T (u1) + T (u2) ∈ T (U). To show the underlined, you may use the assumption that
T is linear. That is, T (u1) + T (u2) = T (u1 + u2). Is the term in blue in T (U)? Why?

Advice from an old man: I know some of you may feel that the last problem is crazy. It is related
to mathematical logic and understandability. Just try to beat your brain out for it.
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5.1. Eigenvectors and Eigenvalues

Definition 5.1. Let A be an n× n matrix. An eigenvector of A is a
nonzero vector x such that Ax = λx for some scalar λ. In this case, the
scalar λ is an eigenvalue of A and x is the corresponding eigenvector.

Example 5.2. Is

[
−1

1

]
an eigenvector of

[
5 2

3 6

]
? What is the eigenvalue?

Solution.

Example 5.3. Let A =

[
1 6

5 2

]
, u =

[
6

−5

]
, and v =

[
3

−2

]
.

a) Are u and v eigenvectors of A?

b) Show that 7 is an eigenvalue of matrix A, and find the corresponding
eigenvectors.

Solution. Hint : b) Start with Ax = 7x.
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Definition 5.4. The set of all solutions of (A − λI)x = 0 is called the
eigenspace of A corresponding to eigenvalue λ.

Remark 5.5. Let λ be an eigenvalue of A. Then

a) Eigenspace is a subspace of Rn and the eigenspace of A corresponding
to λ is Nul (A− λI).

b) The homogeneous equation (A − λI)x = 0 has at least one free vari-
able.

Example 5.6. Find a basis for the eigenspace and hence the dimension of

the eigenspace of A =

4 0 −1

3 0 3

2 −2 5

, corresponding to the eigenvalue λ = 3.

Solution.

Example 5.7. Find a basis for the eigenspace and hence the dimension of

the eigenspace of A =

4 −1 6

2 1 6

2 −1 8

, corresponding to the eigenvalue λ = 2.

Solution.
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Theorem 5.8. The eigenvalues of a triangular matrix are the entries
on its main diagonal.

Example 5.9. Let A =

3 6 −8

0 0 6

0 0 2

 and B =

 4 0 0

−2 1 0

5 3 4

. What are

eigenvalues of A and B?
Solution.

Remark 5.10. Zero (0) is an eigenvalue of A ⇔ A is not invertible.

Ax = 0x = 0. (5.1)

Thus the eigenvector x 6= 0 is a nontrivial solution of Ax = 0.
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Theorem 5.11. If v1, v2, · · · , vr are eigenvectors that correspond
to distinct eigenvalues λ1, λ2, · · · , λr of n× n matrix A, then the set
{v1, v2, · · · , vr} is linearly independent.

Proof.

• Assume that {v1, v2, · · · , vr} is linearly dependent.

• One of the vectors in the set is a linear combination of the preceding
vectors.

• {v1, v2, · · · , vp} is linearly independent; vp+1 is a linear combination of
the preceding vectors.

• Then, there exist scalars c1, c2, · · · , cp such that

c1 v1 + c2 v2 + · · ·+ cp vp = vp+1 (5.2)

• Multiplying both sides of (5.2) by A, we obtain

c1Av1 + c2Av2 + · · ·+ cpAvp = Avp+1

and therefore, using the fact Avk = λkvk:

c1λ1v1 + c2λ2v2 + · · ·+ cpλpvp = λp+1vp+1 (5.3)

• Multiplying both sides of (5.2) by λp+1 and subtracting the result from
(5.3), we have

c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp = 0. (5.4)

• Since {v1, v2, · · · , vp} is linearly independent,

c1(λ1 − λp+1) = 0, c2(λ2 − λp+1) = 0, · · · , cp(λp − λp+1) = 0.

• Since λ1, λ2, · · · , λr are distinct,

c1 = c2 = · · · = cp = 0 ⇒ vp+1 = 0,

which is a contradiction.
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Example 5.12. Show that ifA2 is the zero matrix, then the only eigenvalue
of A is 0.
Solution. Hint : You may start with Ax = λx, x 6= 0.

True-or-False 5.13.

a. If Ax = λx for some vector x, then λ is an eigenvalue of A.

b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.

c. A number c is an eigenvalue ofA if and only if the equation (A−cI)x = 0

has a nontrivial solution.

d. If v1 and v2 are linearly independent eigenvectors, then they corre-
spond to distinct eigenvalues.

e. An eigenspace of A is a null space of a certain matrix.

Solution.

Ans: F,T,T,F,T
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Exercises 5.1

1. Is λ = −2 an eigenvalue of

[
7 3

3 −1

]
? Why or why not?

Ans: Yes

2. Is

[
1

4

]
an eigenvector of

[
−3 1

−3 8

]
? If so, find the eigenvalue.

3. Find a basis for the eigenspace corresponding to each listed eigenvalue.

(a) A =

1 0 −1
1 −3 0

4 −13 1

, λ = −2
(b) B =


3 0 2 0

1 3 1 0

0 1 1 0

0 0 0 4

, λ = 4

Ans: (a)

1

1

3

 (b)


2

3

1

0

 and another vector

4. Find the eigenvalues of the matrix

0 0 0

0 2 5

0 0 −1

.

5. For

1 2 3

1 2 3

1 2 3

, find one eigenvalue, with no calculation. Justify your answer.

Ans: 0. Why?

6. Prove that λ is an eigenvalue of A if and only if λ is an eigenvalue of AT . (A and AT have
exactly the same eigenvalues, which is frequently used in engineering applications of
linear algebra.)

Hint : 1 λ is an eigenvalue of A
⇔ 2 (A− λI)x = 0, for some x 6= 0
⇔ 3 (A− λI) is not invertible.

Now, try to use the Invertible Matrix Theorem (Theorem 2.25) to finish your proof. Note
that (A− λI)T = (AT − λI).
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5.2. The Characteristic Equation and Similar-
ity Transformation

Recall: Let A be an n× n matrix. An eigenvalue λ of A and its corre-
sponding eigenvector x are defined to satisfy

Ax = λx, x 6= 0.

Thus (A− λI) is not invertible and therefore det (A− λI) = 0.

Definition 5.14. The scalar equation det (A− λI) = 0 is called the
characteristic equation of A; the polynomial p(λ) = det (A− λI) is
called the characteristic polynomial of A.

The solutions of det (A− λI) = 0 are the eigenvalues of A.

Example 5.15. Find the characteristic polynomial and all eigenvalues of

A =

[
8 2

3 3

]
.

Solution.

Example 5.16. Find the characteristic polynomial and all eigenvalues of

A =

1 1 0

6 0 5

0 0 2


Solution.
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Theorem 5.17. (Invertible Matrix Theorem; continued from The-
orem 2.25, p.82, and Theorem 2.74, p.107)

Let A be n× n square matrix. Then the following are equivalent.

s. The number 0 is not an eigenvalue of A.
t. detA 6= 0

Example 5.18. Find the characteristic equation and all eigenvalues of

A =


5 −2 6 −1

0 3 −8 0

0 0 5 4

0 0 0 1

.

Solution.

Theorem 5.19. The eigenvalues of a triangular matrix are the entries
on its main diagonal.

Definition 5.20. The algebraic multiplicity (or, multiplicity) of an
eigenvalue is its multiplicity as a root of the characteristic equation.
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Remark 5.21. Let A be an n× n matrix. Then the characteristic equa-
tion of A is of the form

p(λ) = det (A− λI) = (−1)n (λn + cn−1λ
n−1 + · · ·+ c1λ+ c0)

= (−1)n Πn
i=1(λ− λi),

(5.5)

where some of eigenvalues λi can be complex-valued numbers. Thus

detA = p(0) = (−1)n Πn
i=1(0− λi) = Πn

i=1λi. (5.6)

That is, detA is the product of all eigenvalues of A.

Similarity

Definition 5.22. Let A and B be n× n matrices. Then, A is similar to
B, if there is an invertible matrix P such that

A = PBP−1, or equivalently, P−1AP = B.

Writing Q = P−1, we have B = QAQ−1. So B is also similar to A, and we
say simply that A and B are similar. The map A 7→ P−1AP is called a
similarity transformation.

The next theorem illustrates one use of the characteristic polynomial, and
it provides the foundation for the computation of eigenvalues.

Theorem 5.23. If n× n matrices A and B are similar, then they
have the same characteristic polynomial and hence the same eigenvalues
(with the same multiplicities).

Proof. B = P−1AP . Then,

B − λI = P−1AP − λI
= P−1AP − λP−1P
= P−1(A− λI)P,

from which we conclude
det (B − λI) = det (P−1) det (A− λI) det (P ) = det (A− λI).
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True-or-False 5.24.

a. The determinant of A is the product of the diagonal entries in A.

b. An elementary row operation on A does not change the determinant.

c. (detA)(detB) = detAB

d. If λ + 5 is a factor of the characteristic polynomial of A, then 5 is an
eigenvalue of A.

e. The multiplicity of a root r of the characteristic equation of A is called
the algebraic multiplicity of r as an eigenvalue of A.

Solution.

Ans: F,F,T,F,T

Exercises 5.2

1. Find the characteristic polynomial and the eigenvalues of

[
5 −3

−4 3

]
.

Ans: λ = 4±
√

13

2. Find the characteristic polynomial of matrices. [Note. Finding the characteristic poly-
nomial of a 3× 3 matrix is not easy to do with just row operations, because the variable
is involved.]

(a)

0 3 1

3 0 2

1 2 0

 (b)

−1 0 1

−3 4 1

0 0 2


Ans: (b) −λ3 + 5λ2 − 2λ− 8 = −(λ+ 1)(λ− 2)(λ− 4)

3. M Report the matrices and your conclusions.

(a) Construct a random integer-valued 4× 4 matrix A, and verify that A and AT have
the same characteristic polynomial (the same eigenvalues with the same multiplic-
ities). Do A and AT have the same eigenvectors?

(b) Make the same analysis of a 5× 5 matrix.

Note. Figure out by yourself how to generate random integer-valued matrices, how to
make its transpose, and how to get eigenvalues and eigenvectors.
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5.3. Diagonalization

5.3.1. The Diagonalization Theorem

Definition 5.25. An n× n matrix A is said to be diagonalizable if
there exists an invertible matrix P and a diagonal matrix D such that

A = PDP−1 (or P−1AP = D) (5.7)

Remark 5.26. Let A be diagonalizable, i.e., A = PDP−1. Then

A2 = (PDP−1)(PDP−1) = PD2P−1

Ak = PDkP−1

A−1 = PD−1P−1 (when A is invertible)
detA = detD

(5.8)

Diagonalization enables us to compute Ak and detA quickly.

Example 5.27. Let A =

[
7 2

−4 1

]
. Find a formula for Ak, given that

A = PDP−1, where P =

[
1 1

−1 −2

]
and D =

[
5 0

0 3

]
.

Solution.

Ans: Ak =

[
2 · 5k − 3k 5k − 3k

2 · 3k − 2 · 5k 2 · 3k − 5k

]
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Theorem 5.28. (The Diagonalization Theorem)

1. An n× n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors v1, v2, · · · , vn.

2. In fact, A = PDP−1 if and only if columns of P are n linearly inde-
pendent eigenvectors of A. In this case, the diagonal entries of D are
the corresponding eigenvalues of A. That is,

P = [v1 v2 · · · vn],

D = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

, (5.9)

where Avk = λkvk, k = 1, 2, · · · , n.

The Diagonalization Theorem can be proved using the following remark.

Remark 5.29. AP = PD with D Diagonal
Let P = [v1 v2 · · · vn] and D = diag(λ1, λ2, · · · , λn) be arbitrary n× n
matrices. Then,

AP = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn], (5.10)

while

PD = [v1 v2 · · · vn]


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

 = [λ1v1 λ2v2 · · · λnvn]. (5.11)

If AP = PD with D diagonal, then the nonzero columns of P are
eigenvectors of A.
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Example 5.30. Diagonalize the following matrix, if possible.

A =

 1 3 3

−3 −5 −3

3 3 1


Solution. For the computation of det (A− λI), apply R3 ← R3 +R2 to A− λI.

1. Find the eigenvalues of A.
2. Find three linearly independent eigenvectors of A.
3. Construct P from the vectors in step 2.
4. Construct D from the corresponding eigenvalues.

Check: AP = PD?

Ans: P =

 1 −1 −1

−1 1 0

1 0 1

 and D = diag(1,−2,−2).
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Note: A matrix is not always diagonalizable.

Example 5.31. Diagonalize the following matrix, if possible.

B =

 2 4 3

−4 −6 −3

3 3 1

,
for which det (B − λI) = −(λ− 1)(λ+ 2)2.
Solution.
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5.3.2. Diagonalizable Matrices

Example 5.32. Diagonalize the following matrix, if possible.

A =


3 0 0 1

0 2 0 0

0 0 2 0

1 0 0 3

.
Solution.

Ans: p(λ) = (λ− 2)3(λ− 4). P =


0 0 −1 1

1 0 0 0

0 1 0 0

0 0 1 1

 and D = diag(2, 2, 2, 4).
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Theorem 5.33. An n× n matrix with n distinct eigenvalues is diago-
nalizable.

Example 5.34. Determine if the following matrix is diagonalizable.

A =

5 −8 1

0 0 7

0 0 −2


Solution.

Matrices Whose Eigenvalues Are Not Distinct

Theorem 5.35. Let A be an n× n matrix whose distinct eigenvalues
are λ1, λ2, · · · , λp. Let EA(λk) be the eigenspace for λk.

1. dimEA(λk) ≤ (the multiplicity of the eigenvalue λk), for 1 ≤ k ≤ p

2. The matrix A is diagonalizable
⇔ the sum of the dimensions of the eigenspaces equals n
⇔ dimEA(λk) = the multiplicity of λk, for each 1 ≤ k ≤ p

(and the characteristic polynomial factors completely into linear factors)

3. If A is diagonalizable and Bk is a basis for EA(λk), then the total
collection of vectors in the sets {B1, B2, · · · , Bp} forms an eigenvector
basis for Rn.
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Example 5.36. Diagonalize the following matrix, if possible.

A =


5 0 0 0

0 5 0 0

1 4 −3 0

−1 −2 0 −3


Solution.
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True-or-False 5.37.

a. A is diagonalizable if A = PDP−1, for some matrix D and some invert-
ible matrix P .

b. If Rn has a basis of eigenvectors of A, then A is diagonalizable.

c. If A is diagonalizable, then A is invertible.

d. If A is invertible, then A is diagonalizable.

e. If AP = PD, with D diagonal, then the nonzero columns of P must be
eigenvectors of A.

Solution.

Ans: F,T,F,F,T

Exercises 5.3

1. The matrix A is factored in the form PDP−1. Find the eigenvalues of A and a basis for
each eigenspace.

A =

2 2 1

1 3 1

1 2 2

 =

1 1 2

1 0 −1

1 −1 0


5 0 0

0 1 0

0 0 1


1/4 1/2 1/4

1/4 1/2 −3/4

1/4 −1/2 1/4


2. Diagonalize the matrices, if possible.

(a)

 2 2 −1

1 3 −1

−1 −2 2

 (b)

 7 4 16

2 5 8

−2 −2 −5

 (c)

4 0 0

1 4 0

0 0 5


Hint : Use (a) λ = 5, 1. (b) λ = 3, 1. (c) Not diagonalizable. Why?

3. A is a 3× 3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A
diagonalizable? Why?

4. Construct and verify.
(a) A nonzero 2× 2 matrix that is invertible but not diagonalizable.
(b) A nondiagonal 2× 2 matrix that is diagonalizable but not invertible.
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5.5. Complex Eigenvalues

Definition 5.38. LetA be an n× nmatrix with real entries. A complex
eigenvalue λ is a complex-valued scalar such that

Ax = λx, where x 6= 0.

As usual, we determine λ by solving the characteristic equation

det (A− λI) = 0.

Example 5.39. Let A =

[
0 −1

1 0

]
and consider the linear transformation

x 7→ Ax, x ∈ R2.

Then

a) It rotates the plane counterclockwise through a quarter-turn.
b) The action of A is periodic, since after four quarter-turns, a vector is

back where it started.
c) Obviously, no nonzero vector is mapped into a multiple of itself, so
A has no eigenvectors in R2 and hence no real eigenvalues.

Find the eigenvalues of A, and find a basis for each eigenspace.
Solution.
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Eigenvalues and Eigenvectors of a Real Matrix That Acts on Cn

Remark 5.40. Let A be an n× n matrix whose entries are real. Then

Ax = Ax = Ax.

Thus, if λ is an eigenvalue of A, i.e., Ax = λx, then

Ax = Ax = λx = λx.

That is,
Ax = λx ⇔ Ax = λx (5.12)

If λ is an eigenvalue of A with corresponding eigenvector x, then the
complex conjugate of λ, λ, is also an eigenvalue with eigenvector x.

Example 5.41. Let A =

[
1 5

−2 3

]
.

(a) Find all eigenvalues and the corresponding eigenvectors for A.

(b) Let (λ,v), with λ = a − bi, be an eigen-pair. Let P = [Rev Imv] and

C =

[
a −b
b a

]
. Show that AP = PC. (This implies that A = PCP−1.)

Solution.

Ans: (a) λ = 2± 3i.
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Theorem 5.42. (Factorization): Let A be 2× 2 real matrix with com-
plex eigenvalue λ = a − bi (b 6= 0) and an associated eigenvector v. If

P = [Rev Imv] and C =

[
a −b
b a

]
, then

A = PCP−1. (5.13)

Example 5.43. Find eigenvalues of C =

[
a −b
b a

]
.

Solution.

Example 5.44. Find all eigenvalues and the corresponding eigenvectors
for

A =

[
3 −3

1 1

]
Also find an invertible matrix P and a matrix C such that A = PCP−1.
Solution.
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Exercises 5.5

1. Let each matrix act on C2. Find the eigenvalues and a basis for each eigenspace in C2.

(a)

[
1 −2

1 3

]
(b)

[
1 5

−2 3

]

Ans: (a) An eigen-pair: λ = 2 + i,

[
−1 + i

1

]

2. Let A =

[
5 −2

1 3

]
. Find an invertible matrix P and a matrix C of the form

[
a −b
b a

]
such

that A = PCP−1.

Ans: P =

[
1 −1

1 0

]
, C =

[
4 −1

1 4

]
.

3. Let A be an n× n real matrix with the property that AT = A. Let x be any vector in Cn,
and let q = xTAx. The equalities below show that q is a real number by verifying that
q = q. Give a reason for each step.

q = xTAx =
(a)

xTAx =
(b)

xTAx =
(c)

(xTAx)T =
(d)

xTATx =
(e)

q
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5.7. Applications to Differential Equations

Recall: For solving the first-order differential equation:

dx

dt
= a x, (5.14)

we rewrite it as
dx

x
= a dt. (5.15)

By integrating both sides, we have

ln |x| = a t+K.

Thus, for x = x(t),

x = ±ea t+K = ±eKeat = C · eat. (5.16)

Example 5.45. Consider the first-order initial-value problem

dx

dt
= 5x, x(0) = 2. (5.17)

(a) Find the solution x(t).

(b) Check if our solution satisfies both the differential equation and the
initial condition.

Solution.
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5.7.1. Dynamical System: The System of First-Order Dif-
ferential Equations

Consider a system of first-order differential equations:
x′1 = a11x1 + a12x2 + · · ·+ a1nxn

x′2 = a21x1 + a22x2 + · · ·+ a2nxn
...

x′n = an1x1 + an2x2 + · · ·+ annxn

(5.18)

where x1, x2, · · · , xn are functions of t and aij ’s are constants.
Then the system can be written as

x′(t) = Ax(t), (5.19)

where

x(t) =

x1(t)...
xn(t)

, x′(t) =

x
′
1(t)
...

x′n(t)

, and A =

a11 · · · a1n... ...
an1 · · · ann

.
How to solve (5.19): x′(t) = Ax(t) ?

Observation 5.46. Let (λ,v) be an eigen-pair of A, i.e., Av = λv. Then,
for an arbitrary constant c,

x(t) = cveλt (5.20)

is a solution of (5.19).

Proof. Let’s check it:

x′(t) = cv(eλt)′ = cλveλt

Ax(t) = Acveλt = cλveλt,
(5.21)

which completes the proof.
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Example 5.47. Solve the initial-value problem:

x′(t) =

[
−4 −2

3 1

]
x(t), x(0) =

[
−2

4

]
. (5.22)

Solution. The two eigen-pairs are (λi,vi), i = 1, 2. Then the general solu-
tion is x = c1x1 + c2x2 = c1v1e

λ1t + c2v2e
λ2t.

Ans: x(t) = −2

[
2

−3

]
e−t + 2

[
1

−1

]
e−2t

Figure 5.1: Trajectories for the dynamical
system (5.22).
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5.7.2. Trajectories for the Dynamical Systems: Attrac-
tors, Repellers, and Saddle Points

Summary 5.48. For a dynamical system

x′(t) = Ax(t), A ∈ R2×2, (5.23)

let (λi,vi), i = 1, 2, be eigen-pairs of A. Then the general solution of (5.23)
reads

x(t) = c1v1e
λ1t + c2v2e

λ2t, (5.24)

for arbitrary scalars c1, c2 ∈ R.

Definition 5.49. Two Distinct Real Eigenvalues

1. If the eigenvalues of A are both negative, the origin is called an
attractor or sink, since all trajectories (solutions x(t)) are drawn to
the origin.

• For the solution in the last example, the direction of greatest
attraction is along the trajectory of the eigenfunction x2 (along
the line through 0 and v2), corresponding to the more negative
eigenvalue λ = −2.

2. If the eigenvalues of A are both positive, the origin is called a re-
peller or source, since all trajectories (solutions x(t)) are traversed
away from the origin.

3. If A has both positive and negative eigenvalues, the origin is called
saddle point of the dynamical system.

The larger the eigenvalue is in modulus, the greater attraction/repulsion.
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Example 5.50. Solve the initial-value problem:

x′(t) =

[
2 3

−1 −2

]
x(t), x(0) =

[
3

2

]
. (5.25)

What are the direction of greatest attraction and the direction of greatest
repulsion?
Solution.

Figure 5.2: Trajectories for the dynamical
system (5.25).

Ans: x(t) = −5

2

[
−3

1

]
et +

9

2

[
−1

1

]
e−t. The direction of greatest attraction =

[
−1

1

]
.
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Summary 5.51. For the dynamical system x′(t) = Ax(t), A ∈ R2× 2, let
(λ1,v1) and (λ2,v2) be eigen-pairs of A.

• Case (i): If λ1 and λ2 are real and distinct, then
x = c1v1e

λ1t + c2v2e
λ2t. (5.26)

• Case (ii): If A has a double eigenvalue λ (with v), then you should
find a second generalized eigenvector by solving, e.g.,

(A− λI)w = v. (5.27)

(The above can be derived from a guess: x = tveλt + weλt.) Then the
general solution becomes [2]

x(t) = c1 ve
λt + c2 (tv + w)eλt (5.28)

(w is a simple shift vector, which may not be unique.)
• Case (iii): If λ = a + bi (b 6= 0) and λ are complex eigenvalues with

eigenvectors v and v, then
x = c1ve

λt + c2ve
λt, (5.29)

from which two linearly independent real-valued solutions must be
extracted.

Note: Let λ = a+ bi and v = Rev + i Imv. Then

veλt = (Rev + i Imv) · eat(cos bt+ i sin bt)

= [(Rev) cos bt− (Imv) sin bt]eat

+i [(Rev) sin bt+ (Imv) cos bt]eat.

Let
y1(t) = [(Rev) cos bt− (Imv) sin bt]eat

y2(t) = [(Rev) sin bt+ (Imv) cos bt]eat

Then they are linearly independent and satisfy the dynamical system.
Thus, the real-valued general solution of the dynamical system reads

x(t) = C1y1(t) + C2y2(t). (5.30)



160 Chapter 5. Eigenvalues and Eigenvectors

Example 5.52. Construct the general solution of x′(t) = Ax(t) when

A =

[
−3 2

−1 −1

]
Solution.

Figure 5.3: Trajectories for the dynamical
system.

Ans: (complex solution) c1

[
1− i

1

]
e(−2+i)t + c2

[
1 + i

1

]
e(−2−i)t

Ans: (real solution) c1

[
cos t+ sin t

cos t

]
e−2t + c2

[
sin t− cos t

sin t

]
e−2t
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Exercises 5.7

1. (i) Solve the initial-value problem x′ = Ax with x(0) = (3, 2). (ii) Classify the nature of
the origin as an attractor, repeller, or saddle point of the dynamical system. (iii) Find
the directions of greatest attraction and/or repulsion. (iv) When the origin is a saddle
point, sketch typical trajectories.

(a) A =

[
−2 −5

1 4

]
(b) A =

[
7 −1

3 3

]
.

Ans: (a) The origin is a saddle point.

The direction of G.A. =

[
−5
1

]
. The direction of G.R. =

[
−1
1

]
.

Ans: (b) The origin is a repeller. The direction of G.R. =

[
1

1

]
.

2. Use the strategies in (5.27) and (5.28) to solve

x′ =

[
7 1

−4 3

]
x, x(0) =

[
2

−5

]
.

Ans: x(t) = 2

[
1

−2

]
e5t −

(
t

[
1

−2

]
+

[
0

1

])
e5t
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5.8. Iterative Estimates for Eigenvalues

5.8.1. The Power Method

The power method is an iterative algorithm:

Given a square matrix A ∈ Rn×n, the algorithm finds a number λ, which
is the largest eigenvalue of A (in modulus), and its corresponding
eigenvector v.

Assumption. To apply the power method, we assume that A ∈ Rn×n has

• n linearly independent eigenvectors {v1, v2, · · · , vn}, and
• exactly one eigenvalue that is largest in magnitude, λ1:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (5.31)

The power method approximates the largest eigenvalue λ1 and its asso-
ciated eigenvector v1.

Derivation of Power Iteration

• Since eigenvectors {v1, v2, · · · , vn} are linearly independent, any vector
x ∈ Rn can be expressed as

x =
n∑
j=1

βjvj, (5.32)

for some constants {β1, β2, · · · , βn}.

• Multiplying both sides of (5.32) by A and A2 gives

Ax = A
( n∑
j=1

βjvj

)
=

n∑
j=1

βjAvj =
n∑
j=1

βjλjvj,

A2x = A
( n∑
j=1

βjλjvj

)
=

n∑
j=1

βjλ
2
jvj.

(5.33)
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• In general,

Akx =
n∑
j=1

βjλ
k
jvj, k = 1, 2, · · · , (5.34)

which gives

Akx = λk1 ·
n∑

j=1

βj

(λj
λ1

)k
vj = λk1 ·

[
β1

(λ1
λ1

)k
v1 + β2

(λ2
λ1

)k
v2 + · · ·+ βn

(λn
λ1

)k
vn

]
. (5.35)

• For j = 2, 3, · · · , n, since |λj/λ1| < 1, we have lim
k→∞
|λj/λ1|k = 0, and

lim
k→∞

Akx = lim
k→∞

λk1 β1v1. (5.36)

Remark 5.53. The sequence in (5.36) converges to 0 if |λ1| < 1 and
diverges if |λ1| > 1, provided that β1 6= 0.

• The entries of Akx will grow with k if |λ1| > 1 and will go to 0 if |λ1| < 1.
• In either case, it is hard to decide the largest eigenvalue λ1 and its

associated eigenvector v1.
• To take care of that possibility, we scale Akx in an appropriate

manner to ensure that the limit in (5.36) is finite and nonzero.

Algorithm 5.54. (The Power Iteration) Given x 6= 0:

initialization : x0 = x/||x||∞
for k = 1, 2, · · ·

yk = Axk−1; µk = ||yk||∞
xk = yk/µk

end for

(5.37)

Claim 5.55. Let {xk, µk} be a sequence produced by the power method.
Then,

xk → v1, µk → |λ1|, as k →∞. (5.38)

More precisely, the power method converges as

µk = |λ1|+O(|λ2/λ1|k). (5.39)
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Example 5.56. The matrix A =

−4 1 −1

1 −3 2

−1 2 −3

 has eigenvalues and eigen-

vectors as follows

eig(A) =

−6

−3

−1

,
 1 −2 0

−1 −1 1

1 1 1


Verify that the sequence produced by the power method converges to the
largest eigenvalue and its associated eigenvector.

Solution.
power_iteration.m

1 A = [-4 1 -1; 1 -3 2; -1 2 -3];
2 %[V,D] = eig(A)
3

4 fmt = ['k=%2d: x = [',repmat('%.5f, ',1,numel(x)-1),'%.5f], ',...
5 'mu=%.5f (error = %.5f)\n'];
6 x = [1 0 0]';
7 for k=1:10
8 y = A*x;
9 [~,ind] = max(abs(y)); mu = y(ind);

10 x =y/mu;
11 fprintf(fmt,k,x,mu,abs(-6-mu))
12 end

Output
1 k= 1: x = [1.00000, -0.25000, 0.25000], mu=-4.00000 (error = 2.00000)
2 k= 2: x = [1.00000, -0.50000, 0.50000], mu=-4.50000 (error = 1.50000)
3 k= 3: x = [1.00000, -0.70000, 0.70000], mu=-5.00000 (error = 1.00000)
4 k= 4: x = [1.00000, -0.83333, 0.83333], mu=-5.40000 (error = 0.60000)
5 k= 5: x = [1.00000, -0.91176, 0.91176], mu=-5.66667 (error = 0.33333)
6 k= 6: x = [1.00000, -0.95455, 0.95455], mu=-5.82353 (error = 0.17647)
7 k= 7: x = [1.00000, -0.97692, 0.97692], mu=-5.90909 (error = 0.09091)
8 k= 8: x = [1.00000, -0.98837, 0.98837], mu=-5.95385 (error = 0.04615)
9 k= 9: x = [1.00000, -0.99416, 0.99416], mu=-5.97674 (error = 0.02326)

10 k=10: x = [1.00000, -0.99708, 0.99708], mu=-5.98833 (error = 0.01167)

Notice that | − 6− µk| ≈
1

2
| − 6− µk−1|, for which |λ2/λ1| =

1

2
.
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5.8.2. Inverse Power Method

Some applications require to find an eigenvalue of the matrix A, near a
prescribed value q. The inverse power method is a variant of the Power
method to solve such a problem.

• We begin with the eigenvalues and eigenvectors of (A− qI)−1. Let

Avi = λivi, i = 1, 2, · · · , n. (5.40)

• Then it is easy to see that

(A− qI)vi = (λi − q)vi. (5.41)

Thus, we obtain
(A− qI)−1vi =

1

λi − q
vi. (5.42)

• That is, when q 6∈ {λ1, λ2, · · · , λn}, the eigenvalues of (A− qI)−1 are

1

λ1 − q
,

1

λ2 − q
, · · · , 1

λn − q
, (5.43)

with the same eigenvectors {v1, v2, · · · , vn} of A.

Algorithm 5.57. (Inverse Power Method) Applying the power
method to (A− qI)−1 gives the inverse power method. Given x 6= 0:

set : x0 = x/||x||∞
for k = 1, 2, · · ·

yk = (A− qI)−1xk−1; µk = ||yk||∞
xk = yk/µk

λk = 1/µk + q

end for

(5.44)
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Example 5.58. The matrix A is as in Example 5.56: A =

−4 1 −1

1 −3 2

−1 2 −3

.

Find the the eigenvalue of A nearest to q = −5/2, using the inverse power
method.

Solution.
inverse_power.m

1 A = [-4 1 -1; 1 -3 2; -1 2 -3];
2 %[V,D] = eig(A)
3

4 fmt = ['k=%2d: x = [',repmat('%.5f, ',1,numel(x)-1),'%.5f], ',...
5 'lambda=%.7f (error = %.7f)\n'];
6 q = -5/2; x = [1 0 0]';
7 B = inv(A-q*eye(3));
8 for k=1:10
9 y = B*x;

10 [~,ind] = max(abs(y)); mu = y(ind);
11 x =y/mu;
12 lambda = 1/mu + q;
13 fprintf(fmt,k,x,lambda,abs(-3-lambda))
14 end

Output
1 k= 1: x = [1.00000, 0.40000, -0.40000], lambda=-3.2000000 (error = 0.2000000)
2 k= 2: x = [1.00000, 0.48485, -0.48485], lambda=-3.0303030 (error = 0.0303030)
3 k= 3: x = [1.00000, 0.49782, -0.49782], lambda=-3.0043668 (error = 0.0043668)
4 k= 4: x = [1.00000, 0.49969, -0.49969], lambda=-3.0006246 (error = 0.0006246)
5 k= 5: x = [1.00000, 0.49996, -0.49996], lambda=-3.0000892 (error = 0.0000892)
6 k= 6: x = [1.00000, 0.49999, -0.49999], lambda=-3.0000127 (error = 0.0000127)
7 k= 7: x = [1.00000, 0.50000, -0.50000], lambda=-3.0000018 (error = 0.0000018)
8 k= 8: x = [1.00000, 0.50000, -0.50000], lambda=-3.0000003 (error = 0.0000003)
9 k= 9: x = [1.00000, 0.50000, -0.50000], lambda=-3.0000000 (error = 0.0000000)

10 k=10: x = [1.00000, 0.50000, -0.50000], lambda=-3.0000000 (error = 0.0000000)

Note: Eigenvalues of (A− qI)−1 are {−2/7, −2, 2/3}.

• The initial vector: x0 = [1, 0, 0]T =
1

3
(v1 − v2); see Example 5.56.

• Thus, each iteration must reduce the error by a factor of 7.
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Exercises 5.8

1. M The matrix in Example 5.58 has eigenvalues {−6,−3,−1}. We may try to find the
eigenvalue of A nearest to q = −3.1.

(a) Estimate (mathematically) the convergence speed of the inverse power method.
(b) Verify it by implementing the inverse power method, with x0 = [0, 1, 0]T .

2. M Let A =


2 −1 0 0

−1 2 0 −1

0 0 4 −2

0 −1 −2 4

. Use indicated methods to approximate eigenvalues and

their associated eigenvectors of A within to 10−12 accuracy.

(a) The power method, the largest eigenvalue.
(b) The inverse power method, an eigenvalue near q = 3.
(c) The inverse power method, the smallest eigenvalue.
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5.9. Applications to Markov Chains

Theory
• Markov chains are useful tools in some probabilistic models.
• The basic idea is the following:

Suppose that you are watching some collection of objects that
are changing through time.

• Assumptions (on states & changes):

– The total number of objects is not changing, but their states
(position, colour, disposition, etc) are changing.

– The proportion of changing states is constant and these
changes occur at discrete times, one after the next.

• Then we are in a good position to model changes by a Markov chain.

Example 5.59. Consider a three storey aviary at a local zoo which
houses 300 small birds.

• The aviary has three levels.

• The birds spend their day, flying from one level to another.

Our problem is to determine what the probability is of a given bird being at
a given level of the aviary at a given time.

Continued on the next page⇒
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Data
• Observe a vector

p =

p1p2
p3

, (5.45)

where pi is the proportion (probability) of birds on the i-th level.
Note: p1 + p2 + p3 = 1.

• After 10 minutes, we have a new distribution of the birds

p′ =

p
′
1

p′2

p′3

. (5.46)

Model
• We assume that the change from p to p′ is given by a linear operator

on R3. In other words, there is a matrix T ∈ R3×3 such that

p′ = Tp. (5.47)

The matrix T is called the transition matrix for the Markov chain.
• Another 10 minutes later, we observe another distribution

p′′ = Tp′. (5.48)

Note: The same matrix T is used in (5.47) and (5.48), because we assume
that the probability of a bird moving to another level is indepen-
dent of time.

• In other words, the probability of a bird moving to a particular level
depends only on the present state of the bird, and not on any past
states.

• This type of model is known as a finite Markov chain.
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5.9.1. Probability Vector and Stochastic Matrix

Definition 5.60. Probability Vector and Stochastic Matrix

• A vector p =

p1...
pn

with nonnegative entries that add up to 1 is called

a probability vector.
• A (left) stochastic matrix is a square matrix whose columns are

probability vectors.

A stochastic matrix is also called a probability matrix, transition ma-
trix, substitution matrix, or Markov matrix.

Lemma 5.61. Let T be a stochastic matrix. If p is a probability vector,
then so is q = Tp.

Proof. Let v1,v2, · · · ,vn be the columns of T . Then

q = Tp = p1v1 + p2v2 + · · · pnvn.

Clearly q has nonnegative entries; their sum reads

sum(q) = sum(p1v1 + p2v2 + · · · pnvn) = p1 + p2 + · · ·+ pn = 1.

Definition 5.62. Markov Chain
In general, a finite Markov chain is a sequence of probability vectors
x0,x1,x2, · · · , together with a stochastic matrix T , such that

x1 = Tx0, x2 = Tx1, x3 = Tx2, · · · (5.49)

We can rewrite the above conditions as a recurrence relation

xk+1 = Txk, k = 0, 1, 2, · · · (5.50)

The vector xk is often called a state vector.
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Figure 5.4: Annual percentage migration between a city and its suburbs.

Example 5.63. Figure 5.4 shows population movement between a city and
its suburbs. Then, the annual migration between these two parts of the
metropolitan region can be expressed by the migration matrix M:

M =

[
0.95 0.03

0.05 0.97

]
. (5.51)

Suppose the 2023 population of the region is 60,000 in the city and 40,000 in
the suburbs. What is the distribution of the population in 2024? In 2025?

Solution.

annual_migration.m
1 M = [0.95 0.03
2 0.05 0.97];
3

4 x0 = [60000
5 40000];
6

7 x1 = M*x0
8 x2 = M*x1

Output
1 x1 =
2 58200
3 41800
4

5 x2 =
6 56544
7 43456
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Example 5.64. (Revisit to the aviary example: Example 5.59)
Assume that

• Whenever a bird is on any level of the aviary, the probability of that
bird staying on the same level 10 min later is 1/2.

• If the bird is on the first level, the probability of moving to the second
level in 10 min is 1/3 and of moving to the third level in 10 min is 1/6.

• For a bird on the second level, the probability of moving to either the
first or third level is 1/4.

• For a bird on the third level, the probability of moving to the second
level is 1/3 and of moving to the first is 1/6.

(a) Find the transition matrix for this example.

(b) Suppose that after breakfast, all the birds are in the dining area on the
first level. Where are they in 10 min? In 20 min? In 30 min?

Solution. (a) From the information given, we derive the transition ma-
trix:

T =

1/2 1/4 1/6

1/3 1/2 1/3

1/6 1/4 1/2

 (5.52)

(b) The probability matrix at time 0 is p = [1, 0, 0]T .

birds_on_aviary.m
1 T = [1/2 1/4 1/6
2 1/3 1/2 1/3
3 1/6 1/4 1/2];
4

5 p0 = [1 0 0]';
6

7 p1 = T*p0
8 p2 = T*p1
9 p3 = T*p2

Output
1 p1 =
2 0.5000
3 0.3333
4 0.1667
5 p2 =
6 0.3611
7 0.3889
8 0.2500
9 p3 =

10 0.3194
11 0.3981
12 0.2824
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5.9.2. Predicting the Distant Future: Steady-State Vec-
tors

The most interesting aspect of Markov chains is the study of the chain’s
long term behavior.

Example 5.65. (Revisit to Example 5.64)
What can be said in Example 5.64 about the bird population “in the long
run”? What happens if the chain starts with other initial vectors?

Solution.
birds_on_aviary2.m

1 T = [1/2 1/4 1/6
2 1/3 1/2 1/3
3 1/6 1/4 1/2];
4

5 p = [1 0 0]'; q = [0 0 1]';
6 fprintf('p_%-2d = [%.5f %.5f %.5f]; q_%-2d = [%.5f %.5f %.5f]\n',0,p,0,q)
7 fprintf('%s\n',repelem('-',1,68))
8

9 n=12;
10 for k=1:n
11 p = T*p; q = T*q;
12 fprintf('p_%-2d = [%.5f %.5f %.5f]; q_%-2d = [%.5f %.5f %.5f]\n',k,p,k,q)
13 end

Output
1 p_0 = [1.00000 0.00000 0.00000]; q_0 = [0.00000 0.00000 1.00000]
2 --------------------------------------------------------------------
3 p_1 = [0.50000 0.33333 0.16667]; q_1 = [0.16667 0.33333 0.50000]
4 p_2 = [0.36111 0.38889 0.25000]; q_2 = [0.25000 0.38889 0.36111]
5 p_3 = [0.31944 0.39815 0.28241]; q_3 = [0.28241 0.39815 0.31944]
6 p_4 = [0.30633 0.39969 0.29398]; q_4 = [0.29398 0.39969 0.30633]
7 p_5 = [0.30208 0.39995 0.29797]; q_5 = [0.29797 0.39995 0.30208]
8 p_6 = [0.30069 0.39999 0.29932]; q_6 = [0.29932 0.39999 0.30069]
9 p_7 = [0.30023 0.40000 0.29977]; q_7 = [0.29977 0.40000 0.30023]

10 p_8 = [0.30008 0.40000 0.29992]; q_8 = [0.29992 0.40000 0.30008]
11 p_9 = [0.30003 0.40000 0.29997]; q_9 = [0.29997 0.40000 0.30003]
12 p_10 = [0.30001 0.40000 0.29999]; q_10 = [0.29999 0.40000 0.30001]
13 p_11 = [0.30000 0.40000 0.30000]; q_11 = [0.30000 0.40000 0.30000]
14 p_12 = [0.30000 0.40000 0.30000]; q_12 = [0.30000 0.40000 0.30000]
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Steady-State Vectors

Definition 5.66. If T is a stochastic matrix, then a steady-state vec-
tor for T is a probability vector q such that

Tq = q. (5.53)

Note: The steady-state vector q can be seen as an eigenvector of T , of
which the corresponding eigenvalue λ = 1.

Strategy 5.67. How to Find a Steady-State Vector

(a) First, solve for x = [x1, x2, · · · , xn]T :

Tx = x ⇔ Tx− x = 0 ⇔ (T − I)x = 0. (5.54)

(b) Then, set
q =

1

x1 + x2 + · · ·+ xn
x. (5.55)

Example 5.68. Let T =

[
0.6 0.3

0.4 0.7

]
. Find a steady-state vector for T .

Solution.

Ans: q =

[
3/7

4/7

]
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Definition 5.69. A stochastic matrix T is regular if some matrix power
T k contains only strictly positive entries.

Interpretation 5.70. If the transition matrix of a Markov chain is
regular, then for some k it is possible to go from any state to any other
states (including remaining in the current state) in exactly k steps.

Example 5.71. Let T =

0.5 0.2 0.3

0.3 0.8 0.3

0.2 0 0.4

.

(a) Is T regular?

(b) Find a steady-state vector for T , using the power method.

Solution.

regular_stochastic.m
1 T = [0.5 0.2 0.3
2 0.3 0.8 0.3
3 0.2 0 0.4];
4

5 T2 = T*T;
6 disp('T^2 ='); disp(T2)
7

8 % The Power Method
9 x = [1 0 0]';

10 for k = 1:20
11 x = T*x;
12 fprintf('x_%-2d=[%.5f %.5f %.5f]\n',k,x)
13 end

Output
1 T^2 =
2 0.3700 0.2600 0.3300
3 0.4500 0.7000 0.4500
4 0.1800 0.0400 0.2200
5

6 x_1 =[0.50000 0.30000 0.20000]

7 x_2 =[0.37000 0.45000 0.18000]
8 x_3 =[0.32900 0.52500 0.14600]
9 x_4 =[0.31330 0.56250 0.12420]

10 x_5 =[0.30641 0.58125 0.11234]
11 x_6 =[0.30316 0.59062 0.10622]
12 x_7 =[0.30157 0.59531 0.10312]
13 x_8 =[0.30078 0.59766 0.10156]
14 x_9 =[0.30039 0.59883 0.10078]
15 x_10=[0.30020 0.59941 0.10039]
16 x_11=[0.30010 0.59971 0.10020]
17 x_12=[0.30005 0.59985 0.10010]
18 x_13=[0.30002 0.59993 0.10005]
19 x_14=[0.30001 0.59996 0.10002]
20 x_15=[0.30001 0.59998 0.10001]
21 x_16=[0.30000 0.59999 0.10001]
22 x_17=[0.30000 0.60000 0.10000]
23 x_18=[0.30000 0.60000 0.10000]
24 x_19=[0.30000 0.60000 0.10000]
25 x_20=[0.30000 0.60000 0.10000]
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Theorem 5.72. If T is an n× n regular stochastic matrix, then T has a
unique steady-state vector q.

(a) The entries of q are strictly positive.
(b) The steady-state vector

q = lim
k→∞

T kx0, (5.56)

for any initial probability vector x0.

Remark 5.73. Let T ∈ Rn×n be a regular stochastic matrix. Then

• If Tv = λv, then |λ| ≤ 1.
(The above is true for every stochastic matrix; see § A.2.)

• Every column of T k converges to q as k →∞, i.e.,

T k → [q q · · · q] ∈ Rn×n, as k →∞. (5.57)

See Exercise 3 on p. 178.

Example 5.74. Let a regular stochastic matrix be given as in Exam-

ple 5.71: T =

0.5 0.2 0.3

0.3 0.8 0.3

0.2 0 0.4

.

(a) Find the steady-state vector q, by deriving the RREF.

(b) Find T 10 and T 20.

Solution. (a) Use Strategy 5.67.
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regular_stochastic_Tk.m
1 T = [0.5 0.2 0.3
2 0.3 0.8 0.3
3 0.2 0 0.4];
4 Tk = eye(3);
5 rref(T-Tk)
6

7 for k = 1:20
8 Tk = Tk*T;
9 if(mod(k,10)==0), fprintf('T^%d =\n',k); disp(Tk) end

10 end

Output
1 ans =
2 1.0000 0 -3.0000
3 0 1.0000 -6.0000
4 0 0 0
5

6 T^10 =
7 0.3002 0.2999 0.3002
8 0.5994 0.6004 0.5994
9 0.1004 0.0997 0.1004

10

11 T^20 =
12 0.3000 0.3000 0.3000
13 0.6000 0.6000 0.6000
14 0.1000 0.1000 0.1000

True-or-False 5.75. Let T be a stochastic matrix.

a. The steady-state vector is an eigenvector of T .
b. Every eigenvector of T is a steady-state vector.
c. The all-ones vector is an eigenvector of T T .
d. The number 2 can be an eigenvalue of T or T T .
e. All stochastic matrices are regular.

Ans: T, F, T, F, F
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Exercises 5.9

1. Find the steady-state vector, deriving the RREF.[
.1 .6

.9 .4

]
(a)

.7 .1 .1

.2 .8 .2

.1 .1 .7

(b)

Ans: (b) [1/4, 1/2, 1/4]T

2. The weather in Starkville, MS, is either good, indifferent, or bad on any given day.

• If the weather is good today, there is a 60% chance the weather will be good tomor-
row, a 30% chance the weather will be indifferent, and a 10% chance the weather
will be bad.

• If the weather is indifferent today, it will be good tomorrow with probability .40 and
indifferent with probability .30.

• Finally, if the weather is bad today, it will be good tomorrow with probability .40
and indifferent with probability .50.

(a) What is the stochastic matrix for this situation?
(b) Suppose there is a 50% chance of good weather today and a 50% chance of indiffer-

ent weather. What are the chances of bad weather tomorrow?
(c) Suppose the predicted weather for Monday is 40% indifferent weather and 60% bad

weather. What are the chances for good weather on Wednesday?

Ans: (b) 20%

3. Let T ∈ Rn×n be a regular stochastic matrix. Prove (5.57).

Hint : Lrt T = [t1, t2, ·, tn], where tj is the j-th column of T . Take x0 = ei, for some i.
Then

x1 = Tx0 = Tei = ti,

which implies that x1 is the i-th column of T . From the above we have

xk = T kx0 = T kei. (5.58)

Thus xk is the i-th column of T k. Now, use Theorem 5.72.

4. M Generate a regular stochastic matrix of dimension 5.

(a) Find all eigenvalues and corresponding eigenvectors, using e.g. eig in Matlab.
(b) Express the eigenvector corresponding to λ = 1 as a probability vector p.
(c) Use the power method to find a steady-state vector q, beginning with x0 = e1.
(d) Compare p with q.



CHAPTER 6
Orthogonality and Least-Squares

In this chapter, we will learn

• Inner product, length, and orthogonality,

• Orthogonal projections,

• The Gram-Schmidt process, which is an algorithm to produce an or-
thogonal basis for any nonzero subspace of Rn, and

• Least-Squares problems, with applications to linear models.
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6.1. Inner Product, Length, and Orthogonality

6.1.1. Inner Product and Length

Definition 6.1. Let u = [u1, u2, · · · , un]T and v = [v1, v2, · · · , vn]T are
vectors in Rn. Then, the inner product (or dot product) of u and v is
given by

u•v = uTv = [u1 u2 · · · un]


v1

v2
...
vn


= u1 v1 + u2 v2 + · · ·+ un vn =

n∑
k=1

ukvk.

(6.1)

Example 6.2. Let u =

 1

−2

2

 and v =

 3

2

−4

. Find u•v.

Solution.

Theorem 6.3. Let u, v, and w be vectors in Rn, and c be a scalar. Then

a. u•v = v•u
b. (u + v)•w = u•w + v•w
c. (cu)•v = c(u•v) = u•(cv)

d. u•u ≥ 0, and u•u = 0⇔ u = 0



6.1. Inner Product, Length, and Orthogonality 181

Definition 6.4. The length (norm) of v is nonnegative scalar ‖v‖ de-
fined by

‖v‖ =
√
v•v =

√
v21 + v22 + · · ·+ v2n and ‖v‖2 = v•v. (6.2)

Note: For any scalar c, ‖cv‖ = |c| ‖v‖.

Example 6.5. Let W be a subspace of R2 spanned by v =

[
3

4

]
. Find a unit

vector u that is a basis for W .
Solution.

Distance in Rn

Definition 6.6. For u,v ∈ Rn, the distance between u and v is

dist(u,v) = ‖u− v‖, (6.3)

the length of the vector u− v.

Example 6.7. Compute the distance between the vectors u = (7, 1) and
v = (3, 2).
Solution.

Figure 6.1: The distance between u and v is
the length of u− v.
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Example 6.8. Let u =

 1

−2

2

 and v =

 3

2

−4

. Find the distance between u

and v.
Solution.

Note: The inner product can be defined as

u•v = ‖u‖ ‖v‖ cos θ, (6.4)

where θ is the angle between u and v.

Example 6.9. Let u =

[
1√
3

]
and v =

[
−1/2√

3/2

]
. Use (6.4) to find the angle

between u and v.
Solution.



6.1. Inner Product, Length, and Orthogonality 183

6.1.2. Orthogonal Vectors

Definition 6.10. Two vectors u and v in Rn are orthogonal if u•v = 0.

Theorem 6.11. The Pythagorean Theorem: Two vectors u and v
are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2. (6.5)

Proof. For all u and v in Rn,

‖u + v‖2 = (u + v)•(u + v) = ‖u‖2 + ‖v‖2 + 2u•v. (6.6)

Thus, u and v are orthogonal ⇔ (6.5) holds

Orthogonal Complements

Definition 6.12. Let W ⊂ Rn be a subspace. A vector z ∈ Rn is said
to be orthogonal to W if z•w = 0 for all w ∈ W . The set of all vectors
z that are orthogonal to W is called the orthogonal complement of
W and is denoted by W⊥ (and read as “W perpendicular" or simply “W
perp"). That is,

W⊥ = {z | z•w = 0, ∀w ∈ W}. (6.7)

Example 6.13. Let W be a plane
through the origin in R3, and let L be
the line through the origin and per-
pendicular to W . If z ∈ L and and
w ∈ W , then

z•w = 0.

In fact, L consists of all vectors that
are orthogonal to the w’s in W , and
W consists of all vectors orthogonal
to the z’s in L. That is,

L = W⊥ and W = L⊥. (6.8)
Figure 6.2: A plane and line through the ori-
gin as orthogonal complements.
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Example 6.14. LetW is a subspace of Rn. Prove that if x ∈ W and x ∈ W⊥,
then x = 0.
Solution. Hint : Let x ∈ W . The condition x ∈ W⊥ implies that x is perpendicular to
every element in W , particularly to itself.

Remark 6.15. Let W be a subspace of Rn, with dimW = m ≤ n.

(a) Consider a basis for W . Let A be the collection of the basis vectors.
Then A ∈ Rn×m, W = ColA, and

W⊥ = {x ∈ Rn | ATx = 0} = NulAT . (6.9)

Note that AT ∈ Rm×n, m ≤ n, and

m = dimW = dim ColA = dim ColAT . (6.10)

(b) A vector x is in W⊥ ⇔ x is orthogonal to every vector in a span-
ning set of W .

(c) W⊥ is a subspace of Rn.

Example 6.16. Let W be a subspace of Rn. Prove that

dimW + dimW⊥ = n. (6.11)

Solution. Hint : Use Remark 6.15 (a).
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Definition 6.17. Let A be an m× n matrix. Then the row space is the
set of all linear combinations of of the rows of A, denoted by RowA. That
is, RowA = ColAT .

Theorem 6.18. Let A be an m× n matrix. The orthogonal complement
of the row space of A is the null space of A, and the orthogonal comple-
ment of the column space of A is the null space of AT :

(RowA)⊥ = NulA and (ColA)⊥ = NulAT . (6.12)

True-or-False 6.19.

a. For any scalar c, u•(cv) = c(u•v).

b. If the distance from u to v equals the distance from u to −v, then u and
v are orthogonal.

c. For a square matrix A, vectors in ColA are orthogonal to vectors in
NulA.

d. For an m× n matrix A, vectors in the null space of A are orthogonal to
vectors in the row space of A.

Solution.

Ans: T,T,F,T
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Exercises 6.1

1. Let x =

 3

−1

−5

 and w =

 6

−2

3

. Find x•x, x•w, and
x•w
x•x

.

Ans: 35, 5, 1/7

2. Find the distance between u =

 0

−5

2

 and z =

−4

−1

8

.

Ans: 2
√

17

3. Verify the parallelogram law for vectors u and v in Rn:

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2. (6.13)

Hint : Use (6.6).

4. Let u =

 2

−5

−1

 and v =

−7

−4

6

.

(a) Compute u•v, ‖u‖, ‖v‖, ‖u + v‖, and ‖u− v‖.
(b) Verify (6.6) and (6.13).

5. Suppose y is orthogonal to u and v. Show that y is orthogonal to every w in Span{u,v}.
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6.2. Orthogonal Sets

Definition 6.20. A set of vectors {u1, u2, · · · , up} in Rn is said to be an
orthogonal set if each pair of distinct vectors from the set is orthogonal.
That is ui•uj = 0, for i 6= j.

Example 6.21. Let u1 =

 1

−2

1

, u2 =

0

1

2

, and u3 =

−5

−2

1

. Is the set

{u1,u2,u3} orthogonal?
Solution.

Theorem 6.22. If S = {u1, u2, · · · , up} is an orthogonal set of nonzero
vectors in Rn, then S is linearly independent and therefore forms a basis
for the subspace spanned by S.

Proof. It suffices to prove that S is linearly independent. Suppose

c1 u1 + c2 u2 + · · ·+ cp up = 0.

Take the dot product with u1. Then the above equation becomes

c1u1•u1 + c2u1•u2 + · · ·+ cpu1•up = 0,

from which we conclude c1 = 0. Similarly, by taking the dot product with ui,
we can get ci = 0. That is,

c1 = c2 = · · · = cp = 0,

which completes the proof.
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Definition 6.23. An orthogonal basis for a subspace W of Rn is a
basis for W that is also an orthogonal set.

The following theorem shows one of reasons why orthogonality is a useful
property in vector spaces and matrix algebra.

Theorem 6.24. Let {u1, u2, · · · , up} be an orthogonal basis for a sub-
space W of Rn. For each y in W , the weights in the linear combination

y = c1 u1 + c2 u2 + · · ·+ cp up (6.14)

are given by
cj =

y•uj
uj•uj

(j = 1, 2, · · · , p). (6.15)

Proof. y•uj = (c1 u1 + c2 u2 + · · ·+ cp up)•uj = cjuj•uj = cj‖uj‖2.

Example 6.25. Let u1 =

 1

−2

1

, u2 =

0

1

2

, and u3 =

−5

−2

1

. In Exam-

ple 6.21, we have seen that S = {u1,u2,u3} is orthogonal. Express the

vector y =

 11

0

−5

 as a linear combination of the vectors in S.

Solution.

Ans: y = u1 − 2u2 − 2u3.
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6.2.1. An Orthogonal Projection

Given a nonzero vector u in Rn, con-
sider the problem of decomposing
a vector y ∈ Rn into sum of two
vectors, one a multiple of u and
the other orthogonal to u:

y = ŷ + z, ŷ //u and z ⊥ u.
(6.16)

Let ŷ = αu. Then z = y − αu and

0 = z•u = (y−αu)•u = y•u−αu•u.

Thus α = y•u/u•u.

Figure 6.3: Orthogonal projection: y =
ŷ + z.

Definition 6.26. Given a nonzero vector u in Rn, for y ∈ Rn, let

y = ŷ + z, ŷ //u and z ⊥ u. (6.17)

Then
ŷ = αu =

y•u
u•u

u, z = y − ŷ. (6.18)

The vector ŷ is called the orthogonal projection of y onto u, and z is
called the component of y orthogonal to u.

• Let L = Span{u}. Then we denote

ŷ =
y•u
u•u

u = projLy, (6.19)

which is called the orthogonal projection of y onto L.
• It is meaningful whether the angle between y and u is acute or

obtuse.
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Example 6.27. Let y =

[
7

6

]
and u =

[
4

2

]
.

(a) Find the orthogonal projection of y onto u.

(b) Write y as the sum of two orthogonal vectors, one in L = Span{u} and
one orthogonal to u.

(c) Find the distance from y to L.

Solution.

Figure 6.4: The orthogonal projection of y
onto L = Span{u}.
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Example 6.28. Let y =

[
1

3

]
and u =

[
2

−4

]
.

(a) Find the orthogonal projection of y onto u.
(b) Write y as the sum of a vector in Span{u} and one orthogonal to u.

Solution.

Example 6.29. Let v =

 4

−12

8

 and w =

 2

1

−3

. Find the distance from v

to Span{w}.
Solution.
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6.2.2. Orthonormal Basis and Orthogonal Matrix

Definition 6.30. A set {u1, u2, · · · , up} is an orthonormal set, if it is
an orthogonal set of unit vectors. If W is the subspace spanned by such a
set, then {u1, u2, · · · , up} is an orthonormal basis for W , since the set
is automatically linearly independent.

Example 6.31. In Example 6.21, p. 187, we know v1 =

 1

−2

1

, v2 =

0

1

2

,

and v3 =

−5

−2

1

 form an orthogonal basis for R3. Find the corresponding

orthonormal basis.
Solution.

Theorem 6.32. An m× n matrix U has orthonormal columns if and
only if UTU = I.

Proof. To simplify notation, we suppose that U has only three columns:
U = [u1 u2 u3], ui ∈ Rm. Then

UTU =

u
T
1

uT2

uT3

[u1 u2 u3] =

u
T
1 u1 uT1 u2 uT1 u3

uT2 u1 uT2 u2 uT2 u3

uT3 u1 uT3 u2 uT3 u3

.

Thus, U has orthonormal columns ⇔ UTU =

1 0 0

0 1 0

0 0 1

. The proof of the gen-

eral case is essentially the same.
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Theorem 6.33. Let U be an m× n matrix with orthonormal columns,
and let x, y ∈ Rn. Then

(a) ‖Ux‖ = ‖x‖ (length preservation)
(b) (Ux)•(Uy) = x•y (dot product preservation)
(c) (Ux)•(Uy) = 0 ⇔ x•y = 0 (orthogonality preservation)

Proof.

Theorems 6.32 & 6.33 are particularly useful when applied to square ma-
trices.

Definition 6.34. An orthogonal matrix is a square matrix U such
that UT = U−1, i.e.,

U ∈ Rn×n and UTU = I. (6.20)

Let’s generate a random orthogonal matrix and test it.

orthogonal_matrix.m
1 n = 4;
2

3 [Q,~] = qr(rand(n));
4 U = Q;
5

6 disp("U ="); disp(U)
7 disp("U'*U ="); disp(U'*U)
8

9 x = rand([n,1]);
10 fprintf("\nx' ="); disp(x')
11 fprintf("||x||_2 =");disp(norm(x,2))
12 fprintf("||U*x||_2=");disp(norm(U*x,2))

Output
1 U =
2 -0.3770 0.6893 0.2283 -0.5750
3 -0.3786 -0.2573 -0.8040 -0.3795
4 -0.6061 0.3149 -0.1524 0.7143
5 -0.5892 -0.5996 0.5274 -0.1231
6 U'*U =
7 1.0000 0.0000 0.0000 -0.0000
8 0.0000 1.0000 -0.0000 0.0000
9 0.0000 -0.0000 1.0000 -0.0000

10 -0.0000 0.0000 -0.0000 1.0000
11

12 x' = 0.4709 0.2305 0.8443 0.1948
13 ||x||_2 = 1.0128
14 ||U*x||_2= 1.0128
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True-or-False 6.35.

a. If y is a linear combination of nonzero vectors from an orthogonal set,
then the weights in the linear combination can be computed without
row operations on a matrix.

b. If the vectors in an orthogonal set of nonzero vectors are normalized,
then some of the new vectors may not be orthogonal.

c. A matrix with orthonormal columns is an orthogonal matrix.

d. If L is a line through 0 and if ŷ is the orthogonal projection of y onto L,
then ‖ŷ‖ gives the distance from y to L.

e. Every orthogonal set in Rn is linearly independent.

f. If the columns of an m× n matrix A are orthonormal, then the linear
mapping x 7→ Ax preserves lengths.

Solution.

Ans: T,F,F,F,F,T
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Exercises 6.2

1. Determine which sets of vectors are orthogonal.

(a)

 2

−7

1

,

−6

−3

9

,

 3

1

−1

 (b)

 2

−5

−3

,

0

0

0

,

 4

−2

6



2. Let u1 =

 3

−3

0

, u2 =

 2

2

−1

, u3 =

1

1

4

, and x =

 5

−3

1

.
(a) Check if {u1,u2,u3} is an orthogonal basis for R3.
(b) Express x as a linear combination of {u1,u2,u3}.

Ans: x = 4
3
u1 + 1

3
u2 + 1

3
u3

3. Compute the orthogonal projection of

[
1

−1

]
onto the line through

[
−1

3

]
and the origin.

4. Determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize
the vectors to produce an orthonormal set.

(a)

0

1

0

,

 0

−1

0

 (b)

1/3

1/3

1/3

,

−1/2

0

1/2

 (c)

1

4

1

,

 1

0

−1

,

−2/3

1/3

−2/3


5. Let U and V be n× n orthogonal matrices. Prove that UV is an orthogonal matrix.

Hint : See Definition 6.34, where U−1 = UT ⇔ UTU = I.
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6.3. Orthogonal Projections

Recall: (Definition 6.26) Given a nonzero vector u in Rn, for y ∈ Rn, let

y = ŷ + z, ŷ //u and z ⊥ u. (6.21)

Then
ŷ = αu =

y•u
u•u

u, z = y − ŷ. (6.22)

The vector ŷ is called the orthogonal projection of y onto u, and z is
called the component of y orthogonal to u. Let L = Span{u}. Then we
denote

ŷ =
y•u
u•u

u = projLy, (6.23)

which is called the orthogonal projection of y onto L.

We generalize this orthogonal projection to subspaces.

Theorem 6.36. (The Orthogonal Decomposition Theorem)
Let W be a subspace of Rn. Then each y ∈ Rn can be written uniquely in
the form

y = ŷ + z, (6.24)

where ŷ ∈ W and z ∈ W⊥. In fact, if {u1, u2, · · · , up} is an orthogonal
basis for W , then

ŷ = projW y =
y•u1

u1•u1
u1 +

y•u2

u2•u2
u2 + · · ·+ y•up

up•up
up,

z = y − ŷ.
(6.25)

Figure 6.5: Orthogonal projection of y onto W .
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Example 6.37. Let u1 =

 2

5

−1

, u2 =

−2

1

1

, and y =

1

2

3

. Observe that

{u1,u2} is an orthogonal basis for W = Span{u1,u2}.

(a) Write y as the sum of a vector in W and a vector orthogonal to W .

(b) Find the distance from y to W .

Solution. y = ŷ + z ⇒ ŷ =
y•u1

u1•u1
u1 +

y•u2

u2•u2
u2 and z = y − ŷ.

Figure 6.6: A geometric interpretation of the
orthogonal projection.
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Remark 6.38. (Properties of Orthogonal Decomposition)
Let y = ŷ + z, where ŷ ∈ W and z ∈ W⊥. Then

1. ŷ is called the orthogonal projection of y onto W (= projW y)

2. ŷ is the closest point to y in W .
(in the sense ‖y − ŷ‖ ≤ ‖y − v‖, for all v ∈ W )

3. ŷ is called the best approximation to y by elements of W .

4. If y ∈ W , then projW y = y.

Proof. 2. For an arbitrary v ∈ W , y−v = (y−ŷ)+(ŷ−v), where (ŷ−v) ∈ W .
Thus, by the Pythagorean theorem,

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2,

which implies that ‖y − v‖ ≥ ‖y − ŷ‖.

Example 6.39. Find the closest point to y in the subspace Span{u1,u2}
and hence find the distance from y to W . (Notice that u1 and u2 are orthog-
onal.)

y =


3

−1

1

13

, u1 =


1

−2

−1

2

, u2 =


−4

1

0

3


Solution.
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Example 6.40. Find the distance from y to the plane in R3 spanned by u1

and u2.

y =

 5

−9

5

, u1 =

−3

−5

1

, u2 =

−3

2

1


Solution.

Example 6.41. Let {u1,u2,u3} be an orthogonal basis for a subspace W of
R4 and v ∈ W :

u1 =


1

2

1

1

, u2 =


−2

1

−1

1

, u3 =


1

1

−2

−1

, and v =


−3

7

−6

2

.
Write v as the sum of two vectors: one in Span{u1,u2} and the other in
Span{u3}.
Solution.

Ans: u1 + 3u2 and 2u3.
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Theorem 6.42. If {u1, u2, · · · , up} is an orthonormal basis for a sub-
space W of Rn, then

projW y = (y•u1)u1 + (y•u2)u2 + · · ·+ (y•up)up. (6.26)

If U = [u1 u2 · · · up], then

projW y = UUTy, for all y ∈ Rn. (6.27)

The orthogonal projection can be viewed as a matrix transformation.

Proof. Notice that

(y•u1)u1 + (y•u2)u2 + · · ·+ (y•up)up

= (uT1 y)u1 + (uT2 y)u2 + · · ·+ (uTp y)up

= U(UTy).

Example 6.43. Let y =

[
7

9

]
, u1 =

[
1/
√

10

−3/
√

10

]
, and W = Span{u1}.

(a) Let U be the 2× 1 matrix whose only column is u1. Compute UTU and
UUT .

(b) Compute projW y = (y•u1)u1 and UUTy.

Solution.

Ans: (a) UUT =
1

10

[
1 −3

−3 9

]
(b)

[
−2

6

]
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True-or-False 6.44.

a. If z is orthogonal to u1 and u2 and if W = Span{u1,u2}, then z must be
in W⊥.

b. The orthogonal projection ŷ of y onto a subspace W can sometimes de-
pend on the orthogonal basis for W used to compute ŷ.

c. If the columns of an n× p matrix U are orthonormal, then UUTy is the
orthogonal projection of y onto the column space of U .

d. If an n× p matrix U has orthonormal columns, then UUTx = x for all x
in Rn.

Solution.

Ans: T,F,T,F
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Exercises 6.3

1. (i) Verify that {u1,u2} is an orthogonal set, (ii) find the orthogonal projection of y onto
W = Span{u1,u2}, and (iii) write y as a sum of a vector in W and a vector orthogonal to
W .

(a) y =

−1

2

6

, u1 =

 3

−1

2

, u2 =

 1

−1

−2

 (b) y =

−1

4

3

, u1 =

1

1

1

, u2 =

−1

3

−2


Ans: (b) y = 1

2

3

7

2

+ 1
2

−5

1

4


2. Find the best approximation to z by vectors of the form c1v1 + c2v2.

(a) z =


3

−1

1

13

, v1 =


1

−2

−1

2

, v2 =


−4

1

0

3

 (b) z =


3

−7

2

3

, v1 =


2

−1

−3

1

, v2 =


1

1

0

−1


Ans: (a) ẑ = 3v1 + v2

3. Let z, v1, and v2 be given as in Exercise 2. Find the distance from z to the subspace of
R4 spanned by v1 and v2.

Ans: (a) 8

4. Let W be a subspace of Rn. A transformation T : Rn → Rn is defined as
x 7→ T (x) = projW x.

(a) Prove that T is a linear transformation.
(b) Prove that T (T (x)) = T (x).

Hint : Use Theorem 6.42.
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6.4. The Gram-Schmidt Process and QR Fac-
torization

6.4.1. The Gram-Schmidt Process

The Gram-Schmidt process is an algorithm to produce an orthogonal
or orthonormal basis for any nonzero subspace of Rn.

Example 6.45. Let W = Span{x1,x2}, where x1 =

3

6

0

 and x2 =

1

2

2

. Find

an orthogonal basis for W .
Main idea: Orthogonal projection{

x1

x2

}
⇒

{
x1

x2 = αx1 + v2

⇒

{
v1 = x1

v2 = x2 − αx1

where x1•v2 = 0. Then W = Span{x1,x2} = Span{v1,v2}.

Solution.

Figure 6.7: Construction of an orthogonal
basis {v1,v2}.
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Example 6.46. Find an orthonormal basis for a subspace whose basis is
 3

0

−1

,
 8

5

−6


.

Solution.

Theorem 6.47. (The Gram-Schmidt Process) Given a basis
{x1, x2, · · · , xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2•v1

v1•v1
v1

v3 = x3 −
x3•v1

v1•v1
v1 −

x3•v2

v2•v2
v2

...

vp = xp −
xp•v1

v1•v1
v1 −

xp•v2

v2•v2
v2 − · · · −

xp•vp−1

vp−1•vp−1
vp−1

(6.28)

Then {v1, v2, · · · , vp} is an orthogonal basis for W . In addition,

Span{x1, x2, · · · , xk} = Span{v1, v2, · · · , vk}, for 1 ≤ k ≤ p. (6.29)

Remark 6.48. For the result of the Gram-Schmidt process, define

uk =
vk
‖vk‖

, for 1 ≤ k ≤ p. (6.30)

Then {u1, u2, · · · , up} is an orthonormal basis for W . In practice, it is
often implemented with the normalized Gram-Schmidt process.



6.4. The Gram-Schmidt Process and QR Factorization 205

Example 6.49. Find an orthonormal basis for W = Span{x1,x2,x3}, where

x1 =


1

0

−1

1

, x2 =


−2

2

1

0

, and x3 =


0

1

−1

1

.

Solution.
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6.4.2. QR Factorization of Matrices

Theorem 6.50. (The QR Factorization) If A is an m× n matrix with
linearly independent columns, then A can be factored as

A = QR, (6.31)

where
• Q is an m× n matrix whose columns are orthonormal and
• R is an n× n upper triangular invertible matrix with positive en-

tries on its diagonal.

Proof. The columns of A form a basis {x1, x2, · · · , xn} for W = ColA.

1. Construct an orthonormal basis {u1, u2, · · · , un} for W (the Gram-
Schmidt process). Set

Q
def
== [u1 u2 · · · un]. (6.32)

2. (Expression) Since Span{x1, x2, · · · , xk} = Span{u1, u2, · · · , uk}, 1 ≤
k ≤ n, there are constants r1k, r2k, · · · , rkk such that

xk = r1ku1 + r2ku2 + · · ·+ rkkuk + 0 · uk+1 + · · ·+ 0 · un. (6.33)

We may assume hat rkk > 0. (If rkk < 0, multiply both rkk and uk by −1.)
3. Let rk = [r1k, r2k, · · · , rkk, 0, · · · , 0]T . Then

xk = Qrk (6.34)

4. Define
R

def
== [r1 r2 · · · rn]. (6.35)

Then we see A = [x1 x2 · · · xn] = [Qr1 Qr2 · · · Qrn] = QR.
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We can summarize the QR Factorization as follows.

Algorithm 6.51. (QR Factorization) Let A = [x1 x2 · · · xn].
• Apply the Gram-Schmidt process to obtain an orthonormal basis
{u1, u2, · · · , un}.

• Then
x1 = (u1•x1)u1

x2 = (u1•x2)u1 + (u2•x2)u2

x3 = (u1•x3)u1 + (u2•x3)u2 + (u3•x3)u3
...

xn =
∑n

j=1(uj•xn)uj.

(6.36)

• Thus
A = [x1 x2 · · · xn] = QR (6.37)

implies that

Q = [u1 u2 · · · un],

R =


u1•x1 u1•x2 u1•x3 · · · u1•xn

0 u2•x2 u2•x3 · · · u2•xn
0 0 u3•x3 · · · u3•xn
... ... ... . . . ...
0 0 0 · · · un•xn

 = QTA.
(6.38)

• In practice, the coefficients rij = ui•xj, i < j, can be saved during
the (normalized) Gram-Schmidt process.

Example 6.52. Find the QR factorization for A =

[
4 −1

3 2

]
.

Solution.

Ans: Q =

[
0.8 −0.6

0.6 0.8

]
R =

[
5 0.4

0 2.2

]
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True-or-False 6.53.

a. If {v1,v2,v3} is an orthogonal basis for W , then multiplying v3 by a
scalar c gives a new orthogonal basis {v1,v2, cv3}. Clue: c =?

b. The Gram-Schmidt process produces from a linearly independent set
{x1, x2, · · · , xp} an orthogonal set {v1, v2, · · · , vp} with the property
that for each k, the vectors v1, v2, · · · , vk span the same subspace as
that spanned by x1, x2, · · · , xk .

c. If A = QR, where Q has orthonormal columns, then R = QTA.

d. If x is not in a subspace W , then x̂ = projW x is not zero.

e. In a QR factorization, say A = QR (when A has linearly independent
columns), the columns of Q form an orthonormal basis for the column
space of A.

Solution.

Ans: F,T,T,F,T
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Exercises 6.4

1. The given set is a basis for a subspace W . Use the Gram-Schmidt process to produce an
orthogonal basis for W .

(a)

 3

0

−1

,

 8

5

−6

 (b)


1

−4

0

1

,


7

−7

−4

1


Ans: (b) v2 = (5, 1,−4,−1)

2. Find an orthogonal basis for the column space of the matrix
−1 6 6

3 −8 3

1 −2 6

1 −4 −3


Ans: v3 = (1, 1,−3, 1)

3. M Let A =


−10 13 7 −11

2 1 −5 3

−6 3 13 −3

16 −16 −2 5

2 1 −5 −7


(a) Use the Gram-Schmidt process to produce an orthogonal basis for the column space

of A.
(b) Use the method in this section to produce a QR factorization of A.

Ans: (a) v4 = (0, 5, 0, 0,−5)



210 Chapter 6. Orthogonality and Least-Squares

6.5. Least-Squares Problems

Note: Let A is an m× n matrix. Then Ax = b may have no solution,
particularly when m > n. In real-world,

• m� n, where m represents the number of data points and n denotes
the dimension of the points

• Need to find a best solution for Ax ≈ b

Definition 6.54. Let A is an m× n matrix and b ∈ Rm.
A least-squares (LS) solution of Ax = b is an x̂ ∈ Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖, for all x ∈ Rn. (6.39)

Note: The information matrix A and the observation vector b are
often formulated from a certain dataset.

• Finding a best approximation/representation is a major subject
in research level.

• Here we assume that the dataset is acquired appropriately.

Figure 6.8: Least-Squares approximation for noisy data. The dashed line in cyan is the
linear model from random sample consensus (RANSAC). The data has 1,200 and 300
points respectively for inliers and outliers.
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Solution of the General Least-Squares Problem

Recall: (Definition 6.54) Let A is an m× n matrix and b ∈ Rm.
A least-squares (LS) solution of Ax = b is an x̂ ∈ Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖, for all x ∈ Rn. (6.40)

Figure 6.9: The LS solution x̂ is in Rn.

Remark 6.55. Geometric Interpretation of the LS Problem

• For all x ∈ Rn, Ax will necessarily be in ColA, a subspace of Rm.

– So we seek an x that makes Ax the closest point in ColA to b.

• Let b̂ = projColAb. Then Ax = b̂ has a solution and there is an
x̂ ∈ Rn such that

Ax̂ = b̂. (6.41)

• x̂ is an LS solution of Ax = b.

• The quantity ‖b−b̂‖2 = ‖b−Ax̂‖2 is called the least-squares error.

Note: If A ∈ Rn× n is invertible, then Ax = b has a unique solution x̂
and therefore

‖b− Ax̂‖ = 0. (6.42)
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The Method of Normal Equations

Theorem 6.56. The set of LS solutions of Ax = b coincides with the
nonempty set of solutions of the normal equations

ATAx = ATb. (6.43)

Proof. Suppose x̂ satisfies Ax̂ = b̂

⇔ b− b̂ = b− Ax̂ ⊥ ColA
⇔ aj•(b− Ax̂) = 0 for all columns aj
⇔ aj

T (b− Ax̂) = 0 for all columns aj (Note that ajT is a row of AT )
⇔ AT (b− Ax̂) = 0

⇔ ATAx̂ = ATb

Example 6.57. Let A =

 1 1

2 0

−2 1

 and b =

−4

8

1

.

(a) Find an LS solution of Ax = b.

(b) Find the least-squares error, ‖b− Ax̂‖2.

Solution.

Ans: (a) x̂ =

[
1

−1

]
.
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Remark 6.58. Theorem 6.56 implies that LS solutions of Ax = b are
solutions of the normal equations ATAx̂ = ATb.

• When ATA is not invertible, the normal equations have either no
solution or infinitely many solutions.

• So, data acquisition is important, to make it invertible.

Theorem 6.59. Let A be an m× n matrix. The following statements
are logically equivalent:

a. The equation Ax = b has a unique LS solution for each b ∈ Rm.
b. The columns of A are linearly independent.
c. The matrix ATA is invertible.

When these statements are true, the unique LS solution x̂ is given by

x̂ = (ATA)−1ATb. (6.44)

Definition 6.60. The matrix

A+ := (ATA)−1AT (6.45)

is called the pseudoinverse of A.

Example 6.61. Describe all least squares solutions of the equationAx = b,
given

A =


1 1 0

1 1 0

1 0 1

1 0 1

 and b =


1

3

8

2

.

Solution.
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Alternative Calculations of Least-Squares Solutions

Theorem 6.62. Given an m× n matrix A with linearly independent
columns, let A = QR be a QR factorization of A as in Algorithm 6.51.
Then, for each b ∈ Rm, the equation Ax = b has a unique LS solution,
given by

x̂ = R−1QTb. (6.46)

Proof. Let A = QR. Then the pseudoinverse of A reads

(ATA)−1AT = ((QR)TQR)−1(QR)T = (RTQTQR)−1RTQT

= R−1(RT )−1RTQT = R−1QT ,
(6.47)

which completes the proof.

Self-study 6.63. Find the LS solution of Ax = b for

A =


1 3 5

1 1 0

1 1 2

1 3 3

 and b =


3

5

7

−3

, where A = QR =


1/2 1/2 1/2

1/2 −1/2 −1/2

1/2 −1/2 1/2

1/2 1/2 −1/2


2 4 5

0 2 3

0 0 2


Solution.

Ans: QTb = (6,−6, 4) and x̂ = (10,−6, 2)



6.5. Least-Squares Problems 215

True-or-False 6.64.

a. The general least-squares problem is to find an x that makes Ax as
close as possible to b.

b. Any solution of ATAx = ATb is a least-squares solution of Ax = b.

c. If x̂ is a least-squares solution of Ax = b, then x̂ = (ATA)−1ATb.

d. The normal equations always provide a reliable method for computing
least-squares solutions.

Solution.

Ans: T,T,F,F
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Exercises 6.5

1. Find a least-squares solution of Ax = b by (i) constructing the normal equations and
(ii) solving for x̂. Also (iii) compute the least-squares error (‖b − Ax̂‖) associated with
the least-squares solution.

(a) A =

−1 2

2 −3

−1 3

, b =

4

1

2

 (b) A =


1 −2

−1 2

0 3

2 5

, b =


3

1

−4

2


Ans: (b) x̂ =

[
4/3

−1/3

]
2. Find (i) the orthogonal projection of b onto ColA and (ii) a least-squares solution of

Ax = b. Also (iii) compute the least-squares error associated with the least-squares
solution.

(a) A =


4 0 1

1 −5 1

6 1 0

1 −1 −5

, b =


9

0

0

0

 (b) A =


1 1 0

1 0 −1

0 1 1

−1 1 −1

, b =


2

5

6

6


Ans: (b) b̂ = (5, 2, 3, 6) and x̂ = (1/3, 14/3,−5/3)

3. Describe all least-squares solutions of the system and the associated least-squares error.
x+ y = 1

x+ 2y = 3

x+ 3y = 3
Ans: x̂ = (1/3, 1)

For the above problems, you may use either pencil-and-paper or computer programs. For
example, for the last problem, a code can be written as

exercise-6.5.3.m
1 A = [1 1; 1 2; 1 3];
2 b = [1;3;3];
3

4 ATA = A'*A; ATb = A'*b;
5

6 xhat = ATA\ATb
7 error = norm(b-A*xhat)^2
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6.6. Machine Learning: Regression Analysis

Recall: (Section 6.5)

• (Definition 6.54) Let A is an m× n matrix and b ∈ Rm.
A least-squares (LS) solution of Ax = b is an x̂ ∈ Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖, for all x ∈ Rn. (6.48)

• (Theorem 6.56) The set of LS solutions of Ax = b coincides with the
nonempty set of solutions of the normal equations

ATAx = ATb. (6.49)

• (Theorem 6.59) The normal equations have a unique solution, if and
only if the columns of A are linearly independent.

• (Definition 6.60) The matrix

A+ := (ATA)−1AT

is called the pseudoinverse of A.

• (Theorem 6.62) Given an m× n matrix A with linearly indepen-
dent columns, let A = QR be a QR factorization of A as in Algo-
rithm 6.51. Then, for each b ∈ Rm, the equation Ax = b has a unique
LS solution, given by

x̂ = R−1QTb. (6.50)
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6.6.1. Regression Line

Figure 6.10: A regression line.

Definition 6.65. Suppose a set of experimental data points are given
as

(x1, y1), (x2, y2), · · · , (xm, ym)

such that the graph is close to a line. We determine a line

y = β0 + β1x (6.51)

that is as close as possible to the given points. This line is called the
least-squares line; it is also called regression line of y on x and β0, β1
are called regression coefficients.
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Calculation of Least-Squares Lines

Remark 6.66. Consider a least-squares (LS) model of the form
y = β0 + β1x, for a given data set {(xi, yi) | i = 1, 2, · · · ,m}.

• Then
Predicted y-value Observed y-value

β0 + β1x1 = y1

β0 + β1x2 = y2
... ...

β0 + β1xm = ym

(6.52)

• It can be equivalently written as
Xβ = y, (6.53)

where

X =


1 x1

1 x2
... ...
1 xm

, β =

[
β0

β1

]
, y =


y1

y2
...
ym

.
Here we call X the design matrix, β the parameter vector, and y
the observation vector.

• (Method of Normal Equations) Thus the LS solution can be deter-
mined as

XTXβ = XTy ⇒ β = (XTX)−1XTy, (6.54)

provided that XTX is invertible.

Example 6.67. Find the equation y = β0 + β1x of least-squares line that
best fits the given points:

(−1, 0), (0, 1), (1, 2), (2, 4)

Solution.
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Remark 6.68. It follows from (6.53) that

XTX =

[
1 1 · · · 1

x1 x2 · · · xm

]
1 x1

1 x2
... ...
1 xm

 =

[
m Σxi

Σxi Σx2i

]
,

XTy =

[
1 1 · · · 1

x1 x2 · · · xm

]
y1

y2
...
ym

 =

[
Σyi

Σxiyi

]
.

(6.55)

Thus the normal equations for the regression line read[
Σ1 Σxi

Σxi Σx2i

]
β =

[
Σyi

Σxiyi

]
. (6.56)

Example 6.69. Find the equation y = β0 + β1x of least-squares line that
best fits the given points:

(0, 1), (1, 1), (2, 2), (3, 2)

Solution.
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6.6.2. Least-Squares Fitting of Other Curves

Remark 6.70. Consider a regression model of the form

y = β0 + β1x+ β2x
2,

for a given data set {(xi, yi) | i = 1, 2, · · · ,m}.

• As for the regression line, we will get a linear system and try to find
LS solutions of the system.

• Linear System:

Predicted y-value Observed y-value

β0 + β1x1 + β2x
2
1 = y1

β0 + β1x2 + β2x
2
2 = y2

... ...
β0 + β1xm + β2x

2
m = ym

(6.57)

• It is equivalently written as

Xβ = y, (6.58)

where

X =


1 x1 x21

1 x2 x22
... ... ...
1 xm x2m

, β =

β0β1
β2

, y =


y1

y2
...
ym

.
• The system can be solved by the method of normal equations:

XTXβ =

 Σ1 Σxi Σx2i
Σxi Σx2i Σx3i
Σx2i Σx3i Σx4i

β =

 Σyi

Σxiyi

Σx2iyi

 = XTy (6.59)
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Example 6.71. Find an LS curve of the form y = β0 + β1x + β2x
2 that best

fits the given points:
(0, 1), (1, 1), (1, 2), (2, 3).

Solution. The normal equations are

 Σ1 Σxi Σx2i
Σxi Σx2i Σx3i
Σx2i Σx3i Σx4i

β =

 Σyi

Σxiyi

Σx2i yi



Ans: y = 1 + 0.5x2
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Self-study 6.72. Find an LS curve of the form y = β0 +β1x+β2x
2 that best

fits the given points:
(−2, 1), (−1, 0), (0, 1), (1, 4), (2, 9)

Solution.

Ans: y = 1 + 2x+ x2

Further Applications

Example 6.73. Find an LS curve of the form y = a cosx + b sinx that best
fits the given points:

(0, 1), (π/4, 2), (π, 0).
Solution.

Ans: (a, b) = (1/2,−1/2 + 2
√

2) = (0.5, 2.32843)
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Nonlinear Models: Linearization

Strategy 6.74. For nonlinear models, change of variables can be
applied for a linear model.

Model Change of Variables Linearization

y = A+
B

x
x̃ =

1

x
, ỹ = y ⇒ ỹ = A+Bx̃

y =
1

A+Bx
x̃ = x, ỹ =

1

y
⇒ ỹ = A+Bx̃

y = CeDx x̃ = x, ỹ = ln y ⇒ ỹ = lnC +Dx̃

(6.60)

The Idea: Transform the nonlinear model to produce a linear system.

Example 6.75. Find an LS curve of the form y = CeDx that best fits the
given points:

(0, e), (1, e3), (2, e5).

Solution.
x y

0 e

1 e3

2 e5

⇒

x̃ ỹ = ln y

0 1

1 3

2 5

⇒ X =

1 0

1 1

1 2

, y =

1

3

5



Ans: y = ee2x = e2x+1
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Exercises 6.6

1. Find an LS curve of the form y = β0 + β1x that best fits the given points.

(a) (1, 0), (2, 1), (4, 2), (5, 3) (b) (2, 3), (3, 2), (5, 1), (6, 0)

Ans: (a) y = −0.6 + 0.7x

2. M A certain experiment produces the data

(1, 1.8), (2, 2.7), (3, 3.4), (4, 3.8), (5, 3.9).

For these points, we will try to find the best-fitting model of the form y = β1x+ β2x
2.

(a) Find and display the design matrix and the observation vector.
(b) Find the unknown parameter vector.
(c) Find the LS error.
(d) Plot the associated LS curve along with the data.
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A.1. Understanding / Interpretation of Eigenval-
ues and Eigenvectors

Recall: Let A be an n× n matrix. An eigenvalue λ of A and its corre-
sponding eigenvector v are defined as

Av = λv, v 6= 0. (A.1.1)

Observation A.1. (Matrix Transformation)
Let A be an n× n matrix. Consider the matrix multiplication

Ax = y. (A.1.2)

• It scales the vector.
• It rotates the vector.

Remark A.2. Historically, eigenvalues and eigenvectors appeared in
the study of quadratic forms and differential equations:

In the 18th century, Leonhard Euler studied the rotational mo-
tion of a rigid body, and discovered the importance of the princi-
pal axes. Joseph-Louis Lagrange realized that the principal
axes are the eigenvectors of the inertia matrix [3].

• (Having Principal Axes) There are favored directions/vectors,
for square matrices.
When the matrix acts on these favored (principal) vectors, the action
results in scaling the vectors, without rotation.

– These favored vectors are the eigenvectors;
– the scaling factor is the eigenvalue.

• (Forming a Basis) In various real-world interesting applications, the
eigenvectors form a basis, which makes matrix methods and al-
gorithms much more effective and useful.
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Example A.3. Let A ∈ Rn×n and its eigenvectors {v1, v2, · · · , vn} form a
basis for Rn, Avi = λivi, i = 1, 2, · · · , n. Then for an arbitrary x ∈ Rn,

x = ξ1v1 + ξ2v2 + · · ·+ ξnvn =
n∑
i=1

ξivi. (A.1.3)

and therefore

Ax =
n∑
i=1

ξiAvi =
n∑
i=1

ξiλivi. ⇒ Akx =
n∑
i=1

ξiλ
k
i vi. (A.1.4)

The formulation is applicable for many tasks in scientific computing,
e.g. convergence analysis for various iterative procedures.

Example A.4. (Geometric Interpretation) Consider a 2× 2 matrix

A =

[
2 −1

−1 2

]
. (A.1.5)

Then its eigenvalues and eigenvectors are

λ1, λ2 = 3, 1 v1, v2 =

[
−1

1

]
,

[
1

1

]
. (A.1.6)

The action of A on the unit circle (S1) results in the following figure.

Figure A.1: Action of A at x ∈ S1.

Find the area of the solid ellipse, the image of the unit disk by A.
Ans: π · |λ1 · λ2| = π · 3 · 1 = 3π
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Singular Value Decomposition

Theorem A.5. (SVD Theorem). Let A ∈ Rm×n with m ≥ n. Then

A = U ΣV T , (A.1.7)

where U ∈ Rm×n and satisfies UTU = I, V ∈ Rn×n and satisfies V TV = I,
and Σ = diag(σ1, σ2, · · · , σn), where

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (A.1.8)

Remark A.6. The SVD

• The singular values are the square root of eigenvalues of ATA:

σi =
√
λi, ATAvi = λivi, (A.1.9)

the right singular vectors V is the collection of eigenvectors of
ATA:

V = [v1 v2 · · · vn], (A.1.10)

the left singular vectors U are the collection of uj ’s:

uj = Avj/σj, σj 6= 0, (A.1.11)

and the principal components are

AV = UΣ. (A.1.12)

• (Dyadic Decomposition) Given A = UΣV T , the matrix A ∈ Rm×n

can be expressed as
A =

n∑
j=1

σjujv
T
j . (A.1.13)

• (Data Compression) The matrix A can be approximated by Ak:

A ≈ Ak
def
==

k∑
j=1

σjujv
T
j , k < n, (A.1.14)

with error ||A− Ak||2 = σk+1.
• The SVD plays crucial roles in various applications, including re-

gression analysis and principal component analysis.
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A.2. Eigenvalues and Eigenvectors of Stochas-
tic Matrices

Definition A.7. Probability Vector and Stochastic Matrix

• A vector p =

p1...
pn

with nonnegative entries that add up to 1 is called

a probability vector.
• A (left) stochastic matrix is a square matrix whose columns are

probability vectors.

A stochastic matrix is also called a probability matrix, transition ma-
trix, substitution matrix, or Markov matrix.

Lemma A.8. If p is a probability vector and T is a stochastic matrix,
then Tp is a probability vector.

Proof. Let v1,v2, · · · ,vn be the columns of T . Then

q := Tp = p1v1 + p2v2 + · · ·+ pnvn ∈ Rn.

Clearly q has nonnegative entries; their sum reads

sum(q) = sum(p1v1 + p2v2 + · · ·+ pnvn) = p1 + p2 + · · ·+ pn = 1.

Definition A.9. Markov Chain
In general, a finite Markov chain is a sequence of probability vectors
x0,x1,x2, · · · , together with a stochastic matrix T , such that

x1 = Tx0, x2 = Tx1, x3 = Tx2, · · · (A.2.1)

We can rewrite the above conditions as a recurrence relation

xk+1 = Txk, k = 0, 1, 2, · · · (A.2.2)

The vector xk is often called a state vector.
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The Maximum of Eigenvalues

Definition A.10. For a vector x = [x1, x2, · · · , xn]T ∈ Rn, the p-norm is
defined as

||x||p =
(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p
, p > 0. (A.2.3)

For example,

||x||1 = |x1|+ |x2|+ · · ·+ |xn| (1-norm)
||x||2 =

√
|x1|2 + |x2|2 + · · ·+ |xn|2 (2-norm)

(A.2.4)

Theorem A.11. Let T ∈ Rn×n be a stochastic matrix. Then

||Tx||1 ≤ ||x||1, ∀x ∈ Rn. (A.2.5)

Proof. Consider the case, n = 2: T =

[
t11 t12

t21 t22

]
. Then, for x =

[
x1

x2

]
∈ R2,

||Tx||1 = |t11x1 + t12x2|+ |t21x1 + t22x2|
≤ t11|x1|+ t12|x2| + t21|x1|+ t22|x2|
= (t11 + t21)|x1| + (t12 + t22)|x2|
= |x1|+ |x2| = ||x||1.

(A.2.6)

For general n ≥ 2, use the same argument to complete the proof.

Corollary A.12. Let T ∈ Rn×n be a stochastic matrix. Then every
eigenvalue of T is bounded by 1 in modulus. That is,

Tv = λv ⇒ |λ| ≤ 1. (A.2.7)

Proof. Let Tv = λv. Then it follows from Theorem A.11 that

||Tv||1 = ||λv||1 = |λ| ||v||1 ≤ ||v||1, (A.2.8)

which completes the proof.
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The Eigenvalue 1 and Its Corresponding Eigenvector

Theorem A.13. Let T ∈ Rn×n be a stochastic matrix. Then the number
1 is an eigenvalue of T .

Proof. We prove the theorem in two different ways.

(a) Note that det (T T − λI) = det (T − λI), which implies that T and T T

have exactly the same eigenvalues. Consider the all-ones vector
1 = [1, 1, · · · , 1]T ∈ Rn. Then

T T1 = 1,

which implies that the number 1 is an eigenvalue of T T and therefore
it is an eigenvalue of T .

(b) Construct T − λI for λ = 1:

T − I =


t11 − 1 t12 · · · T1n

t21 t22 − 1 · · · T2n
... . . . ...
tn1 t12 · · · T1n − 1

. (A.2.9)

We apply replacement operations so that all rows are added to the
bottom row. Then the resulting bottom row must become a zero
row, which implies

det (T − I) = 0, (A.2.10)

and therefore the number 1 is an eigenvalue of T .

Definition A.14. The eigenvector v corresponding to the eigenvalue
1 is called a steady-state vector of T . It is also called a Perron-
Frobenius eigenvector or a stable equilibrium distribution.

The steady-state vector represents a long term behavior of a Markov
chain.
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The Steady-State Vector

Theorem A.15. If T is an n× n regular stochastic matrix, then T
has a unique steady-state vector q.

(a) The entries of q are strictly positive.
(b) The steady-state vector can be computed by the power method

q = lim
k→∞

T kx0, (A.2.11)

where x0 is a probability vector.

Example A.16. Find eigenvalues and corresponding eigenvectors of the
transition matrix.

T =

1/2 1/4 1/6

1/3 1/2 1/3

1/6 1/4 1/2

. (A.2.12)

Solution. stochastic_eigen.py
1 import numpy as np
2 np.set_printoptions(precision=4,suppress=True)
3

4 T = [[1/2,1/4,1/6],
5 [1/3,1/2,1/3],
6 [1/6,1/4,1/2]]
7 T = np.array(T)
8

9 D,V = np.linalg.eig(T)
10

11 print('Eigenvalues:'); print(D)
12 print('Eigenvectors:'); print(V)
13

14 print('----- steady-state vector ----')
15 v1 = V[:,0]; v1 /= sum(v1)
16 print('v1 = ',v1)
17

18 print('----- power method -----------')
19 x = np.array([1,0,0]);
20 print('k = %2d; '%(0),x)
21 for k in range(10):
22 x = T.dot(x);
23 print('k = %2d; '%(k+1),x)
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Output
1 Eigenvalues:
2 [1. 0.3333 0.1667]
3 Eigenvectors:
4 [[-0.5145 -0.7071 0.4082]
5 [-0.686 -0. -0.8165]
6 [-0.5145 0.7071 0.4082]]
7 ----- steady-state vector ----
8 v1 = [0.3 0.4 0.3]
9 ----- power method -----------

10 k = 0; [1 0 0]
11 k = 1; [0.5 0.3333 0.1667]
12 k = 2; [0.3611 0.3889 0.25 ]
13 k = 3; [0.3194 0.3981 0.2824]
14 k = 4; [0.3063 0.3997 0.294 ]
15 k = 5; [0.3021 0.3999 0.298 ]
16 k = 6; [0.3007 0.4 0.2993]
17 k = 7; [0.3002 0.4 0.2998]
18 k = 8; [0.3001 0.4 0.2999]
19 k = 9; [0.3 0.4 0.3]
20 k = 10; [0.3 0.4 0.3]

Remark A.17. Some eigenvalues of a stochastic matrix can be negative.
For example, apply a row interchange operation to T in (A.2.12):

T[[1,2]] = T[[2,1]]

Then

• The resulting matrix is still a stochastic matrix.
• Its eigenvalues become

[ 1. 0.281 -0.1977].
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C.1. Linear Equations

§1.7. Linear Independence

Definition 1.50. A set of vectors {v1, v2, · · · , vp} in Rn is said to be
linearly independent, if the vector equation

x1 v1 + x2 v2 + · · ·+ xp vp = 0 (C.1.1)

has only the trivial solution (i.e., x1 = x2 = · · · = xp = 0). The set of
vectors {v1, v2, · · · , vp} is said to be linearly dependent, if there exist
weights c1, c2, · · · , cp, not all zero, such that

c1 v1 + c2 v2 + · · ·+ cp vp = 0. (C.1.2)

Remark 1.52. Let A = [v1, v2, · · · , vp]. The matrix equation Ax = 0 is
equivalent to x1 v1 + x2 v2 + · · ·+ xp vp = 0.

1. Columns of A are linearly independent if and only if Ax = 0 has
only the trivial solution. (⇔ Ax = 0 has no free variable ⇔ Every
column in A is a pivot column.)

2. Columns of A are linearly dependent if and only if Ax = 0 has a
nontrivial solution. (⇔ Ax = 0 has at least one free variable ⇔ A

has at least one non-pivot column.)

Example C.1. Determine if the vectors are linearly independent.−1

1

3

,
 2

0

−8

,
−1

3

1


Solution.
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§1.9. The Matrix of A Linear Transformation
Theorem 1.75. Let T : Rn → Rm be a linear transformation. Then there
exists a unique matrix A ∈ Rm×n such that

T (x) = Ax, for all x ∈ Rn.

In fact, with ej denoting the j-th standard unit vector in Rn,

A = [T (e1) T (e2) · · · T (en)] . (C.1.3)

The matrix A is called the standard matrix of the transformation.

Note: Standard unit vectors in Rn & the standard matrix:

e1 =



1

0
...
...
0


, e2 =


0

1

0
...
0

, · · · , en =



0
...
...
0

1


. (C.1.4)

Any x ∈ Rn can be written as

x =



x1

x2
...
...

xn


= x1



1

0
...
...
0


+ x2


0

1

0
...
0

+ · · ·+ xn



0
...
...
0

1


= x1e1 + x2e2 + · · ·+ xnen.

Thus
T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= [T (e1) T (e2) · · · T (en)]x,

(C.1.5)

and therefore the standard matrix reads
A = [T (e1) T (e2) · · · T (en)] . (C.1.6)
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Example C.2. Write the standard matrix for the linear transformation
T : R2 → R4 given by

T (x1, x2) = (x1 + 4x2, 5x1,−3x2, x1 − x2).

Solution.

Theorem 1.81. Let T : Rn → Rm be a linear transformation with the
standard matrix A. Then,

(a) T maps Rn onto Rm if and only if the columns of A span Rm.
(⇔ every row of A has a pivot position
⇔ Ax = b has a solution for all b ∈ Rm)

(b) T is one-to-one if and only if the columns of A are linearly indepen-
dent.
(⇔ every column of A is a pivot column
⇔ Ax = 0 has “only" the trivial solution)

Example C.3. Let T : R4 → R3 be the linear transformation whose stan-
dard matrix is

A =

1 −4 0 1

0 2 −1 3

0 0 0 −1

 .
Is T onto? Is T one-to-one?
Solution.

Ans: onto, but not one-to-one
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C.2. Matrix Algebra

§2.3. Characterizations of Invertible Matrices

Theorem 2.25. (Invertible Matrix Theorem)
Let A be an n× n matrix. Then the following are equivalent.

a. A is an invertible matrix. (Def: There is B s.t. AB = BA = I)
b. A is row equivalent to the n× n identity matrix.
c. A has n pivot positions.
d. The equation Ax = 0 has only the trivial solution x = 0.
e. The columns of A are linearly independent.
f. The linear transformation x 7→ Ax is one-to-one.
g. The equation Ax = b has unique solution for each b ∈ Rn.
h. The columns of A span Rn.
i. The linear transformation x 7→ Ax maps Rn onto Rn.
j. There is a matrix C ∈ Rn×n such that CA = I

k. There is a matrix D ∈ Rn×n such that AD = I

l. AT is invertible and (AT )−1 = (A−1)T .

Theorem 2.74 (Invertible Matrix Theorem); §2.9
m. The columns of A form a basis of Rn

n. ColA = Rn

o. dim ColA = n

p. rankA = n

q. NulA = {0}
r. dim NulA = 0

Theorem 5.17 (Invertible Matrix Theorem); §5.2
s. The number 0 is not an eigenvalue of A.
t. detA 6= 0
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Example C.4. An n× n upper triangular matrix is one whose entries
below the main diagonal are zeros. When is a square upper triangular ma-
trix invertible?

Theorem 2.29 (Invertible linear transformations)

1. A linear transformation T : Rn → Rn is said to be invertible if
there exists S : Rn → Rn such that S ◦ T (x) = T ◦ S(x) = x for all
x ∈ Rn. In this case, S = T−1.

2. Also, if A is the standard matrix for T , then A−1 is the standard
matrix for T−1.

Example C.5. Let T : R2 → R2 be a linear transformation such that

T

[
x1

x2

]
=

[
−5x1 + 9x2

4x1 − 7x2

]
. Find a formula for T−1.

Solution.
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§2.8. Subspaces of Rn

Definition 2.47. A subspace of Rn is any set H in Rn that has three
properties:

a) The zero vector is in H.
b) For each u and v in H, the sum u + v is in H.
c) For each u in H and each scalar c, the vector cu is in H.

That is, H is closed under linear combinations.

Definition 2.49. Let A be an m× n matrix. The column space of A
is the set ColA of all linear combinations of columns of A. That is, if
A = [a1 a2 · · · an], then

ColA = {u | u = c1 a1 + c2 a2 + · · ·+ cn an}, (C.2.1)

where c1, c2, · · · , cn are scalars. ColA is a subspace of Rm.

Definition 2.51. Let A be an m× n matrix. The null space of A, NulA,
is the set of all solutions of the homogeneous system Ax = 0.

Theorem 2.52. NulA is a subspace of Rn.

Example C.6. Let A =

 1 −2 −3

2 4 2

−3 5 6

 and b =

 2

−4

−7

. Determine whether

b is in the column space of A, ColA.
Solution. Clue: 1 b ∈ ColA
⇔ 2 b is a linear combination of columns of A
⇔ 3 Ax = b is consistent
⇔ 4 [A b] has a solution
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Definition 2.53. A basis for a subspace H in Rn is a set of vectors that
1. is linearly independent, and
2. spans H.

Theorem 2.56. Basis for NulA can be obtained from the parametric
vector form of solutions of Ax = 0. That is, suppose that the solutions of
Ax = 0 reads

x = x1 u1 + x2 u2 + · · ·+ xk uk,

where x1, x2, · · · , xk correspond to free variables. Then, a basis for NulA
is {u1, u2, · · · , uk}.

Theorem 2.58. In general, non-pivot columns are linear combinations
of pivot columns. Thus the pivot columns of a matrix A form a basis
for ColA.

Example C.7. Matrix A and its echelon form is given. Find a basis for
ColA and a basis for NulA.

A =

3 −6 9 0

2 −4 7 2

3 −6 6 −6

 ∼
1 −2 3 0

0 0 1 2

0 0 0 0


Solution.

Ans: BColA = {a1, a3}, BNulA = {[2, 1, 0, 0]T , [6, 0,−2, 1]T}.
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§2.9. Dimension and Rank

Definition 2.64. Suppose the set B = {b1, b2, · · · , bp} is a basis for a
subspace H. For each x ∈ H, the coordinates of x relative to the ba-
sis B are the weights c1, c2, · · · , cp such that x = c1 b1 + c2 b2 + · · ·+ cp bp,
and the vector in Rp

[x]B =

c1...
cp


is called the coordinate vector of x (relative to B) or the B-
coordinate vector of x.

Self-study C.8. Let v1 =

 3

1

−2

, v2 =

−2

2

1

, x =

 2

6

−2

, and B = {v1,v2}.

Then B is a basis for H = Span{v1,v2}, because v1 and v2 are linearly
independent. Determine if x is in H, and if it is, find the coordinate vector
of x relative to B.

Solution.
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Theorem 2.70. (Rank Theorem) Let A ∈ Rm×n. Then

dim ColA+ dim NulA = rankA+ nullityA = n

= (the number of columns in A)

Here, “dim NulA” is called the nullity of A: nullityA

Theorem 2.73. (The Basis Theorem)
Let H be a p-dimensional subspace of Rn. Then

a) Any linearly independent set of exactly p elements in H is automat-
ically a basis for H

b) Any set of p elements of H that spans H is automatically a basis for
H.

Example C.9. Find a basis for the subspace spanned by the given vectors.
What is the dimension of the subspace?

1

−1

−2

3

,


2

−3

−1

4

,


−3

5

0

−5

,


−4

6

2

−8


Solution.
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C.3. Determinants

§3.2. Properties of Determinants

Definition 3.1. Let A be an n× n square matrix. Then determinant is
a scalar value denoted by detA or |A|.

1) Let A = [a] ∈ R1× 1. Then detA = a.

2) Let A =

[
a b

c d

]
∈ R2× 2. Then detA = ad− bc.

Definition 3.3. Let Aij be the submatrix of A obtained by deleting row i
and column j of A. Then the (i, j)-cofactor of A = [aij] is the scalar Cij,
given by

Cij = (−1)i+jdetAij. (C.3.1)

Definition 3.4. For n ≥ 2, the determinant of an n× n matrix A = [aij]
is given by the following formulas:

1. The cofactor expansion across the first row:

detA = a11C11 + a12C12 + · · ·+ a1nC1n (C.3.2)

2. The cofactor expansion across the row i:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin (C.3.3)

3. The cofactor expansion down the column j:

detA = a1jC1j + a2jC2j + · · ·+ anjCnj (C.3.4)

Note: The determinant can be viewed as a volume scaling factor.
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Theorem 3.9. Let A be an n× n square matrix.

a) (Replacement): If B is obtained from A by a row replacement, then
detB = detA.

A =

[
1 3

2 1

]
, B =

[
1 3

0 −5

]

b) (Interchange): If two rows of A are interchanged to form B, then
detB = −detA.

A =

[
1 3

2 1

]
, B =

[
2 1

1 3

]

c) (Scaling): If one row of A is multiplied by k (6= 0), then
detB = k · detA.

A =

[
1 3

2 1

]
, B =

[
1 3

−4 −2

]

Example C.10. Compute detA, where A =

 1 −4 2

−1 7 0

−2 8 −9

, after applying

a couple of steps of replacement operations.
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Claim 3.12. Let A and B be n× n matrices.

a) detAT = detA.

b) det (AB) = detA · detB.

c) If A is invertible, then detA−1 =
1

detA
. (∵ det In = 1.)

Example C.11. Find the determinant of A2, when

A =


1 0 0 3

0 3 2 0

−1 0 4 −2

1 0 0 4


Solution.

Ans: detA = 12 ⇒ det (A2) = (detA)2 = (12)2 = 144.
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C.4. Vector Spaces

§4.1. Vector Spaces and Subspaces
Definition 4.1. A vector space is a nonempty set V of objects, called
vectors, on which are defined two operations, called addition and
multiplication by scalars (real numbers), subject to the ten axioms
(or rules) listed below. The axioms must hold for all vectors u,v,w ∈ V
and for all scalars c and d.

1. u + v ∈ V
2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. There is a zero vector 0 ∈ V such that u + 0 = u

5. For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0

6. cu ∈ V
7. c(u + v) = cu + cv

8. (c+ d)u = cu + du

9. c(du) = (cd)u

10. 1u = u

Definition 4.3. A subspace of a vector space V is a subset H of V that
has three properties:

a) 0 ∈ H, where 0 is the zero vector of V

b) H is closed under vector addition: for each u,v ∈ H, u + v ∈ H

c) H is closed under scalar multiplication: for each u ∈ H and each
scalar c, cu ∈ H

Theorem 4.7. If v1, v2, · · · , vp are in a vector space V , then
Span{v1, v2, · · · , vp} is a subspace of V .
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Example C.12. Let H = {(a− b, 3b− a, a+ b, b) | a, b ∈ R}. Show that H is
a subspace of R4.

Solution.

Example C.13. Determine if the given set is a subspace of Pn for an ap-
propriate value of n.{

at2 | a ∈ R
}

a) {p ∈ P3 with integer coefficients}b){
a+ t2 | a ∈ R

}
c) {p ∈ Pn | p(0) = 0}d)

Solution.

Ans: a) Yes, b) No, c) No, d) Yes

Self-study C.14. Let H and K be subspaces of V . Define the sum of H
and K as

H +K = {u + v | u ∈ H, v ∈ K}.

Prove that H +K is a subspace of V .
Solution.
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C.5. Eigenvalues and Eigenvectors

§5.3. Diagonalization

Definition 5.25. An n× nmatrix A is said to be diagonalizable if there
exists an invertible matrix P and a diagonal matrix D such that

A = PDP−1 (or P−1AP = D) (C.5.1)

Theorem 5.28. (The Diagonalization Theorem)

1. An n× n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors v1, v2, · · · , vn.

2. In fact, A = PDP−1 if and only if columns of P are n linearly inde-
pendent eigenvectors of A. In this case, the diagonal entries of D are
the corresponding eigenvalues of A. That is,

P = [v1 v2 · · · vn],

D = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

, (C.5.2)

where Avk = λkvk, k = 1, 2, · · · , n.
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The Diagonalization Theorem can be proved using the following remark.

Remark 5.29. AP = PD with D Diagonal
Let P = [v1 v2 · · · vn] and D = diag(λ1, λ2, · · · , λn) be arbitrary n× n
matrices. Then,

AP = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn], (C.5.3)

while

PD = [v1 v2 · · · vn]


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

 = [λ1v1 λ2v2 · · · λnvn]. (C.5.4)

If AP = PD with D diagonal, then the nonzero columns of P are
eigenvectors of A.

Self-study C.15. Diagonalize the following matrix, if possible.

B =

 2 4 3

−4 −6 −3

3 3 1

,
for which det (B − λI) = −(λ− 1)(λ+ 2)2.
Solution.
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§5.9. Applications to Markov Chains

Definition 5.60. Probability Vector and Stochastic Matrix

• A vector p =

p1...
pn

with nonnegative entries that add up to 1 is called

a probability vector.
• A (left) stochastic matrix is a square matrix whose columns are

probability vectors.

A stochastic matrix is also called a probability matrix, transition ma-
trix, substitution matrix, or Markov matrix.

Lemma 5.61. Let T be a stochastic matrix. If p is a probability vector,
then so is q = Tp.

Proof. Let v1,v2, · · · ,vn be the columns of T . Then

q = Tp = p1v1 + p2v2 + · · · pnvn.

Clearly q has nonnegative entries; their sum reads

sum(q) = sum(p1v1 + p2v2 + · · · pnvn) = p1 + p2 + · · ·+ pn = 1.

Definition 5.62. Markov Chain
In general, a finite Markov chain is a sequence of probability vectors
x0,x1,x2, · · · , together with a stochastic matrix T , such that

x1 = Tx0, x2 = Tx1, x3 = Tx2, · · · (C.5.5)

We can rewrite the above conditions as a recurrence relation

xk+1 = Txk, k = 0, 1, 2, · · · (C.5.6)

The vector xk is often called a state vector.
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Steady-State Vectors

Definition 5.66. If T is a stochastic matrix, then a steady-state vector
for T is a probability vector q such that

Tq = q. (C.5.7)

Note: The steady-state vector q can be seen as an eigenvector of T , of
which the corresponding eigenvalue λ = 1.

Strategy 5.67. How to Find a Steady-State Vector
(a) First, solve for x = [x1, x2, · · · , xn]T :

Tx = x ⇔ Tx− x = 0 ⇔ (T − I)x = 0. (C.5.8)

(b) Then, set
q =

1

x1 + x2 + · · ·+ xn
x. (C.5.9)

Example C.16. Let T =

[
0.4 0.3

0.6 0.7

]
. Find a steady-state vector for T .
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Definition 5.69. A stochastic matrix T is regular if some matrix power
T k contains only strictly positive entries.

Theorem 5.72. If T is an n× n regular stochastic matrix, then T has a
unique steady-state vector q.

(a) The entries of q are strictly positive.
(b) The steady-state vector

q = lim
k→∞

T kx0, (C.5.10)

for any initial probability vector x0.

Remark 5.73. Let T ∈ Rn×n be a regular stochastic matrix. Then

• If Tv = λv, then |λ| ≤ 1.
(The above is true for every stochastic matrix; see § A.2.)

• Every column of T k converges to q as k →∞, i.e.,

T k → [q q · · · q] ∈ Rn×n, as k →∞. (C.5.11)

Example C.17. Let T =

[
0 0.5

1 0.5

]
.

(a) Is T regular?

(b) What is the first column of lim
k→∞

T k?
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C.6. Orthogonality and Least-Squares

§6.3. Orthogonal Projections

Theorem 6.36. (The Orthogonal Decomposition Theorem)
Let W be a subspace of Rn. Then each y ∈ Rn can be written uniquely in
the form

y = ŷ + z, (C.6.1)

where ŷ ∈ W and z ∈ W⊥. In fact, if {u1, u2, · · · , up} is an orthogonal
basis for W , then

ŷ = projW y =
y•u1

u1•u1
u1 +

y•u2

u2•u2
u2 + · · ·+ y•up

up•up
up,

z = y − ŷ.
(C.6.2)

Remark 6.38. (Properties of Orthogonal Decomposition)
Let y = ŷ + z, where ŷ ∈ W and z ∈ W⊥. Then

1. ŷ is called the orthogonal projection of y onto W (= projW y)

2. ŷ is the closest point to y in W .
(in the sense ‖y − ŷ‖ ≤ ‖y − v‖, for all v ∈ W )

3. ŷ is called the best approximation to y by elements of W .

4. If y ∈ W , then projW y = y.

Example C.18. Find the distance from y to the plane in R3 spanned by u1

and u2.

y =

 5

−9

5

, u1 =

−3

−5

1

, u2 =

−3

2

1


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Theorem 6.42. If {u1, u2, · · · , up} is an orthonormal basis for a sub-
space W of Rn, then

projW y = (y•u1)u1 + (y•u2)u2 + · · ·+ (y•up)up. (C.6.3)

If U = [u1 u2 · · · up], then

projW y = UUTy, for all y ∈ Rn. (C.6.4)

The orthogonal projection can be viewed as a matrix transformation.

Example C.19. Let y =

[
7

9

]
, v =

[
3

4

]
, and W = Span{v}.

(a) Find the projection matrix UUT .

(b) Compute projW y =
y•v
v · v

v and UUTy.

(c) Find the distance from y to the subspace W .

Solution.
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§6.4. The Gram-Schmidt Process and QR Factorization
The Gram-Schmidt process is an algorithm to produce an orthogonal
or orthonormal basis for any nonzero subspace of Rn.

Theorem 6.47. (The Gram-Schmidt Process) Given a basis
{x1, x2, · · · , xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2•v1

v1•v1
v1

v3 = x3 −
x3•v1

v1•v1
v1 −

x3•v2

v2•v2
v2

...

vp = xp −
xp•v1

v1•v1
v1 −

xp•v2

v2•v2
v2 − · · · −

xp•vp−1

vp−1•vp−1
vp−1

(C.6.5)

Then {v1, v2, · · · , vp} is an orthogonal basis for W . In addition,

Span{x1, x2, · · · , xk} = Span{v1, v2, · · · , vk}, for 1 ≤ k ≤ p. (C.6.6)

Remark 6.48. For the result of the Gram-Schmidt process, define

uk =
vk
‖vk‖

, for 1 ≤ k ≤ p. (C.6.7)

Then {u1, u2, · · · , up} is an orthonormal basis for W . In practice, it is
often implemented with the normalized Gram-Schmidt process.

Example C.20. Find an orthogonal basis forW = Span{x1,x2} and projWy,
when

x1 =

 1

0

−1

, x2 =

−2

2

1

, and y =

 0

1

−1

.
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Algorithm 6.51. (QR Factorization) Let A = [x1 x2 · · · xn].
• Apply the Gram-Schmidt process to obtain an orthonormal basis
{u1, u2, · · · , un}.

• Then
x1 = (u1•x1)u1

x2 = (u1•x2)u1 + (u2•x2)u2

x3 = (u1•x3)u1 + (u2•x3)u2 + (u3•x3)u3
...

xn =
∑n

j=1(uj•xn)uj.

(C.6.8)

• Thus
A = [x1 x2 · · · xn] = QR (C.6.9)

implies that

Q = [u1 u2 · · · un],

R =


u1•x1 u1•x2 u1•x3 · · · u1•xn

0 u2•x2 u2•x3 · · · u2•xn
0 0 u3•x3 · · · u3•xn
... ... ... . . . ...
0 0 0 · · · un•xn

 = QTA.
(C.6.10)

• In practice, the coefficients rij = ui•xj, i < j, can be saved during
the (normalized) Gram-Schmidt process.

Self-study C.21. Find the QR factorization for A =

[
4 −1

3 2

]
.

Solution.

Ans: Q =

[
0.8 −0.6

0.6 0.8

]
R =

[
5 0.4

0 2.2

]
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§6.6. Machine Learning: Regression Analysis

Definition 6.54. Let A is an m× n matrix and b ∈ Rm.
A least-squares (LS) solution of Ax = b is an x̂ ∈ Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖, for all x ∈ Rn. (C.6.11)

Remark 6.55. Geometric Interpretation of the LS Problem

• For all x ∈ Rn, Ax will necessarily be in ColA, a subspace of Rm.

– So we seek an x that makes Ax the closest point in ColA to b.

• Let b̂ = projColAb. Then Ax = b̂ has a solution and there is an
x̂ ∈ Rn such that

Ax̂ = b̂. (C.6.12)

• x̂ is an LS solution of Ax = b.

• The quantity ‖b−b̂‖2 = ‖b−Ax̂‖2 is called the least-squares error.
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The Method of Normal Equations

Theorem 6.56. The set of LS solutions of Ax = b coincides with the
nonempty set of solutions of the normal equations

ATAx = ATb. (C.6.13)

Theorem 6.59. Let A be an m× n matrix. The following statements are
logically equivalent:

a. The equation Ax = b has a unique LS solution for each b ∈ Rm.
b. The columns of A are linearly independent.
c. The matrix ATA is invertible.

When these statements are true, the unique LS solution x̂ is given by

x̂ = (ATA)−1ATb. (C.6.14)

Regression Line

Definition 6.65. Suppose a set of experimental data points are given as

(x1, y1), (x2, y2), · · · , (xm, ym)

such that the graph is close to a line. We determine a line

y = β0 + β1x (C.6.15)

that is as close as possible to the given points. This line is called the
least-squares line; it is also called regression line of y on x and β0, β1
are called regression coefficients.
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Calculation of Least-Squares Lines
Remark 6.66. Consider a least-squares (LS) model of the form
y = β0 + β1x, for a given data set {(xi, yi) | i = 1, 2, · · · ,m}.

• Then
Predicted y-value Observed y-value

β0 + β1x1 = y1

β0 + β1x2 = y2
... ...

β0 + β1xm = ym

(C.6.16)

• It can be equivalently written as
Xβ = y, (C.6.17)

where

X =


1 x1

1 x2
... ...
1 xm

, β =

[
β0

β1

]
, y =


y1

y2
...
ym

.
Here we call X the design matrix, β the parameter vector, and y
the observation vector.

• (Method of Normal Equations) Thus the LS solution can be deter-
mined as

XTXβ = XTy ⇒ β = (XTX)−1XTy, (C.6.18)

provided that XTX is invertible.

Self-study C.22. Find the equation y = β0 + β1x of least-squares line that
best fits the given points:

(−1, 1), (0, 1), (1, 2), (2, 3)

Solution.
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Further Applications

Example C.23. Find an LS curve of the form y = a cosx + b sinx that best
fits the given points:

(0, 1), (π/2, 1), (π,−1).
Solution.

Nonlinear Models: Linearization

Strategy 6.74. For nonlinear models, change of variables can be ap-
plied for a linear model.

Model Change of Variables Linearization

y = A+
B

x
x̃ =

1

x
, ỹ = y ⇒ ỹ = A+Bx̃

y =
1

A+Bx
x̃ = x, ỹ =

1

y
⇒ ỹ = A+Bx̃

y = CeDx x̃ = x, ỹ = ln y ⇒ ỹ = lnC +Dx̃

(C.6.19)

The Idea: Transform the nonlinear model to produce a linear system.

Self-study C.24. Find an LS curve of the form y = CeDx that best fits the
given points:

(0, e), (1, e3), (2, e5).

Solution.
x y

0 e

1 e3

2 e5

⇒

x̃ ỹ = ln y

0 1

1 3

2 5

⇒ X =

1 0

1 1

1 2

, y =

1

3

5



Ans: y = ee2x = e2x+1
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P.1. Project Regression Analysis: Linear, Piece-
wise Linear, and Nonlinear Models

Regression analysis is a set of statistical processes for estimating the
relationships between independent variables and dependent variables.

• Regression analysis is a way to find trends in data.
• There are variations: linear, multiple linear, and nonlinear.

– The most common models are simple linear and multiple linear.
– Nonlinear regression analysis is commonly used when the

dataset shows a nonlinear relationship.

• Choosing an appropriate regression model is often a difficult task.
In this project: we’ll try to find best regression models, for
given datasets.

Strategy P.1. Determination of the Best Model
Suppose we are given a dataset as in the figure.

1. We may plot the dataset for a visual inspection.
2. One or more good models can be selected.
3. Then, the best model is determined through analysis.

Figure P.1: A test dataset of 100 points {(xi, yi) | i = 1, 2, · · · , 100}.

It looks like a quadratic polynomial!
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Polynomial Fitting: A Review

For the dataset {(xi, yi) | i = 1, 2, · · · ,m} in Figure P.1, consider a regres-
sion model of the form

y = a0 + a1x+ a2x
2.

• Then
Predicted y-value Observed y-value

a0 + a1x1 + a2x
2
1 = y1

a0 + a1x2 + a2x
2
2 = y2

... ...
a0 + a1xm + a2x

2
m = ym

(P.1.1)

• It is equivalently written as
Xp = y, (P.1.2)

where

X =


1 x1 x21

1 x2 x22
... ... ...
1 xm x2m

, p =

a0a1
a2

, y =


y1

y2
...
ym

.
• The system can be solved using the method of normal equations:

XTXp =

 Σ1 Σxi Σx2i
Σxi Σx2i Σx3i
Σx2i Σx3i Σx4i

p =

 Σyi

Σxiyi

Σx2iyi

 = XTy (P.1.3)

Note: The above polynomial fitting is well implemented in most pro-
gramming languages.

Matlab: p = polyfit(x,y,deg);

Python: p = np.polyfit(x,y,deg)

where x and y are arrays of x- and y-coordinates, respectively, and deg
denotes the degree of the regression polynomial. We will use it!
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test_data_100.m
1 close all; clear all
2

3 DATA = readmatrix('test-data-100.txt');
4 x = DATA(:,1); y = DATA(:,2);
5 p = polyfit(x,y,2);
6 yhat = polyval(p,x); % predicted y-values
7 LS_error = norm(y-yhat)^2/length(y); % variance
8

9 %---------------------------------------------------
10 fprintf('LS_error= %.3f; p=',LS_error); disp(p)
11 % Output: LS_error= 0.130; p= 0.3944 -0.6824 0.3577
12

13 %---------------------------------------------------
14 x1 = linspace(min(x),max(x),100);
15 y1 = polyval(p,x1); % regression curve
16

17 figure, plot(x,y,'k.','MarkerSize',8); hold on
18 xlim([-1,5]); ylim([-1,5]);
19 xlabel('x','fontsize',15); ylabel('y','fontsize',14);
20 title('test-data-100: Regression','fontsize',14);
21 plot(x1,y1,'r-','linewidth',2)
22 exportgraphics(gcf,'test-data-100-regression.png','Resolution',100);

Figure P.2: test-data-100-regression.png: y = 0.3944 ∗ x2 − 0.6824 ∗ x+ 0.3577.
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Nonlinear Regression

Example P.2. See the dataset {(xi, yi)} shown
in the figure. When we try to find the best fit-
ting model of the form

y = c edx, (P.1.4)

the corresponding nonlinear least-squares
problem reads

min
c,d

m∑
i=1

(
yi − c edxi

)2
. (P.1.5)

The problem can be solved by applying a nonlinear iterative solver such as
the Newton’s method with a good initialization (c0, d0).

We can solve it much more easily through linearization.

Linearization by Change of Variables

y = c edx. (P.1.6)

The Goal: find the best-fitting (c, d) for the dataset.

• (Transform) Apply the logarithmic function to have

ln y = ln(c edx) = ln c+ ln edx = dx+ ln c. (P.1.7)

• (Change of Variables) Define

X = x; Y = ln y; a = ln c. (P.1.8)

• (Linear Model) Then the model in (P.1.7) reads

Y = dX + a, (P.1.9)

which is a linear model; we can get best (d, a), by polyfit(X,Y,1).
• Finally, we recover c = ea.
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nonlinear_regression.m
1 lose all; clear all
2

3 FILE = 'seemingly-exp-data.txt';
4 DATA = readmatrix(FILE);
5 % fitting: y =c*exp(d*x) ---> ln(y) = d*x + ln(c)
6 %---------------------------------------------------
7

8 x = DATA(:,1); y = DATA(:,2);
9 lny = log(y); % data transform

10 p = polyfit(x,lny,1); % [p1,p2] = [d, ln(c)]
11 d = p(1); c = exp(p(2));
12

13 LS_error = norm(y-c*exp(d*x))^2/length(y); % variance
14

15 %---------------------------------------------------
16 fprintf('c=%.3f; d=%.3f; LS_error=%.3f\n',c,d,LS_error)
17 % Outout: c=1.346; d=0.669; LS_error=4.212
18

19 % figure

Figure P.3: The data and a nonlinear regression via linearization: y=1.346*exp(0.669*x).

Note: If you want to test nonlinear_regression.m, you may download
https://skim.math.msstate.edu/LectureNotes/data/nonlinear_regression.m
https://skim.math.msstate.edu/LectureNotes/data/seemingly-exp-data.txt

The dataset consists of 200 points, generated by y=1.3*exp(0.7*x) with
a random positioning and random noise.

https://skim.math.msstate.edu/LectureNotes/data/nonlinear_regression.m
https://skim.math.msstate.edu/LectureNotes/data/seemingly-exp-data.txt
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Finding the Best Regression Model

Example P.3. Consider a simple
dataset: 10 points generated from a
sine function, with noise.
Wanted: Find the best regression
model for the dataset:

• Let’s select a model from Pn,
polynomials of degree ≤ n

Sine_Noisy_Data_Regression.m
1 close all; clear all
2

3 a=0; b=1; m=10;
4 f = @(t) sin(2*pi*t);
5 DATAFILE = 'sine-noisy-data.txt';
6 renew_data = 0;
7

8 %%-----------------------------------------------
9 if isfile(DATAFILE) && renew_data == 0

10 DATA = readmatrix(DATAFILE); % np.loadtxt()
11 else
12 X = linspace(a,b,m); Y0 = f(X);
13 noise = rand([1,m]); noise = noise-mean(noise(:));
14 Y = Y0 + noise; DATA = [X',Y'];
15 writematrix(DATA,DATAFILE); % np.savetxt()
16 end
17

18 %%-----------------------------------------------
19 x = linspace(a,b,101); y = f(x);
20 x1 = DATA(:,1); y1 = DATA(:,2);
21 E = zeros(1,m);
22 for n = 0:m-1
23 p = polyfit(x1,y1,n); % np.polyfit()
24 yhat = polyval(p,x1); % np.polyval()
25 E(n+1) = norm(y1-yhat,2)^2;
26 %savefigure(x,y,x1,y1,polyval(p,x),n)
27 end
28

29 % figure
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Which One is the Best?

Figure P.4: Regression models Pn, n = 0, 1, · · · , 9.

Strategy P.4. Given several models with similar explanatory ability,
the simplest is most likely to be the best choice.

• Start simple, and only make the model more complex as needed.
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The LS Error

Given the dataset {(xi, yi) | i = 1, 2, · · · ,m} and the model Pn, define the
LS-error

En =
m∑
i=1

(
yi − Pn(xi)

)2
, (m = 10), (P.1.10)

which is also called the mean square error.

Figure P.5: The best choice is P3, the third-order polynomial.

Summary P.5. Let’s summarize what we have done.

• Review: method of normal equations
• Example: polynomial fitting
• Example: nonlinear regression & its linearization
• Strategy: determination of the best model
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Project Objective: To find the best model for each of the datasets:

What to Do
First download two datasets:

https://skim.math.msstate.edu/LectureNotes/data/regression-test-data-01.txt
https://skim.math.msstate.edu/LectureNotes/data/regression-test-data-02.txt

1. Finding Best Models
(a) For regression-test-data-01.txt, which model is better,

y=a0+a1*x+a2*x.̂ 2 or y = c*exp(d*x) ?
(b) For regression-test-data-02.txt (Data-02), which order of poly-

nomial is fitting the best? Your claim must be supported pictori-
ally as in Figure P.4.

2. Verification: For all models, measure the LS-errors. Show them
in tabular form.

3. Figuring: For Data-02, display the LS-error as in Figure P.5.
4. Extra Credit: Find a piecewise regression model for Data-02.

Is it better than polynomial models? (You must verify your answer.)

Note: You may use parts of the codes shown in this project. Report your
code, numerical outputs, and figures, with a summary.

• A code itself will not give you any credit; include outputs or figures.
• The summary will be worth 20% the full credit.
• Include all into a single file in pdf or doc/docx format.

https://skim.math.msstate.edu/LectureNotes/data/regression-test-data-01.txt
https://skim.math.msstate.edu/LectureNotes/data/regression-test-data-02.txt
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multiplication by scalars, 120, 250
multiplicity, 139
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mysum.m, 33

Newton’s method, 269
nonhomogeneous linear system, 38
nonlinear least-squares problem, 269
nonlinear_regression.m, 270
nonsingular matrix, 77
nontrivial solution, 38
nonzero row, 9
norm, 181
normal equations, 212, 217, 262
np.linalg.eig, 234
np.loadtxt, 271
np.polyfit, 271
np.polyval, 271
np.savetxt, 271
np.set_printoptions, 234
null space, 98, 125, 129, 243
nullity, 105, 246

objects, 29
observation vector, 210, 219, 263
obtuse angle, 189
Octave, 29
one-to-one, 61, 64
onto, 61
orthogonal, 183
orthogonal basis, 188, 203, 204, 259
orthogonal complement, 183
orthogonal decomposition theorem, 196,

257
orthogonal matrix, 193
orthogonal projection, 189, 196, 198, 257
orthogonal set, 187
orthogonal_matrix.m, 193
orthogonality preservation, 193
orthonormal basis, 192, 203, 204, 259
orthonormal set, 192

p-norm, 232
parallelogram law, 186
parallelogram rule for addition, 21
parameter vector, 219, 263
parametric description, 14
parametric vector form, 19, 39, 43
partial pivoting, 94

Perron-Frobenius eigenvector, 233
piecewise regression, 274
pivot column, 11
pivot position, 11
plot, in Matlab, 30
polynomial fitting, 267
position vector, 20
power iteration, 162
power method, 162, 175, 234
power_iteration.m, 164
principal component analysis, 230
principal components, 230
probability matrix, 170, 231, 254
probability vector, 170, 231, 254
programming, 29
pseudoinverse, 213, 214, 217
Pythagorean theorem, 183, 198

QR factorization, 206
QR factorization algorithm, 207, 260

random orthogonal matrix, 193
random sample consensus, 210
range, 50, 129
rank, 105
rank theorem, 105, 246
RANSAC, 210
reduced echelon form, 9
REF, 9
reflections in R2, 60
regression analysis, 217, 230, 266
regression coefficients, 218, 262
regression line, 218, 262
regular, 175, 256
regular stochastic matrix, 234
regular_stochastic.m, 175
regular_stochastic_Tk.m, 176
repeller, 157
repetition, 29, 32
replacement, 233
reusability, 33
reusable, 29
right singular vectors, 230
roll-pitch-yaw, 54
rotation, 54
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row equivalent, 5
row reduced echelon form, 9
row space, 185
row-column rule, 71
RREF, 9

saddle point, 157
scalar multiple, 21
scalar multiplication, 68, 119
shear transformation, 51, 59
similar, 140
similarity, 140
similarity transformation, 140
Sine_Noisy_Data_Regression.m, 271
singular value decomposition, 230
singular values, 230
sink, 157
solution, 2
solution set, 2
source, 157
span, 25
sparse system, 87
square matrix, 68
stable equilibrium distribution, 233
standard basis, 99
standard matrix, 58, 84, 239, 242
standard unit vectors in Rn, 58, 239
state vector, 170, 231, 254
states, 168
steady-state vector, 174, 233, 255
stochastic matrix, 170, 231, 254
stochastic_eigen.py, 234
submatrix, 111, 247

subspace, 97, 121, 243, 250
substitution matrix, 170, 231, 254
sum, 123, 251
sum of products, 71
sum of two matrices, 68
superposition principle, 53, 55
surjective, 61
SVD theorem, 230
system of linear equations, iii, 2

test_data_100.m, 268
transformation, 50
transition matrix, 169, 170, 172, 231, 254
transpose, 19, 74
trivial solution, 38

unique inverse, 77
unit circle, 229
unit lower triangular matrix, 87
unit vector, 181, 192
upper triangular matrix, 84, 87, 242
upper-triangular system, 93

vector, 20
vector addition, 21
vector equation, 24, 36
vector space, 119, 120, 250
vectors, 119, 120, 250
visual inspection, 266
volume scaling factor, 109, 110, 247

yaw, 54

zero subspace, 121
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