
Heterogeneity in Computational Environments

Seongjai Kim∗

Abstract

In teaching, learning, or research activities in computational mathematics,
one often has to borrow parts of computational codes composed by colleagues
or uploaded in public domains. Most of these codes are written in C++, C,
Java, F77, or F90, or their combinations. Manipulating these heterogeneous
modules seems a necessary experience for students in modern computational
environments. This short note discusses strategies for an effective management
of such heterogeneous modules, in particular, mixtures of C++, C, and F77.
In order to help unexperienced students, automatic generators written in shell
scripts are introduced: CSTART that generates the main and input/output
routines in C++ and C, respectively, and MKMK that makes a makefile for an
efficient incorporation of various objects, depending on the operating system.

Key words. Data management, multi-language computation, shell script, public
domain, software engineering.

AMS subject classifications. 65-01, 65F20, 65Y10, 68N19

∗Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS
39762-5921 USA Email: skim@math.msstate.edu The work is supported in part by NSF grants
DMS-0107210, DMS-0312223, and DMS-0609815.

1

Heterogeneous Computational Environments 2

Contents

1. Introduction 3

2. Multi-language computation 5

2.1. General remarks . 5

2.2. When C calls FORTRAN . 6

2.3. When FORTRAN calls C . 6

3. CSTART: a main and IO routine generator 8

4. MKMK: a makefile maker 10

5. Conclusions 11

Heterogeneous Computational Environments 3

1. Introduction

Lots of computational routines are available free from public domains. A few

examples are NETLIB, MGNET, SPARSKIT, and SMLIB. The public-domain rou-

tines have been extensively utilized in both teaching numerical methods and solving

various important industrial problems, and saved human efforts from rewriting the

same or similar routines again and again.

In writing a code whether utilizing public-domain routines or not, indispensable

components for programmers are as follows:

I. Implementation of the main routine that declares variables and arrays and calls

required functions and subroutines.

II. Implementation of the input/output (IO) routines to read the data and save

the results.

III. To implement the converter routines that produce the algebraic system out of

the given data and operators. (Data are often saved in files in a certain format;

the programmer has to implement a converter routine that reforms the data to

fit the computation routines.)

IV. To get/implement the core computation routines.

A typical structure of computational algorithm is plotted in Figure 1.

Figure 1: A typical structure of computational algorithm.

Tasks III and IV are the main concerns in classrooms and research activities in

computational mathematics. Different numerical methods require different experi-

ences in implementation. Researchers in computational mathematics spend most of

Heterogeneous Computational Environments 4

their implementation time on these last two tasks. They often borrow modules, rather

than writing all personally, in order to save time and to enjoy a better performance of

numerical methods under consideration. However, the available codes may be written

in computational languages different from the one the user is familiar with. We will

discuss strategies of calling FORTRAN subroutines from a C++/C function, and vice

versa.

The first two tasks are related to the algorithm settlement and data management.

Whenever the algorithm variables and the data are changed, the programmer should

revise the corresponding parts of the program. For experienced programmers whose

main interests are not in these tasks, these are just “chores” on which they do not

want to spend their priceless time. (I never mean that these are trivial. In connection

with data management, the algorithm-settling is very important in software engineer-

ing, because it is strongly connected with convenience, portability, reusability, and

performance of the program.)

Here the question is: how can we minimize the time on chores and focus on the

main subjects? The main subjects can be either the development of core computation

algorithms or data management, or both. Answering the question seems problematic,

but it is clearly important for efficient classroom experiences and research activities as

well, in particular, for unexperienced students. We will introduce an automatic code

generator, so-called CSTART that deals with the first two tasks. A generator of such

kind should be able to handle various types of algorithm parameters/variables and

heterogeneous data structures. Furthermore, its generated modules should require

minimized extra work for revision, preferably, touch-free.

CSTART generates three routines: (1) the main function in C++, (2) a set-

tlement routine in C which reads user-specified variables and settles other required

parameters, and (3) a read-data module in C that reads data files, if any. It han-

dles the components such as Main, Parameter, IO, and DATA in Figure 1, and its

generated routines are touch-free. Whenever the structure of data and variables

are changed, the programmer can regenerate the routines by running CSTART one

more time. To compile and link such heterogeneous modules efficiently, a makefile

maker called MKMK is introduced. The source codes of CSTART (in Bourne shell)

and MKMK (in C shell), their user manual, and example codes are available from

http://www.msstate.edu/∼skim/GRADE.
An outline of the article is as follows. In §2, we consider the interfaces between

different computational languages, and implementation strategies for multi-language

computation, focusing on the interfaces between C++, C, and F77. In §3, we present

Heterogeneous Computational Environments 5

the scope of CSTART, exemplifying a Least-Squares problem to be solved by the QR

algorithm. Section 4 discusses the makefile maker MKMK. The last section includes

conclusions.

2. Multi-language computation

We begin with how to compile and link C-modules (functions in C++ and C)

together with FORTRAN-modules (functions and subroutines in F77 and its later

versions) for an executable.

2.1. General remarks

For an efficient programming, multi-language implementation seems indispens-

able. Due to the time limitation, it is not relevant to implement every line of routines

for the given problem. Even if time is enough, we do not have to waste energy in dupli-

cating former works! Public domain codes are often well written, due to experiences

and strategies from lots of computational mathematicians, and show satisfactory nu-

merical performances. Most of such codes are implemented in F77 in 70s and 80s and

still being utilized extensively in scientific computation.

Even though F77 and later versions (F90 and F95) show advantages in scientific

computation, they are still not so convenient in system cooperation and dynamic

array allocation as much as in C++. Many modern computation packages incorporate

C++ headers for a dynamic array allocation, object-oriented programming via class

libraries, and system cooperation.

A computation algorithm can be defined as a set of well-organized functions. Dif-

ferent functions can be written in different languages. Since different languages may

have different conventions in the function interfaces, a special attention is required

in combining these routines. As far as the function interfaces are explicitly matched

each other, any objects produced from any different languages can be linked for an

executable. The interface conventions built in C, C++, and FORTRAN are:

C and C++ FORTRAN
Function Arguments value or pointer pointer, always
Function Name the same as called occasionally, post-pend under bar ()

Roughly speaking, FORTRAN compilers in IBM and HP machines do not post-

pend an under bar, while the others do. However, GNU FORTRAN compilers (g77)

post-pend an under bar in most operating systems.

Heterogeneous Computational Environments 6

2.2. When C calls FORTRAN

One can easily figure out from the following example the core of the interface

convention when a FORTRAN-module is called from a C-module (the main in C++):

#include<iostream.h>

#include<assert.h>

// declaring f77-functions

#if defined (_IBMR2) || defined (AIX) || defined (hpux)

extern "C" void f77name(int*,float*,double*);

#else

extern "C" void f77name_(int*,float*,double*);

#endif

main(){

......

// calling f77-functions

#if defined (_IBMR2) || defined (AIX) || defined (hpux)

f77name(&nx,&ax,A);

#else

f77name_(&nx,&ax,A);

#endif

......

}

Here ax and A are declared as a float variable and a double array, respectively.

Except called from the main function in C++ or C, FORTRAN-modules do not have

to be declared as an external object. On the other hand, a function in C called from

the main function in C++ should be declared as an external object, e.g.,

extern "C" void Cfunction(int*,float*,double*); //in C++ main

2.3. When FORTRAN calls C

Now, we consider the case that a FORTRAN-module calls a C-module. Assume

that the C-module to be called begins with

void pcgilu0(nx,ny,itmax,idpcond,level,iterPCG,ierr,tol,

a,ailu,x,b,wksp)

Heterogeneous Computational Environments 7

int nx,ny,itmax,idpcond,level;

int *iterPCG,*ierr;

double *tol;

double a[],ailu[],x[],b[],wksp[][nx*ny];

{

...

}

Note that the first five arguments are expecting values; pcgilu0 cannot be called

directly from a FORTRAN-module. To call it from a FORTRAN-module, we need

to introduce a connecting module in C, say pcgilu0c, given as follows:

void pcgilu0c(nx,ny,itmax,idpcond,level,iterPCG,ierr,tol,

a,ailu,x,b,wksp)

int *nx,*ny,*itmax,*idpcond,*level;

int *iterPCG,*ierr;

double *tol;

double a[],ailu[],x[],b[],wksp[];

{

pcgilu0(*nx,*ny,*itmax,*idpcond,*level,iterPCG,ierr,tol,

a,ailu,x,b,wksp);

}

Now, a FORTRAN-module can call pcgilu0c and eventually pcgilu0. In prac-

tice, one should save another copy of pcgilu0c with the function name replaced by

“pcgilu0c ” for the case that the calling name is post-pended by an under bar during

the compiling of the FORTRAN-module.

In the case that all arguments of a C-module are pointers, the module can be

called from a FORTRAN-module directly. Even in the case, one should a connecting

C-module for the case that an under bar is post-pended. For example, let cg be a

C-module in which every argument is a pointer. Then the connecting module can be

of the form:

void cg_(arguments)

... /*declarations*/

{

cg(arguments)

}

Heterogeneous Computational Environments 8

3. CSTART: a main and IO routine generator

Tasks I and II in §1 can be carried out quickly by running CSTART. To explain its

main features, we consider the following problem as an example: find the best-fitting

quadratic polynomial x(t) = x1 + x2t + x3t
2 utilizing the QR algorithm for the data

ti −1 −0.75 −0.5 0 0.25 0.5 0.75
yi 1 0.8125 0.75 1 1.3125 1.75 2.3125

(The example can be found in [6, §3.3].) Let the available code for the QR algorithm

be given as

void qr(int n,int m,int idata,int level,

double A[][m],double b[],double wksp[][m],int*ierr)

{

...

}

To utilize CSTART, we first save the data and its information in an appropriate

format. It is more convenient (and common practice in most industries) to save the

data and its information into separate files. Let us select DATA@ for the data-file and

DATA for the information-file. Let the data-file DATA@ include

-1 -0.75 -0.5 0.0 0.25 0.5 0.75

1 0.8125 0.75 1 1.3125 1.75 2.3125

Then, the information-file DATA can save

n1=2 n2=7

data=DATA

The information simply means that DATA@ has data of size 2× 7 and the data would

be read and saved in the array DATA in the program.

Then, we have to save algorithm variables into a set-file, named as SET file:

n=7 m=3

idata=1

level=2 /* print out level: necessary parameter */

ATYPE=double /* array type */

array=A /* array name */

Heterogeneous Computational Environments 9

narr=n*m /* symbolic assignment for array size */

wksp=wksp /* work-space name */

nwksp=2*m /* symbolic assignment for wksp size */

DTYPE=float /* data type */

data=DATA0 /* data array name */

dataext="@" /* file-name extension for data-file */

Headers="A.h" /* for header declarations */

Calls="B.h" /* for calling functions */

Now we are ready to run CSTART:

cstart SET_file <return>

Then, CSTART first searches the current working directory to find files whose name

ends with dataext (for this example, dataext=@). The files found are considered as

the data-files if the directory has an information-file whose name is the same as the

data-file except dataext at the end. Then, it produces three touch-free files:

Main.cpp IOset.c ReadDATA.c

(The file names can be differently selected by setting command line options for

CSTART.) Here Main.cpp is the main routine written in C++, IOset.c is a C-

routine to read SET file and DATA, and ReadDATA.c is a C-routine to read data from

DATA@. The total number of lines for these three routines is 200 to 400, depending on

the structures of data and variables. The array opened in the program for the data

is DATA, due to the user-assignment in the information-file. If the assignment of the

data array name in the information-file is removed, the array in the program for the

data would be DATA0, because of the 10th line of SET file. If there is no data-file

in the directory, ReadDATA.c will not be produced. Symbolic or string parameters in

the set-file and information-files are used for delivering information to CSTART; only

and every numeric parameter is run-time adjustable. So the programmer does not

have to regenerate the routines for a different geometry of data in the data-file; simply

change the information in the corresponding information-file. If the files A.h and B.h

are in the same directory (even though they are empty), the produced routines will

be compiled and linked without any error message from the compilers and the linker.

Now, you have to edit A.h and B.h to include declarations and callings for the core

computation modules, respectively. A.h can include

extern "C" void getmtx(int,int,int,int,int,

Heterogeneous Computational Environments 10

int,DTYPE*,ATYPE*,ATYPE*,int*);

extern "C" void qr(int,int,int,int,

ATYPE*,ATYPE*,ATYPE*,int*);

In B.h, we can open extra arrays and save function-callings:

ATYPE *b; b=new ATYPE[n]; assert(b!= 0);

getmtx(n1,n2,n,m,idata,level,DATA,A,b,&ierr);

qr(n,m,idata,level,A,b,wksp,&ierr);

Here getmtx is the converter which produces the matrix to be utilized in qr. Note

that we have assumed that getmtx and qr are written in C.

Then, we have finished every implementation step required.

Remark: For any geometry of data sets, one or more, whether having the same

structure or not, CSTART will work fine. If the number of data sets is larger than

one, it is mandatory to include the variable idata in the set-file as in the example.

Then, CSTART assigns the alphabetical ordering to the data sets. Details can be

found from the user’s manual [2].

CSTART has been utilized by junior to graduate students to carry out classroom

projects partially in a research level: medical image processing [4], accuracy of ADI

for parabolic PDEs [1], reservoir simulation [3], wave simulation [5], etc.. The source

codes of the projects used in classes can be found from

http://www.msstate.edu/∼skim/GRADE.

4. MKMK: a makefile maker

The final step in implementation is to make Makefile. If one saves or removes

one or more of source files, Makefile should be edited to fit the new set of source

files. Composing or editing Makefile is not difficult; however, it is often tedious. Here

we introduce a makefile maker, called MKMK written in C shell. The generator first

searches the current working directory as well as system variables to

• find source files (written in C, C++, FORTRAN, etc.),

• determine the language used for the main program,

• give explicit dependences for inclusion files (*.h),

• recognize the type of the operating system, and

• determine necessary libraries for linking.

Heterogeneous Computational Environments 11

Then, it produces a makefile, named Makefile which incorporates appropriate op-

timization parameters and libraries for the compilers and linker, depending on OS-

TYPEs.

The source code and the user’s manual for MKMK can be found from the same

place as for CSTART.

5. Conclusions

We have considered strategies of compiling and linking modules written in various

computational languages. Different OSTYPEs (occasionally, different computers of

the same OSTYPE) may require a different form of implementation for the function

interfaces. However, I believe one can figure out necessary modifications by investi-

gating inherited conventions after searching the system, even though it is often very

tedious. We have introduced code generators, CSTART and MKMK, which work

differently corresponding to the OSTYPE. CSTART generates the main and IO rou-

tines, incorporating the user-specified data structure and algorithm variables, while

MKMK makes a makefile to compile and link heterogeneous modules efficiently. They

are designed to minimize the time on chores and maximize convenience.

Acknowledgment

For usefulness of CSTART and MKMK, the author has been encouraged by pos-

itive feedback from students in classes: MA/CS321 and MA/CS422, Spring 1999;

MA537, Fall 1999; and MA625, Spring 2000.

References

[1] J. Douglas, Jr. and S. Kim, Improved accuracy for locally one-dimensional

methods for parabolic equations, Mathematical Models and Methods in Applied

Sciences, 11 (2001), pp. 1563–1579.

[2] S. Kim, CSTART: An automatic generator for main and input/output routines,

Technical Report #99-04, Department of Mathematics, University of Kentucky,

Lexington, KY 40506, March 1999.

[3] , Artificial damping in multigrid methods, Appl. Math. Letters, 14 (2001),

pp. 359–364.

Heterogeneous Computational Environments 12

[4] S. Kim, R. Cooper, and H. Atwood, Assessing accurate sizes of synaptic

vesicles in nerve terminals, Brain Research, 877 (2000), pp. 209–217.

[5] S. Kim and S. Kim, Multigrid simulation for high-frequency solutions of the

Helmholtz problem in heterogeneous media, SIAM J. Sci. Comput., 24 (2002),

pp. 684–701.

[6] D. Watkins, Foundations of Matrix Computations, John Wiley and Sons, New

York, Chichester, Brisbane, Toronto, Singapore, 1991.

