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Prologue

This lecture note is closely following the part of multivariable calculus in Stewart’s book [7]. In
organizing this lecture note, I am indebted by Cedar Crest College Calculus IV Lecture Notes, Dr.
James Hammer [1].

Two projects are included for students to experience computer algebra. Computer algebra
(also called symbolic computation) is a scientific area that refers to the study and development
of algorithms and software for manipulating mathematical expressions and other mathematical ob-
jects; it emphasizes exact computation with expressions containing variables that have no given
value and are manipulated as symbols. In practice, you can use computer algebra to effectively han-
dle complex math equations and problems that would be simply too complicated/time-consuming to
do by hand. The projects are organized using Maple.

Through the lecture note, I tried to make figures using Maple. Also added are some of program-
ming scripts written in Maple. The end of each section includes exercise problems. For problems
indicated by the Computer Algebra System (CAS) sign , you are recommended to use a CAS to
solve the problem.

Currently the lecture note is not fully grown up; other useful techniques and interesting exam-
ples would be soon incorporated. Any questions, suggestions, comments will be deeply appreciated.

Seongjai Kim
June 17, 2022

i1l


https://en.wikipedia.org/wiki/James_Stewart_(mathematician)
http://www2.cedarcrest.edu/academic/math/jmhammer/Teaching/Calculus4LectureNotes.pdf
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CHAPTER 12
Vectors and the Geometry of Space

In this chapter, we study vectors and equations in the 3-dimensional (3D)
space. In particular, you will learn

®* vectors

dot product

® cross product

equations of lines and planes, and

cylinders and quadric surfaces

Contents of Chapter 12

12.1.Vector Operations . . . . . . . . . . . . . i i i e e e e e e e e e 2
12.2.Equationsinthe 3D Space . . . . . . . . . . . . ... e 10
12.3.Cylinders and Quadric Surfaces . . . . . . . . . . . ... ... ... 14

This chapter corresponds to Chapter 12 in STEWART, Calculus (8th Ed.), 2015.

1



2 Chapter 12. Vectors and the Geometry of Space

12.1. Vector Operations

There exists a lot to cover in the class of multivariable calculus; however, it
is important to have a good foundation before we trudge forward. In that
vein, let’s review vectors and their geometry in space (R?) briefly.

12.1.1. 3D coordinate systems

Recall: Let P = (z1,51) and Q = (x9,72) be points in R% Then the
distance from P to Q) is

|PQ| = /(z2 — 21)% + (y2 — 11)* (12.1)

Definition}; 12.1. Let P = (z1,y1,21) and Q = (z2,», 22) be points in R3.
Then the distance from P to () is

[PQI = /(22— 21)* + (12 — 11)* + (22 — 21)*. (12.2)
‘Problem' 12.2. Find the distance between P(—3,2,7) and
Q(_17076)
Solution.

Ans: 3
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Recall: A circle in R? is defined to be all of the points in the plane (R?)
that are equidistant from a central point C(a,b).

(x —a)®>+ (y — b)* = r°. (12.3)

A natural generalization of this to 3-D space would be to say that a
sphere is defined to be all of the points in R? that are equidistant from a
central point C'. This is exactly what the following definition does!

Definition}; 12.3. Let C(h, k, () be a point in R?. Then the sphere cen-
tered at C' with radius r is defined by the equation

(x—h)?+(y—k)?+(z-10)%*=r" (12.4)

That is to say that this defines all points (z,y,z) € R? that are at the
same distance r from the center C'(h, k,1).

of a sphere, and find its center and radius.
Solution.

Ans: C(2,—1,3) and r =2
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12.1.2. Vectors and vector operations

Definition}; 12.5. A vector is a mathematical object that stores both
length (which we will often call magnitude) and direction.

Let P = (z1,y1,21) and Q = (x9 5 2, 25). Then the vector with initial point
P and terminal point () (denoted P()) is defined by

_\ N _\
PQ:<$2—ZU1,yz—y1,ZQ—Zl>:OQ—OR

where O is the origin, O = (0,0,0). The vector ﬁD is called the position
vector of the point P. For convenience, we use bold-faced lower-case letters
to denote vectors. For example, v =< v;,v9,v3 > is a (position) vector in R?
associated with the point (vq, v9, v3).

Definition}, 12.6. Two vectors are said to be equal if and only if they
have the same length and direction, regardless of their position in R3.
That is to say that a vector can be moved (with no change) anywhere in
space as long as the magnitude and direction are preserved.

Definition}; 12.7. Let v =< v;,v,v3 >. Then the magnitude (a.k.a.
length or norm) of v (denoted |v| or sometimes ||v||) is defined by

V| = \/U%—FU%Jrv%. (12.5)

Definition}, 12.8. (Vector addition) Let u =< wuj,us,u3 > and v =<
U1, U2, V3 >. Then

u+v =< uj+ v, U+ Vo, U3z + vz > .
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Definition} 12.9. (Scalar multiplication) Let v =< vy, v, v3 > and k € R.
Then

kv =< kvy, kvg, kvg > .

|2a — 3b|.
Solution.

Ans: |a| = 5;2a — 3b =< —3,-9,2 >; |2a — 3b| = V94

Definition}; 12.11. A unit vector is a vector whose magnitude is 1.
Note that given a vector v, we can form a unit vector (of the same direc-
tion) by dividing by its magnitude. That is, let v =< vy, vs,v3 >. Then

u= — (12.6)

is a unit vector in the direction of v.

Definition} 12.12. Any vector can be denoted as the linear combination
of the standard unit vectors

i=<1,00> j=<0,1,0> k=<0,0,1>.

So given a vector v =< vy, 19,03 >, one can express it with respect to the
standard unit vectors as

vV =< U1,V9,V3 >= 0114+ V2] + v3k. (12.7)

This text, however, will more often than not use the angle brace notation.
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peﬁnitionﬁ 12.13. Let u =< uy,us,u3 > and v =< vy, vy, v3 >. Then the
dot product is

u- v =1uj v + us vy + usvs, (12.8)

which is sometimes referred as the Euclidean inner product. Note
that v - v = |v|>.

\Theorem\ 12.14. Let 0 be the angle between u and v (so 0 < 0 < ).
Then

u-v = |u||v] cos(f). (12.9)

b=<3,0,3 >.
Solution.

Ans: 7/4 (= 45°)



12.1. Vector Operations 7

peﬁnitionﬁ 12.17. Let u =< uq,us,u3 > and v =< vy, vy, v3 >. Then the
cross product is the determinant of the following matrix:

i j k
uxv = det |u; us us
ootz s (12.10)
— det [“2 “3] i — det [“1 “3] j+ det [“1 “2} k
V2 U3 V1 U3 V1 V9

= < U9V3 — U3V2, U3V] — U1V3, U1V — UV > .

b=<3,-1,-2>.
Solution.

Ans: < —2,14,-10 >

| Theorem | 12.19. The vector a x b is orthogonal to both a and b.

|'Theorem | 12.20. Let 0 be the angle between a and b (so 0 < 6 < 7).
Then

la x b| = |a] |b] sin(0). (12.11)
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of the parallelogram determined by a and b.

/; / E
b

L |
I 1

Ibl]
Figure 12.1

F—————————
|
L

Problem ' 12.22. Prove that two nonzero vectors a and b are parallel if and

,,,,,,,,,, =

only if a x b = 0.
Solution.

a vector that is perpendicular (or-
thogonal) to both a and b, with a
direction given by the right-hand
rule and a magnitude equal to the
area of the parallelogram that the
vectors span.

If the fingers of your right hand
curl in the direction of a rotation
(through an angle less than 180°)
from a to b, then the thumb points
in the direction of a x b. See Fig-
The cross product a x b is defined as ure 12.2.

Figure 12.2: Finding the direction of the
cross product by the right-hand rule.
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Exercises 12.1

1. Find the cross product a x b and verify that it is orthogonal to both a and b.

(a) a=<1,2,-1>,b=<20,-3>
(b) a=<1,t,1/t >, b=<t*1t1>

2. Find |u x v| and determine whether u x v is directed into the page or out of the page.

- >
120 lv| =12

Figure 12.3

3. (1) Find a nonzero vector orthogonal to the plane through the points P, (), and R, and
(i1) find the area of the triangle PQR.

(a) P(1,0,1), Q(2,1,3), R(-3,2,5)
Ans: <0,-12,6 >, 35
(b) P(1,-1,0), Q(-3,1,2), R(0,3,—1)
Ans: < —10,—6,—14 >, /83

4. Find the angle between a and b, whena-b=—v3andaxb=<2,2,1>.
Ans: 120°

Note: Exercise problems are added for your homework; answers would be provided for some of
them. However, you have to verify them, by showing solutions in detail.
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12.2. Equations in the 3D Space

Objective: To build equations of lines, line segments, and planes.

Parametrization of a Line. Let P, = (zg, 0, 20) be a point in R?, and
v = (a, b, c) be a vector in R3. Then the line through P, parallel to v is

r=F +tv, teR. (12.12)
This can also be written as
r=x9g+at, y=yo+0obt, z=2z+ct; teR (12.13)

or as the symmetric equation

:r:—x():y—yo Z— 20 (12.14)

X

Figure 12.4: Parametrization: (left) line and (right) line segment.

Parametrization of a Line Segment. Let P and () be respectively th_e
initial and terminal points of a line segment. Then the line segment P(Q
can be parametrized as

—\ —\
r(t)=(1—t)OP+t0Q, 0<t<I. (12.15)
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line that passes through the point (5,1, 3) and is parallel to (1,4, —2).
Solution.

Ans:x=5+t,y=1+4t, =3 —2t

(2,4, —3) to (3,—1,1).
Solution.

Ans:r(t) = (2+t,4—5t,—3+4t),0 <t < 1.
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Planes. Let xq = (¢, 40, 20) be a point in the plane and n = (a, b, c) be a
vector normal to the plane. Then the equation of the plane is

n-(x—x9)=a(x—x9)+b(y—uyo)+c(z—2)=0. (12.16)

Problem 12.25. Find an equation of the plane that passes through the

-
|
S o

points P(1,2,3), Q(3,2,4), and R(1,5,2).
Solution.

Ans: —=3(x —1)+2(y —2) +6(2 —3) =0.
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Exercises 12.2

1. Find an equation of the line which passes through (1, 0, 3) and perpendicular to the plane
r—3y+2z=4.

2. Find the line of the intersection of planes x + 2y + 3z = 6 and x — y + z = 1. (Hint: The
intersection is a line; consider how the direction of the line is related to the normal vectors of

the planes.)
Ans:r=PFy+tv=<1,1,1>+t<5,2,-3 >

3. Find the vector equation for the line segment from P(1,2, —4) to Q(5,6,0).

4. Find an equation of the plane.

(a) The plane through the point (0,1, 2) and parallel to the plane x — y + 2z = 4.

(b) The plane through the points P(1,—-2,2), Q(3,—4,0), and R(—3, -2, —1).
Ans: 3(x—1)+7(y+2) —4(z —2) =0.

5. Use intercepts to help sketch the plane 2z + y + 5z = 10.
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12.3. Cylinders and Quadric Surfaces

Objective: To visualize surfaces, given their equations.

Definition}, 12.26. A cylinder is a surface that consists of all lines that
are parallel to a given line and pass through a given plane curve.

F—————————
|
L

Problem 12.28. Sketch 22 + y*> = 1 in R3.

-
|
S o
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Definition}; 12.30. A quadric surface is the graph of a second-degree
equation in three variables x,y, and z. By translation and rotation, we
can write the standard form of a quadric surface as

A? + By* +C22+J =0 or Ax>+ By*+1z=0. (12.17)

Definition}; 12.31. The trace of a surface in R? is the graph in R? ob-
tained by allowing one of the variables to be a specific real number. For
example, x = a.

7777777777 ) 2 2
‘Problem' 12.32. Use the traces to sketch 2* + % + ZZ =1
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Problem 12.33. Use the traces to sketch z = 422 + ¢2.

-
|
S o

Exercises 12.3
1. Sketch the surface.

(a) 22 +9y* =1
(b) 22 +9y> -2y =0
(c) z=sinx
2. Use traces to sketch and identify the surface.
(a) 2z =y? — 22
(b) 4y + 922 = 2% + 36
3. Sketch the region bounded by the surfaces z = /22 + % and z = 2 — 2% — ¢°.

4. Sketch the surface obtained by rotating the line r(¢) = (0, 1, 3)¢ about the z-axis; find an
equation of it. (Hint: The line can be expressed as {z = 3y, = =0}.)

Ans: |z| = 3y/22 +y? or 22 = 9(2? + 4?)



CHAPTER 14

Partial Derivatives

In mathematics, a partial derivative of a function of several variables is
its derivative with respect to one of those variables, with the others held
constant. In this chapter, you will learn about the partial derivatives and
their applications.

Subjects Applications

Limits and continuity
Partial derivatives

Tangent planes & linear approximations

Chain rule
Directional derivatives
and the Gradient Vector

Maximum and minimum values
Method of Lagrange multipliers
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14.1. Functions of Several Variables

14.1.1. Domain and range

Definition} 14.1. A function of two variables, f, is a rule that assigns
each ordered pair of real numbers (z,y) in a set D C R? a unique real
number denoted by f(x,y). The set D is called the domain of f and its
range is the set of values that [ takes on, that is, {f(x,y) : (z,y) € D}.

Definition}, 14.2. Let f be a function of two variables, and z = f(x,y).
Then z and y are called independent variables and = is called a de-
pendent variable.

r - - - g - a \/ 1

‘Problem' 14.3. Let f(z,y) = Lyj Evaluate f(3,2) and give its
T —

domain

Ans: f(3,2) =v6/2; D ={(z,y) ;2 +y+1>0, z#1}

************

,,,,,,,,,,,,
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‘Problem' 14.5. Find the domain and the range of

14.1.2. Graphs

Definition}, 14.6. If f is a function of two variables with domain D, then
the graph of f is the set of all points (z,y,2) € R? such that z = f(z,y)
for all (z,y) € D.

Solution. The graph of f has the equation z = 6 — 3x — 2y, or 3z +2y+ 2z = 6,
which is a plane. Now, we can find intercepts to graph the plane.

Solution. The graph of g has the equation z = \/9 — 22 — y2, or 22 +y? + 2% =
9, z > 0, which is a upper hemi-sphere.
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14.1.3. Level curves

Definition}; 14.9. The level curves of a function of two variables, f, are
the curves with equations f(x,y) = k, for k € K C Range(f).

@ Thomson Higher Education

Figure 14.1: Level curves: (left) the graph of a function vs. level curves and (right) a
topographic map of a mountainous region. Level curves are often considered for an effective
visualization.

F—————————
!
L

Problem' 14.10. Sketch the level curves of f (x,y) = 6 — 3z — 2y for k €

{-6,0,6,12}.
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FPil:(i)Bliéiflj 14.11. Sketch the level curves of g(z,y) = /9 — 22 —y? for k €

**********

=

A hi= ()c,y}%4x2+y2+1:

™| contourpiot( h(x, ¥), x=-3..3, ¥ =-3 .3, contowlabels = true,
contours = 10)

f 3 \

7

\ /

Figure 14.2
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Figure 14.3: Computer-generated level curves.

Function visualization is now easy with e.g., Mathematica, Maple, and Mat-
lab, as shown in Figure 14.3.1

'For plotting with Maple, you may exploit plot, plot3d, contourplot3d, and contourplot, which are
available from the plots package. Maple can include packages with the with command, as in Figure 14.3.
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14.1.4. Functions of three or more variables

Definition}; 14.13. A function of three variables, f, is a rule that
assigns each ordered pair of real numbers (z,y,2) in a set D C R? a
unique real number denoted by f(x,y, z).

2 +y? + 2
Solution.

Note: A level surface is the surface where the function values are all the
same as k. Thus the outer normal is the fastest increasing direc-
tion of f.
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Exercises 14.1
1. Find and sketch the domain of the function
(@) f(z,y) =In(9 —92° —y°)

92
®) g(r9) = T3

2. Let f(x,y) = /4 — 22 — 4y,

(a) Find the domain of f.
(b) Find the range of f.
(c) Sketch the graph of the function.

3. Match the function with its contour plot (labeled I-VI). Give reasons for your choices.

(b) f(z,y) =2+’ @) f(z.y) = |yl ® f(z.y) = 1z

I

Oz

v

K
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|
[i*]

1 | | |
L w 3] — o — ] w L

4 \
; |
-4 -2 ol

4 -3 -z -1 0 1 2 3 4

\%
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™

10

4

no
na

Y
S

4. Describe the level surfaces of the function f(x,y,z) = 2 + y* — 22,
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14.2. Limits and Continuity

Limits

Recall: For y = f(z), then we say that the limit of f(z), as z — a, is L, if
lim f(x) = L= lim f(x),
x—at

Tr—a—

or, equivalently, if Ve > 0, there exists § = §(¢) > 0 such that
if 0 <|z—a| <9 then |f(x) — L| <,
which is called the e-6 argument. In this case, we write

lim f(z) = L. (14.1)

Tr—a

Definition} 14.16. Let f be a function of two variables whose domain D
includes points arbitrarily close to (a,b). Then we say that the limit of
f(z,y), as (z,y) approaches (a,b), is L:

lim b)f(a:,y) =L, (14.2)

(z,y)—(a,

if Ve > 0, there exists d = §(¢) > 0 such that

if (z,y) €D and 0 < \/(z —a)?+ (y — b)2 < 0 then |f(z,y) — L| <e.

Arc length of f(Bs(a,b)) — 0, as § — 0.

Figure 14.4: Plots of z = sinz + siny (left) and z = % (right).

y2
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as (z,y) — (a,b) along a path
and f(z,y) — Lg as (v,y) — (a,b)

/ 0] @\ x along a path Cy, where L, # Lo,
' then lim ) () f(z,y) does not
Figure 14.5 exist.
ro T T T~ A :{J‘2 —_ y2
'Problem'14.18. Show that lim ———= does not exist.

(2.9)=(00) 2 + Y
Solution. Consider two paths: e.g., C; : {y =0} and C; : {z = 0}.

Ans: no

r—— ~ T Z o -~~~ A

'Problem'14.19. Does lim
********** (2,5)—(0,0) 22 + 12

Solution. Consider a path C : {z = y} with another.

exist?

Ans: no
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‘Problem’ 14.20. Does  lim ——"

********** (e9)=(11) 22 + 3
Solution.

exist?

Ans: yes: L =1
7777777777 2

‘Problem ' 14.21. Does  lim % exist?
(z.9)—=(0,0) T° + Y

Solution. Consider a path C : {z = y*} with another.

Ans: no. See Figure 14.6 on p. 31 below.
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‘Problem' 14.22. Use the squeeze theorem to show
. 3x%y

lim —— =
(2.9)—(0,0) 22 + 2
Solution.

Continuity

Recall: A function (of a single variable) f is continuous at x = a if

lim f(z) = f(a).

Tr—a

The above means that

1. the limit on the left side exists,
2. f(a) is defined, and

3. they are the same.

Definition}, 14.23. A function of two variables f is called continuous
at point (a,b) € R? if

lim )f(:z:,y) = f(a,b). (14.3)

(z,y)—(ab

If f is continuous at every point (x,y) in a region D C R?, then we say
that f is continuous on D.

‘Problem' 14.24. Is f(z,y) = -2, continuous at (0,0)? What about at

7777777777 2 +y2

(1,1)? Why?
Solution. See Problems 14.19 and 14.20.

Ans: no; yes
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at elsewhere?

)3 i (2y) £ (0,0)
g(z,y) = { 0 + i (2,1) = (0,0) (14.4)

Solution. See Problem 14.22.

Ans: It is continuous everywhere.

Problem' 14.26. Find the limit: lim (2 4 ¢?) In(2? + ¢?).
********** (2.9)=(0.0)

Solution. Consider lim, ,;zInz and introduce a new variable s = 22 + y>.

Ans: L =0
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Exercises 14.2

1. Find the limit, if it exists, or show that the limit does not exist.

(a) lim x cos(x —
(z,y)—(m,m/2) ( y)
Ans: 0

b) lim
(z,9)=(0,0) /22 + y?

() lim it

(z.9)=(0,0) /22 + y?
Ans: 0

2. Use polar coordinates to find the limit.

: 2 2 2 2
(a) lim w (b) lim Tt +y
(z.y)—(0,0) T+ Y (@y)—=(0,0) \/4 + 22 +y2 — 2

Ans: (a)1; (b)4
3. Use a computer graph of the function to explain why the limit does not exist.?

) 22 + 22y + 4y?
lim
(@y)—(00) 3z +y?

4. Determine and verify whether the following functions are continuous at (0, 0) or not.

risiny |
@ fay) =] v T EVTO0
i Ans: continuous
) glo,y) =4 P Hayty it (z,9) # (0,0),

Ans: discontinuous

2You have to perform a computer implementation for problems indicated by the Computer Algebra System
sign . Of course, you must print hard copies of your computer work to be attached.
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Computer algebra
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Figure 14.6: Matlab plot: using ezsurf for
Problem 14.21, p. 27.

In computational mathematics,
computer algebra (also called

symbolic computation) is a sci-
entific area that refers to the study
and development of algorithms and
software for manipulating math-
ematical expressions and other
mathematical objects; it empha-
sizes exact computation with ex-
pressions containing variables that
have no given value and are manip-
ulated as symbols.

There have been about 40 computer
algebra systems available; search
“List of computer algebra systems"
in Wikipedia. Popular ones in com-
putational mathematics are Maple,
Mathematica, and Matlab.

1 | symsxy

3 | f=x¥y"2/(x"2+y"4);

4 | ezsurf(f,[-1,1,-1,1])

5 | view(-45,45)

6 | print('-r100','-dpng','matlab ezsurf.png');

Matlab script

The above Matlab script results in Figure 14.6. Line 1 declares symbolic
variables x y; line 3 defines the function f; line 4 plots a figure over the rect-
angular domain [—1, 1] x [—1, 1]; line 5 changes the view angle to (—45°,45°)
in the horizontal and vertical directions, respectively; and the final line

saves the figure to matlab_ezsurf .png with the resolution level of 100.
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14.3. Partial Derivatives

14.3.1. First-order partial derivatives

Recall: A function y = f(x) is differentiable at a if
fla+h) = f(a)

exists.

slope =/, (a,h)

0

Figure 14.7: Ordinary derivative f’'(a) and partial derivatives f,(a,b) and f,(a,b).

Let f be a function of two variables (z,y). Suppose we let only « vary while

variable. If g is differentiable at a, then we call it the partial derivative
of [ with respect to = at (a,b) and denoted by f.(a,b).

fa) = lim gla+h) —g(a)

h—0 h
(14.5)
fla+h, b})b — f(a,b) =: fz(a,b).

= lim
h—0
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Similarly, the partial derivative of [ with respect to y at (a,b), denoted

,,,,,,,,,,,,,,,,,,,,

Gt — tim COHN) =GO
o f(a b+hh) — f(a,b) (14.6)
g LD Tl oy

,,,,,,,,,,,,

Solution. Using the definition,

h—0 h

Ans: 1

Definition}, 14.28. If f is a function of two variables, its partial deriva-
tives are the functions f, = % and f, = % defined by:

filz.y) = lim 2EF0Y) = F@Y)

h—0 h

and
(14.7)
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the slope of the tangent lines to the curve that are parallel to the zz-
plane (i.e. in the direction of (1,0,-)). Similarly, the partial derivative
with respect to y represents the slope of the tangent lines to the curve
that are parallel to the yz-plane (i.e. in the direction of (0, 1, -)).

Rule for finding Partial Derivatives of z = f(x,y)
* To find f,, regard y as a constant and differentiate [ w.r.t. x.
* To find f,, regard = as a constant and differentiate f w.r.t. y.

Solution.

Ans: f,(2,1) =16; f,(2,1) =8
[Pffbiilféi{l] 14.31. Let f(x,y) = sin (1 f_ ) Find the first partial derivatives
7777777777 Yy
of f(z,y).
Solution.
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Solution. Use La* = a” Ina.

Recall: (Implicit differentiation). When y = y(z) and 2% + 3° = 3, you
have 2x + 3y*y’ = 0 so that v/ = —22/(3y?).

tion of x and y by
4+ y° 4+ 20+ by = 1.

Figure 14.8: implicitplot3d in Maple: a
plot of surface defined in Problem 14.33.
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************

|
S

v 3+ y3. Can you evaluate f,(0,0) easily?
Solution.

Functions of more than two variables

,,,,,,,,,,,,

Solution.
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14.3.2. Higher-order partial derivatives

Second partial derivatives of z = f(x,y)

0 /0f O f
(fx)m = fx:v - %(%) - @ - fll
o (0f f
B 0 ofN o2 f B
(fy):c — fy:c — %(@) - axay - f21
0 /0 0?
(fy)y - fyy = 8_3/((9_];;) = 8_;; = f22

************

Solution.

'Theorem | 14.37. (Clairaut’s theorem) Suppose f is defined on a disk
D C R? that contains the point (a,b). If both f,, and f,, are continu-
ous on D, then

f$y(a7 b) = fyx(a7 b) (148)

********

!
| Il

are continuous.
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Solution.

Chapter 14. Partial Derivatives
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Exercises 14.3

1. The temperature T (in °F) at a location in the Northern Hemi-sphere depends on the
longitude z, latitude y, and time ¢; so we can write 7" = f(z,y,t). Let’s measure time in
hours from the beginning of January.

(a) What do the partial derivatives 07" /0x, 0T /0y, and T /0t mean?

(b) Mississippi State University (MSU)? has longitude 88.8°W and latitude
33.5° N. Suppose that at noon on January first, the wind is blowing warm air to
northeast, so the air to the west and south is warmer than that in the north and
east. Would you expect f,(88.8,33.5,12), £,(88.8,33.5,12), and f;(88.8,33.5,12) to be
positive or negative? Explain.

2. The following surfaces, labeled a, b, and ¢, are graphs of a function f and its partial
derivatives f, and f,. Identify each surface and give reasons for your choices.

b

3. Find the partial derivatives of the function.
(a) z =ycos(zy) () w=In(z+2y+32)
(b) f(u,v) = (uv —v3)? (d) w=sin(z?+ 23+ -+ 22)
Ans: (d) Ou/0z; = 2x; - cos(z] + a5 + -+ + 22)

4. Let f(z,y,2) = xy?*2* + arccos(z/y) + V1 + zz. Find f,,., by using a different order of
differentiation for each term.

Ans: 6yz°
5. Show that each of the following functions is a solution of the wave equation u; = a*u,,.
(a) u = sin(kz)sin(akt) (¢) u=sin(x + at) + In(z — at)
(b) u = (z+ at)® + (z — at)® (d) = f(x+at)+ g(z — at)

where f and g are twice differentiable functions.

3MSU, the land-grant research university, has an elevation of 118 meters, or 387 feet.
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14.4. Tangent Planes & Linear Approximations

Recall: As one zooms into a curve y = f(z), the more the curve resembles
a line. More specifically, the curve looks more and more like the tangent
line. It is the same for surface: the surface looks more and more like the
tangent plane. Some functions are difficult to evaluate at a point; so,
the equation of the tangent plane (which is much simpler) is used to
approximate the value of that curve at a given point.

Figure 14.9: A tangent line and a tangent plane.

Tangent plane for z = f(x,y) at (xo, Yo, 2z0): Any tangent plane passing
through P(xo, v0, 20), 20 = f(x0, %), has an equation of the form

Alx —x0)+ Bly —yo) + C(z —2) =0, n=<A,BC>.

By dividing the equation by C (# 0) and letting a = —A/C and b = —B/C,
we can write it in the form

z—2z9=a(x —x) + by — yo). (14.9)

Then, the intersection of the plane with y = yy must be the z-directional
tangent line at (z, yo, 20), having the slope of f,(z¢, y0):

'z — z9 = a(x — xy), where y = yq.|
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tives. An equation of the tangent plane (equivalently, the linear ap-
proximation) to the surface = = f(x,y) at the point P(xg, yo, 20) 1S

z— 20 = fu(x0,%0) (x — x0) + fy(20,Y0) (¥ — Y0), (14.10)

where 20 = f(.%'o, yo)

paraboloid z = 222 + y? at the point (1,1, 3).
Solution.

Ans: z=4x +2y—3

Linear approximation (linearization) of f at (a, b):
f(z,y) = L(z,y) := f(a,b) + fo(a,b)(z — a) + fy(a,b)(y —b).  (14.11)

F—————————
|
L e e e e - - -

Then use this to approximate f(1.1,—0.1).
Solution.

Ans: L(xz,y) = x +y; L(1.1,-0.1) = 1, while f(1.1,-0.1) = 0.9854 - - .
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Differentiability for functions of multiple variables:

Recall: A function y = f(x) is differentiable at a if
fla+ Az) — f(a)

Al;glo A exists. (=: f'(a))
Thus, if f is differentiable at a, then flat Aﬁi —Jla) _ f'(a) + ¢ and
Ay = f(a+ Az) — f(a) = f'(a)Az + eAx, (14.12)

where ¢ — 0 as Az — 0. ( %aw = f'(a) + 5)

Now, for 2z = f(z,y), suppose that (z,y) changes from (a,b) to
(a + Az, b+ Ay). Then the corresponding change of = is

Az = f(a+ Az, b+ Ay) — f(a,b).

Definition}, 14.44. A function z = f(z,y) is differentiable at (a,b) if Az
can be expressed in the form

Az = fy(a,b)Ax + fy(a,b)Ay + 1Az + e2Ay, (14.13)

where 1,69 — 0 as (Ax, Ay) — (0,0).

It is sometimes hard to use Definition 14.44 directly to check the differen-
tiability of a function.

Theorem| 14.45. If f, and f, exist near (a,b) and are continuous at
(a,b), then z = f(x,y) is differentiable at (a,b).

Note: The above theorem implies that if partial derivatives of f are continuous, then the
slope of f exists for all directions.

************

,,,,,,,,,,,,

differentiable at (0, 3).
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Differentials

Recall: For y = f(z), let dz be the differential of x (an independent
variable). The differential of y is then defined as

dy = f'(z) du. (14.14)

Note: Ay represents the change in height of the curve y = f(z), while dy
represents the change in height of the tangent line; when x changes
by Az = dzx.

Definition}; 14.47. For > = f(z,y), we define differentials dx and dy to
be independent variables. Then the differential d: is defined by

dz = fo(x,y) dr + f,(z,y) dy, (14.15)

which is also called the total differential.

**********

(a) Find the differential d-.

(b) If (z,y) changes from (2,3) to (2.1,2.9), compare the values of Az and
dz.

Solution.

Ans: (a) dz = (22 + 3y)dx + (3z — 2y)dy; (b) dz = 1.3, Az = 1.27
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F—————————
|
S o

closed cylindrical can that is 10 cm high and 4 cm in diameter, if the metal
in the top and bottom is 0.1 cm thick and the metal in the side is 0.05 cm
thick.

Solution. V(r, z) = mr?z. Therefore
dV = V,dr+V.dz = 2nrzdr + mr dz,

where dr = 0.05 and dz =2-0.1 =0.2.

Ans: dV = 2.8 = 8.796459431 - - - (AV = 9.0022337---)
Exercises 14.4
1. Find an equation of the tangent plane to the given surface at the specified point.

(a) z =sin(2z + 3y), (—3,2,0)
(b) z=2%+2y* -3y, (1,—1,6)

2. Explain why the function is differentiable at the given point. Then, find the lineariza-
tion L(z,y) of the function at that point.

(@) f(z,y)=5+xIn(zy—1), (1,2)
(b) f(z,y) = zy +sin(y/z), (2,0)

3. Given that f is a differentiable function with f(5,2) =4, f,(5,2) = 1, and f,(5,2) = —1,
use a linear approximation to estimate f(4.9,2.2).
Ans: 3.7

4. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm

and height 16 cm if the tin is 0.05 cm thick.
Ans: 87
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14.5. The Chain Rule

14.5.1. Chain rule

Recall: Chain Rule for functions of a single variable: If y = f(x)
and x = ¢(t), where f and g are differentiable, then y is a differentiable

function of ¢t and
@ _ dy dzx

= 4o db (14.16)

' Theorem | 14.50. The Chain Rule (Case 1). Suppose that = = f(z,y)
is a differentiable function, where © = ¢(t) and y = h(t) are both differ-
entiable functions of t. Then z is a differentiable function of t and
d:_ 0fdo  0f dy
dt Oz dt Oy dt’

(14.17)

Observation: Let z = f(z,y) = xy and z and y be functions of ¢:

z = f(z,y) = zy = z(t) y(t).

Then
dz ) )
pr = x'(t)y(t) +z(t)y'(t), (productrule)
Of de  Of dy , ,
3 + gy dt yx'(t)+zy'(t).
‘Problem ' 14.51. If z = 22y + zy*, where z = cost and y = sint, find dz/dt at
t=0.
Solution.

Ans: 1
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Now, we will solve the above problem using the following script in Maple.

Maple script and answers

z 1= x¥y"34x"2%y:
x := cos(t): y := sin(t):
zt := diff(z, t)
zt := -2 cos(t) sin(t) + cos(t) - sin(t) + 3 cos(t) sin(t)
simplify(%)
-4 cos(t) + 3 cos(t) + 5 cos(t) - 2 cos(t) - 1
eval(zt, t = 0)
1

e =N o ot L w N -

Lines 4, 6, and 8 are answers from Maple.

'Theorem | 14.52. The Chain Rule (Case 2). Suppose that = = f(z,v)
is a differentiable function, where x = ¢(s,t) and y = h(s,t) are both
differentiable functions of s and t. Then

0z 0z20x 0z0y 0z 0z0r 0z0y

EENN G 14.18
D5 0z 0s 0ybs 0 0Oz Oy o (14.18)
Fommmzmamne - . 5 5 0z 0z
'Problem ' 14.53. If » = e¢”sin(y), where x = st and y = s7¢, find s and 5
********** s
Solution.
z = 2% sin (s%t) + 2e% st cos (s%)

Ans:

2z = 2ste’ sin (s2t) + e % cos (s%t)



14.5. The Chain Rule 47

Functions of three and more variables:

' Theorem | 14.54. The Chain Rule (General Version). Suppose that
u is a differentiable function of n variables, x1, -, ..., x,, each of which
has m variables, t1,1s, ... ,t,. Then for eachi € {1,2,... ,m},

ou ou Oxry  Ou Ox9 ou O0x,,

8_t2-_8x1 (‘%i +(9.T2 8@' +.”+8[En ([%i.

[Problem] 14.55. Write the chain rule for w = f(x,y,2,t), where = =

zr(u,v),y = y(u,v),z = z(u,v), and t = t(u,v). That is, find g—lqj and %—ij.

that ¢ satisfies the equation

t@—FS@:O.

Solution. Let z = s> — t?> and y = > — 5%
Then gs = fx Ts+ fy Ys and gr = fxxt + fy Y.
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‘Problem' 14.57. If z = 2% + 22y, where = = s + 2t — u and y = stu, find the

values of z,, 2, and z,, when s =2,t =0, u = 1.

Solution.

Ans: 2, =3,z =8,and 2, = -3

14.5.2. Implicit differentiation

Consider F(z,y) = 0, where y is a function of z, i.e., y = f(z). Then,
dx dy
F,—+F,—=0.
dx T dx ¥
Thus,we have
F.
= 2% 14.19
Y F, ( )

[ProblemT‘ 14.58. Find ¢/ if 2° + v = 62y.

Solution. Let F = 23 + 3 — 6xy. Then, use (14.19).

Ans: yf = —(a® — 2y)/(y* — 22)
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Note: You can solve the above problem using the technique you learned
earlier in Calculus I. That is, applying z-derivative to 2> + y* = 6zy reads

32% + 3y*y' = 6y + 621/

Thus
322 — 6y

32y —6xy = 322 +6y = o = —— 7
y“y — 6y x” + 6y Y 37— 6a

0and F,% + F,%% + F .2 — (. Thus

Z Oy Yoy Z 0y
0z F, Oz Fy
% and oy F (14.20)
‘Problem’ 14.60. Find 2 and 27 if
R 4 ox oy
2?4 y° 4 20+ 6oy = 1. (14.21)
Solution.

Ans: z, = —35F002 — _ T 102 See Figure 14.8, p. 35, for a figure of (14.21).
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Exercises 14.5

1. Use the Chain Rule to find dz/dt or dw/dt.

(@) z=coswsiny; z=13, y=1/t
b) w=(rx+y*+2%% x=1+2t, y=-2t 2=t

2. Suppose f is a differentiable function of x and y, and g(u,v) = f(u + cosv, u? + 1 + sinv).
Use the table of values to find g,(0,0) and g,(0, 0).

| L Sl o Ll fu
O L [2]-1] 10
)| 3510 5
D272 [ 2

Ans: ¢,(0,0) =20 & ¢,(0,0) =2
3. Use the Chain Rule to find the indicated partial derivatives.

0z 0z 0z
2 4
@) z=2"4+y", x=s5+ u, y = stu; s’ ot ou

whens=3,t=1,andu=1

Ans: z,(3,1,1) = 112 & 2,(3,1,1) = 312

(b) Yt 0 00 ow OJw Jw

W=z z+zx; T =rcos = rsinf: —. —. —

y y 7 ) y ) 8T7 867 az

whenr=2,0=r/2,and z =1
Ans: w, =2

4. Use the formulas in (14.20) to find J0z/0x and 0z/0y, where z is function of (z,y).

(a) 2+ 2y +322—-4=0

(b) e =2y + 2
Ans: (b) z, = y/(e* — 1)
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14.6. Directional Derivatives and the Gradient
Vector

Recall: If » = f(z,y), then the
partial derivatives f, and f, rep-
resent the rates of change of z in
the z- and y-directions, that is, in
the directions of the unit vectors i

0=(a,b.f(a b))

| H and j.
P=(a,b.0}\u ;
' Note: It would be nice to be able to
Figure 14.10 find the slope of the tangent line to a

surface S in the direction of an arbi-
trary unit vector u = (a, b).

Definition}, 14.61. The directional derivative of | at (zo,y) in the
direction of a unit vector u = {(a, b) is

] L +h&, "‘hb — Q;"
Duf(xojyo):}%f( 0 Yo . ) — f(o yo)’

(14.22)

if the limit exists.

Note that

f(xo + ha,yo + hb) — f(xo,y0) = f(xo+ ha,yo+ hb) — f(z0,y0 + hb)
4+ f(zo,y0 + hb) — f(z0,%0)

Thus
f(xo + ha,yo + hb) — f(x0, o) _ ., f(xo + ha,yo + hb) — f(z0, yo + hb)
h ha
P f(xo,yo + h}i)[)) — f(=o, yo))

which converges to “a f,(zo,v0) + 0 fy(x0,y0)" as h — 0.
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'Theorem | 14.62. If f is a differentiable function of  and y, then f has
a directional derivative in the direction of any unit vector u = (a, b)

and

l)uf(xay) = j}(m,y)ct+—j@(x,y)
(f;(x,y),j;(w,y)>
= (j;(m,y),fg(x,y)>

a,b) (14.23)

<

22y +vy* and u is the unit vector given by the angle § = T- Whatis Dy, f(2,3)?
Solution. u = (cos(r/4),sin(r/4)) = (1/v2,1/V2).

40004

3000,

2000,

1000

Figure 14.11

Ans: 65v/2
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Note: 1. The only reason we are restricting the directional derivative to
the unit vector is because we care about the rate of change in f per unit
distance. Otherwise, the magnitude is irrelevant.

2. If the unit vector u makes an angle 6 with the positive z-axis, then
u = (cosf,sinf). Thus

Dyf(z,y) = fuo(z,y) cos + f,(x,y)sinb. (14.24)

the point (1, 0) in the direction given by the angle § = 7/ 3
Solution.

Ans: (1++/3)/2
‘Problem' 14.65. If f(z,y, z) = 22 — 242 + z*, find the directional derivative

of fat (1,3,1) in the direction of v = (2, -2, —1) .
Solution.

Ans: 8
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Gradient Vector

Definition}; 14.66. Let f be a differentiable function of two variables z
and y. Then the gradient of f is the vector function

) = (il o ) = gy 7 (14.25)

,,,,,,,,,,,,

Solution.

Ans: (2,0)

Note: With this notation of the gradient vector, we can rewrite
Duf(z,y) = Vf(z,y)-u = fola,y)a+f,(z,y)b, where u=(a,b). (14.26)

************

|
S

point (2, —1) and in the direction of the vector v = (3, 4) .
Solution.

Ans: 4
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Maximizing the Directional Derivative

Note that
Duf =Vf-u=|Vf||ulcost =|Vf|cosb,

where 0 is the angle between V f and u; the maximum occurs when 6 = 0.

'Theorem |14.69. Let f be a differentiable function of two or three vari-
ables. Then

max Dyuf(x) = |V f(x)] (14.27)

and it occurs when u has the same direction as V f(x).

(a) Find the rate of change of f at P(1,0) in the direction from P to Q(—1, 2).

(b) In what direction does f have the maximum rate of change? What is
the maximum rate of change?
Solution.

Ans: (a) 0; (b) V2

‘Remark' 14.71. Let u = ;ﬁ}(g’, the unit vector in the gradient direc-
7777777777 X
tion. Then
Vf(x)
Dyf(x) =Vf(x) - u=Vf(x)- = |V f(x)]. (14.28)
(x) = V() ) 5 ] = V0

This implies that the directional derivative is maximized in the gradient
direction.

changes fastest, more precisely, increases fastest!
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The Gradient Vector of Level Surfaces

Suppose S is a surface with equation

F(x,y,z) =k

and P(xo,v0,20) € S. Let C be
any curve that lies on the surface 5,
passes through P, and is described
by a continuous vector function

r(t) = (e(t),y(t), 2(£)) . (14.29)

Figure 14.12: Level surfaces 22 +y?+ 22 = k2, Then, any point (z(t),y(t), 2(t)) must
where k = 1,1.5,2, and the gradient vector at satisfy
P(-1,1,v/2), when k = 2.

Flx(t),y(t),2(t) = k. (14.30)

Apply the Chain Rule to have

d dx dy dz
—F=F,—+4+F,24F —=VF-r'(t)=0.
dt chﬁL ydt+ dt VE-r(t)

In particular, letting ¢t = ¢y be such that r(tg) = (xo, 0, 20),

VF(ZU(), Yo, Z()) . I‘l(to) = O, (1431)

where 1'()) is the tangent vector at P(xg, v, 20).

F—————— === ===
|
|

Summary 14.73. (Gradient Vector). Given a level surface F(z,y, z) =

Lecocomooooocooag

k, the gTadfent vector VF(x,y, z) is normal to the surface and pointing
the fastest increasing direction.
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Tangent Plane to a Level Surface

Suppose S is a surface given as F'(z,y, z) = k and x¢ = (x0, 0, 20) is on S.
Then the tangent plane to S at x; is

VF(x0) (x—%0) = Fr(x0)(z—20)+F,(%0)(y—yo)+F:(x0)(2—29) = 0. (14.32)

The normal line to S at x, is

T — X Y—1Yo 2= 20
— — ) (14.33)
Fi(xo)  Fy(xo0) Fi(%o)

line at P(—1,1,2) to the ellipsoid

2

Z
x2—|—y2+Z:3.

Solution.

Figure 14.13

. _ ezl _ y=1 _ 2-2
An8—2$—6+2y+2—0,_—2—y7— 1
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Exercises 14.6

1. Find the directional derivative of f at the point P in the direction indicated by either
the angle 6 or a vector v.

@) f(z,y) = wsin(zy), PO,1), 0=r/4
(b) f(z,y,2) =y, P0,1,-1), v=<-1,22>
Ans: (b) 5/3

2. Find the maximum rate of change of f at the given point and the direction in which it
occurs.

(@) f(z,y) =sin(zy), (0,1)

(b) f(xaya'z):ﬁv (17174)
Y Ans: (0) |[VF(1,1,4) = 3/2, Vf(1,1,4) =< —1,-1,1/2 >

Note: We know that a differentiable function f increases most rapidly in the direc-
tion of V f. Thus, it is natural to claim that the function decreases most rapidly in
the direction opposite to the gradient vector, that is, —V f.

3. Find the direction in which the function f(x,y,2z) = 22 + y? + 2% decreases fastest at the
point (1,1, 1).

4. Find directions (unit vectors) in which the directional derivative of f(z,y) = z* + zy?* at
the point (1,2) has value 0.

A . — :l:<2,73>
ns: u /13

5. Find the equations of (i) the tangent plane and (ii) the normal line to the given surface
at the specified point.

@ (z—1)"+(y—2)"+ (2

- 7 (27174)
(b) zy+yz+22—-5=0, (1,

3)? =
1,2

Ans: (b)3(33—1)+3(y—1)—|—2(z—2):0&%1:%1:252
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14.7. Maximum and Minimum Values

Recall: To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

1. Find values of f at the critical points of f in (a,b).
2. Find values of f at the end points of the interval.

3. The largest is the absolute maximum value;
the smallest is the absolute minimum value.

Recall: (Second Derivative Test for y = f(x)) Suppose f” is continu-
ous near c.

(a) If f'(¢) =0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) = 0 and f"(c) < 0, then f has a local maximum at c.

14.7.1. Local extrema

Definition}, 14.75. Let f be a function of two variables x and y.
* It has a local minimum at (a,b) if f(z,y) > f(a,b) when (z,y) is
near (a,b).

* It has a local maximum at (a,b) if f(z,y) < f(a,b) when (x,y) is
near (a,b).

|Theorem | 14.76. (First Derivative Test). If f has a local extreme at
(a,b) and the first order partial derivatives exist, then f,(a,b) = 0 and
fy(a,b) =0, that is, V f(a,b) = 0.

**********

fz,y) =22° —32° +9* +4y + 1.

Ans: (0,-2), (1,-2)
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' Theorem | 14.78. (Second Derivative Test). Suppose that the second

order partial derivatives of f are continuous near (a,b) and suppose that
Vf(a,b) =0. Let

b) = fuu(a,b) fyy(a,b) — [fuy (a, b))

D(a,
e If D > 0 and f,.(a,b) > 0, then f(a,b) is a local minimum.
e IfD >0 and f,.(a,b) <0, then f(a,b) is a local maximum.
e If D <0, then f(a,b) is a saddle point.

Note:

1. If D = 0, then no conclusion can be drawn from this test.

2. D =det [fxx fxy:| = fgcxfyy - fa:yfya: - fxxfyy - (fxy)2
Jyae Sy

3. Let D > 0. Then, f,,(a,b) Z 01is equivalent to f,,(a,b) Z 0.

‘Problem 14.79. Find all local extrema of f(z,y) = 2* + y* — 4zy + 1.

Figure 14.14

Ans: local min: (+1, 4+1); saddle point: (0,0)
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plane 2z + 2y — 2+ 2 = 0.
Solution. (a) You may use the formula d = |axq+ by + czo + d| /v a? + b* + 2.
(b) Let d be the distance. Then

flr,))=d*= (2 —1*+(y—072+ (2 -2 = (x — 1)* + ¢y* + (22 + 2y)*

Ans: 2/3
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'Problem ' 14.81. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one vertex on the plane
3r + 2y + 2z = 6.

Hint: Maximize V' = zyz, subject to 3z + 2y + z = 6. Thus V' = 2y(6 — 3z — 2y). Try to find
the maximum by setting V1 = 0.

Solution.

Ans: (z,y,2) = (2/3,1,2); V =2yz =4/3
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14.7.2. Absolute extrema

'Theorem | 14.82. (Existence). If f is continuous on a closed and
bounded set D C R?, then f attains an absolute minimum value
f(xo,y0) and an absolute maximum value f(z,y;) at some points
(IUZ‘, yl) eD,i1=0,1.

1. Find critical points and values of f at those critical points.
2. Find the extreme values that occur on the boundary.
3. Compare all of those values for the largest and smallest values.

rectangle R = {(z,y) |0 <2 <3,0 <y <2}.
Solution.

Figure 14.15: R = [0, 3] x [0, 2]

Ans: abs.min=0; abs.max=9
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Exercises 14.7

1. (i) Find the local maxima and minima and saddle points of the function.
(i1) Use Maple’s plot3d and contourplot functions to verify them.

(@) f(z,y) =2*—3zy?
(b) f(z,y) = (222 +y?)e V"

(Note: You may use Mathematica, if you want.)

2. Find the absolute maximum and minimum values of f on D.

(@) f(z,y) = 2? +y*> — 2x; D is the closed triangular region with vertices (2,0), (0,2),
and (0, —2).
Ans: max: f(0,£2) = 4; min: f(1,0) = —1
(b) f(z,y) =4a® +y* D= {(z,y)|z* +y* < 1}.
Ans: max: f(£1,0) = 4; min: f(0,0) =0

3. Find three positive numbers whose sum is 60 and whose product is maximum.

Hint: The problem can read: (max) xyz, subject to  + y + z = 60. Thus for example it can be
I?y7z

reformulated as: 1(na>)< zy(60 — x — y), with each component being positive. From this, you may
E’y
conclude x = y.

4. Find the volume of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex in the plane 2x + 5y + 2z = 30. Clue: Try to use the hint
given for Problem 14.81.



14.8. Lagrange Multipliers 65
14.8. Lagrange Multipliers

In Problem 14.81, on p. 62, we maximized a volume function V' = zyz subject
to the constraint 3z + 2y + z = 6, which was the plane having a vertex of

the rectangular box.

In this section, we consider Lagrange’s method to solve the problem of
the form

max f(x) subj.to g(x)=c. (14.34)

fx.y)

" g(x,y)=c

X * <

Figure 14.16: The method of Lagrange multipliers in R*: |V f // Vg, at maximum |,

mum and minimum values of f(x,y,z) subject to g(x,y, z ) =c,
(a) Find all values of (z,y, z) and X such that

'V f(z,y,2) = A\Vyg(z,y,2) and g(z,y,z) = c]. (14.35)

(b) Evaluate f at all these points, to find the maximum and mini-
mum.




66 Chapter 14. Partial Derivatives

‘Problem' 14.86. (Revisit of Problem 14.81, p. 62). Find the volume
of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex on the plane 3z + 2y + z = 6, using the

method of Lagrange multipliers.

Solution.

Ans: 4/3

Find the dimensions of the box that maximizes the volume of the box.

Solution. Maximize V = zyz subj.to 2xz+ 2yz + zy = 12.

Ans: 4 (v =y =2z =2)
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4y =
9 9 20 =2z A (@
Solution. Vf = \Vg —= [ 4y] =\ [Qy] Therefore, < 4y =2y A (@
?+yP=1 ®

From @), x =0or A = 1.

Ans: min: f(+1,0) = 1; max: f(0,4+1) =2

?+y? <1
Solution. Hint: You may use Lagrange multipliers when 22 + 3> = 1.

Ans: min: f(0,0) =0; f(0,£1) =2
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Two Constraints

Consider the problem of the form
max f(x) subj.to ¢(x)=c and h(x) =d. (14.36)

Then, at extrema we must have
Vf € Plane(Vg,Vh) :={c1Vg+ c2Vh}. (14.37)

Thus (14.36) can be solved by finding all values of (z,y, z) and (A, u) such
that

gy, = c (14.38)

on the curve of the intersection of the cone 22 + 2y = =
r+y+z=4.
Solution. Letting g = 222 +2y> — 22 =0@and h =z +y + 2z = 4 (5), we have

2 and the plane

0 4x 1 0 = 4ddx+pu Q@
Ol =4y | +pl|l| = 0 = 4d\y+pu @
1 ~92 1 1 = 22 2+4 B

From (@) and (2), we conclude = = y; using 4, we have z = +2x.

Ans: 2
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Exercises 14.8

1. Use Lagrange multipliers to find extreme values of the function subject to the given
constraint.

(@) f(z,y) =ay; 2®+4y* =2
b) f(r,y) =2 +y+2z 2°+y*°+2°=6
Ans: max: f(1,1,2) = 6; min: f(—1,—-1,-2) = —6
2. Find extreme values of f subject to both constraint.
flr,y,2) =2 +y* +2% 2—y=3, 2* -2 =1.
Ans: f(1,-2,0) =5
Note: The value just found for Problem 2 is the minimum. Why? See the figure below.

Figure 14.17: implicitplot3d. red: = — y = 3; green: 22 — 2% = 1; blue: f(x,y,2) = 5.

3. Use Lagrange multipliers to solve Problem 3 in Exercise 14.7. (See p. 64.)

4. Use Lagrange multipliers to solve Problem 4 in Exercise 14.7.
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R.14. Review Problems for Ch. 14

1. Let f(z,y) = /4 — 2% — 4y

(a) Find the domain of f.
(b) Sketch the graph of the function.

Ans: (a) {(x,y) | 2% + 4y* < 4}

2. Determine and verify whether the following functions are continuous at (0, 0)
or not.

2
xy .
@ f(r,y) =14 22+y?’ if (z,y) # (0,0), Circle: continuous discontinuous
0, if (z,y) = (0,0).
sin(z? + 32
_ __ig___g_la ( 7y)7é(07 ) : . : . .
() g(x,y) = 22 4y Circle: continuous discontinuous
0, if (z,y) = (0,0)

Ans: (a) continuous; (b) discontinuous

3. Let f(x,y) = sin(2x — 3y).

(a) Find f(3,2) and f,(3, 2).
(b) Find fyy2(3,2) and f..(3,2).
Ans: (a)2, —3;(b) 12,12

4. Let f(z,y) =14 zIln(zy — 5).
(a) Explain why f is differentiable at (2, 3).
(b) Find the linearization L(z,y) of f at (2, 3).

Ans: (a): fp =In(zy — 5) + =2 and f, = % are continuous near (2, 3).

TYy—>5
(b) L(z,y) =1+ 6(zx —2) +4(y — 3).

5. Suppose f is a differentiable function of z and 3, and g(u, v) = f(u+e’+cosv, u*+
sin v). Use the table of values to find g, (0, 0) and g, (0, 0).

/ g fa fy
(0,0) | 2000 | 2 100 9
(2,0) 3 4 9 12
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10.

Ans: g,(0,0) =9, g,(0,0) =21

Let f(z,y) = x + sin(zy) and P(1,0).

(a) Find the directional derivative of f at P in the direction given by the
angle 0 = /3.
(b) Determine max D, f(P), where u is a unit vector.

Ans: (a) < 1,1 > - < cos(n/3),sin(n/3) >= (1 ++/3)/2. (b) V2

2 2
Consider the ellipsoid % +y? + % = 3. Find the tangent plane to it at point

(2,1,-3).
Ans: (z—2)+2(y—1)—2(2+3) =0

Find the absolute maximum and minimum values of f over D:

flz,y) =32 +y*, D={(z,y)|2*+y*> <1}

Ans: min:0, max:3

Use the method of Lagrange multipliers to find the maximum and minimum

values of f subject to the given constraint:
floy) = —y% 2®+y’ =1

20 =X-2¢ ()

Hint: Vf = A\Vg = { —2y=X-2y (2) Then, it follows from (1) and (2) that A = +1. When A = —1,
?4+yP=1 (3

for example, x = 0 from @, with which @ makes y = £1.

Ans: min:—1, max:1

Use the method of Lagrange multipliers to find three positive numbers
whose sum is 15 and the sum of whose squares is as small as possible.

Clue: min 22 + y? + 22, subject to x +y + z = 15.
Ans:x=y=2=5
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Project 1. Linear and Quadratic Approximations

This project is designed for students to experience computer algebra, while solving some
calculus problems with computer coding. Although it includes examples written in Maple
only, students can finish the project using Maple, Mathematica, or MathCad.

Getting familiar with Computer Algebra

For a smooth function of one variable, f, its Taylor series about a is given
as

> fE)(q "(a "(a
f(x)wzf '( )(x—a)k:f(a)+f( )(x—a)—i—f ( )(:U—a)2+---. (14.39)
k=0 )

k 1! 2!

As with any convergent series, f(x) is the limit of the sequence of partial
sums. That is,
f(x) = lim T,,(x), (14.40)

n—oo

where T, (z) is called the Taylor polynomial of degree n:

") (g
To(z) =) / k( )(a: —a)*.
k=0 '

f(x) = arctan(x) — % (14.41)

Then, when it is expanded about a = 1/2, T},(x) can be obtained using Maple:

a =1/2:
Tn := x-> convert(taylor(f(x),x=a,n+1),polynom):

See Figure 14.18* (p. 73). For the function in (14.41),

T()— ; (1) 1+4( 1)
1x—arcan2 35x2,

T()— ¢ (1> 1+4( 1) 8( 1)2
Qm—arcan2 35:1:2 25:1:2.

4In Maple, taylor(f(x),x=a,n+1) returns a polynomial of (n + 1) terms plus the remain-
der, T,,(z) + O((x — a)"'); while the command convert(g,polynom) converts g into a polyno-
mial form, which is 7,,(x). In Mathematica, Series[f[x],x,a,n] produces the same result as for
taylor (f (x) ,x=a,n+1) in Maple. Now, the Mathematica-command Normal can be used to convert
the result into normal expressions of polynomials.

(14.42)




14.8. Lagrange Multipliers 73

fhome/skim/Actions/Books/Calculus_Multivariable_Book/M-Codes/linear_quadratic_approx.mw - [Server 1] - Maple 2C

File Edit View Insert Format Table Drawing Plot Tools Window Help
WEIEIET a4 BTOT E= <@ WI108C @ RAR ! O ~.
[search Alt+5|
[ Palettes | Workbook 1 Text @IES) Drawing  Plot  Animation Hide
P Favorites :» [ C 2D Math ~|[ unBatang ~[[1a -] BT U E%I: I g2 i=i=
P Expression - 2 -
alculus A ----------------------------------------------------------------------- B
:Zolmrlmns,mbds g zi A Maple program for "Linear and Quadratic Approximationsg”
o o 7 I - e
Teijl 1 restart : with(plots) :
w X I fd |V, an(x) 2
L = X— _ =
AU > > % n x—arctan(x 3
g
F X< gL a::%: taylor(f(x), x=a, 3)
«= - =+l 1) 1,4 1) 8 1)° 1°
=fFc&c arctan[—]——+—[x——]——[x——] +O[[x——] ] |
Al 2 3 5 2 25 2 2
| A TI1:= x— convert(taylor(f(x), x=a, 2), polynom) :
AV Y=C | X T2 := x— convert( taylor(f(x), x= &, 3), polynom) :
RNQZR X
=1 L ™ p1 = plot({{a)|(f(a))), style = point, symbol = solidcircie, symbolsize = 15, color
| = black) :
— B Ay
t R ™ pz = plot([f(x), TI(x), T2(x) ], x=-2..3, color = [ black, blue, red], linestyle
g . = [ solid, dot, dash], thickness = 2, legend = [y = f(x), "T1{(x)", "T2(x)"],
° VI % k o legendstyle = [ font = ["HELVETICA", 12], location = bottom]) :
? ™ display({pl, p2}, labels = [ x, v], labeifont = [ "HELVETICA", "bold", 12])
P Live Data Plats ; 21
P variables
P Matrix
» Units (S1)
B Units (FPS)
P Layout
W Gresk
ABTAE
ZHe I K
AMNE O
ImMepTTY ||
Y @& X ¥ Q
o B ¥ 3 € 55 —y:arctan(x}—%“"'Tl(x)——T2(x)
e dnod i |
UL ST VI 5 ey I [ Dl

® |Ready | Maple Default Profile [/home/skim/Actions/Books/Calculus_Multivariable Book/M-Codes [Memory: 21.18M |Time: 1.98s ||

Figure 14.18: Screen-shot of Maple window, which plots linear and quadratic approxima-
tions of f(x) = arctan(z) — 5 about a = 1/2.



74 Chapter 14. Partial Derivatives

Maple: 3D Plots

First load the plots package, along with other frequently used packages, using the entry:

with(plots): with(plottools):
with(VectorCalculus): with(Student[MultivariateCalculus]):

1. Plot z = f(z,y) in Cartesian coordinates, using
plot3d( f(z,y),x = a..b,y = c..d, options)

Consider the options
(a) style = patchcontour Puts contour curves on the surface.
(b) axes = boxed Puts the axes on the edges of a box enclosing the surface.
(c) scaling = constrained Makes the scale on the three axes the same.
(d) orientation =[40,70] Orients the viewpoint so it is closer to what you see in your
text.

2. Plot F(z,y,2) = 0 in Cartesian coordinates, using
implicitplot3d( F(x,y,z) = 0,z = a..b,y = c..d, z = s..t, options)

Consider the options listed above along with the following.
(a) grid = [m,n, k] Where m,n, k are positive integers, try [30,30,30] for example.
This plots 30 points in each direction for a smoother surface.
(b) axes = framed Puts axes along the edges of a frame around the plot.
(c) orientation = [—50,60] Another nice viewing angle.

3. Plot r = f(0, ) in cylindrical coordinates, using
plot3d( f(0,2),0 = a..b, z = s..t,coords = cylindrical, options)
To plot z = ¢(r,0), use
plot3d([r,0,g(r,0)],r = a..b,0 = «..3, coords = cylindrical, options)

Options are more or less the same as the above.
4. Plot p = f(6, ¢) in spherical coordinates, using

plot3d( f(0,¢),0 = .., = ~..9, coords = spherical, options)

5. Implicit plots can also be made in cylindrical or spherical coordinates. For ex-
ample, to plot the equation r? + 222 = r cos § in cylindrical coordinates, use

implicitplot3d(r*+2 2> = rcos(#),r = a..b,0 = a..3, 2 = s..t, coords = cylindrical, options)

6. (Contour plots in 2D). For z = f(x,y), use
contourplot(f(z,y),z = a..b,y = c..d, options)
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P.1.1. Newton’s method

75

As one can see from Figure 14.18, the first-degree Taylor series 77 () is the tangent line to
the curve y = f(x) at the point (a, f(a)). One of popular applications exploiting the tangent

line is Newton’s method for the problem of root-finding.

Given a differentiable function f(x), find r such that f(r) =0,

where r is an z-intercept of the curve y = f(x).

The idea behind Newton’s method:

(14.43)

* The tangent line is close to the curve and so its z-intercept must be

close to the xz-intercept of the curve.

* Let z( be the initial approximation close to . Then, the tangent line at

(2o, f(x0)) reads
L(z) = f'(xo)(x — x0) + f(20).
Let z, be the z-intercept of y = L(z). Then,

0= f'(z0)(z1 — x0) + f(z0).
Solving the above equation for z; becomes

B f (o)
Ty = To — m,

which hopefully is a better approximation for the root r.

* Repeat the above till the convergence.

sen close to a root r, compute {x,} repeatedly satisfying

(14.44)

(14.45)

Algorithm | 14.92. (Newton’s method for solving f(x) = 0). For x, cho-

(14.46)

1. Implement a code for Newton’s method to approximate a root of f(x) =

0.
(You can use Maple, Mathematica, or MathCad.)
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2. Run a few iterations, starting from xo = 0.5, and measure how the
error decreases as the iteration count grows.
(Note that the exact root » = tan(1/3) ~ 0.34625354951057549103.)

P.1.2. Estimation of critical points

The second part of the project involves a min-max analysis of a function in
(z,y) that is based on each student’s ID number, so that each student has
his/her own function to work with. If a student’s ID number is 123-45-6789,
then he/she will study the behavior of the function

f(z,y) = Lxsin(z —2)+3*cos(y—4) +5x2° —6xxy+Txy? —8xx+9xy, (14.47)
where the alternating signs are used to create a little more “action". We will
call such a function the ID function.

4

-4 -2 0 2 4

1. Include a variety of surface plots with different views and contour plots
with different windows to provide a good picture of the behavior of your
ID function.’

5In Maple, you can use the commands plot3d and countourplot. In Mathematica, P1ot3D and
CountourPlot are available.
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2. Label the figures and refer to them in your write-up, as you discuss
the kinds of critical points you observe. (If you have no or one critical
point, change the signs and/or shuffle the digits in your ID function to
get more action.)

3. Zoom in sufficiently so that you can estimate the coordinates of each of
the critical points.

P.1.3. Quadratic approximations

We have discussed the linear approximation (or, linearization) of a
function f of two variables at a point (a, b):

L(z,y) = fla,b) + fu(a,b)(x = a) + fy(a, b)(y = b), (14.48)

which is also called the first-degree Taylor polynomial of f at (a,b). If f
has continuous second-order partial derivatives at (a,b), then the second-
degree Taylor polynomial of f at (a,b) is

Q(xay) - f(aab) + fw(aab)('x - CL) + fy(a7b)(y - b)

b ) — @+ ool D) — @)y — B) + 3 fula,D)(y — )"
(14.49)
and the approximation f(z,y) ~ Q(z,y) is called the quadratic approxi-
mation of f at (a,b).

1. Verify that the quadratic approximation ) has the same first- and
second-order partial derivatives as f at (a, b). (This is the only portion
of the project that you can finish without using computer implementa-
tion.) Hint: The partial derivatives evaluated at (a, b), appeared in Q, are all constant.

2. Use computer algebra to find the first- and second-degree Taylor poly-
nomials L and @ for your ID function f at a critical point C(xg, yo)
that you estimated from Problem 14.94.

3. Compare the values of f, L, and Q at (x¢o + 0.1, yo — 0.1).



78 Chapter 14. Partial Derivatives

4. Graph f, L, and Q; comment on how well L and Q approximate f.

Report. Submit hard copies of your experiences.
* Solve Problems 14.93, 14.94, and 14.95, using computer program-
ming.
* Make hard copies of your work, and collect them in order.
e Attach a “summary" or “conclusion” page at the beginning of report.

You may work in a small group; however, you must report individually.



CHAPTER 15

Multiple Integrals

The multiple integral is a definite integral of a function of more than one
real variable, for example, f(z,y) or f(z,y, z). Integrals of a function of two
variables over a region in R? are called double integrals, and integrals of
a function of three variables over a region of R? are called triple integrals.

In this chapter, you will learn double integrals and triple integrals in
rectangular coordinates, polar coordinates, cylindrical coordinates, and spher-
ical coordinates. Also, you will learn how to perform integration by changing
variables between or inside coordinates.

Contents of Chapter 15

15.1.Double Integrals over Rectangles . . . . . . . . . ... ... ... ... ... ... ..., 80
15.2.Double Integrals over General Regions . . . . . . . ... ... ... ... ......... 89
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15.8.Triple Integrals in Spherical Coordinates . . . ... ... ... ... ... ........ 127
15.9.Change of Variables in Multiple Integrals . . . . . ... ... ... ... ......... 132
R.15.Review Problems for Ch.15 . . . . . . . .. .. . .. .. . ... e 141
Project 2. The Volume of the Unit Ball in n-Dimensions . . . . ... ... ... ........ 143

This chapter corresponds to Chapter 15 in STEWART, Calculus (8th Ed.), 2015.
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15.1. Double Integrals over Rectangles

Recall: (Review on Definite Integrals). We know the following:
* We defined the integral in terms of Riemann Sum.

* That is, we found the area underneath the curve y = f(x) by divid-
ing the area into rectangles. We then added up their areas to get
the area under the curve.

* We then found the exact area of this by evaluating

b = . b—a
/a f(x)dngi)rgoz_;f(xl)Ax, Az = :

n

* We could also get it using the Fundamental Theorem of Calcu-
lus (Part 2):

/ ' fla)dz = F(b) — F(a), (15.1)

where F'is a function such that /" = f (antiderivative).

v = fix)

e i e i et

¥ L
=Xy L X X T+ L L

Figure 15.1: Riemann Sum.
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15.1.1. Volumes as double integrals

Let R = [a,b] x [c,d] C R? be a rectan-
gle. Define

Az =(b—a)/m, Ay=(d—c)/n,

for some m,n > 0. Let

r, = a+iAx, 1=0,1,---,m,
yj = C+]Ay, j:0717”'7n7

(xii, yii) al’ld

Figure 15.2 Rl‘j = [Q?ifl,ﬂfi] X [?ijla y]]
Let Sp = {(z,y,2) | 0 < z < f(z,y), (z,y) € R} define the solid that lies

this volume of Sy as

Va ) > fagu) AA, (15.2)

m n
=1 j=1

7

where (z7;,y;;) is a sample point in each division R;;.

Definition} 15.1. The double integral of f over the rectangle R is

|f f@y)da= tim 3N fagu) AA. (15.3)
. ,

i=1 j=1

We can simplify this if we choose each sample point to be the point in the
upper right corner of each sub-rectangle, (z7;,y;;) = (v, y;):

JJ 1@ wda= tim 3737 flaiy) A4 (15.4)
. ,

i=1 j=1
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'Problem ' 15.2. Estimate the volume of the solid that lies above the square
R =10,2] x [0,2] and below the elliptic paraboloid »z = 16 — 2% — 2y2. Divide R
into four equal squares and choose the sample point to be the upper right

corner of each square R;;. Approximate the Volume.
Solution.

Ans: 34

lies above the square R = [0,2] x [1,2] and below the function f(z,y) =
522 — 4y. Divide R into four equal rectangles and choose the sample point to
be the midpoint of each rectangle R;;. Approximate the volume.

Solution.

Ans: 1
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15.1.2. Iterated integrals

Okay; so, taking these Riemann Sums is a bit of a pain.

Recall: Earlier in Calculus, we equated these Riemann sums to the def-
inition of an integral. We will attempt to do the same here; however, we
will use two partial integrals.

Suppose that f is a function of two variables that is integrable on the rect-
angle R = [a,b] X [c,d].

Definition} 15.4. We define

d
A(z) :/ f(z,y)dy (15.5)

as the partial integral with re-
spect to y. We evaluate this in-
tegral by treating x as a constant,
and integrate f(x,y) with respect
to y.

Figure 15.3: A(x).

Definition}, 15.5. We define

b
B(y) = / f(z,y)dx (15.6)

as the partial integral with respect to x. We evaluate this integral
by treating y as a constant, and integrate f(x,y) with respect to x.

Note: The Fundamental Theorem of Calculus, Part 2, Equation (15.1) on
p. 80, can be used to evaluate the partial integrals.
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Definition} 15.6. The iterated integral is defined as follows:

/ab/cdf(x,y)dydx:/ab[/cdf(a:,y)dy} d.%':/C;bA(gL'>dx_ (15.7)

In other words, we work this integral from the inside out.

3 2 2 3
(a) / / 22y dy dx and (b) / / 22y dx dy.
0o J1 1 Jo

Solution. R = [0, 3] x [1,2].

,,,,,,,,,,,,

Ans: 27/2

'Theorem | 15.8. (Fubini’s Theorem). If f is continuous on the rectan-
gle R={(z,y) €R?|a <z <bc<y<d}, then

b pd d prb
Lff(w,y)dfl:/a / f(a:,y)dydx:/c / f(z,y) dz dy. (15.8)
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{[ (52* — 4y) dA,, where R = {(z,y) e R?[0 <2 < 2,1 <y <2},
R

Solution.

Ans: 4/3

Solution. Let’s try the iterated integrals with z-first and y-first.

Ans: 0
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Separable functions f(x,y) = g(x) h(y):
Let R = [a,b] X [c,d]. Then

gf(x,y)dA - /d/ f(x,gz)dxdy_/c (/ g(x) hly) dr) dy
= / h(y)(/a g(fﬂ)dx) dy
- ([ @) [ nwa

where the underlined (in maroon) are treated as constants.

Hg(r)h(y)dz‘l:/bg(w)dx-/dh(y)dy, R=[a,b x[c,d. (15.9)
R a @

************

,,,,,,,,,,,,

Solution.

Ans: (e —1)%/3
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Average Value

Recall: The average value of a function f of one variable defined on an
interval [a, ] is

1 b
fave — m/@ f(ZU) dx.

Definition} 15.12. In a similar fashion, we define the average value
of f of two variables defined on R to be

1
fove = AH g f(z,y) dA, (15.10)

where A(R) is the area of R.

[0, 3] x [0, ].

Solution. Use symmetry, for a simpler calculation!

Ans: 3
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Exercises 15.1

1. Estimate the volume of the solid that lies below the surface » = 2% + y and above the
rectangle
R={(z,y) | 0<x <4, 0<y<6}.

Use a Riemann sum with m = 2, n = 3, and the Midpoint Rule.
Ans: 48 -4 =192

2. Let V be the volume of the solid that lies under the surface z = 30 — 42 — y? and above
the rectangle R = {(z,y) | 2 <2 <6, 0 <y < 2}. Use the lines x =4 and y = 1 to divide
R into four subrectangles. Let L and U be the Riemann sums computed respectively
using lower left corners and upper right corners. Without using the actual numbers V,
L, and U, arrange them in increasing order and describe your reasoning.

3. Evaluate the double integral by first identifying it as the volume of a solid.

@ [[(z+1)dA, R={(zy)|0<2<2 0<y<2}
R

®) [[(4=29)da, R=[0,1]x[0,1]
R

4. Calculate the iterated integral.

3 2 1 2

(a) / /(6Iy2—12x2)dxdy (c) / / 2y sin(rry?) dy dx
1 Jo o Jo

2 3 2 1
(b) / / (6zy* — 122%) dy dx (d) / / 2rzy sin(mry?) dr dy
0 J1 0 Jo

Ans: (a) 40, (¢) 1
5. Calculate the double integral.

(a) f j ysec’(z)dA, R =[0,7/4] x [0,4] (b) f f ze ™ dA, R=1[0,2] x[0,1]

Ans: (a) 8; (b) 1 —e2

6. Find the volume of the solid in the first octant bounded by the cylinder » = 9 — y? and

the plane = = 2.
Ans: 36
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15.2. Double Integrals over General Regions

Okay. So, now we know how to find the volume of the solid under a surface,
when the projection of the solid down to the xy-plane is a rectangular region.

A A

¥ Y

—
0 X 0 x}

Figure 15.4: A general region D and its surrounding rectangle R.

Let D C R? be a bounded region of general shape as in Figure 15.4. For a
bounded function f defined over D, define

_J fzyy) if (z,y) €D
Fla,y) = { 0 ’ if (x,g;;) ¢ D.
Then,
[[ flz.y)aa = [[ F(z,y)da, (15.11)
D R

which implies the following.

* The integral [[, f(z,y) dA exists.
* The iterated integral can be applied to get the double integral over
general regions.
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Quesiton. What if the region D is not rectangular but defined as the
boundary between two functions?

A A

¥ =g.(X ¥
y=g,(x) gy
D p X
=h
gy (n) , =)
I I cl---———----
0 «a b X} 0 x}

Figure 15.5: General regions D: Type 1 (left) and Type 2 (right).

Let the region D be given as

Dy = {(z,y) eR*[a<z<bg(r) <y<glr)}
Dy = {(z,y) e R* | hi(y) <z < ho(y),c <y

| f@.yyda = /b/gj(j)f(w,y)dydrc
D1 a g1\x

([ spaa = [ / h:(j)f(x,y)dxdy
D, 1\y

Cc

Then

(15.12)

1. Visualize to recognize the region.
2. Decide the order of integration.
3. If the calculation becomes complicated, ¢ry the other order.
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by the parabolas y = 22> and y = 1 + 2°.

Solution. First, visualize the region.

.32
Ans: o
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‘Problem' 15.16. Find the volume of the solid that lies under the plane

z = 1+ 2y and above the region D in the zy-plane bounded by the line
y = 2z and the parabola y = 2.

Solution. Try for both orders.

Ans: 28/5

Note: Here, the main concern is how to access the domain D; the
iterated integration must access points in D, once—and-only-once.
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the line y = v — 2 and the parabola = = ¢°.
Solution.

Ans: 45/4
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Solution. Visualize the region and try to change the order of integration.

Ans: (1 —cos1)/2

‘Propos1t10n 15.19. (Properties of double integrals). Let f and g

be continuous functions defined in D and ¢ € R. Then

r

@ || [f(z,9) +gz,9)] dA = jjf:cy dA+ﬂga:y ) dA
D
u: cflx,y dA—cf fxy ) dA
D
| fla,y)dA> | j g(xz,y) dA, if f(z,y) > g(z,y), ¥ (z,y) € D
D

| flz,y)dA = JI f(z,y)dA + fj f(z,y)dA, when D = D1UD2
D Ds

area of the region D.

Hint: Consider a solid cylinder whose base is D and whose height is 1.
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tegral I = [[,e""*¥dA, where D is the disk with center the origin and
radius 2.
Solution.

Ans: 4w /e < I < 4me

order of integration.

Solution.

Ans:e—1
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Exercises 15.2

1.

Evaluate the double integral, by setting up an iterated integral in the easier order.

(a) ije‘”‘QdA, D={(z,y)|0<2z<2, 0<y<z}
D

%)I[x@& D is bounded by y = x + 2 and y = 2
D

(c) fj ysintwrdA, D isboundedby x =0,z =1?% andy =2
D

Ans: (a) 1 —e?;(c) 2/7

Evaluate the volume of the solid that lies under the surface z = x(y + 2) and above the
triangle with vertices P(1,1), Q(3,1), and R(1, 3).
Ans: 12

Sketch the region of the integral and change the order of integration.

1 2 e Inz
(a) / / " ) dady (b) / / f(2,y) dy de
0 0 1 0

Ans: (b) [y [5 f(x,y) de dy

Evaluate the integral by reversing the order of integration:

1 pl 4 rVi-y 5
(a) / / VY cos(y?) dy dx (b) / / el?*= dx dy
0 Ja2 o Jo

Ans: (a) Sig L

In evaluating a double integral over a region D, a sum of iterated integrals was obtained

as follows: D s o
{)ff(m,y)dfl:/o /0 f(x,y)dxdy—i—/l /o f(z,y) dx dy.

(a) Sketch the region D.

(b) Express the double integral as a single iterated integral with reversed order of
integration.
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15.3. Double Integrals in Polar Coordinates

We have spent most of our lives in the Cartesian/Rectangular coordinate system, which
was invented by none other than René Descartes, who was because he thought. Some-
times, however, functions (and consequently integrals) become simpler when expressed in
different coordinate systems. There are many different coordinate systems. Here, we will
focus on one that was invented by Sir Isaac Newton — the polar coordinate system.

Definition} 15.23. (Polar point). Points in polar coordinate system
are defined by two parameters (r, 0), where r is the distance the point is
from the origin and 6 is the angle between the polar axis (positive r-axis)
and the line that connects the point to the origin.

Since a picture is worth a thousand words, here is a picture describing what
was just described:

P(r,0) = P(x,y)
Yo - .
|
r 2
]
o
|
4] N
&
0 X=Frcos 8 x =

Figure 15.6: Point in Rectangular/Cartesian and Polar coordinates.

Naturally, there is a conversion from the Polar Coordinates to the Rectan-
gular Coordinate system and vice versa. That conversion looks like:

(x7y)R — (T7 Q)P (Ta Q)P — (xay)R

x =rcosf r? = x? + ¢ (15.13)

y =rsinf tan(‘):y
%
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Frequently used trigonometric formulas
sin? z + cos’z =1 1+ tan®z = sec’ z
sin 2x = 2sinx cos x cos 2z = cos’ z — sin® z (15.14)
5 1 —cos2x 9 1+ cos2z '
sin“xr = —— cos™ xr = ————
2 2
- Sectors: arc length and area
Arc length: ¢ =160
T "". 1 1 (15.15)
) ‘-l Area: A=—rl ==r
2 2
Figure 15.7

More study on trigonometry and sectors

A

(cosQ, sin Q)

Figure 15.8
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Double integrals with polar coordinates

Polar rectangle:

R={(r,0)|a<r<b a<l<p}
Let Ar = (b—a)/m and A0 = (8 — «)/n, for some m, n, and

ri=a-+1iAr, 1=0,1,---,m,
0 =a+3A0, j=0,1,--- n.

Figure 15.9: Dividing the polar rectangle R = ([a,b] X [«, B])p: (left) polar subrectangles
and (I'lght) zoom-in of Rij = ([Tz;l, Ti] X [(gjfl, ej])p.

The area of R;; is

1
AAjj = =r?A0 — =17 | Af = 5(7% +ri)(ri — o)A = rfArAf,  (15.16)

where rf = (r; + 1;-1)/2.

'Theorem | 15.24. (Polar version of iterated integral). If f is contin-
uous on the polar rectangle R given by 0 < a < r < b,a < 0 < (3, where
0<f—a<2m, then

ff flz,y)dA = /ﬂ /bf(r cos(d), rsin(0)) rdrdb. (15.17)
(S a Ja

Note: @) Do not forget the “r" before the dr df!
@ It follows from Figure 15.9 that AA;; = Ar - r;A0 = r; Ar A6.
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upper half-plane bounded by the circles 2> + y> = 1 and 2 + y* = 4.
Solution.

Ans: 157/2

and the paraboloid z = 1 — 22 — ¢°.

Solution. Volume V = [[,(1 — 2 — y*) dA, where D = {(z,y) | 2* + y* < 1}.

Ans: 7/2
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' Theorem | 15.27. (Polar version of (15.12), p. 90). If f is continuous
on a polar region of the form D = {(r,0) | a < 6 < B, hi(0) < r < hy(0)},
then

B rha(9)
J]f(x,y)dA:/ /h(e) f(rcos(@),rsin(d)) rdrde. (15.18)

D

[Problemj‘ 15.28. Use a double integral to find the area enclosed by one
loop of the four-leaved rose r = cos(26).

Solution. A(D) = [f,, dA = [}, [+ rdr db.

Ans: 7/8
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'Problem ' 15.29. Find the volume of the solid that lies under the paraboloid
z = x? + 1%, above the zy-plane, and inside the cylinder 22 + 3? = 2x.
Hint.

* First, find what the “polar region” looks like.

e That is to say, translate 2> + y> = 2z into polar coordinates and see
what that region looks like. (Also, you may refer to (z — 1)* + y* = 1.)

* Then, look at z = 22 + y? as a polar function and use it as your inte-
grand.

¢ Evaluate.
* Don’t forget the r in “r dr d0”!

Solution.

Ans: 37
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integral f02 o 20=0% /42 + 42 dy dx, by recognizing the region and converting
it to polar coordinates.

Solution. Hint: D = {0 = 0..7/2, r = 0.2cos0}

Ans: 16/9
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'Volume of n-Ball|: The unit interval [—1, 1] can be rewritten as

B &z 22<1} R (15.19)

Similarly, the unit circle and the unit sphere (of radius 1) read

By XL {(2,y) | 2?2 +12 < 1} CR? and By 2L {(z,y,2) | 22 +2+22 < 1} C R%.
(15.20)
In general, an n-dimensional ball (or n-Ball) of radius r is defined as

By = {(21, 22, xa) [ 2] + 23 + - + 2y <7} CR™ (15.21)

It is possible to define volume of n-Ball of radius r, V, ,; in R it is length,
in R? it is area, in R? it is ordinary volume, and in R", n > 4, it is called a
hypervolume. For example,

4
‘/1,7“ = V(Bl,r) = 27”, ‘/2,7" = V(B2,r) = 7TT27 ‘/E’),r = V(B?)ﬂ“) - §7T7’3_ (1522)

Note that V,,, =V,,; - r", n > 1.

Fm—mm—————— -
!
!

Challengejl 15.31. Let B, = B,1 and V,, = V(B,,1). Use polar coordi-

e

nates to find V.., the volume of the unit n-Ball B,,, n > 4.

Solution. See Figure 15.11. Then, .
V, = / / (Vn_g(\/ 1— 72)n_2> rdr df

T3y:.:3Tn 0 0

ni-ball of radius 1

(n — 2)-ball of

radius v 1 = r?

T
(r,0) 2

T

Figure 15.11: The unit n-Ball, B, ;.

Ans: V, = 27” V2. (You will solve this problem differently in Project 2, p. 143.)
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Exercises 15.3

1. Use polar coordinates to evaluate the double integral, or the volume of the solid.
(a) ff ety dA, where D is the region bounded by the semi-circle z = /1 — 32 and the
D

y-axis.
(b) The solid that lies above the cone z = \/22 + 32 and below the sphere 22 + 3 + 22 = 8.
Ans: (a) (e — 1)m/2; (b) 20207

2. A swimming pool is circular with 60—t diameter. The depth is constant along east-
west lines and increases linearly from 2 ft at the east end to 8 ft at the west end. Find
the volume of water in the pool, using a double integral in polar coordinates. Hint:
V = [[,(56+ {5) dA, where D is the circle of radius 30 and centered at the origin.

3. Use polar coordinates to evaluate

jf eV A, (15.23)
Dg

where D, is the disk of radius a centered at the origin. ,
Ans: (1 —e %)

4. We may define the improper integral (over the entire plane R?)

I = HJ;QJ‘ 6—1‘2—92 dA = /_Z /_Z 6—x2—y2 dr dy = ah_{go i:! e—xQ—y2 dA. (15.24)

(a) Use the result from the previous problem (Problem 3, Exercises 15.3) to conclude

/ R V. (15.25)

o

(b) Let 0 > 0. Use the change of variable © = ot to evaluate

/ e /7% dx. (15.26)
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15.4. Applications of Double Integrals

Objectives. Find the mass and center of mass of a planar lamina
and moments of inertia, using double integrals. Then, apply them for
probability and mean values.

Density and Mass

A N

¥ /
// }Z \\
[ \
\ L pl)
N AT
0 X =

Figure 15.12

Let a lamina occupy a region D in zy-plane. Then its density is defined

as A
. m
plo.y) = Jim 0 (15.27)

where Am and AA the mass and the area of a small rectangle that contains
(x,y). Thus, the mass of the lamina over D approximates

m n

m= Z Z p(@ij, yij) AA.

i=1 j=1

By increasing the number of subrectangles, we obtain the total mass of

the lamina

m = Tnl?%ar—l;loo Z Z p(r;,yi;) AA = £f p(x,y) dA. (15.28)

i=1 j=1
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(0,0), (2,2), and (0,4), given that the density at (z,y) is p(z,y) = 2z + v.
Solution.

Ans: 40/3

Definition} 15.33. The moment of a particle about an axis is the prod-
uct of its mass and its directed distance from the axis. Say, M, = m -y,
M, =m- .

'Theorem | 15.34. The moments (first moments) of the entire lamina
about x- and y-axes:

M, = ([ yplz.y)dd, M, = [{ zp(z,y)dA. (15.29)
D D

When we define the center of mass (z,y) so that mz = M, and my =
M., then

M, 1 M, 1
T="t=—[[pep(@y)dd §T=""=—[[yp(z,y)dA.  (15.30)

m m
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‘Problem' 15.35. (Revisit of Problem 15.32). Find the center of mass
for the triangular lamina with vertices (0, 0), (2,2), and (0, 4), given that the
density at (z,y) is p(z,y) = 2z + v.

Solution. We know m = 40/3.

Ans: (Z,y) = (4/5, 11/5)
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Probability

Recall: The probability density function f of a continuous random
variable X is a function such that

f(z) >0, Vx € R, and /OO flx)dx = 1.

The probability that X lies between a and b is

P(angb):/bf(x)dx.

Definition}, 15.36. The joint density function of a pair of random
variables X andY is a function f such that

f(z,y) >0, V(z,y) € R? and J] f(z,y)dA = 1.
R2

The probability that (X,Y) lies in a region D is

P((X,Y) e D) = ﬂf(:c,y) dA.

**********

_ [ kBr—2?) 2y — ¢?), if (2,y) €10,3] x [0,2],
f@,y) = { 0, otherwise.
find the constant k. Then, find P(X <2,V > 1).

Solution.

Ans: k=1/6; P(X <2,Y >1)=10/27
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Expected Values of X and Y

Recall: If f is a probability density function of a random variable X,
then its mean is

u:/ooxf(x)dx.

oo

Definition} 15.38. Let f(z,y) be a joint density function of random vari-
ables X and Y. We define the X-mean and Y -mean, also called the
expected values, of X and Y, to be

= ﬂxf(x,y) dA, pp = ffyf(w,y) dA.

S, B 4—2x%—2y2 . 2 2
‘Problem 15.39. Let f(z,y) = { o Oltizrv;ge =1

(a) Verify f is a joint density function.
(b) Find P(X <0,Y >0).
(c) Find the expected values of X and Y.

Solution.

Ans: (b) 1/4;(c) uy = p2 =0
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Exercises 15.4

1. Find the mass and center of mass of the lamina that occupies the region D and has the
given density function p.

(a) D is the triangle with vertices (0,0), (4,0), and (2,2); p(z,y) =y
(b) D is the part of the disk 22 + y? < 4 in the first quadrant; p is proportional to its
distance from the origin Hint: Set p(z,y) = kv/22 + y? and use polar coordinates for the

integrals.
Ans: (a) m =8/3, (z,y) = (2,1); (b) m = 4kn /3, (z,y) = (3/m,3/m)

2. Use a computer algebra system (Maple, Mathematica, etc.) to find the mass and
center of mass of the lamina that occupies the region D and has the given density func-
tion.

(@) D={(z,y) |0<a<ye?, 0<y<1}; p(z,y)=(1+2>)cosy
Ans: m ~ 0.2167, (Z,7) ~ (0.1507,0.5697)

(b) D is the region closed by the right loop of the four-leaved rose r = cos 26 (as shown
in Figure 15.10 on page 101); p(z,y) = /22 + y?

3. Suppose X and Y are random variable with joint density function

[ k(@+1y, if0<z<2 0<y<l,
Fa.y) = { 0, otherwise.

(a) Find the value of the constant k.
(b) Find P(x <1,y <1)
(¢) Find P(x —y > 1)
(d) Find X-mean and Y-mean.
Ans: (a) k=1/2;(c) 11/48



112 Chapter 15. Multiple Integrals

15.5. Surface Area

We may define the surface area of

12 S to be
’ A(S)= lim Y Y ATy, (15.31)
T | m,n—00 i1 o
53 ! '
: l y where
O = AT;; =|a x b|.
. /
‘ ;’; Here,
/ /
X/ /D 4 a = (Ax,0, fu(x;5)Az),
Figure 15.13 b = 0.4y, f,(xi;)Ay) .
Since
i j k
axb=det |Az 0 f,Ax| = (—fs,—f,1) AzAy, (15.32)
0 Ay f,Ay

we have (AA = AzAy)

ATij =laxb|=./f2+ f2+1AA. (15.33)

Definition} 15.40. The surface area of S with z = f(z,y), (z,y) € D,
where V f is continuous, is

A(S) = [[ \/Folw.v)2 + f,(w,y) + 1dA. (15.34)

Recall: For y = f(x), « € [a, ], the arc length is obtained as

L— /b\/1 TP de. (15.35)
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Note: The surface area will be considered again when we learn Para-
metric Surfaces and Their Areas; see §16.6.3, p. 207.
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‘Problem  15.41. Find the area of the part of the paraboloid z = 22 +y? that

lies under the plane z = 9.
Solution. (See Problem 16.88 on p. 210.)

Ans: (3737 — 1)

within the cylinder 22 + 3> = 1.
Solution.

Ans: Z(2v2 1)
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Exercises 15.5
1. Find the area of the surface.

(a) The part of the plane 2z + y + 5z = 10 that lies in the first octant
(b) The part of the sphere 22 + y? + 22 = 2 that lies above the plane » = 1
Ans: (b) 2271 (V2 - 1)

2. Find the area of the finite part of the paraboloid z = 2 + y? cut of by the plane z = 9.

3. Use your calculator (or, a computer algebra system) to estimate the area of the
surface correct to four decimal places.

The part of the surface z = sin(z? + y?) that lines in the cylinder z? + y* = 4.
Hint: If you use Maple for numeric integration for f;) f(x) dx, the command looks:

int (f (x),x=a..b,numeric)
Ans: 27.7291
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15.6. Triple Integrals

z
< fiva
R
__,/ '{//"f//
P A A S Y
L
fav g

l/.ﬂ?:
X

Figure 15.14

Let’s begin with a function of three
variables defined on a rectangular

Chapter 15. Multiple Integrals

where
B = |a,b] X [c,d] x [r,s].

In defining a triple integral, the first
step is to divide B into sub-boxes.

For some positive integers
¢,m,n >0,
b— d— —
Ax = a’ Ay = C, Ar=2""
14 m n

Let B;j;; be the (ijk)-th sub-box:

Bijk = [-76@'—1,%'] X [yj—layj] X [Zé—laZE]Q

box:
each sub-box has volume AV =

AxAyAz.

w:f(x7y7z>7 (x7y7Z)EB7

Definition}, 15.43. The triple integral of f over the box B is

{ m
I v = i 323

i=1 j=1 k=1

3

f(xi)AV.

* * ok %

' Theorem | 15.44. (Fubini’s Theorem for Triple Integrals). If f is
continuous on B = [a,b] X [c,d] X [r,s], then

ffjf(x’y’z)dvz/:/Cd/:f(%yw)dzdydx;

the integration order can be changed for five other choices.

(15.36)
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‘Problem' 15.45. Evaluate the triple integral f[z zyz*dV, where B =

[0,1] x [—1,2] x [0, 3].
Solution.

Ans: 27/4

Triple integral over a general bounded region E:

1. Recognize (visualize in your brain) the domain E.

2. Separate the domain, e.g., E = D x [ui(z,y), uz(z,v)], D C R
Then, [[[,. f(z,y,2)dV = [, ff(fyz’;) f(z,y, 2)dzdA.

3. The principle is: you must find a scheme to cover the whole do-
main £ (without missing, without duplicating).

Let’s go on a journey!!
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'Problem '15.47. Evaluate [[[,, > dV, where F is the solid tetrahedron bounded
by the four planes + =0,y =0,z=0,and x +y + z = 1.
Solution. £ = D x [0,1 — = — y|, where D is the unit right triangle in the

zy-plane.

Ans: 1/24
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by the paraboloid z = 2> + y?> and the plane z = 4.
Solution. £ = D x [2? + 42, 4], where D is the disk of center the origin and

radius 2.

Ans: 1287/15
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Applications of Triple Integrals

of f over FE represents the volume of E:

v(E) = [[[1av. (15.37)
E

dron 7 bounded by the four planesz =0, y = x, z=0,andz +y + z = 2.
Solution.

Ans: 2/3
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Changing the order of integration

/Ol/yll/oyf(%yw)dxdzdy

Hint: Change the order for adjacent two variables in the integral, keeping the other

alent to

the same. For example, start with = <+ z or z < .

Solution.
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Exercises 15.6

1. Evaluate the iterated integral.

2 1 Inz T 2 \/@
(a) / / / ze Y dydr dz (b) / / / zcosxdydzdx
0 0 0 0 0 0

Ans: (a) —1;(b) 0
2. Evaluate the triple integral.

(a) ffjez/”dv, E={(z,y,2) | 0<2x<1l,z<y<1,0<z<ux}
E

(b) fjf ydV, E is determined by the paraboloid y = 2 + 22 and the plane y = 4
E

Ans: (a) (e — 1)/6; (b) 647/3
3. Fill the lower and upper bounds appropriately for the triple integral.

/1/1/1f(:c,y,z)d:cdydz - @ f@ ® o) dodsdy
0 z y @ @ @
1)

- @ © j@ f(z,y, 2)dz dx dy

Ans: &): y;6): 1;(@: 0;(8): 1 @: 0; @: Y
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15.7. Triple Integrals in Cylindrical Coordinates

Recall: (Equation (15.13)). The conversion between the Polar Coor-
dinates and the Rectangular Coordinate system reads

(z,9)r < (r,0)p

(r,0)p < (z,y)r

T =1rcosb

y = rsinf

2

r? =g+ y2 (15.38)
tan f = Y
€L

Definition}, 15.52. In the cylindrical coordinate system, a point P
in the 3D space is represented as an ordered triple (r,0, z), where r and
0 are polar coordinates of the projection of P onto the xy-plane and = is
the directed distance from the xy-plane to P.

Definition}, 15.58. The conversion between the Cylindrical Coordi-
nates and the Rectangular Coordinate system gives

(.CU, Y, Z)R < (Ta (97 Z)C

(T7 07 Z)C — (gj, Y, Z)R

T =17rcosb
y =rsinf
2 = 4

2 2 2
= 2% +
oy (15.39)
B X
Zz =2z

E =D x [u(z,y), us(x,y)],

Note: The triple integral with a Cylindrical Domain EF can be carried
out by first separating the domain like

where D is a polar region.
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'Problem ' 15.54. (a) Plot the point with the cylindrical coordinates (2, Z e
and find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,—=3,7)g.

Solution.

Ans: (a) (—1,v/3,1)g; (b) (3v/2, —7/4,7)c.

Vi—a2

/ (z* 4+ *) dz dy de.
VAa—22 2+y
Hint. Change the triple 1ntegra1 1nto cylindrical coordinates.

Solution.

Ans: 167/5
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cylinder 22 + y> = 1 and the sphere 2% + 3> + 22 = 4.
Solution.

125

Ans: 47(8 — 3V/3)
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Exercises 15.7

1. Identify the surface whose equation is given.

(a) r2+422 =4 (b) r =2cosb
Hint: (b) It can be rewritten as r? = 2r cos f, which in turn reads =2 + y? = 2z.

2 V4—z2 2
2. Evaluate / / / x dzdydx, by changing the triple integral into cylindrical
0 J—Va—a2 J\/x24y2

coordinates.
Ans: 8/3

3. Use cylindrical coordinates to find the volume of the solid F that is enclosed by the cone
2z = /22 + y2 and the sphere 22 + y? + 22 = 2.
Ans: 3m(vV2—1)
4. Use cylindrical coordinates to evaluate JJJ ydV, where E is the solid that lies between
E

the cylinders 2%2+%? = 1 and 2%2+3? = 9, above the zy-plane, and below the plane z = y+3.
Ans: 20w
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15.8. Triple Integrals in Spherical Coordinates

A

Z o Definition}, 15.57. The spher-
> P(p,0.0) ical coordinates (p,0,¢) of a
6 P point P is shown in Figure 15.15,
where p = |OP| = /22 + 2 + 22,
0 - 0 is the angle from the z-axis to
par y the line segment OP’, and ¢ is the
/@ T angle between the positive z-axis

Fuy,0) and the line segment OP.

Figure 15.15: Spherical coordinates of P.

Note: By observing the definition, we can see the following inequalities:

p>0 0<60<2m, 0<op <.

For a convenient conversion formula, consider first

z=pcosgp, T = psinao.

Definition}; 15.58. The conversion between the Spherical Coordi-
nates and the Rectangular Coordinate system gives

(I’,y,Z)R — (p707¢)5 (p707¢)5 — (l',y;Z)R

x =1rcosf =psinpcosh | p* = 2?4+ y* + 2°

Yy =1rsinf = p sinpsinf Cosgb:E (15.40)
P

Z=pcoso cosf = —
psin ¢
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and find its rectangular coordinates.
(b) Find spherical coordinates of the point with rectangular coordinates

(0,2v/3, —2)g.

Solution.

Ans: (a) (1/3/2,1/3/2,1)r; (b) (4,7/2,27/3)s

Figure 15.16: A small spherical wedge E,j;,
of volume AV, = rpAp A Ag.

Triple Integral with Spherical Coordinates: In the spherical coordi-
nate system, the counter part of a rectangular box is a spherical wedge

E={(p,0,0) eR®|a<p<ba<b<pc<o¢<dl,

where a > 0, f — o < 27, and d — ¢ < 7. We divide smaller spherical wedges
{Ei1} by means of equally spaced p;, 6;, ¢;. Figure 15.16 shows that E,j;, is
approximately a rectangular box, of which the volume approximates

AVir = 1p Ap A0 Ap = p®sin ¢ Ap AO Aé. (15.41)
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'Theorem | 15.60. (Triple Integral on Spherical Wedges).
d B b
fff flz,y,2)dV = / / / f (psingcos @, psinpsin b, p cos ¢)
E C [0 a
x p® sin ¢ dp df do,
(15.42)

where FE is a spherical wedge given by

E={(p0,0) cR|a<p<ba<h<B,c<o<dl).

Note: The scaling factor|p? sin ¢ = rp

B = {(:c,y,z) | 22 + 2 + 22 < 1}.
Solution.

Ans:

4
37T

(e—-1)
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'Theorem |15.62. (Spherical Fubini’s Theorem). We can extend The-
orem 15.60 to regions defined by

E={(p,0,0) €R*| g1(0,0) < p < g2(0,0),a <O < B,c < ¢ < d},

in such a way:

g2 (97¢)

d 8
jﬂ Fz,y,2)dV = / / / f(psin ¢ cosb, psinpsin b, pcos @) p* sinpdpdfdp.  (15.43)
% ¢ Ja Jai(0.0) —

that lies above the cone z = /22 + y? and below the sphere 22 4 y? + 2% = .
Solution. Sphere: p? = pcos ¢ = p = cos ¢.
Cone: pcos¢ = r = psin ¢ = cos ¢ = sin ¢. So, ¢ = 7/4. Therefore,

w/4 27 pcoso
V:/ / / p?sin ¢ dp df d¢
0 0 0 -

Figure 15.17

Ans: 7/8
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Exercises 15.8

1. Write the equation in spherical coordinates.

(a) 22 +9y2+22=1 (¢) 222 + 292+ 22 =4
(b) z =22+ 42 (d) z = a2 —?

Hint: (c) 222 + 2y> + 2% = (2?2 + % + 22) + (2% + ¢?)

2. Sketch the solid whose volume is given by the integral; evaluate the integral.

w/4  pm 2 w/2  p2w pcos¢
(a) / / / p*sin ¢ dp df do (b) / / / p*sin ¢ dp df do
0 o Jo 0 o Jo

Ans: (b) 7/6

3. Use spherical coordinates to to find the volume of the solid that lies above the cone
2 = v/2? + y? and below the sphere 22 + 3% + 22 = 1.
4. Use spherical coordinates to evaluate fjj 2=+ +%°)” 1y where B is the portion of the
B

unit ball 22 + 3? + 22 < 1 that lies in the first octant.
Ans: (e —1)7/16
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15.9. Change of Variables in Multiple Integrals

We have done changes of variables several times in the past. Dating as
far back when we learned integration with the “u-substitution”, we started
using changes of variables (we made u = g(z).) Indeed,

g9(d)
/f d;c—/ f(u) du. (15.44)
g(c)

Another way of expressing (15.44) is

/ f(z dx—/ f(z —du (15.45)

where © = z(u) : ¢ +— a, d— 0.

77777777777 d
Solutlon. u=2a2> = du=2xdr = xdr= ?u u(0) = 0, u(2) = 4.

Therefore

2 4
d 1 1

/xem2d.7::/ e w —/ e"du = —e"
0 0 2 2 Jo 2

Another way: ‘a: =z(u) =\yu = —= F Therefore

2 I 1
e’ dx—/\/ﬂe —du- /e“du:—e4—1.

as in double 1ntegrals in polar coordinates. For a polar region R, we have

used the conversion:
xr=rcosf, y=rsinb,

which is a transformation from the r6-plane to the ry-plane. Then,

ff flz,y)dA = ff f(rcos@,rsinf)rdrdd, (15.46)
R Q

where () is the region in the rf-plane.
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Goal: The goal of this section is to write a general form for a change of
variables, which turns the integral easier.

Definition}; 15.66. A change of variables is a transformation T : Q) —
R (from the uv-plane to the xy-plane), T'(u,v) = (z,y), where x and y are
related to u and v by the equations

T = g(u,v), W= h(U,U)- [Or7 r(u,@) - (g(u,v), h(uvU»]

We usually take these transformations to be C'-Transformation,
meaning g and h have continuous first-order partial derivatives, and
one-to-one.

A A

v y
T
o —
(u,v) 4
T
-_—
h\“_-_-—-—_—_
0 e 0 0

Figure 15.18: Transformation: R = 7'(Q)), the image of 7.

‘Problem' 15.67. A transformation is defined by r(u,v)
= (2u —v,u+v). Find the image of the unit square ) = {(u,v) | 0 < u <
1,0<v<1}.

Solution.

Ans: A rectangle of vertices (0,0), (2,1), (1,2), (—1,1).
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AV Q

w@y,v) Au

-

0 i 0 X

Figure 15.19: A small rectangle in the uv-plane and its image of 7" in the zy-plane.

Now, let’s see how a change of variables affects a double integral.
* See Figure 15.19, where T': () — R given by

r(u,v) = (z,y) = {g(u, ), h(u,v)). (15.47)
* The tangent vectors at r(uy, vy) w.r.t the u- and v-directions are
Ty (U0, Vo) = (Gus Pu) (w0, v0),  Tu(uo,v0) = (v, hw) (o, vo).

* We can approximate the image region R = T(()) by a parallelogram
determined by the scaled tangent vectors. Therefore,

AA = A(R) = |(r,Au) x (r,Av)| = |ry X r,| Au Av. (15.48)

¢ Computing the cross product, we obtain
i j k

r,xr,=det | z, v, 0| =det [ Tu Yu ] k (15.49)

Ty Yo O

Definition} 15.68. The Jacobian of T : z = g(u,v), y = h(u,v) is

O(x,y) et .. [a;u 5; ] oy — Ty 1. (15.50)

O(x,y)
d(u,v)

AA =~ | Au Av. (15.51)
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' Theorem | 15.70. Suppose that T is a C'-transformation whose Jaco-
bian is nonzero, and suppose that T’ maps a region () in the uv-plane onto
a region R in the ry-plane. Let f be a continuous function on R. Suppose
also that T is an one-to-one transformation except perhaps along the
boundary of the regions. Then

o(z, y)

ff f(z,y)dA = ff f(x(u,v),y(u, v))| du dv. (15.52)

t1on from Q [a bl X [a, f] in the rf-plane to R in the ry-plane is given
by

T: x=g(r,0) =rcosf, y=~h(r,0)=rsinb.
The Jacobian of 7" is

ow,y) cosf) —rsinf
o(r,0) det [ sinf rcos6

Thus Theorem 15.24 (p. 99) gives

] = rcos’f +rsin’f = r.

dr db

. O(z,y)
L flx,y)dA = [2 f(rcos(@),rsm(@))'8(r’g)

5 (15.53)
= //f(rcos(@),frsin(ﬁ))rdrde.
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‘Problem ' 15.72. Evaluate [[(z+y)dA, where R is the quadrilateral region
R
with vertices given by (0,0), (3,—3), (6,0), and (3, 3), using the transforma-

tion x = u + 3v and y = u — 3.

Solution.

Ans: 54
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R
trapezoidal region with vertices (1,0),(2,0), (0, —2), and (0, —1).

Solution.

Ans: 2(e — e 1)
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‘Problem' 15.74. Evaluate [[,, sin(2> + 4y?) dA, where R is the region in the
first quadrant bounded by z? + 4y> = 4.

Solution. Consider the transformation: = = 2u, y = v.

Ans: Z(1 —cos4)
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Triple Integrals

Definition} 15.75. (Higher order Jacobian). The Jacobian of T,
given by

r=g(u,v,w), y=h(u,v,w), z==k(uvw),

is the following determinant:

B By Doy
M = det { Yo Yo Yuw ] : (15.54)

O(u, v, w) Y a

|'Theorem | 15.76. Under hypotheses similar to those in Theorem 15.70,

we have the following formula for triple integrals:

o(x,y, z
f}{f flz,y,2)dV = fgf f(z(u,v,w),y (u,v,w),z (u,v,w)) '0((%12)/./ w))

du dv dw. (15.55)

[Self-studyjl 15.77. Show that when dealing with spherical coordinates,
dV = p*sin ¢ dp db de. (15.56)

Recall. x = psin¢cosf,y = psingsinf, and z = pcos ¢.
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Exercises 15.9

1. Use the given transformation to evaluate the integral.

(a) ff y* dA, where R is the region bounded by 422 + 9y? = 36; (z,y) = (3u, 2v)
R

(b) ff(?)x —y) dA, where R is the triangular region with the three vertices (0,0), (2, 1),
R
and (1,3); (z,y) = (2u + v,u + 3v)
Hint: (a) [[,y* dA = [|, 4v* - 6 dudv, where Q = {(u,v) | u® +v* <1}

Hint: (b) [[,(3z — y) dA = HQ 5u - 5 du dv; figure out Q by yourself
Ans: (a) 6; (b) 25/6

2. Make an appropriate change of variables to evaluate the integral
jf sin(z? + 4y) dA,
R

where R is the region in the first quadrant bounded by the ellipse 2% + 4y? = 1.
3. Make an appropriate change of variables to evaluate ff 2(x — y)e””2_y2 dA, where R is the
rectangle enclosed by the lines: + —y =0, z —y =1, :cRJr y=0, x+y=2.
4. Make an appropriate change of variables to evaluate the integral jf "V dA, where R is
R

given by the inequality |z| + |y| < 1.

Ans: e —e !
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R.15. Review Problems for Ch. 15

1. Estimate the volume of the solid that lies below the surface 2 = x + y and above the
rectangle R = {(z,y) | 0 <x <6, 0 <y <4}. Use a Riemann sum with m = 3,
n = 2, and the Midpoint Rule.

Ans: 120
2. Evaluate the double integral following the direction.
H(4 —2)dA, R=10,4] x [0,5]
R
(a) Identify it as the volume of a solid. (You should visualize the solid.)
(b) Evaluate the double integral, by measuring the volume.
Ans: 40

3. Evaluate the double integral:

g YA, R=10,1x[0,2].

1+axy

Hint: Use /lnx dr = zlnz — z + C, if necessary.
Ans: —2 + 31n(3)

4. Evaluate the double integral
1 r3
/ / e dx dy
0 3y

5. Evaluate the iterated integral by converting to polar coordinates.

3 v/ 9—12
/ / 2sin(z? + y?) dx dy
-3Jo

Ans: —1/6 4 ¢€°/6

Ans: (1 — cos9)

6. A swimming pool is circular with 40—ft diameter. The depth is constant along east-

west lines and increases linearly from 2 ft at the south end to 6 ft at the north end.
Find the volume of water in the pool, using a double integral in polar coor-

dinates.
Ans: 16007



142 Chapter 15. Multiple Integrals

7.

8.

10.

1.

12.

Find the surface area of the part of the plane z = 2z + 28y + 2030 that lies inside
the cylinder 22 + ¢* = 1.

Ans: /789
Fill the lower and upper bounds appropriately for the triple integral.
[ [ ] stz azaya AR
) Fey ) dzdyde = 0 5 5 r,y,z) dz dv dy
D f( Ydxdz d
= r,y,z)dvdz dy
@ © @

Ans: From@to@: 0,1, y,1, 0,y; 0,1, 0,y, y,1]

. Use eylindrical coordinates to evaluate fff 22 dV, where E is the solid that
E

lies within the cylinder 22 + y? = 1, above the plane z = 0, and below the cone
22 = 4a® + 492,
Ans: 27/5

2)3/2

Use spherical coordinates to evaluate fff e+ g1 where F is the portion
B

of the unit ball 22 + y? 4 2z < 1 that lies in the first octant.
Ans: (e—1)7/6

Use the transformation x = 2u, y = v to evaluate ff(xz + 4y*) dA, where R is the

R
2

region bounded by the ellipse % + 2 =1.
Ans: 4w

Evaluate jf(x + y)eﬁ_y2 dA, where R is rectangle enclosed by the lines x —y = 0,
R

r—y=1,xr4+y =0,and x4y = 1. Hint: If you set u = z+y, v = x —, then the transformation
becomes z = (u+v)/2,y = (u—v)/2.
Ans:e/2 —1
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Project 2. The Volume of the Unit Ball in n-Dimensic

In this project, we will find formulas for the volume of the unit ball in n-
dimensions (nD). From your high school, you learned volumes of unit balls
forn =1,2,3.

1 {z|2* <1} =[-1,1] 2 (15.57)
2 {(z,y) | 2> +y* < 1} m
3 {(z,y.2) [2? +y*+2° <1} dm/3

Define the 4D unit ball (hypersphere) as
By={(z,y,z,w) | 2* +y* + 2* +w? < 1}. (15.58)

.. : 4 : .
Before finding its volume, V, let’s try to verify 15 = % by using a specific
integration technique.

Figure 15.20: B; and its projection to R? x R: the volume V5 approximates the sum of
the volume of circular slices having radius cos §; and thickness Asin6; := sinf,,; — sinf; =

sin#; 1 — sin6;
Al ~ i AG.
A7 0 ~ cos6; A9
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The computation of V;: We first partition B; into horizontal circular
slices. Let, for k£ > 0,
T 1 , ,

A9:§'E and 0, =iA0, i=0,1,--- k. (15.59)
One can see from Figure 15.20 that the volume V5 approximates the sum
of the volume of circular slices. The i-th circular slice S; has radius
cos 0;; its area is 7 7
A(S;) = Vs - cos® 0; = m cos” b;. (15.60)
Since S; has thickness Asinf; = sinf, | — sin#;, we have
-1

Bl

Vs~2) (mcos?f;) Asinb;. (15.61)
i=0
Therefore,
k-1
Vs = lim 2Y (wcos*6;) Asinb;

e (15.62)

/2 /2 2

= 27r/ cos? 0 d(sinf) = 277/ cos® 0 df = 2 - =

0 0
Note: Equation (15.62) can be rewritten as
/2
Vs =2V, / cos® 0 do. (15.63)
0

The computation of V,: We are now ready for it! First image B, and
its projection to R? x R. With the same partitioning of the last dimension,
the i-th horizontal piece S; now becomes a spherical slice, rather than a
circular slice, but having the same radius cos 6, and thickness A sin 6;. Thus,
the volume of the i-th spherical slice reads

V(S;) = V3 cos® 0; - Asin6; ~ Vi cos” 0; AG. (15.64)

Recall that Asinf; = sinf;,; — sinf;, = cosf; Af. By summing up for i =

0,1,---,k — 1, and multiplying the result by 2 (due to symmetry), we have
k-1
Vim 2V ) cost 0; AG. (15.65)

1=0
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‘Problem ' 15.78.

1. Complete a formula for V,, by applying £ — oo to (15.65).

Hint: Your result must be similar to (15.63).
2. Apply the above arguments recursively to find formulas for V,,, n > 2.

3. Use a computer algebra system (e.g., Maple) to evaluate exact values
of V,,,forn=1,2,---,20.

4. Plot {(n,V,) |n=1,2,---,20}.
Hint: You may use Maple-code 15.79 and your plot must look like Figure 15.21.

2

Figure 15.21: A plot for V,,, where max(V) = V; = 81% ~ 5.263789.

Maple-code | 15.79. Assume you have a formula for V,, of the form

Then you may implement a Maple code:

Maple Script for the Computation of Vn and Plotting
with(plots): with(plottools):
with(VectorCalculus): with(Student[MultivariateCalculus]):

m := 20:

V := Vector(m):

V[1] := 2:

for n from 2 to m do V[n] := V[n-1]*g(n); end do:
max[index](V); max(V); evalf(%);

© w 3 o W - w [ =

=
(=1

X := [seq(n, n = 1..m)]:

pp := pointplot(Vector(X), Vector(V), color = blue, symbol = solidcircle, symbolsize = 12):

pl := plot(Vector(X), Vector(V), color = blue, thickness = 3):

display(pp, pl, scaling = constrained, labels = ["n", V___n], labelfont = ["times", "bold", 13])

-
=

—
[

=
w
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Figure 15.21 is constructed using the above code, with m := 10: and g(n)
defined appropriately. 0

Report. Submit hard copies of your experiences.
® Derive a formula for V,, of the form in (15.66).
* Implement a code to evaluate V,,, n = 1,2,--- , 20, exactly.
* Plot the results.
* Collect all your work, in order.

e Attach a “summary" or “conclusion” page at the beginning of report.

You may work in a small group; however, you must report individually.



CHAPTER 16

Vector Calculus

In this chapter, we study the calculus of vector fields. In particular, you will

learn
Subjects Applications
Line integral Work done by a force vector field
in moving an object along a curve
Surface integral The rate of fluid flow across a surface
Fundamental theorem | Green’s theorem, Stokes’s theorem,
of calculus, in 2/3-D and Divergence theorem
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This chapter corresponds to Chapter 16 in STEWART, Calculus (8th Ed.), 2015.
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16.1. Vector Fields

16.1.1. Definitions

Definition}, 16.1. If D is a region in R* , a (2D) vector field on D is
a function F that assigns to each point (r,y) € D a two-dimensional
vector F(x,y). If D is a solid region in R?, a (3D) vector field on D is
a function F that assigns to each point (x,y, z) € D a three-dimensional
vector F'(z,y, z).

Expressions for vector fields:

F(z,y) = (P(z,y), Q(z,y))
= P(z,y)i+Q(z,v)],

F(z,y.2) = (P(z,y,2), Qz,y,2), R(z,y,2))
= P(x,y,2)i+ Q(z,y,2)j+ R(z,y, 2) k.

‘Example 16.2. F(z,y) = (z, z — y) is a vector field in R%. G(z,y,z) =

22i+ 1% ¥ 22k is a vector field in R?. Let’s sketch F.
(SE‘,y) F(I,y) — <aj> x _y>
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vectors F'(z,y).

Solution.
(l',y) F(.’L’,y) — <_y7 I’>

(1,0)
(0,1)
(=1,0)
(0, -1)

Note:

* x-F(x)=(z,9) (~y,v) = —zy + zy = 0.
Thus, F(x) = (—y, x) is perpendicular to the position vector x.

* |F(x)| = Vy* + 22 = [x].

Therefore, F'(x) has the same magnitude as x.
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Figure 16.1: The vector field F' = (—y, =), showing directions only.
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Vector fields in R3

Figure 16.2: Airfoil simulation, showing the velocity field.
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16.1.2. Gradient fields and potential functions

* Suppose that f(x,y) is a differentiable function on D. Earlier we de-
fined the gradient V f of f:

Vi@ y) = (folz,y), fy(z,y)) = feit fy].

We now see that V f is a two-dimensional vector field on D.

e Similarly, if f(z,v,2) is a differentiable function on a solid D C R3,
then Vf(xz,y, z) is a three-dimensional vector field on D.

From now on, we will refer to the gradient of a function f as the gradient
vector field of f.

,,,,,,,,,,,,

flzy) ="y — .

Solution.

Ans: 2zvy, v — 3y?)

Definition}, 16.7. A vector field F is conservative if there is a differ-
entiable function f such that

Vf=F.

The function f is called a potential function of F', or simply potential.

,,,,,,,,,
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F—————————
|
S

3y?). Then F is conservative.
Solution. Let’s try to find f such that Vf = F'.

Ans: f(x,y) =2y — >  + K
Note: Not every vector field is conservative, and it is not difficult to give an
example of a vector field that is nonconservative.

conservative.

Proof. Assume that F' is conservative. Then, there exists f such that

Vf={fu,fy)=F:
fz:x2+ya fy:yg-
Then
fiy=1 and f, =0. (16.1)

Since both mixed partials are constants, they are continuous everywhere.
Thus, by the Clairaut’s theorem, we must have

However, in (16.1), they are not equal. Contradiction! 0

We will study properties of conservative vector fields in Section 16.3
below, in detail.
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in a velocity field v(z,y) = (xy — 2, y* — 10), find its approximate location at
t=1.05.
Solution. Clue: r(t) ~ r(ty) + r'(to) - (t — to), where 1’ is the velocity vector.

Ans: (1.05,2.95)
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Exercises 16.1

1. Match the vector fields F' with the plots labeled (I)—(IV). Give reasons for your choices.

(a) F = (e”,5y)

() F=(r+y,y)

(b) F = (sin(z + y), z) (d) F = (z,~y)

D (1D
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Figure 16.3: Maple fieldplot.

Hint: Let’s see Figure (III), for example; arrows are directing up for z > 0 and down for z < 0,
which implies that the second component of F is closely related to z. Now, what can you say
about Figure (IV)? Arrows never look the west direction, which implies that the first component

of F' is nonnegative.

2. Use a CAS (fieldplot in Maple and PlotVectorField in Mathematica) to plot

F(z,y) = (y* — zy®) i+ (2zy — 227) .

Explain the appearance by finding the set of points (z,y) such that F(z,y) = 0. (Attach

the figure.)
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3. Find the gradient vector field V f/ and sketch it.

3

@ flay) =20 0 g =50

4. Match the functions f with their gradient vector fields plotted with labels (I)—(IV). Give
reasons for your choices.

(@) f(z,y) = ze? () f(z,y) =z(z —2y)
(b) f(x,y) ="+ (@) f(x,y) = cos(2? + )
(D (I1)
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Hem e s o & 8 8 t 7 & o > 19, .,
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Figure 16.4: Maple fieldplot for Vf.
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16.2. Line Integrals

Recall: In single-variable calculus, if a force f(z) is applied to an object
to move it along a straight line from x = a to x = b, then the amount
of work done is given by the integral

W = /abf(x) dx (: Jirgoif(xf)Aaﬁ (16.2)

Up to this point, our intervals of integration were always either bijective
function or a closed interval [a,b]. In this section, we will be integrating
over a parametrized curve instead of a nice interval as before.

Goal: To integrate functions along a curve, as opposed to along an inter-
val.

Definition}, 16.12. A plane curve C is given by the vector equation

r(t) = (z(t), y(t)), a<t<b, (16.3)
or equivalently, by the parametric equations

r=g(t), y=nh(t), a<t<hb. (16.4)

Recall: You have learned

=/ Az + Ay} = \/ Aml A‘Z’) At

T B dx\ 2 dy 2
o T

= V@) + (Y {1)2dt = |'(t)] dt.
Thus the arc length of C' can be computed as

/ds—/ V(2! (t))2dt.

and therefore
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16.2.1. Line integrals for scalar functions in the plane

Now, suppose that a force is applied to move an object along a path
traced by a curve C. If the amount of force is given by f(z,y), then the
amount of work done must be given by the integral

W:/f(x,y)ds, (16.5)
C

where s is the arc length element, i.e., ds = /dz? + dy?.

Figure 16.5: A function defined on a curve C.

Assumption. The curve C is smooth, i.e., r'(¢) is continuous and r'(¢) # 0.

Definition}, 16.13. If f is defined on a smooth curve C given by (16.3),
then line integral of f along C' is

/fxy )ds = hm Zf x;,yl) As;, (16.6)

if this limit exists. Here As; = \/Ax? + Ay:.
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The line integral defined in (16.6) can be rewritten as

Jo f(zy)ds = /f(x(t),y(t)) V(@ () + (' (1) dt

b (16.7)
_ / F(x(t), y(8) ()] dt.

'Problem ' 16.14. Evaluate / (2 + 2%y)ds, where C is upper half of the unit

circle 22 + 3 = 1.

Solution. Clue: Find the parametric equation for C' and then follow the formula (16.7).

Ans: 2w + %
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Definition} 16.15. C' is a piecewise smooth curve if it is a union of a
finite number of smooth curves C4, Cs, ---, C,. That is,

C=CUCU---UCGC,.

In the case, we define the integral of f along C as the sum of the inte-
grals of f along each of the smooth pieces of C"

/f(x,y)ds = flx,y)ds + f(x,y)ds+ - / f(x,y)ds. (16.8)
c Gy

2

‘Problem 16.16. Evaluate / 2x ds, where C' consists of the arc ] of the

c
parabola y = 22 from (0, 0) to (1,1) followed by the vertical line segment C,
from (1,1) to (1,2).

Solution. Clue: Begin with parametric representation of C; and C,. For example,
Crix=t,y=t3,0<t<landCy:z=1,y=1t 1<t <2

Ans: 1(5v/5—1)+2
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Application to Physics: To compute the mass of a wire that is shaped
like a plane curve C, where the density of the wire is given by a function
p(x,y) defined at each point (z,y) on C, we can evaluate the line integral

m=/p(:1:,y) ds. (16.9)
c

Thus the center of mass of the wire is the point (7,7), where

1 1
T = —/xp(a:,y) ds, Y= —/yp(;r:,y) ds. (16.10)
g mJjc

and its density is proportional to the distance from the line y = 1. Find the
center of mass of the wire.

Solution. Clue: First parametrize the wire and use p(z,y) = k(1 — y).

Ans: (7,7) = <0, Sy 0.38), where m = k(7 — 2)
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Definition}; 16.18. Line integrals of f along C with respect to z
and y are defined as

[ Fawydn = T S fat)Am,
n—o0
¢ i1 (16.11)
/Cf(w,y)dy = lim »  f(},y5)Ay;.
=1

The line integrals can be evaluated by expressing everything in terms of ¢:

/ f(z,y)de = / £ (1), y(£)2'(8) dt.
C a

b (16.12)
/f(xay)dy = /f(a:(t),y(t))y’(t)dt.
C a

Note: It frequently happens that line integral with respect = and y occur
together. When this happens, it is customary to abbreviate by writing

/CP(w,y)der/CQ(x,y)dy:/CP(%y)da:+Q(93,y)dy~

Let F(xz,y) = (P(z,y), Q(z,y)) and r = (z,y) = (x(f), y(¢)) represent the
curve C. Then, since dr = (dz, dy), we can rewrite the above as

/ P(x,y)dz + Q(x,y) dy = / F - dr, (16.13)
c c

which is a line integral of vector fields. We will consider it in detail in
§ 16.2.3 below (p. 166).
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'Problem ' 16.19. Evaluate / y? dx + x dy, where

(a) C =Cy: theline segment from (—5,—3) to (0,2)
(b) C =Cy: thearcof x =4 — y? from (-5, —3) to (0, 2)

Solution. Clue: C, :r(t) = (1 —t)ro+tr;, 0<t<land Ch:ax=4—t> y=1t -3 <t <2

Ans: (a) =2 (b) 402
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Orientation of curves: It is important to note that the value of line inte-
grals with respect to x or y (or z, in 3-D) depends on the orientation of C,
unlike line integrals with respect to the arc length s. If the curve is traced
in reverse (that is, from the terminal point to the initial point), then the
sign of the line integral is reversed as well. We denote by —C the curve
with its orientation reversed. We then have

/ Pda::—/Pda:, / Qdy:—/Qdy. (16.14)
-C C -C C

N, .
a b 3 a b {

Figure 16.6: Curve C and its reversed curve —C.

Note: For line integrals with respect to the arc length s,

/ fds:/fds. (16.15)
—-C C

is the line segment from (0, 2) to (—5, —3):

r(t) = (1 — ){0,2) + t{(—5, —3) = (—5t, 5t +2), 0<t < 1.

5)
Thus we must have / y?dr 4+ x dy = 5
—C,

Solution.
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16.2.2. Line integrals in space

First, the definition for the line integral (with respect to arc length) can be
generalized as follows.

Definition}; 16.21. Suppose that C' is a smooth space curve given by

2(t) = (0(t), y(t), (1), a<t<b.

Then the line integral of [ along C is defined in a similar manner as
in Definition 16.13:

flz,y,z)ds = lim flxl,yf, 27) As;. (16.16)
[ 1w IO DRSS

It can be evaluated using a formula similar to (16.7):

f(z,y,2)ds = f(r )| dt
/ Eh / ()l (16.17)
/ i 2(6) V@ T W)+ (@)t

Note:
* When f(z,y,2) =

/ds—/ It'(t)|dt = L : arc length

* When F = (P,Q, R),
/F-dr:/de+Qdy+Rdz.
c c
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‘Problem ' 16.22. Evaluate / ysin z ds, where C'is the circular helix given

by r(t) = (cost,sint,t), 0 <t < 2.

Solution. Hint: You may use one of formulas: sin?t = (1 —cos 2t)/2, cos®>t = (1-+cos 2t) /2.

Ans: \/2n
‘Problem' 16.23. Evaluate / zdx + xdy + ydz, where C' is given by z =

2, y=t3 2=, 0<t<l1.
Solution.

Ans: 2
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16.2.3. Line integrals of vector fields

Recall: In Calculus III, we have found that the work done by a constant
force F' in moving an object from a point to another point () in the space
18

W =F-D, (16.18)

A
where D = P(), the displacement vector. [

In general: Let C' be a smooth space curve given by
r(t) = (z(t),y(t), 2(t)), a<t<b

Then the work done by a force F' in moving an object along the curve C
18

W = lim E F(z},y7,2)) - [T(z},y7, 2]) As;] = / F -Tds, (16.19)
n—00 £ C
1=1

where r(t;) = (x;, yi, 21), As; = |r(t;) —r(t;-1)|, and T is the unit tangential
vector

_ ()
T(t) = O (16.20)

Since ds = |r'(t)| dt, we have

b r’(t) b
W = / F-Tds :/ F-—=|r'(t)| dt :/ F-r'(t)dt = / F.dr. (16.21)
c o () o c

A T(t)As,
L

¥

/ J"
X ra)

Figure 16.7
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Definition}; 16.24. Let F be a continuous vector field defined on a
smooth curve C given by r(t),a < t < b. Then the line integral of F
along C' is

b
/F-dr def /F-Tds = / F(r(t)) - r'(t) dt. (16.22)
C C a

We say that work is the line integral with respect to arc length of the
tangential component of force.

Note: Although / F -dr = [ F -Tds and integrals with respect to arc

c C
length are unchanged when orientation is reversed, it is still true that

/ F-dr:—/F-dr.
-C C

[Problemj 16.25. Evaluate | F-dr, where F(z,y,z) =zyi+yzj+z2zxk and

C
C'is given by r(t) = (¢,¢,t3), 0 <t < 1.
Solution.

.27
Ans: BT
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'Theorem | 16.26. (Equivalent to Definition 16.24, p. 167).
Let F = (P,Q, R). Then

/F-dr:/Pda:+Qdy+Rdz. (16.23)
C C

‘Problem' 16.27. Let F(z,y) = < 7 f > 2y 2> and C the parabola
ety ety
y =1+ 2% from (—1,2) to (1,2).

(a) Use a graph of F and C' to guess whether [ F - dr is positive, negative,
or Zero.

(b) Evaluate the integral.

Solution. Hint: (b) C : r(t) = (t,1+1%), —1 <t < 1;use Eqn.(16.22).

Ans: 0
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Exercises 16.2

1. Evaluate the line integral, using the formula [ f(z,y)ds = ff f(r(t) |’ (t)] dt.
(a) / 1%y ds, where C'is given by r(t) =< cos2t,sin2t >, 0 <t < 7 /4
c

(b) / 2zye™* ds, where C'is the line segment from (0,0, 0) to (2,1, 2)
c
Ans: (a) 1/3; (b) e* — 1

2. Let F be the vector field shown in the Fig- ¥

ure -O. N e e R R
//r-—-—c—z'a—c—v—-w..\\

(a) If ¢, is the horizontal line segment A AR ] Al ~ N
from P(3,2) to Q(—3,2), determine SRS B

i - L T |
whether F'-dr is positive, negative, $ oy a0 12 a1 tx

c

or zero. LR a4
NI

(b) Let C5 be the clockwise-oriented circle Ny e
of radius 3 centered at the origin. De- N Y
N — =B ——b— —_F T

termine whether F - dr is positive,
Cy .
negative, or zero. Figure 16.8

3. Use (16.22) to evaluate the line integral / F - dr, where C' is parameterized by r(t).
c

(@) F(z,y) = 2*y*i+ 2*y?j, (b) F(x,y,z2) = (—y,z,zy)

r(t) =t —20)i+ (#+2t)j, 0<t<1 r(t) = (cost,sint,t), 0<t<m

Ans: (a) —9; (b) 7

4. A thin wire is bent into the shape of a semicircle 22 + > = 4, y > 0. If the linear
density of the wire is p(z,y) = ky, find the mass and center of mass of the wire. Hint:
C:r(t)=(2cost,2sint), 0<t<m

Ans: 8k, (0,7/2)
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16.3. The Fundamental Theorem for Line Inte-
grals

Recall: The Part 2 of Fundamental Theorem of Calculus (FTC2) is

b
[ 1@z = 1) - f(a). (16.24)

Goal: It would be nice to get a generalization of the FTC2 (16.24) to line
integrals.

16.3.1. Conservative vector fields

' Theorem | 16.28. Suppose that F is continuous, and is a conservative
vector field; that is, F' = V [ for some f. Then

/F-dr:/Vf-dr:f(r(b))—f(r(a)). (16.25)
C C

Proof. By the Chain rule and the FTC2,

b / b d
/CF-dr:/a Vf(r(t))-r(t)dt:/a Clsonya
= (for)®)[ = f(r(b)) — f(r(a)).

Theorem 16.28 is the Fundamental Theorem for Line Integrals,
which is a generalization of the FTC2. The function f is called a po-
tential function of F', or simply potential.
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(a) Find a function f such that Vf = F.
(b) Evaluate [ F - dr, where C : r(t) = (cost,2sint), 0 <t <.

Solution.
Ans: (a) f(z,y) =3z +2%y* — 4y + K (b) —6
Problem! 16.30. (Revisit of Problem 16.27). Let F(z,y) = ———i +
T4 +y
Yy

ﬁj and C the parabola y = 1 + 2% from (—1,2) to (1,2). Find a poten-
Tt +y

tial of F' and evaluate [, F - dr.
Solution.

Ans: f(x,y) =+/2?+y?and [, F -dr = 0.
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16.3.2. Independence of path

Definition}; 16.31. We say the line integral / F . dr is independent of
@
path if

F - dr = F - dr,
Cl CV2
for any two paths C; and C,5 that have the same initial and terminal
points.

'Observation' 16.32. In general, Jo, F -dv # [ F -dr. (See Prob-
lem 16.19, p. 162.) However, Theorem 16.28 says that when F = V f,

F.-dr = Vf-dr = f(r(b) — f(r(a)) = Vf-dr = F - dr.
(& (& Cs Cy

Thus line integrals of conservative fields are independent of path.

Definition}, 16.33. A curve C is closed if its terminal point coincides
with its initial point, that is, r(b) = r(a). A simple curve is a curve that
does not intersect itself.

SR K

closed not closed closed not closed
simple simple not simple not simple

Figure 16.9
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' Theorem | 16.34. / F . dr is independent of path in D if and only if
c

/ F - dr = 0 for every closed path C in D.
C

Proof. (=) For a closed curve C, choose two points A and B to decompose
C into two parts: C = C; U (5. Then

/F-dr: F -dr + F - dr = F - dr — F - dr =0,
c o Cs c —Cs

because C; and —C5 have the same initial and terminal points.
(«) Let 4 and C5 have the same initial and terminal points. Then

O=/ F -dr = F -dr + F -dr = F -dr — F - dr,
01U(—02) (& —Cy 1 Cy

where the first equality comes from the assumption. [

Pictorial definitions

not open open not open
disconnected connected connected
disconnected disconnected connected

Figure 16.10: Pictorial definitions for D.
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Definition}; 16.35. A set D is said to be open if every point P in D has
a disk with center P that is contained wholly and solely in D. Note. D
cannot contain any boundary points.

Definition}; 16.36. A set D is said to be connected if for every two
points P and () in D, there exists a path which connects P to ().

'Theorem| 16.37. Suppose that the line integral of a vector field F is
independent of path within an open connected region D, then F is
a conservative vector field on D.

Proof. (sketch). Choose an arbitrary point (a,b) € D and define

(z,y)
fla,y) = F - dr.
(a.b)
Since this line integral is independent of path, we can define f(z,y) using
any path between (a,b) and (z,y). By choosing a path that ends with a
horizontal line segment from (z1,y) to (z,y) contained entirely in D, z; < z,
we can show that

(71,y) (7,y) x
8f/8x(x,y):3/8x[/( F - dr+ F-dr}zO%—@/@a:/ F - (dz,0) = P.

aab) (:Elay)

Similarly, we can prove that 0f/dy(z,y) = Q. U

It follows from Observation 16.32 and Theorem 16.37:
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'Theorem| 16.39. (Clairaut’s Theorem for conservative vector
fields). If F(x,y) = (P(z,y), Q(z,y)) is a conservative vector field, where
P and () have continuous first-order partial derivatives on D, then

oP _ o
oy Oz’

(16.26)

throughout the domain D.

Quesiton. Does (16.26) imply conservativeness of F'?
Ans: No, in general. But, almost!

J U B

simply-connected  not simply-connected not simply-connected

Figure 16.11: Simply-connectedness of D.

Definition}; 16.40. D is a simply-connected region if it is connected
and every simple closed curve contains only points in D.

' Theorem | 16.41. Let F = (P, Q) be a vector field on an open simply-
connected region D. If P and () have continuous first-order partial
derivatives throughout D,

oP  9Q

9y on (16.27)

then F' is conservative.

Note: Theorem 16.41 is a special case of Green’s Theorem which we will
see in Section 16.4.
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'Self-study! 16.42. Determine whether or not the vector field F(z,y) =

L e e e - & -

(3 + 22y, 2? + x — 3y?) is conservative.
Solution. Hint: Check if P, = Q, is satisfied.

Ans: no

'Problem ' 16.43. Determine whether or not the vector field F(z,y) = (e¥ +

ycosx, re¥ + sin x) is conservative.

Solution.

Ans: yes
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16.3.3. Potential functions

Recall: When F is conservative, we know from (16.25) on p.170 that

/F-dr:/Vf-dr:f(r(b))—f(r(a)), (16.28)
C C

which is easy to evaluate when the potential f is known.

(a) Find a potential.

(b) Evaluate [ F - dr, where C is parameterized as

r(t) = (e’ cost,e'sint), 0 <t < 7.

Solution.

Ans: (a) f(x,y) =zeV +ysinz + K (b) —e™ — 1
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Vf=F.
Solution.

Chapter 16. Vector Calculus

Ans: f=xy’ +ye¥* + K
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P, ), R have continuous first-order partial derivatives. Then,

Py=Q, P.=R, Q.=R, (16.29)

Solution. Hint: Use Clairout’s theorem.

[
[Pflzbﬁlféifﬂ 16.47. Show that [,y dz+x dy+yz dz is not independent of path.
Solution. Hint: Use (16.29) to check if it is conservative.
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Exercises 16.3

1. The figure shows a curve C' and a contour map of a function f whose gradient is contin-

uous. Find / Vf-dr.
c

3_

Figure 16.12

2. Determine whether the vector field F' is conservative or not. If it is, find its potential.

(@ F(r,y)=(r+y,z—1y) (©) F(z,y) = (2zy*, 2°y°)
(b) F(v,y) = (2zy, 2* + 2xy) (d) F(z,y) = (ye", e” — 2y)

3. (i) Find the potential of F' and (ii) use part (i) to evaluate | o F - dr along the given curve
C.

(@) F(x,y) = (e¥, ze¥ +siny), C:r(t) = (—cost,e'sint), 0 <t <7
(b) F(x,y,2) = 2y + 2,22 + z,x + y), C is the line segment from (1,0,0) to (2,2, 2)
(¢) F(x,y,z) = (sinz, —siny, xcosz), C :r(t) = (cost,sint,t), 0 <t <m/2

Ans: (a) 2; (b) 16; (c) cos(1) — 1
4. Show that the line integral is independent of path and evaluate the integral.

(a) / xdr —ydy, C is any path from (0, 1) to (3,0)
c

(b) /(siny —ye *)dx + (eF + xcosy) dy, C is any path from (1,0) to (0, 7)
c
Ans: (a) 5; (b) =
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5. The figure below depicts two vector fields, one of which is conservative. Which one is it?
Why is the other one not conservative?

(a) (b)
—— =~ N NN ) l l l l l L YV 8V S =
e - N vl J J J l | R AN R
it B W U S A AR N N ittt
A e - AP VAP S B R R

3 X ] x

e 1 2 = 1 2 3
VAl S A - e e e - - vt P2
P B IR T S SR O T A Y Y
frf'i\_2-_ N el S S 1 rf
T t \ NN e — —— —— — o n N R \ 1 T
%T\\ AN R e . UL UL O | T%

Figure 16.13: Two vector fields, one of which is conservative.
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16.4. Green’s Theorem

Green’s Theorem gives the relationship between a line integral
around a simple closed curve C' and a double integral over the plane
region D bounded by C.

Definition}, 16.48. The positive orientation of a simple closed curve
C refers to a single counterclockwise traversal of C' (with keeping the
domain on the left). The other directional orientation is called the neg-
ative orientation.

D S

A

¥y

I}

Figure 16.14: ®-orientation and ©-orientation of a simple closed curve C.

'Theorem | 16.49. (Green’s Theorem). Let C' be positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = (P,()) has continuous partial derivatives on
an open region including D, then

ygpdx +Qdy = [ (g—f _ aa—];) dA. (16.30)
D
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Note: The proof of Green’s Theorem on simple regions is based on the
following identities

yépd:c — —gg—];dA, yé@dy - gg—fdA. (16.31)

‘Notation ' 16.50. We denote the line integral calculated by using the

P |

positive orientation of the closed curve C by

%Pd:chQdy, %Pdstery, or %deJery.
C C c

We denote line integrals calculated by using the negative orientation
of the closed curve C by

§I§Pdm+Qdy.
C

[Problem} 16.51. Evaluate §1§ z'dr + xydy, where C is the triangular curve

consisting of the line segmen%s from (0,0) to (1,0), from (1,0) to (0,1), and
from (0, 1) to (0,0).

Solution. Although the given line integral could be evaluated by the meth-
ods of Section 6.2, we would use Green’s Theorem.

Ans:

D=



184 Chapter 16. Vector Calculus

************

the circle (x — 3)% + (y + 4)* = 4 oriented clockwise.
Solution. Hint: Check the orientation of the curve.

Ans: 4w
16.4.1. Application to area computation
Recall
A(D) = [[ 144,
D
If we choose P and () such that
0Q/0x — 0P /0y = 1, (16.32)
then the area of D can be computed as
A(D) = H 1dA = 55 Pdz + Qdy. (16.33)
I Joi
The following choices are common:
P(:C,y)zo {P(:U?y):_y {P(xay):_%
. (16.34)
{ Qz,y) == Qz,y) =0 Qz,y) =3

Then, Green’s Theorem give the following formulas for the area of D:

1
A(D) = %xdy = —%yda: = §%$dy—ydfb (16.35)
C C C
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2 2

e T . . T .

‘Problem' 16.53. Find the area enclosed by — + Z—Q =1, an ellipse.
””””” a

Solution. Clue: The ellipse has parametric equations = = acost and y = bsint, 0 < t <

27. Hint: You may use sin? z = 1=5%2% or cos? g = 14¢gs22,

Ans: abm

‘Problem' 16.54. Use a formula in (16.35) to find the area of the shaded

,,,,,,,,,, o

region in Figure 16.15.
Solution. Hint: For the slanted edge (Cs) -z =, y =3 —t,1 <t < 3.

y
4 ! ! :
3p------ beooos docoooc boccooe
! ' D!
2p------ SRREEE R Peeoe-
(| SEEEEE R STEEE
0 1 2 3 4 x

Figure 16.15

Ans: 14
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‘Problem 16.55. Using the identity (an application of Green’s Theorem)

A(D) = ff dA = }éDxdy,
D

we will try to show that the area of D (the shaded region) is 6.

¢ First, observe that the line integrals on AY
vertical and horizontal line segments
of the figure are all zero.

* Thus the area must be the same as the
line integral on the slant side, the line 0 1 2 3 q
segment from P(4,0) to Q(2,2), which
we denote by Cs.

Figure 16.16

(a) Evaluate / x dy, where C5 is parametrized by
= (1—OP+10, 0<t<1.

(b) Evaluate / x dy, where C5 is parametrized by
“ r(t) = (t, 4 —t), with ¢t moving 4 \ 2.

(c) Find “the mid value of =” and “the change in y”, on 5. Multiply the
results to see if it is the same as the output in (a) and (b).!

Solution.

'The method introduces an effective algorithm for the computation of area. See Project
3, p.230.
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16.4.2. Generalization of Green’s Theorem

Although Green’s Theorem is proved only for the case where D is simple, we
can now extend it to the case where D is either a finite union of simple
regions or of holes.

(2,6)

(7,-1)

0,-5)
Figure 16.17: Regions having holes.

For example: For the right figure above,

JG 50w = IG5 IG5

(16.36)
= §I§ Pdas+Qdy+§l§ Pdx + Q dy.
8D1 aDQ

Along the common boundary, the opposite directional line integral will be
canceled. Thus

ff (g—g = 6—5) — yéD Pdr + Qdy. (16.37)
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'Theorem | 16.56. (Generalized Green’s Theorem). Let D be either a
finite union of simply-connected regions or of holes, of which the bound-
ary is finite and oriented. If F = (P, ()) has continuous partial
derivatives on an open region including D, then

;éD Pdr + Qdy = H (g—g — g—];> dA, (16.38)
D

where 0D is the boundary of D positively oriented.

'Problem ' 16.57. Evaluate §l§ (1—y*)dz + (z°+¢¥)dy, where C is the bound-
c

ary of the region between the circles 22 + y? = 4 and 2 + y* = 9, having the
positive orientation.

Solution.

AnS' 1957
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Example 16.58. Let F(z,y) = <$2—+yy27 > i y2>. Show that y§ F-dr =2r

C
for any positively oriented simple closed curve C that encloses the origin.
Warning: You CANNOT use Green’s Theorem for this problem. Why?

Solution. Clue: Choose C' : 2> + y> = a2, for small a. Then,

9Q P
éDF-dr:ygF-dH ) F- dr:ff(%—a—y> dA,

where D is the region bounded by C' and —C’. However,

2 .2 2 _ .2
0Q 0P _ y'-ax*  y-axt (16.39)
dr  dy (2422 (22 +4?)2

Thus we have
55 F -dr = F - dr (16.40)
C cr

By introducing parametric representation of C’ : r(t) = (acost,asint), 0 <
t < 27, we can conclude

27 27 (2602t 4 o2 cos?
F-dr= | F(x(t)-Y'(t)dt = / a”sin SO L= or. O
o 0 0 a
‘Problem' 16.59. Let F(z,y) = ( Y - ), the same as in the above

221y a2 + 2
example. Show that §l§ F - dr = 0 for any simple closed path C' that does not
pass through or encloge the origin.

Now, you CAN use Green’s Theorem. Why?

Solution. Clue: See if F is conservative, i.e., Q, = P,, checking conditions of Theo-
rem 16.41 (p. 175) or Green’s Theorem.




190 Chapter 16. Vector Calculus

Let’s try to solve another problem before closing the section.

semiannual region D in the upper half-plane between the circles 2> +y> = 1
and 2% + 1y = 4.
Solution.

Ans: 14/3

ép Pdz+Qdy = [[ (g—f _ %3) dA (16.41)
D

is applicable when

1. The boundary of D is finite and oriented.

2. The vector field F = (P,()) has continuous partial derivatives
over the whole region D. (It is about quality of the vector field.)
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Exercises 16.4

1.

Evaluate the line integral % y* dx + 3zy dy, where C is the triangle with vertices (0,0),
c
(2,0), and (2,2):

(a) directly (b) using Green’s theorem

Hint: For (a), you should parametrize each of three line segments.
For example: Cs5 : r(t) = (t,t), t =2\, 0.
Ans: 4/3

Use Green’s Theorem to evaluate the line integral along the given positively oriented

curve.

(a) / (2y +1In(1 + 2?))dz + (62 + y*)dy, where C is the triangle with vertices (0, 0), (3,0),

(b) / —y* +y)dz + (2° + = — y*)dy, where C is the circle 2? + y? = 4
Ans: (b) 247

Use Green’s Theorem to evaluate / F - dr. (Check the orientation of the curve before
c
applying the theorem.)
(a) F(x,y) =< y?cosz,x + 3y*sinz >, C is the triangle from (0,0) to (8,0) to (4,4) to
(0,0)

(b) F(x,y) =< 5y — 203022 + siny, y*> + zcosy >, C consists of the three line segments:
from the origin to (0, 2), then to (2,0), and then back down to the origin

(¢) F(r,y) =<y+y?—cosy,rsiny >, C is the circle z* + y*> = 4 oriented clockwise
Ans: (a) 16; (¢) 47

Use the identity (an application of Green’s Theorem)

:fD dA:/andy

to show that the area of D (the shaded region) is 6. You should compute the line integral
for each line segment of the boundary, first introducing an appropriate parametrization.
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16.5. Curl and Divergence

16.5.1. Curl

We now define the curl of a vector field, which helps us represent rotations
of different sorts in physics and such fields. It can be used, for instance, to
represent the velocity field in fluid flow.

Definition}, 16.62. Let F = (P,Q, R) be a vector field on R* and the

partial derivatives of P, (), and R all exist. Then the curl of F is the
vector field on R? defined by

OR 9Q OP OR aQ_aP>
oy 0z 0z Ox Ox Oy/

(16.42)

curl F = <

Definition}; 16.63. Define the vector differential operator V (“del")
as

o 0 0
_<%7 a_ya £>_<ax7 8@/7 az>
Then
i j k
VxF = det | |0, 9, 0.
P Q R (16.43)

= curl F

So, the easiest way to remember Definition 16.62 is

curl F =V x F. (16.44)

Note: If F represents the velocity field in fluid flow, then the particles in
the fluid tend to rotate about the axis that points in the direction of V x F;
the magnitude |V x F'| measures how quickly the fluid rotates.

Quesiton. Why do tornado evolve? What is the change in the air
after a tornado? Answer: Energy consumption
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derivatives, then
curl F = 0. (16.45)

(See also Problem 16.46 on p.179.)

'Theorem | 16.65. If f is a function of three variables that has continu-
ous second-order partial derivatives, then

curl (Vf) =V x (Vf) = 0. (16.46)

Proof. Use Clairout’s Theorem.

servative.
Solution. Clue: Check if curl F +# 0.
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' Theorem | 16.67. If F is a vector field whose component functions have
continuous partial derivatives on a simply-connected domain and
curl F = 0, then F is conservative.

Note: The above theorem is a 3D version of Theorem 16.41, p. 175.

F—————————
|
L

(a) Show that F' is conservative.
(b) Find f such that F' = V.

Solution.

Ans: (a) curl F =0, (b) f(x,y) = 2y*2* + K



16.5. Curl and Divergence 195

16.5.2. Divergence

Definition}; 16.69. Let F = (P, Q, R) be a vector field on R? and its
partial derivatives exist. Then the divergence of F is defined as

oP N 0Q N oR
or Oy 0z

divF = V.- F.

' Theorem |16.70. Let F = (P, , R) whose components have continuous
second-order partial derivatives. Then

V- (VxF)=0. (16.47)

Note: The above theorem is analogous to a- (a x b) = 0 for all a, b € R3.

************

|
I

vector field.
Solution. Clue: Check if V- F = 0
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‘Remark' 16.72. The reason for the name divergence can be under-
stood in the context of fluid flow. If F' is the velocity of a fluid, the div F’
represents the net change rate of the mass per unit volume. Thus,
if divF = 0, then F is said to be incompressible. Another differential
operator occurs when we compute the divergence of a gradient vector
field V f:

div(Vf) =V - (Vf) = V2f = Af.

The operator V2 = V - V = A is called the Laplace operator, which is
also applicable to vector fields like

AF = A(P, Q, R) = (AP, AQ, AR).

16.5.3. Vector forms of Green’s Theorem

Recall: Green’s Theorem (p. 182): Let F' = (P, ). Then
%F dr = 55 Pdz + Qdy = ﬂ (8—Q _ a—P) dA. (16.48)

ox

Now, regard F as a vector field in R? with the 3rd component 0. Then

i j k
V x F=det| [0/0r 0/9y 0/9z] | = (0,0, Q,— P,).
P Q 0

So we can rewrite the equation in Green’s Theorem as

%F-dr = %F-Tds = [[ (v x F) ka4, (16.49)
C C D

which expresses the line integral of the tangential component of F' along
C' as the double integral of the vertical component of curl F over the
region D enclosed by C.
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Line integral of the normal component of F

‘Example 16.73. Let F' = (P, Q). What is F nds?

Solution. Let r = (z(¢), y(t)) define the curve C'. Then

/

I o
V) apd n= W) (16.50)

AN g id

T —

where n is the outward unit normal vector, 90° clockwise rotation of T'.
Thus we have

I
F-nds = (P, Q>-<yi l|x>\r’|dt
r
= (Py —Q2)dt
= —Qdx+ Pdy.

Figure 16.18

It follows from Green’s Theorem that

ygF.nds - 55 Qd:c+de_ﬂ ,) dA
= ﬂ (P +Q,) dA = Hv FdA.

when P and ) have continuous partial derivatives over D. [

(16.51)
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Exercises 16.5
1. Find (i) the curl and (ii) the divergence of the vector field.
(a) F(x,y,2) = 2%yzj + y*2%k (b) F(x,y,z) = (zsiny, ysinz, zsinzx)

Ans: (b) Vx F = —(ycosz,zcosz,xcosy), V- F =sinx +siny + sin z

2. The vector field F' is shown in the zy-plane and looks the same in all other horizontal
planes. (That is, F' is independent of z and its third component is 0.)

(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl F' = 0. If not, in which direction does it point?
(c) Use Theorem 16.67 to conclude if F' is conservative.

Hint: The vector field in (I): You may express it as F = (P(x),0,0), where P is a decreasing
function of x only. Thus divF < 0. The vector field in (II): Let F = (P(z,y),Q(x,y),0). Then
divF = P, + Qy and curl F = (0,0,Q, — P,). For example, P, < 0 in (II), because the horizontal
components of the arrows () become smaller as y increases. What can you say about P, Q,

and Q,?

(I (IT)

+ =

H—b —> —»

—b—b—> —>

—b—s—> —»

—tb—b — —»

!

!

i

}

A
-~ ~ 7

—1b—p — —>

el A

—— —> —>

- - > o v x A

—TB—b —> —

\
\
\
A
'
t
t
!

—tb— — —>

I I A A
R
|
|
i
|
N w = — — — > ¥ _¥

—Tb—s — —» — — — — ' ’ Fd 7

h N NN S S ——Bb—P

Y N = — — —

e = = = e At

~

M N N S e — ——> P
Jh\‘ NN N S T ————

=
[
s
*
[
*

Figure 16.19

3. Determine whether or not F' is conservative. If it is conservative, find its potential.

(@) F = (yz*, z2* + 2y, day2?)
(b) F = (sinz, 1,z cosz)
Ans: (b) f =y +axsinz+ K
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16.6. Parametric Surfaces and Their Areas

16.6.1. Parametric surfaces

Goal: This section will aim to describe surfaces by a function r(u,v) =
(x(u,v),y(u,v), z(u,v)), in a similar fashion that we described vector
functions by r(¢) earlier.

Definition}; 16.74. A parametric surface is the set of points {(z, vy, z)}
in R? such that the components are expressed by a vector function of the
form

r(u,v) = (x(u,v), y(u,v), 2(u,v)), (u,v) €D C R

Figure 16.20: Examples of parametric surfaces.

Maple Script

with(plots): with(plottools):

plot3d([(4+2*cos(p))*cos(t), (4+2*cos(p))*sin(t), 2*sin(p)], p = 0..2*Pi, t = 0..2*Pi,
axes = none, lightmodel = lightl, scaling = constrained, orientation = [30,55]);

r:= z/2+sin(z):
plot3d(]r, t, z], t = 0..2*Pi, z =0..10, coords = cylindrical,
axes = none, lightmodel = lightl, scaling = constrained, orientation = [30,55]);

® N e G A W N =
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Solution. Clue: 22 + 22 = 4.

Figure 16.21

ESelf-studyﬂ: 16.76. Sketch r(s,t) = (scos3t, ssin3t, s?), when (s,t) € [0,2] x

____________ -

[0, 27]. Discuss what the effect of the “3" is.
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Quesiton. Given a surface, what is a parametric representation of it?

passes Py(1,1,1) and contains a = (1,2,0) and b = (2,0, —3).
Solution. Clue: r(u,v) = P, +ua+vb.

‘Problem' 16.78. Find a parametric representation of z2 + y? + 22 = a2.

,,,,,,,,,, ]

Solution. Clue: Use the spherical coordinates; the parameters are (6, ¢).

Ans: r(0,¢) = (asin ¢ cosf, asin ¢sinb, acos ¢), D?
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'Problem ' 16.79. Find a parametric representation of the cylinder 22 + 12 =

4,0 < z<1.

Solution. Hint: Use cylindrical coordinates (r = 2,0, z).

[Problem1‘ 16.80. Find a vector representation of the elliptic paraboloid

z =+ 2%

Solution. Hint: Let 2,y be parameters.

Ans: r(z,y) = (z,y, 2% + 2°)
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In general, for z = f(z,y),

r(z,y) = (v, y, f(x,y)) (16.52)

is considered as a parametric representation of the surface.

Note: Parametric representations are not unique.

Clue: A representation is as in (16.52), while another one can be formulated using (r, ) as with

polar coordinates. Also, recall that when polar coordinates are considered, x = rcosf, y = rsinf.

Solution. 1)

Figure 16.22
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Surfaces of Revolution

Figure 16.23: Surface of revolution

Let S be the surface obtained by rotating
y=f(x), a<z<h,
about the z-axis (where f(z) > 0). Then, S can be represented as

r(z,0) = (z, f(x)cosb, f(x)sind),
(z,0) € [a,b] x [0,27]. (16.53)

rotating the curve y = sin(z), 0 < z < 27, about the z-axis.
Solution.
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16.6.2. Tangent planes

Recall: The plane passing x) = (¢, ¥, 20) and having a normal vector
v = (a, b, c) can be formulated as

v (x—x9) =0,

or equivalently

a(x —x9) + by — yo) + c(z — 20) = 0. (16.54)

Now, we will find the tangent plane to a parametric surface S traced out by

I‘(U,U) - <$(U,U), y(uvv)v Z(uav»

at a point P, with position vector r(ug, v).

U A

Figure 16.24

What we need: a normal vector, which can be determined by

r, X T,.

peﬁnitionﬁ 16.83.

1. A surface S represented by r is smooth ifr, x r, # 0 over the whole
domain.

2. A tangent plane is the plane containing r, and r, and having a nor-
mal vectorr, X r,.
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Problem ' 16.84. Find the tangent plane to

-
|
S o

2

S:ox=u’ y=v% z=u+2v; at(l,1,3)

Solution.

Ans: —2(x —1)—4(y—1)+4(z—3)=0



16.6. Parametric Surfaces and Their Areas 207
16.6.3. Surface area
Letr: D Cc R2 — S C R®. Then the surface area of S is

AS) = [[ as. (16.55)

Fig‘ure 16.25: r: Rij — SU

—
el
‘_.__r""

7 /

Avr,

Figure 16.26: Approximating a patch by a parallelogram.

The area of the patch S;; can be approximated by

AS;; ~ A(parallelogram)

(16.56)
= |(Aury) X (Avr,)| = |r, X ry| AuAv




208 Chapter 16. Vector Calculus

Definition}, 16.85. If a smooth surface S is represented by

r(u,v) = (x(u,v), y(u,v), z(u,v)), (u,v) € D,

and S is covered just once as (u,v) ranges throughout the parameter
domain D, then the surface area of S is

AS) = [[ as = [[ Iru x x| da. (16.57)
S D

That is, dS = |r, X r,| dA.

[Problemj‘ 16.86. Find the area of the surface given by parametric equa-

,,,,,,,,,, 4

tionsx:u2,y:uv,z:%v2,0§u§1,O§v§1.

Solution.

Ans: 1
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***************************

Recall: (Summary 15.69 in § 15.9, p.134). For a differentiable trans-
formation 7' : Q C R*? — R C R? given by r(u,v) = (z(u,v),y(u,v)),

A ~ |29 Ay Ay, (16.58)
J0(u,v)
where J(z,y)/0(u,v) is the Jacobian of 7" defined as
oz, y) By By |
Hwv) det [ _— ] = Ty Yo — T Yu (16.59)

Now, consider R as a flat region embedded in R3. Define
R=Rx{0} CR®

Then, T : Q — R is represented by T(u, v) = (z(u, v), y(u,v), 0);

ik
T, XT,=det | |z, vy O = (0,0, 2y Yo — Ty Yu) - (16.60)
Ty Yo O
Therefore o(z.y)
~ ~ x,y
u vl T 1 .
[T, X Ty ‘8(%1}) (16.61)

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

LSummaryJ 16.87. Letr : D C R?> - S C R? be a parametric repre-
sentation of the surface S. Then

1. The map r can be viewed as a change of variables.

2. The quantity |r, x r,| is simply the scaling factor for r.
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Surface Area of the Graph of a Function
As a special case, consider the surface S made by the graph of

z=g(z,y), (z,y) €D.
Then the surface S can be represented by
r(z,y) = (z,y,9(z,y)).

Since
r, =(1,0,¢9,) and r, = (0,1,¢,),

i
r; X r, = det 1
0

Thus we conclude the following.
Let S be made by the graph of z = g(z,y), (z,y) € D. Then the surface

area of S 1is
A(S) = f f V92 + g2+ 1dA. (16.63)
D

we obtain

— O .

k
9y

lies under the plane z = 9.
Solution. (See Problem 15.41 on p. 114.)

Ans: Z(37V37—1)
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Exercises 16.6

1. Identify the surface with the vector equation.

(@) r(u,v) = (u—3,u+v,4u+ 3v — 2) (b) r(s,t) = (2cost,s,2sint), 0<t<m

2. Match the parametric equations with the graphs labeled (I)—(III) and give reasons for
your choices. Determine which families of grid curves on the surface have u constant
and which have v constant.

(a) r(u,v) = (ucosv,usinv,v)
(b) r(u,v) = (v,2cosu,2sinu)

(¢) r(u,v) = (vsinu,v cosu, cosvsinv)

(I I (I1D)

Figure 16.27

3. Find the parametric representation for the surface.

(a) The part of the sphere 2 + 3> + 2> = 4 that lies above the plane z = 1.

(b) The part of the plane y + z = 1 that lies inside the cylinder 2% + 22 = 1. (See
Figure 16.28.)

Hint: For (a), use the spherical coordinates
(with p = 2) to specify the values of ¢ appro-
priately. Of course, 0 < 6 < 2x. For (b), use the
polar coordinates for the region in the zz-plane;
that is, z = rcosf, z = rsinf. Then, you may
set y = 1 — z. You have to specify the domain,
values of r and 6, appropriately.

0 3 2

Figure 16.28
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4. Find an equation of the tangent plane to the given surface at the specific point.

@) r(z,y) = (z,y,2° —=y?), (2,1,3)
(b) r(u,v) = (ucosv,usinv,v), (u,v)=(1,7/2)
Ans: (b)ry, xr,(1,7/2) =(1,0,1)=1-(z—-0)4+0-(y—1)+1-(z—7/2) =x+2—7/2=0

5. Find the area of the surface.

(a) The part of the paraboloid y = 2% + 22 cut off by the plane y = 6
2
(b) The surface parametrized by r(u,v) = (u?, uv, %), defined on {(u,v) | u* +v* < 1}

Ans: (a) %2%; (b) 37 /4
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16.7. Surface Integrals

This section deals with surface integrals of the form

fff(x,y,z) dS or IIF -dS
S S

16.7.1. Surface integrals of scalar functions
Suppose that the surface S has a parametric representation

r(u,v) = (z(u,v),y(u,v), z(u,v)), (u,v) € D.

Then, from the previous section, we have

dS = |ry X 1| dA

Thus we can reach at the formula

([ £y,2)d8 = {[ £0(u,0))[ra x 7] dA. (16.64)
S D

**********

,,,,,,,,,,,,,,,,,,,,,,,,,

reads

**********************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b
* Similarity: For line integrals, / f(x,y,2)ds :/ f(x(®)) |r'(¥)| dt.
C a
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[Problem7 16.90. Compute the surface integral jf xy dS, where S is the

S
triangular region with vertices (1,0,0), (0,2,0), and (0,0, 2).

Solution. Clue: The surface S (triangular region) can be expressed by % + % + % =1.
Thus 2z = 2 — 22 — y. Now, what is D?
.1
Ans: %
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given by the cylinder 22 + y> = 1, whose bottom S, is the disk 22+ y?> < 1 in
the plane z = 0, and whose top Ss is the disk 22 + ¢ < 1 in the plane z = 1.
Solution. Clue: S, : © = cosf, y = sinf, z = z; (0,2) € D = [0,27] x [0,1]. Then

lrg X r,| = 1.

Ans: 7+ 0+ 7 =27
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16.7.2. Surface integrals of vector fields

Oriented Surfaces

Figure 16.29: Oriented surface and Mobius strip.

Definition}; 16.92. Let the surface S have a vector representation r.

e A unit normal vector n is defined as

r, Xr,

(16.66)

n—-—— .
v, X 1,

* The surface S is called an oriented surface if the (chosen) unit
normal vector n varies continuously over S.
(A counter example: Mobius strip.)

* For closed surfaces, the positive orientation is the one outward.

Is it confusing? Then, consider this:

Definition}; 16.93. A surface S is called orientable if it has two sepa-
rate sides.
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A Historic View, for Surface Integrals of Vector Fields

The illustration implies that if the
vector field is tangent to S at each
point, then the flux is zero because
the fluid just flows in parallel to S,
and neither in nor out.

Thus, if v has both a tangen-
tial and a normal component, then
only the normal component
Suppose that S is an oriented sur- contributes to the flux. Based on
face. Imagine we have a fluid flow- this reasoning, to find the flux, we
ing through 5, such that v(x) deter- need to take the dot product of v
mines the velocity of the fluid at x. with the unit surface normal n to S,
The flux is defined as the quantity which will give us a scalar field to

of fluid flowing through S per unit pe integrated over S appropriately.
time.

Figure 16.30: A vector field on a surface.

Definition}; 16.94. Let F be a continuous vector field defined on an
oriented surface S with unit normal vector n. The surface integral of

F over S is f F.gs ffF-ndS. (16.67)
S S

This integral is also called the flux of F' across S.

For the computation of the flux, the right side of (16.67), you may utilize

n= """ and dS=|r, x r,|dA, (16.68)

e, x 1

when S is parametrized by r : D — S.
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r..,.- -~ -~ - - - T T T T T T T T T T T T T T T T T T T T oo T oo a
| |
| le

Surface Integrals of Vector Fields

Let r be a parametric represen-

sured by

N

HF-ds def. JMF-ndS
S

RRY2)

r

r, X I,

) [ty x 1y| dA (16.69)

N
¢

F(r)- (m

= r‘F(r) - (ry X 1) dA.

JJ

D

]

Note that F-n and F(r)-(r, x r,) are scalar functions.

quantities along the curve. That is,

/CF-dr det /CF-Tds
= [ Fewy- 5

where C is parametrized by r : [a,b] — C.

(16.70)

b
Fo)ld= [ Pa) @,

Solution. Hint: r, x r, = (sinv, — cos v, u).

Figure 16.31

Ans: 27
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Solution. First, consider a vector representation of the surface:
r(¢,0) = (singcosf,sinpsinf, cosp), 0 <o <m 0<6< 2.

Then,
F(r) = (cos¢,sin¢sinb,sinpcosh),

Iy X Ty = (sin® ¢ cos 0, sin? ¢ sin @, sin ¢ cos 0),

from which we have
F(r) - (rg x rg) = 25in® ¢ cos ¢ cos O + sin® ¢ sin* 6.

Thus
Flux = ij s = ij - (ry X 1) dA

2m
= / / (2sin® ¢ cos ¢ cos O + sin® ¢ sin® 0) dpdh

2m
= / / (sin® ¢ sin® 0) dodd
0. Jo
2T T 4
= / sin20d€/ singpdp=n--. 0O
0 0 3

Note: The answer of the previous example is actually the volume of the
unit sphere. In Section 16.9, we will study the so-called Divergence
Theorem (formulated for closed surfaces)

J]!F-dS:LIfV-FdV

The above example can be solved easily using the Divergence Theorem,;
see Problem 16.105, p. 227.
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Surfaces defined by z = g(x, y):

* A vector representation: r(z,y) = (z,y, 9(z,y)).
* Normal vector: r, X r, = (—¢z, —gy, 1).
* Thus, when F = (P, Q, R),

[[F-as = [[F-@.xr)dd= [[(-Pg.—Qg,+R)dA. (1677
S D D

r— - T T - T~ A

'‘Problem' 16.98. Evaluate f F - dS, where F' = (y,z,2) and S is the

,,,,,,,,,, } S
boundary of the solid region E enclosed by the paraboloid z = 1 — 2% —y? and

the plane z = 0.

Solution. Hint: For 5, (the upper part), use the formula in (16.71). For S5 (the bottom: z = 0),
you may try to get F' -n, where n = —k.

Ans: 5 +0= 7
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Formula '16.99. Let F =< P,Q, R >.

F———————
!
e -

o [[ #@.y.2)d8 = [[ fxtu,0)ir x o] a

jff(m,y,z) ds = fj f(z,y,9(x,y))\/92 + g2 + 1dA, when S is given by z = g(z,y)
S D

o [[F-as=[[F nas= [[F-(x.xr,)dA
S S D

ij -dS = jj(—ng — Qg, + R) dA, when S is given by z = g(z,y)
S D

* Note: When S is given by z = g(z,y), t, X ry = (— gz, —gy, 1)

Exercises 16.7

1. Evaluate the surface integral ff f(z,y,2)dS.
S

(a) f(z,y,z) =z, Sisthehelicoid given by the vector equation r(u,v) = (ucosv, usinv, v),
0<u<l1l 0<wv<w/2 (Hint:r, xr,= (sinv,—cosv,u).)

(®) f(z,y,2) = (#* +y*)z, S is the hemisphere 2> + > + 22 =1,2 >0
Ans: (a) (2v2 —1)/3; (b) ©/2

2. Evaluate the surface integral ff F.ds.
S

(@) F(z,y,z) =xi+yj+ 22k, S is the part of the paraboloid z = 2? + y?, 2 < 1
(b) F(z,y,z) = (z,x — z,y), S is the triangle with vertices (1,0,0), (0,1,0), and (0,0, 1),
oriented downward
() F = (y,—x,z), Sisthe upward helicoid parametrized by r(u,v) = (ucosv, usinv, v),
0<u<2 0<v<m (Hint:r, xr, = (sinv, —cosv,u).)
Ans: (a) 0; (b) —1/3; (¢) 27 + 72

3. Use a CAS to find the integral, either [[; f(z,y,2)dS or [[,F -dS. First try to
find the exact value; if the CAS does not work properly for the exact value, then try to
estimate the integral correct four decimal places.

(@) f(x,y,2)=22%+2y?+ 2%, Sisthe surface z = zcosy,0 <2 <1,0<y<1

(b) F(x,y,z) = (x*+y? y*+22, 22), Sisthe part of the cylinder z?+2% = 1 that lies above
the zy-plane and between the planes y = 0 and y = 1, with upward orientation
Hint: You may use r(6,y) = (cosf, y,sin 0), for a representation of S.

Ans: (b) 2/3
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16.8. Stokes’s Theorem

Stokes’ Theorem is a high-dimensional version of Green’s Theorem studied
in § 16.4.

Recall: (Green’s Theorem, p.182). Let C' be positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = (P, () have continuous partial derivatives on
an open region including D, then

y%F-dr & ) Pdo+Qdy = g (a—Q—a—P)dA:g(curlF)-de.

or 0Oy
(16.72)
(For the last equality, see (16.49) on p.196.)

'Theorem |16.100. (Stokes’s Theorem) Let S be an oriented piecewise-
smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C with positive orientation. Let F = (P, (), R) be a vector field
whose components have continuous partial derivatives on an open
region in R? that contains S. Then

F - dr = 1 F) - dS (16.73
51% r Lf(cur ) )

**********

* See Figure 16.29(left) on p. 216, for an oriented surface of which the
boundary has positive orientation.

* Computation of the surface integral: forr : D — S,

[[(curlF)-ds == ([ (curlF)-ndS = [[(curl F) - (r, x r,) dA.
S S D

(16.74)

* Green’s Theorem is a special case in which S is flat and lies on the
xy-plane (n = k). Compare the last terms in (16.72) and (16.74).
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‘Problem' 16.102. Evaluate [, F - dr, where F = (—y? 1, 2%) and C is the
curve of intersection of the plane y + z = 2 and the cylinder 22 + 3> = 1.
Solution. Clue: You may start with the computation of V x F' and consider a vector represen-

tation for S: z = g(x,y) = 2 — y. Then use the formula (16.74).

Ans:
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Hs (V x F) dS Where F = (xz, yz xy} and S is the part of sphere 2% +y*+2? =
4 that lies 1n81de the cylinder 2% 4+ y?> = 1 and above the xy-plane.

Solution. Hint: ﬂ (Vx F)-dS = }AF dr = / Fox/(t)dt. " A vector representation

of C'is r(t) = (Cost sint,v/3), 0 <t <27,

Ans: 0
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Exercises 16.8

1. A hemisphere H and a part P of a paraboloid are shown in the figure below. Let F be ba
vector field on R* whose components have continuous partial derivatives. Which of the
following is true? Give reasons for your choice.

A. ([(curlF)-ds < ([ (curl F)-ds C. [[(curlF)-ds > [[(curlF)ds

B. ff(curIF) . dS — jf(curIF) .dS D. cannot compare
H P

Figure 16.32

2. Use Stokes’s Theorem to evaluate JI curl F - dS, where F(z,y) =< —y,r,2° + y*> > and
S

S is the part of the sphere 22 +y? + 22 = 8 that lies inside the cone z = /22 + 42, oriented
upward. (Clue: The boundary of S can be parametrized as r(t) = (2cost,2sint,2), 0 < t < 27.)

Hint: Use the formula given in the hint of Problem 16.103.
Ans: 167

3. Use Stokes’s Theorem to evaluate / F . dr. For each case, let C be oriented counter-
c

clockwise when viewed from above.

(@) F(x,y,2) =< 2> +2,2° +y,9y° + 2z >, C is the triangle with vertices (1,0,0), (0,1,0),
and (0,0,1)

(b) F(x,y,z) =< z,y,z —x >, C is the curve of intersection of the plane 2y + z = 2 and
the cylinder 22 + ¢y = 1

Hint: }thF -dr = [[geurl F - dS = [, curl F - (r, x ry)del. (a) curl F = (2y,2z,2z) and r, X

r, = <1,L 1,1). Figure out yourself what S, D, and r are.
Ans: (a) 1; (b) 27
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16.9. The Divergence Theorem

Recall: Let FF = (P, Q). In §16.5.3, we considered vector forms of
Green’s Theorem including

yQCF-nds:gv-FdA. (16.75)

(See (16.51), p. 197.)

The Divergence Theorem is a generalization of the above.

'Theorem| 16.104. (Divergence Theorem) Let E be a simple solid
region and S be the boundary surface of £/, given with positive (outward)
orientation. Let F' = (P, (), R) have continuous partial derivatives
on an open region that contains E. Then

ﬂéF .dS = fbfjv Fdv. (16.76)

Note: Let a surface S is parametrized by r. Then, from § 16.7.2 (p. 216),
we know

f F.dS & HF.nds = HF.(ru X 1,) dA, (16.77)
S S D

whether or not S is closed. [

Note: The Divergence Theorem is developed mainly for closed surfaces;
however, it can be applied for unclosed surfaces as in Review Prob-
lem R.16.10, p. 235.
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F = (z,y,2) over the unit sphere 22 + y* 4 2> = 1.
Solution.

Ans: 3, the volume of the unit sphere

F(x,y,2) = (cosz 4+ xy®)i+ze *j+ (siny + 2%2) k

and S is the surface of the solid bounded by the paraboloid z = 2> + y*> and
the plane z = 4.

Solution.

Ans: 271
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ffx +2y + ze" )dS where S is the unit sphere 22 4 y? + 2% = 1.

SOluthIl. Hint: Find n and express the integrand as F' - n; then try to use the Divergence

Theorem.

Ans: 47

gence Theorem and functions have all required continuous partial deriva-
tives, first or second-order. Prove the following.

1. jf a-ndS = 0, where a is a constant vector.
1
2. V(E) =3 H F - dS, where F(z,y,2) = (2,9, 2).
S

3. ﬂ curl F - dS = 0.
S
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Exercises 16.9
1. Verify the Divergence Theorem is true for the vector field F' defined on the region E.

F(z,y,z) = (2x,yz,xy), £ =10,1] x [0,1] x [0, 1], the unit cube
Clue: For the computation of [[ F - dS, you should evaluate it on each of the six sides.

2. Use the Divergence Theorem to evaluate the total flux ff F -ds.
S

(a) F(x,y,z) = yi+xj+ 22k, S is the boundary of of the solid region E enclosed by
the paraboloid z = 1 — 2% — y? and the plane z = 0
(b) F(x,y,2) = (v +y* + cosz)i+ [sin(rz) + ze?]j + 2k, S is a part of the cylinder
22 + 9% = 1 that lies between 2 =0 and z = 1
(c) F(z,y,2) = (z%° aye”, xy*z — xe”), S is the boundary of the box bounded by the
coordinate planes and the planes z =1,y =3,and 2 =4
Ans: (b) 2m; (c) 54

3. As a variant of Problem 16.107, let’s consider the following problem:
Evaluate H(mg + 2y% + 322 + 2z¢%) dS, where S is the unit sphere 2> 4 3> + 2> = 4.
S

Ans: 1287
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Project 3. The Area of Heart

In this project, we will use the identity (an application of Green’s Theorem)

A(D) = [[ aa= 5& z dy (16.78)
D oD

to compute the area of a closed curve saved in a data file. Also we will
explore a mid-point formula for line integrals.

A dataset

* Download a heart data and save it in heart-data. txt:
https:/skim.math.msstate.edu/LectureNotes/heart-data.txt.
It includes data points of the form {(x;,y;)}, representing a closed curve
starting and ending at (0, 0), positively oriented.

* When you draw a figure for it, using e.g. heart.m below, you will see a
heart as in Figure 16.33.

heart.m
1 | DATA = readmatrix('heart-data.txt');
» | X = DATA(:,1); Y = DATA(:,2);

s | figure, plot(X,Y,'r-','linewidth',2);

05r

0.5 F

15+

25+

Figure 16.33: A plot of the closed curve in heart-data.txt.
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We will explore a mid-point approximation for line integrals.

* First, download a heart data and save it in heart-data.txt:
https://skim.math.msstate.edu/LectureNotes/heart-data.txt.

* In the following, let (%;,7;) be the mid-point of (z;,y;) and (z;11,Yit1) :

~ Xtz ~ i+ Y
T; = ) 22—}-1 and yi:yz 23/@—1—1‘

1. Draw a figure for the dataset.

2. Implement a computer program for the computation of the area:

m—1 m—1
A©) = yé@:cdy -y /C vdy ~ S @ (i —u),  (16.79)
1=1 ¢ i=1

where m denotes the number of points in the data file and C; is the
line segment connecting (z;,y;) and (z;.1, ¥i+1).

Note: The approximation in (16.79) results in the exact value. Why?
3. Implement a program for an approximation of the line integral:
m—1
&é@(w +y)de+ (z —y)dy = Z(@ + i) (@i — i) + (@ — Ui) (Wi — vi)-
i=1
(16.80)

(a) In general, the mid-point formula for line integrals may not result
in the exact value. However, the approximation in (16.80) can
produce the exact value for the vector field F = (x + y,z — y).
Why?

(b) Can you predict how large the integral must be? Why?
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Let’s consider a very basic for coding.

Computer implementation, in a nutshell

* In computer implementation, one of the major issues is how to deal
with ‘loop’, which is a recursive execution of operations.

* A loop can start with an initialization.

* For example, let’s try to add the square of integers from 1 to 10.
Then, you may implement a code as in square_sum.m below.

Square_sum.m

1 n = 10,

2 | sum = O;

s |[for 1 = 1:n

4 sum = sum + 172;
5 | end

Report. Upload a file including your experiences:
* Plot the given data.
* Implement a code for each of (16.79) and (16.80).

* Collect all your work, in order, including the plot, the code, the re-
sults (the area and the estimation of line integral).

e Attach a “summary” or “conclusion” page at the beginning of report.
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R.16. Review Problems for Ch. 16

1. Evaluate the line integral / 2%y ds, where C'is given by r(t) =< cost,sint >,
C
0 <t < /2. Formula: [, f(z,y)ds= [" f(x(t))[r'(t)| dt

Ans: 1/3

2. Let F(z,y) = 221 + 233%].

(a) Is F' conservative? Why?
(b) Find a function f such that Vf = F.

(c) Evaluate the line integral [ F' - dr, where C' is parameterized as
C

r(t) = <t3 —2t,t3+2t>, 0<t<l1.

Formula: [ F - dr = f; F(x(t)) - r'(t) dt. When F is conservative, [, F - dr = f(r(b)) — f(r(a)).
Ans: (a) Yes. (b) f = 2%y%/3 + K. (c) —9.

3. Let F(x,y) = 2re ¥i+ (2y — 2%¢7Y) j and C is any path from (1,0) to (2, 1).
(a) Show that the integral / F - dr is independent of path.
c

(b) Evaluate the integral / F - dr.
C
Ans: (a) Qz = Py = —2ze7Y; (b) f(x,y) = 2%V +y* + K. f(2,1) — f(1,0) = 4/e

4. Use Green’s Theorem to evaluate the line integral / (y+eV)dz+ (2243 cos 32 )dy,

c
where C'is the triangle with vertices from (0, 0) to (0,4) to (2, 0) to (0,0). Formula:

gﬁc Pdx + Qdy = ffD(Qx — P,) dA.
Ans: —4

5. Is there a vector field G on R? such that curl G =< wsiny, cosy, z — xy >?

Verify your answer.
Ans: No, because V - (V x G) =1 #0.
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6. Use the identity (an application of Green’s Theorem)

A(D) :fjdA:/m)xdy
D

to show that the area of D (the shaded region) is 16 — % = 12. You have to com-
pute the line integral for each of four line segments of the boundary.
For the slant line segment, in particular, you should introduce an appropriate pa-
rameterization for the line integral.

Ay

4 : : :

3f------ oo doeeees beneees
' D ! !

2p------ AEREED ARREEEE P .

L e e Feo-oes i
1 : 1 :}

0 1 2 3 4 X

Answer: For the slant line segment (C}) : x = t, y = ¢/2,0 < t < 4. So, fcl xdy = ;t % dt = 4. For

the right vertical line segment (C5): |, C» zdy = |, Cs 4dy = 8. For the others, the line integral is zero.

7. Evaluate the surface integral ff F -dS,where F(z,y,z) =zi+yj+2zk
S

and S is a part of the paraboloid z = 2% + ¢?, z < 1.
Formula: [[(F-dS = [[(F -ndS = [[, F-(r, xr,)dA. When F =< P,Q, R > and the surface

is given by z = g(z,y), JJS F.ds = J]'D(—Pgm — Qgy + R) dA.
Ans: [[(F-dS = [[,(—Pg — Qgy + R) dA = [[,(—22* — 2y* + 2z)dA = [[,0dA = 0.

8. Use Stokes’s Theorem to evaluate / F' - dr, where
c

F(z,y,z)=<z+y’y+2",24+2">
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10.

and C'is the triangle with vertices (1,0,0), (0, 1,0), and (0,0, 1). (Orient C' to be
counterclockwise when viewed from above.)
Hint: Let S be the part of plane = + y + 2z = 1 defined over the triangle of vertices (0,0), (1,0), and

(0,1). Then the curve C' is the boundary of S. Formula: [ F -dr = [[4(V x F)-dS. For the surface

integral, you may use the last equality in Formula of Problem 7.
Answer: V X F =< —2z,—2z,—2y >andr, xr, =< 1,1,1 >. G = [[,(—2z — 2y — 22)dA =
JIp(—2)dA = —-1.

. Use the Divergence Theorem to evaluate the flux of F' across S, where

F(z,y,z) =12zi+4yj— bz k

and S is the boundary of of the solid region E enclosed by the paraboloid z =

1 — 22 — y? and the plane z = 0. Formula: Divergence Theorem: (|, F -dS = V-FdV
Y p s E
Ans: 27

(Unclosed Surface). Use the Divergence Theorem to evaluate the flux of F’
across S, where

F(x,y,2) =3018yi+ (bz+3y)j+ (¢ — Dk

and S is a part of the paraboloid z = 1 — 22 — 2, z > 0.

Hint: Note that S is not a closed surface. First compute integrals over S7 and Sy = S U Sy, where 51 is
the disk > + y* < 1, z = 0, oriented downward. Formula: [[(F -dS = ([ F -ndS. Divergence
Theorem: [[( F -dS = [[[,V - FdV.

Answer: [[y F-dS = [[[;V-FdV = [[[4dV =4[y [17" ¥ dzdA = 2r. And [[, F -dS =
JJg, F-ndS = [[4 (1 —2)dS =, because n =< 0,0, ~1 >and z = 0 on Sy. Thus 27 — 7 = 7.
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F.1. Formulas for Chapter 16

equatwn r(t) z(t)) a <t <b, then line integral of  along C is

/f (x,y,2)ds = / fr@) Y/ ()| dt = / f(x 2(0) V()2 + ()2 + (2)2 dt. (16.81)

‘Formula 16.110. (16.22) Let F is a continuous vector field defined on a smooth

curve C given by r(t), a <t < b. Then the line integral of F along C' is
b
/ F-ar & [ F.Tds = / F(x(t))-1'(t)dt. (16.82)
C C a

vector ﬁe]d that 18, F V f for some scalar-valued functmn f. Then

/ F.dr = / Vf-dr= f(r(b)) — f(r(a)). (16.83)
c c

Note: If F = (P, Q) satisfies P, = ), over an open simply-connected domain, then F is
conservative

closed curve in the plane and D be the region bounded by C. If F = (P, Q) have
continuous partial derivatives on an open region including D, then

55 Fodr &L ) Pde +Qiy = H (% _ ‘2—5) dA. (16.84)

'Surface Integrals‘

r(u,v) = <x(u,v) y(u v), z(u v)), (u,v) € D. Then

jf f(z,y,2)dS = fff(r(u,v))h’u X 1y| dA. (16.85)
S D

‘Formula 16.114. (16.65) When = = g(z,y), ro X vy = (—¢gz, —gy,1). Thus the

formula ( 16. 85) reads

([ £y, 2148 = [[ £(o.y, 9w, 9))1 /92 + g3+ 1dA. (16.86)
S D
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surface S W1th un1t norma] vector n. The surface integral of F = (P, Q, R) over S

is
/F-dr def /F-Tds
C o) (16.87)

, b
= [ P S0l = [ Pao)-r

[, >aﬂd
[[Foas = [[F-@ xrp)dA=[[(-Pg.—Qgy+ R)dA (16.88)
S D D

bounded by a s1mple closed piecewise-smooth curve C W1th positive orientation.
Let F = (P, Q, R) be a vector field whose components have continuous partial
derivatives. Then

§1§ F-dr= H(cur]F) as &L H(cur]F) ‘nds = H(cur]F) (ry x 1) dA.  (16.89)
C (s D

surface of E, gjven W1th positive (outward) orientation. Let F = (P, ), R) have con-
tinuous partial derivatives on an open region that contains E. Then

#SF - dS = Jbﬂv CFdV. (16.90)
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CHAPTER 17

Optimization Methods

Optimization is the branch of research-and-development that aims to solve the problem
of finding the elements which maximize or minimize a given real-valued function, while
respecting constraints. Many problems in engineering and machine learning can be cast
as optimization problems, which explains the growing importance of the field. An op-
timization problem is the problem of finding the best solution from all feasible
solutions.

In this chapter, we will discuss details about two of common optimization methods:

® Method of Euler-Lagrange equations (variational calculus), and

® Gradient descent method.
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17.1. Variational Calculus: Euler-Lagrange Equa-

tions

Consider the following minimization problem

min/ |Vu|dx subj. to ||vg —ul| = o, (17.1)
vJa

1/2
where ||vg — u|| = (/(vo—u)de) and
Q

vgp : given observed data (image)
u : adesired image to be restored
o : the standard deviation of noise n = vy — u

Introducing a Lagrange multiplier )\, the problem (17.1) can be written equiva-
lently as

A
minJ(w), J() <= [ |Vuldx + Slvo - ul®

(2 (17.2)

Method of Lagrange multipliers

Recall: Earlier in § 14.8, we considered a problem of the form
min f(x) subj.to g¢(x)=-c. (17.3)

The problem could be solved by finding (x, A\) such that

V/(x) = \WWy(x) and g(x) = c!| (17.4)

(See Strategy 14.85, p. 65.) The first equation of (17.4) can be written as
V[f(x) +Ag(x)] = 0, (17.5)

which (assuming A found) is a necessary condition for
min [f(x) + Ag(x)] . (17.6)




17.1. Variational Calculus: Euler-Lagrange Equations 241

17.1.1. Total variation

Definition}, 17.1. Let f be a differentiable function defined on @ c R?. Then the
total variation (TV) of f over () is defined as

TV(f) = /Q\Vf|dx. (17.7)

'Remark ' 17.2. Thus the problem in (17.1),

,,,,,,,,, I

min/ |Vu|dx subj. to |Jvg —u|| = o, (17.8)
“Ja

is the problem of finding a solution that minimizes the TV, given the constraint
|lvo — u|]| = o. It has been widely used in the field of image processing, particu-
larly in mathematical denoising.

b
TV (f) :/ \f(z)] da. (17.9)

-
!
L

777777777 ml

Problem ' 17.4. Find the TV of f(z) = 223 — 322 + 4 over [-1,2].

,,,,,,,,, -

Solution.

Ans: 11
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17.1.2. Calculus of variation

For simplicity, we will derive the Euler-Lagrange equation for problems in one vari-
able. Consider

min J(u), J(u)= /m fx,u,u)dz. (17.10)

The Question:

What is the function « that satisfies
u(zy) =u; and wu(zg) = ug (17.11)

and renders J in (17.10) a minimum ?

Figure 17.1: The minimizer v and its variation U as a comparison function.

1. Let u be the minimizing function of 7 in (17.10).
2. Consider the one-parameter family of comparison functions

U(x) =u(z) +en(z), (17.12)
where 7 is an arbitrary differentiable function such that
n(z1) = n(x2) = 0.

3. See Figure 17.1. Note U'(z) = () + e (). (17.13)

4. Consider

._7(6)2/ f(:L’,U,UI)de/ flx,u+enu +en)dz.

Then, since U = u (the minimizer) when ¢ = 0, we have

7'(0) = 0. (17.14)
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Implication of J/(0) =0

Differentiating .7 with respect to ¢ reads

dJ _ 76 :/‘”2 <af U of aU'>dx:/” (8f n+ of ,)dx_ (17.15)

de oU 0s  OU' 0e oU U’ "
Thus,
2 0f of
/ p— — — / p—
J'(0) = /x1 (aun—i— auln)da: 0. (17.16)

Now, apply integration by parts (for the second part) to get

2 0f of | 2 d rof

;2 of d /o (17.17)
- / [a— - @(a—u)] e =0.
Since the above holds for arbitrary », we must have
of d (of\ _
o %<%> _o, (17.18)

which is called the Euler-Lagrange equation of 7.

Problem 17.5. Let /(x) = |+/°. Find °L. What s 2 when o = 12

Solution. Hint: Begin with In f = aIn|z|. Or, define f.(z) = <\/x2 + 2 )a and find lim fi(x).
e—
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777777777 ml

[Problem‘ 17.6. In 1D, the objective function 7 in (17.2) reads

,,,,,,,,, -

T(u) = /ab [ua] + %(vo ],

where u, = du/dz. Find its Euler-Lagrange equation.
Solution.

Ans: —\(vg — u) — ( la )x =0, or —(

Juta]

Fe—m————————
|
|

T(u) = / b [(M)? + A(vo — u)2] dz.

Solution.

(17.19)

la )m = Mwog — u).

Jua]

(17.20)

Ans: —uz, = AMvg — u).
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J(u) = /Q [|Vu\ + %(vo — u)2] dx = /Q [@ [u2 4 ul + %(vo — u)2] dx; (17.21)

its Euler-Lagrange equation reads

Vu
V. <W> — A(vg— ), (17.22)

where the left-hand side is called the curvature. For a convenient simulation
of (17.22), we can parametrize the energy descent direction by an artificial
time ¢: 5 v
u u

T -V (lV_u|> = Avg—u), u(x,t=0)=m1vy(x). (17.23)
which is called the total variation (TV) model [6] in the literature of image
processing. The stationary solution of (17.23) would show a smaller TV value
than vg.

Figure 17.2: Staircasing of the TV model: (a) The original Elaine and (b) its TV result.
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V|V - (%) — AV (v — ), (17.24)
where the Euler-Lagrange equation is scaled by |Vu| before applying time parametriza-

tion. The above is call the improved TV (ITV) model [4].

(a) — (b)

Figure 17.3: Lena: (a) The original image, (b) a noisy image, (c) a restored image by ITV,
and (d) a restored image by ITV-END. The PSNR (peak signal-to-noise ratio) measures
22.8, 27.0, and 30.3 respectively for (b), (c), and (d).

Note: END stands for equalized net diffusion, which is invented by Kim [2] as
another scaling operation incorporated with ITV, in order to preserve fine features of
the image more effectively.
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17.2. Gradient Descent Method

The first method is one of the oldest
methods in optimization: gradient de-
scent method, ak.a steepest de-
scent method. The method was sug-
gested by Augustin-Louis Cauchy in 1847
[3]. He was a French mathematician and
physicist who made pioneering contribu-
tions to mathematical analysis. Today, it
is used to solve problems with thousands
of variables comfortably.

Figure 17.4: Augustin-Louis Cauchy

Optimization Problem

Let Q ¢ R% d > 1. Given a real-valued function f : Q@ — R, the general problem of
finding the value that minimizes f is formulated as follows.

min /(x). (17.25)

In this context, f is the objective function. 2 ¢ R? is the domain of the function
(also known as the constraint set).

‘Problem ' 17.11. (Revisit of Problem 14.79). Find all local extrema of f(z,y) =

z* 4+ y* — 42y + 1. What is the global minimum, min, ez f(2,9)?
Solution.

Figure 17.5

Ans: local min at: (£1, £1), saddle point: (0,0); global min = —1
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tion in the two-dimensional (2D) space is defined as!

flz,y) = (1 —2)*+100 (y — 22)2. (17.26)
f(x,y) = (1-x)2+100*(y-x?)? . flxy) = (1-x)2+100%(y-x2)?
2500 /
2 Q

4}?

2000

1500

1000

500

Figure 17.6: Plots of the Rosenbrock function f(x,y) = (1 — x)? + 100 (y — z%)*.

Rosenbrock function

Note: The Rosenbrock function is commonly used when evaluating the performance of
optimization algorithms, due to the following reasons.

® Jts minimizer x = np.array([1.,1.]) is found in curved valley, and so minimizing
the function is non-trivial, and

® Python: The Rosenbrock function is included in the scipy.optimize package (as
rosen), as well as its gradient (rosen_der) and its Hessian (rosen_hess).

!The Rosenbrock function in 3D is given as f(z,y,2) = [(1 — 2)? + 100 (y — 22)?] + [(1 — y)? + 100 (2 — y?)?],
which has exactly one minimum at (1,1,1). Similarly, one can define the Rosenbrock function in gen-

eral N-dimensional spaces, for N > 4, by adding one more component for each enlarged dimension.
N-1

That is, f(x) = Z [(1—2;)® +100(z;41 — 27)?], where x = [z1,22,---,2n] € RN. See Wikipedia

i=1
(https://en.wikipedia.org/wiki/Rosenbrock_function) for details.


https://en.wikipedia.org/wiki/Rosenbrock_function
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Recall: The gradient V f is a vector (a direction to move), which is
* pointing in the direction of greatest increase of the function, and
* zero (V f = 0) at local maxima or local minima.

The goal of the gradient descent (GD) method is to address directly the process of
minimizing the function f, using the fact that —V f(x) is the direction of steepest descent
of f at x. Given an initial point x;, we move it to the direction of —V f(x() so as to get a
smaller function value. That is,

x1 =x0 — 7 Vf(x0) = f(x1) < f(%0)-

We repeat this process till reaching at a desirable minimum. Thus the method is formu-
lated as follows.

Gradient descent method

Algorithm | 17.13. Given an initial point x, find iterates x,, .1 recursively using

D) (17.27)

for some v > 0. The parameter ~ is called the step length or learning rate. [

To understand the basics of GD method thoroughly, we consider the method for solving
unconstrained minimization problems defined in 1D.

17.2.1. The gradient descent method in 1D

Consider the minimization problem in 1D:

min f(z), x €S, (17.28)

where S is a closed interval in R. Then its gradient descent method reads

Tpi1 = Tn — v f(x0). (17.29)
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Picking the step length ~ | Assume that the step length was chosen to be indepen-
dent of n, although one can play with other choices as well. The question is how to
select ~ in order to make the best gain of the method. To turn the right-hand side
of (17.29) into a more manageable form, we invoke Taylor’s Theorem:?

T+t
flz+1t) = flx)+tf(z)+ / (x+t—35)f"(s)ds. (17.30)

Assuming that | f”(s)| < L, we have

2
Fle+1) < fl2) +1 f'(x) + % L

Now, letting z = z,, and t = —v f’(x,,) reads

f(@ny1) = flon — 'Vf/(xn)) ]
< flwn) =7 S (n) f'(wn) + 5L [y f(20)]? (17.31)

L
= fla) = @) (v = 59°)-
The gain (learning) from the method occurs when

1m0 > 0<y<z, (17.32)

and it will be best when v — %72 is maximal. This happens at the point

(17.33)

1
T

It follows from (17.31) and (17.33) that

1

LS ()] (17.34)

f(xns1) < flog) —

17.14. (Convergence of GD method). If f is bounded from below
and the level sets of f are bounded, there is a point = such that

lim =, =2z, f'(z)=0. (17.35)

n—oo

2Taylor’s Theorem, with integral remainder: Suppose f € C"*'[a,b] and zy € [a,b]. Then, for every

(k) ( @
relatl, 1) =3 T @ — )t + Rue), Rulw) = 4 [ (w105 ds.
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17.2.2. Examples

251

Here we examine the convergence of gradient descent on three examples: a well-conditioned
quadratic, an badly-conditioned quadratic, and a non-convex function, as shown by Dr. Fabian

Pedregosa, UC Berkeley.

‘Starting Point

Optimum
)

Solution

v=0.2

Figure 17.7: On a well-conditioned quadratic function, the gradient descent converges in a

few iterations to the optimum

Starting Point

Solution

Optimum
O

v =0.02

Figure 17.8: On a badly-conditioned quadratic function, the gradient descent converges
and takes many more iterations to converge than on the above well-conditioned problem.
This is partially because gradient descent requires a much smaller step length on this

problem to converge.

Starting Point

Solution

Optimum
O

v =0.02

Figure 17.9: Gradient descent also converges on a badly-conditioned non-convex problem.

Convergence is slow in this case.


http://fa.bianp.net/teaching/2018/eecs227at/
http://fa.bianp.net/teaching/2018/eecs227at/
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17.2.3. The choice of step length and line search

The convergence of the gradient descent method can be extremely sensible to the choice of
step length. It often requires to choose the step length adaptively: the step length would
better be chosen small in regions of large variability of the gradient, while in regions with
small variability we would like to take it large.

Backtracking line search procedures allow to select a step length depending on
the current iterate and the gradient. In this procedure, we select an initial (optimistic)
step length ~,, and evaluate the following inequality (known as sufficient decrease
condition): ,

f&xn = m Vixn) < flxn) — 7” IV £ () |17 (17.36)

If this inequality is verified, the current step length is kept. If not, the step length is
divided by 2 (or any number larger than 1) repeatedly until (17.36) is verified. To get a
better understanding, refer to (17.34) on p. 250, with (17.33).

GD, with Backtracking Line Search

The GD algorithm with backtracking line search becomes
input: initial guess x(, step length v > 0;
forn=0,1,2,--- do
[ initial step length estimate ,,;
while (TRUE) do
if f(xn =9 VF(xn) < f(xa) = 5 [V (x0)l?
break; (17.37)
else , = Yn/2;
| end while
Xnt1 = X — Y VF(Xn);
end for
return x, ;
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The following examples show the convergence of gradient descent with the aforemen-
tioned backtracking line search strategy for the step length.

Starting Point

Optimum
&
Solution

Figure 17.10: On a well-conditioned quadratic function, the gradient descent converges in
a few iterations to the optimum. Adding the backtracking line search strategy for the step
length does not change much in this case.

Starting Point

Optimum
€)
Solution

Figure 17.11: In this example we can clearly see the effect of the backtracking line search
strategy: once the algorithm in a region of low curvature, it can take larger step lengths.
The final result is a much improved convergence compared with the fixed step-length
equivalent.

Starting Point

Optimum
O

Solution

Figure 17.12: The backtracking line search also improves convergence on non-convex prob-
lems.
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17.2.4. Optimizing optimization

Multiple Local Minima Problem

no guarantee for your algorithm to converge to the desired solution (the global
minimum), particularly when the objective involves multiple local minima.

s(x,t=3)

\/ g0x,t=2)
\L/

g(x,t=1)

~ A/
W B(x.t=0)

Figure 17.13: Smooth sailing, through a Gaussian smoothing.

® Here, we consider the so-called Gaussian homotopy continuation method [5],
which may overcome the local minima problem for certain classes of optimization
problems.

®* The method begins by trying to find a convex approximation of an optimization prob-
lem, using a technique called Gaussian smoothing.

® Gaussian smoothing converts the cost function into a related function that gives not
the value that the cost function would, but a weighted average of all the surrounding
values.

® This has the effect of smoothing out any abrupt dips or ascents in the cost function’s
graph, as shown in Figure 17.13.

®* The weights assigned the surrounding values are determined by a Gaussian func-
tion, or normal distribution.
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‘Problem ' 17.16. Let f(z) = 2 — §x3 — 42” + 11. Perform two GD iterations to

,,,,,,,,, |

estimate min, f(z), starting from z, = 1 and setting v, = 0.1/(n + 1).
Solution. Clue: f'(z) = 423 — 42% — 8z = 42(2® — 2 — 2) and min f(z) = f(2) = 1/3.

Algorithm | 17.17. The above problem is implemented as follows.
GD.m

1| = mmm e e e e -

2 | %% An Example for Gradient Descent Method

3 | e mmm e -

4 f =0(x) x.74 -4/3%x.73 -4%x."2 +11;

5 | df = @(x) 4*x."3 -4%x."2 -8%x;

6

7 x0 = 1.0;

8 xn = gdiD(df,x0,tol=1.0e-5,itmax=1000) ;

9 fprintf("min £ = %.7f @ xn= 7%.10f\n",feval (f,xn),xn);

gdiD.m

1 function xn = gdi1D(df,x0,tol,itmax)

2 % function xn = gdiD(df,x0,tol)

3 % Input: df: derivative of f; x0: initial value

4 % Default: gamma = 0.1/n

5 if nargin==2, tol=1.0e-5; itmax=1000; end

7 xn = x0;

8 for n=1:itmax

9 gamma = 0.1/n;

10 h = gamma*feval(df,xn); xn = xn - h;

11 if (abs(h)<tol)

12 fprintf('gdiD.m: converged @ n = %d (tol=lg)\n',n,tol); break;
13 end

14 end

The Result

1 [Sat Oct.26] octave GD.m
2 | gd1D.m: converged @ n = 8 (tol=1e-05)
3 min £ = 0.3333333 @ xn= 2.0000182623
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Exercises 17.2

By solving problems below, you will learn numerical characteristics of GD, particularly
the importance of initial values (x,) and step lengths (v,).

1. Implement GD as in Algorithm 17.17 in MATLAB? and test it as follows.

(a) Run GD.m with {x0=3.0; itmax=10;}.

(b) Plot y = f(x) with the iterates x,, n = 1,--- , 10, being located on the z-axis.

(c) First edit gd1D.m to replace gamma=0.1/n with gamma=0.1/(n+3) and then run GD.m
again with {x0=3.0; itmax=10;}.

(d) Plot y = f(z) again with the iterates x,, n = 1,--- 10, being located on the z-axis.

(e) Discuss your experiments, focusing on the importance of initial values (z,) and step
lengths (v,,).

2. Now, consider the last four digits of your student ID (say, abcd). Let
g(z) =ax* —ba® —ca® +d,
where @ = max(a, 1).

(a) Plot y = g(z).
(b) Examine the figure to find an accurate initial value z for solving min g(z).

(c) Edit gd1D.m to set gamma for GD to converge as fast as possible.
(d) Report your experiments.

SMATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and proprietary
programming language developed by MathWorks.



APPENDIX A

Review for 12 Selected Sections
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A.l1. (814.4) Tangent Planes and Linear Approx-
imations

QjeﬁnitionUA.l. Given z = f(z,y), the linear (tangent plane) approximation
of f near (a,b) is

L(z,y) = 20 + fz(a,b) (x — a) + fy(a,b) (y — b), (A.1)

where zy = f(a,b).

Note: The equation of the tangent plane is
2= 20 = fﬂi(a7 b) (‘T - CL) + fy(% b) (y - b)7

or equivalently

—fz(a,b) (x — a) — fy(a,d) (y — b) + (2 — 2p) = 0. (A.2)
A level surface form of z = f(x,y) can be rewritten as

its gradient beclomes

VEF = (=fa, —fy, 1). (A.3)

reveal A.2. (§16.6. Parametric Surfaces and Their Areas): Let a surface S

be formed by the graph of z = f(z,y) and parametrized by r(z,y) = (z, y, f(z,y)).
Then

ry X ry = <_f$7 _fy7 1)) (A4)
see (16.62) on p. 210.

A3. If f, and f, exist near (a,b) and continuous at (a,b), then f is
differentiable at (a,b).

Definition} A.4. For a differentiable function » = f(z,y), the (total) differen-
tial is

dz = fo(z,y) dz + fy(z,y) dy, (A.5)
where dv and dy represent the change in the x and y directions, respectively.
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z = 2% + 492 at the point (1,1,5).
Solution.

777777777 Ans:z—5=2-(x—1)+8 - (y—1) & z=22+8y 5.
[Problem7 A.6. Let f(z,y) = In(z + 1) + cos(x/y). Explain why the function is differ-

,,,,,,,,, -

entiable at (0, 2).

[Problemj‘ A.7. Use a linear approximation to estimate f(2.2,4.9), provided that

,,,,,,,,, -

f(2,5) =0, fm(2,5) =1, and fy(2,5) = —1.
Solution.

Ans: 6.3
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A.2. (§14.6) Directional Derivatives and Gradi-
ent Vector

Claim' A.8. For a unit vector u, the directional derivative for a differential

,,,,,, -

function f is

r
|
L

Duf(z,y) = Vf(z,y)-u.

[Theorem | A.9. Let f be differentiable. Then,

mleILXDuf: |V £ (A.6)

Note: The gradient vector Vf is directing the fastest increasing direction.

Tangent Plane and Normal Line to a Level Surface

Suppose S is a surface given as F(z,y,2) = k and x9 = (x0,y0,20) is on S. Then the
tangent plane to S at xg is

VE(xq) - (x —x0) = Fu(x0)(z — x0) + Fy(x0)(y — yo) + F2(x0)(z — 20) = 0. (A.7)
The normal line to S at xg is

Qf—fﬂo_y—yO Z =20 (A8)

Fy(xo)  Fy(xo) F,(x0)
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1. Find the directional derivative of f at the point (1,0) in the direction given by
the angle 6 = 7/3.

2. In what direction does f have the maximum rate of change? What is the maxi-
mum rate of change?

Solution.

Ans: (a) (1 ++/3)/2 (b) V2

P(0,0,1) to x + y + z = ™=,
Solution.

Ans: (@ zrz+y+z=1Db)r=y=2-1
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A.3. (§14.8) Lagrange Multipliers

Consider the optimization problem

max / min f(x)
subject to g(x) = ¢

F————————
|
|

,,,,,,,,, o

of the optimization problem,
(a) Find all values of z,y, z, and X such that

F————————
|
|

L e e e - - - —

- . . .
mum area that has a give perimeter p is a square.



A.3. (§14.8) Lagrange Multipliers 263

777777777 ml

[Problem 'A.14. Find the maximum and minimum values of f(z,y) = 222 + (y — 1)?

,,,,,,,,, -

on the circle 22 + > = 4.
. A o 2r =z @
Solution. Vf = A\Vg = lz(y B 1)] = [23;} . Therefore, N 1 = Ay (2
P +yt=4 3
From @), z = 0 or \ = 2.

Ans: min: £(0,2) = 1; max: f(£v/3,—1) = 10
2

[Problemj‘ A.15. Find the maximum and minimum values of f(z,y) = 22?4+ (y — 1)

,,,,,,,,, -

on the disk =2 + ¢? < 4.
Solution. Hint: You should check values at critical points as well.

Ans: min: f(0,1) = 0; f(£V3,—1) =10
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A.4. (§15.2) Double Integrals over General Re-
gions

Multiple integrals can be computed with iterated integral where the given do-
main must be covered once-and-only-once, without missing and without overlap.
Furthermore, you should be able to change the order of integration properly.

plane » = 1 + 2y and above the region D in the zy-plane bounded by the line y = 2z
and the parabola y = 22.

Solution. Try for both orders.

Ans: 28/5



A.4. (§15.2) Double Integrals over General Regions 265

4 2
/ / e” dx dy
0 JVy

Solution.

Ans: 3(e® —1)
[Siélffiéfﬁaﬂ A.18. Sketch the region of integration and change the order of integra-
tion. )

2 \/4—y? In2 /2
/ / f(z,y)dxdy / / f(z,y)dxdy
—-2J0 0 ey

Solution.
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A.5. (815.7) Triple Integrals in Cylindrical Co-
ordinates

Definition} A.19. (Definition 15.53). The conversion between the Cylindri-
cal Coordinates and the Rectangular Coordinate system gives

(@,y.2)r = (1,6,2)0 [ (1,8, 2)0 + (2,9, 2)r
x =1cost P =xl+y

y=rsing tanf = % (A.9)
=z z =7z

Note: The triple integral with a Cylindrical Domain F can be carried out by first
separating the domain like

E =D x [ui(z,y),u2(z,y)], where D is a polar region.

r
|
|

ders 22 + y?> = 1 and z? + y?> = 9, above the zy-plane, and below the plane z =y + 3.

Solution.

Ans: 207
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that is enclosed by the cone » = /22 + y2 and the sphere 22 + y? + 22 = 8.
Solution.

Ans: 27(y/2 - 1)

3
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A.6. (815.9) Change of Variables in Multiple In-
tegrals

efinition}) A.22. A change of variables is a transformation T : Q — R (from
the uv-plane to the zy-plane), T'(u,v) = (z,y), where x and y are related to v and v
by the equations

r=g(u,v), y=h(uv). [or, r(u,v)=(g9(u,v),h(u,v))]

We usually take these transformations to be C'-Transformation, meaning g
and h have continuous first-order partial derivatives, and one-to-one.

A A

v ¥
T
Q .
(u,v) -
_—
"\_-——____
0 T 0 o

Figure A.1: Transformation: R = T7(Q), the image of 7.

QeﬁnitionUA.Z& The Jacobian of T : v = g(u,v), y = h(u,v) is

O(@,y) def det { Zju Zv 1 — Ty Y — Ty Y. (A.10)

777777 ml

[Claim‘ A.24. Suppose T : Q — R is an one-to-one C' transformation whose

,,,,,, g

Jacobian is nonzero. Then

d(z,y)

g f(a,y)dA = gf@(u,v),y(u,u)) ‘a(w) dudv (A.11)

Note: In linear algebra, an n x n matrix A is considered as a transformation from
R" to R". Furthermore its determinant can be viewed as a volume scaling factor.
For details, see Section 3.1 of Introduction to Linear Algebra:
https:/skim.math.msstate.edu/LectureNotes/Linear_Algebra_LectureNote.pdf.
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jj sin(922 + 4y°) dA,
R

where R is the region in the first quadrant bounded by the ellipse 922 + 4y% = 1.
Solution.

Ans: m(1—cos1)
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A.7. (§16.2) Line Integrals

Definition}; A.26. If f is defined on a smooth curve C given by
r(t) = (x(t), y(t)), a<t<b, (A.12)
then line integral of f along C is

/f(:c,y) ds = lim Zf(x;k,y;"‘)Asi, (A.13)
C Nn—00 —

if this limit exists. Here As; = \/Az? + Ay?.

The line integral defined in (A.13) can be evaluated as

b
Lo mds — / F(@(),90) V@O + @) de

b (A.14)
_ / £ (), u(0)) I£'(0) d.

efinition} A.27. Let F be a continuous vector field defined on a smooth curve
C given by r(t),a <t < b. Then the line integral of F along C is

b
/F'dr [ F.Tds = / F(x(t))-r'(t)dt. (A.15)
C c a

We say that work is the line integral with respect to arc length of the tangential
component of force.
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F————————
|
P

from (0,0,0) to (2,-2,1).
Solution.

Ans: e — 1

particle that moves along the parabola x = 32 + 1 from (1,0) to (2, 1).
Solution.

.3 e?—e
Ans: 5 + &
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A.8. (§16.3) The Fundamental Theorem for Line
Integrals

Let C be a curve represented by

A.30.

1. Suppose that F is continuous, and is a conservative vector field; that is,
F =V [ for some f. Then

/ F .dr = / Vf-dr= f(r(b) — f(r(a)). (A.16)
C c

2. [ F.dr is independent of path in D if and only if [, F -dr = 0 for every
closed path in D.

3. Suppose F is a vector field that is continuous on an open connected do-
main D. If [, F - dr is independent of path in D, then F is conservative
(i.e., there is f such that F = V f).

4. If F = (P, Q) is conservative, where P and QQ have continuous partial deriva-
tives, then
oQ 0P
— = . Al
or  Jy ELL)
5. When D is a simply-connected domain, the equality (A.17) implies conser-
vativeness of F.

Roughly speaking: When F = (P, ) is smooth enough,

| conservativeness| < |independence of path | < [Q, = P,
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F = 2y3/2i+ 3x\/yj

in moving an object from A(1,1) to B(2,4).
Solution. First, check if F is conservative: Q, = 3,/y, P, =2- %yl/ 2 =3y

Ans: 30

(a) Find a potential.
(b) Evaluate [, F - dr, where C is parameterized as

r(t) = (e’ cost,e'sint), 0 <t <.

Solution.

Ans: (a) f(x,y) = ze? +ysinz + K (b) —e™ — 1
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A.9. (§16.4) Green’s Theorem

A.33. (Green’s Theorem). Let C be positively oriented, piecewise-
smooth, simple closed curve in the plane and D be the region bounded by C. If
F = (P,Q) has continuous partial derivatives on an open region including D,

e yg Pz + Qdy = [ (8—Q _ @) dA. (A.18)
Fo = Jor Oy

The theorem gives the following formulas for the area of D:

A(D) —%:z:dy——%ydx—%yéxdy—ydx (A.19)
C C C

[Probleml A.34. Evaluate ¢, F - dr, where F = (¢7* 4+ y? ¢ ¥ + 2% + 22y) and C is the

circle 22 + (y — 1)? = 1 oriented clockwise.
Solution. Hint: Check the orientation of the curve.

Ans: 0
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A(D) = ﬂ dA = §éDxdy
D

to show that the area of D (the shaded region) is 6. You have to compute the line
integral for each of four line segments of the boundary. For the slant line
segment, in particular, you should introduce an appropriate parameterization for
the line integral.

AY
2

1 D

6 1 2 3 4 x
Figure A.2
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A.10. (816.7) Surface Integrals

Suppose that the surface S has a parametric representation
r(u,0) = (@(u, ), y(u,0), 2(w,0),  (u,v) € D,

Then, surface integrals of scalar functions give

|[ £y, 248 = [[ £x(w,0))|ru x ol dA. (A.20)
S D

® dS= \ru X Ty| dA.

b
e For line integrals, / f(x,y,2)ds = / f(r(t)) |¥'(t)| dt.
C a
e When z = g(x Y), Ty X Ty = (—gz, —gy, 1). Thus the formula (16. 64) reads

Hf“/ )dS = fffxygwy))\/mm. (A.21)

from D C R?. The flux across the surface S can be measured by

ﬂF as L HF nds

B H ( Iy X Ty ) Iy X 1o dA (A.22)

[Ty X 1y

= fJF (ry X 1ry) dA.

Note that F-n and F(r)-(r, xr,) are scalar functions.
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Remark ' A.37. Line integrals of vector fields is defined to measure quanti-

,,,,,,,,, -

ties along the curve. That is, for C parametrized by r : [a,0] — C,

/ F.dar & / F-Tds
¢ < v(8) b (A.23)
= /F(r(t))~ |r’(t)|dt:/ F(r(t))-r'(t)dt.

r
|
L

Surfaces defined by z = g(x, y):

® A vector representation: r(z,y) = (z,v, g(z,y)).
® Normal vector: r, x ry = (—gz, —gy, 1).
® Thus, when F = (P, Q), R),

[[F-ds = [[F-(exr)da=[[(-Pg.—Qgy+ R)dA, (A.24)
S D D

given by the cylinder 22 + y? = 1, whose bottom S is the disk 22 + y? < 1 in the plane
2z =0, and whose top 53 is the disk 22 + 3> < 1 in the plane z = 1.

Solution. Hint: Use (A.19). Clue: S, : * = cosf, y = sinf, z = z; (0,z) € D =
[0,27] x [0,1]. Then |rp x r,| = 1.

Ans: 3w + 37+ 3w =57
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[Problemj‘ A.39. Find the flux of F = (z,y,1) across a upward helicoid: r(u,v) =
(ucosv,usinv,v), 0 <u<2 0<v<m.

Solution. Hint: Use (A.22). Clue: r, X r, = (sinv, — cos v, u).

Figure A.3

Ans: 27
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solid region E enclosed by the paraboloid » = 1 — 22 — y? and the plane z = 0.

Solution. Clue: For S, (the upper part), use the formula in (A.24). For S, (the bottom:
z = 0), you may try to get F' -n, where n = —k.

. 3 __ 3
Ans.;—l—O-T
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A.11. (§16.8) Stokes’s Theorem

Stokes’s Theorem is a high-dimensional version of Green’s Theorem studied in § 16.4.

Recall: (Green’s Theorem, p.274). Let C be positively oriented, piecewise-
smooth, simple closed curve in the plane and D be the region bounded by C. If
F = (P,Q) have continuous partial derivatives on an open region including D,
then

ygF.drd:Gf Cde+Qdy — g (g—g—g—j)dA_£f(cur1F)-de. (A.25)

A.41. (Stokes’s Theorem) Let S be an oriented piecewise-smooth
surface that is bounded by a simple, closed, piecewise-smooth curve C with pos-
itive orientation. Let F = (P, Q, R) be a vector field whose components have
continuous partial derivatives on an open region in R? that contains S. Then

F .- dr = 1F)-dS (A.26)
y% r Lf(cur )

‘Remark ' A.42.

| g g g ol

* See Figure 16.29(left) on p. 216, for an oriented surface of which the boundary
has positive orientation.

e Computation of the surface integral: forr: D — S,

{[(curlF).-as A [[(curlF) - nds = [[(curlF)- (r, xr,) dA. (A.27)
S S D

* Green’s Theorem is a special case in which S is flat and lies on the zy-plane
(n = k). Compare the last terms in (A.25) and (A.27).

Try to solve problems in Section 16.8, once more.
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A.12. (§16.9) The Divergence Theorem

A.43. (Divergence Theorem) Let E be a simple solid region and
S be the boundary surface of E, given with positive (outward) orientation. Let
F = (P, Q, R) have continuous partial derivatives on an open region that

contains E. Then
F.-dS = V- FdV. (A.28)
#S fgf

where
F(z,y,2) = (x +y? +cos 2) i+ [sin(r2) + ze ] j+ 2k

and S is a part of the cylinder 22 + 3> = 4 that lies between z = 0 and z = 1.
Solution.

Ans: 8
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Lf <x2 +y si

where S is the unit sphere 22 + 32 + 22 = 4.
Solution. Clue: What is n?

Appendix A. Review for 12 Selected Sections

2’2
—)d
nx+ 2) S,

Ans: 327
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