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Prologue

This lecture note is closely following the part of multivariable calculus in Stewart’s book [7]. In
organizing this lecture note, I am indebted by Cedar Crest College Calculus IV Lecture Notes, Dr.
James Hammer [1].

Two projects are included for students to experience computer algebra. Computer algebra
(also called symbolic computation) is a scientific area that refers to the study and development
of algorithms and software for manipulating mathematical expressions and other mathematical ob-
jects; it emphasizes exact computation with expressions containing variables that have no given
value and are manipulated as symbols. In practice, you can use computer algebra to effectively han-
dle complex math equations and problems that would be simply too complicated/time-consuming to
do by hand. The projects are organized using Maple.

Through the lecture note, I tried to make figures using Maple. Also added are some of program-
ming scripts written in Maple. The end of each section includes exercise problems. For problems
indicated by the Computer Algebra System (CAS) sign CAS , you are recommended to use a CAS to
solve the problem.

Currently the lecture note is not fully grown up; other useful techniques and interesting exam-
ples would be soon incorporated. Any questions, suggestions, comments will be deeply appreciated.

Seongjai Kim
June 17, 2022
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CHAPTER 12
Vectors and the Geometry of Space

In this chapter, we study vectors and equations in the 3-dimensional (3D)
space. In particular, you will learn

• vectors
• dot product
• cross product
• equations of lines and planes, and
• cylinders and quadric surfaces

Contents of Chapter 12
12.1.Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
12.2.Equations in the 3D Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
12.3.Cylinders and Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This chapter corresponds to Chapter 12 in STEWART, Calculus (8th Ed.), 2015.
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2 Chapter 12. Vectors and the Geometry of Space

12.1. Vector Operations

There exists a lot to cover in the class of multivariable calculus; however, it
is important to have a good foundation before we trudge forward. In that
vein, let’s review vectors and their geometry in space (R3) briefly.

12.1.1. 3D coordinate systems

Recall: Let P = (x1, y1) and Q = (x2, y2) be points in R2. Then the
distance from P to Q is

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2. (12.1)

Definition 12.1. Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in R3.
Then the distance from P to Q is

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (12.2)

Problem 12.2. Find the distance between P (−3, 2, 7) and
Q(−1, 0, 6).
Solution.

Ans: 3
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Recall: A circle in R2 is defined to be all of the points in the plane (R2)
that are equidistant from a central point C(a, b).

(x− a)2 + (y − b)2 = r2. (12.3)

A natural generalization of this to 3-D space would be to say that a
sphere is defined to be all of the points in R3 that are equidistant from a
central point C. This is exactly what the following definition does!

Definition 12.3. Let C(h, k, l) be a point in R3. Then the sphere cen-
tered at C with radius r is defined by the equation

(x− h)2 + (y − k)2 + (z − l)2 = r2. (12.4)

That is to say that this defines all points (x, y, z) ∈ R3 that are at the
same distance r from the center C(h, k, l).

Problem 12.4. Show that x2 +y2 + z2−4x+ 2y−6z+ 10 = 0 is the equation
of a sphere, and find its center and radius.
Solution.

Ans: C(2,−1, 3) and r = 2
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12.1.2. Vectors and vector operations

Definition 12.5. A vector is a mathematical object that stores both
length (which we will often call magnitude) and direction.

Let P = (x1, y1, z1) and Q = (x2, y2, z2). Then the vector with initial point
P and terminal point Q (denoted⇀PQ) is defined by

⇀
PQ = 〈x2 − x1, y2 − y1, z2 − z1〉 =

⇀
OQ−⇀OP,

where O is the origin, O = (0, 0, 0). The vector ⇀OP is called the position
vector of the point P . For convenience, we use bold-faced lower-case letters
to denote vectors. For example, v =< v1, v2, v3 > is a (position) vector in R3

associated with the point (v1, v2, v3).

Definition 12.6. Two vectors are said to be equal if and only if they
have the same length and direction, regardless of their position in R3.
That is to say that a vector can be moved (with no change) anywhere in
space as long as the magnitude and direction are preserved.

Definition 12.7. Let v =< v1, v2, v3 >. Then the magnitude (a.k.a.
length or norm) of v (denoted |v| or sometimes ||v||) is defined by

|v| =
√
v2

1 + v2
2 + v2

3. (12.5)

Definition 12.8. (Vector addition) Let u =< u1, u2, u3 > and v =<
v1, v2, v3 >. Then

u + v =< u1 + v1, u2 + v2, u3 + v3 > .
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Definition 12.9. (Scalar multiplication) Let v =< v1, v2, v3 > and k ∈ R.
Then

k v =< kv1, kv2, kv3 > .

Problem 12.10. If a =< 0, 3, 4 > and b =< 1, 5, 2 >, find |a|, 2a − 3b, and
|2a− 3b|.
Solution.

Ans: |a| = 5; 2a− 3b =< −3,−9, 2 >; |2a− 3b| =
√

94

Definition 12.11. A unit vector is a vector whose magnitude is 1.
Note that given a vector v, we can form a unit vector (of the same direc-
tion) by dividing by its magnitude. That is, let v =< v1, v2, v3 >. Then

u =
v

|v|
(12.6)

is a unit vector in the direction of v.

Definition 12.12. Any vector can be denoted as the linear combination
of the standard unit vectors

i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 > .

So given a vector v =< v1, v2, v3 >, one can express it with respect to the
standard unit vectors as

v =< v1, v2, v3 >= v1 i + v2 j + v3 k. (12.7)

This text, however, will more often than not use the angle brace notation.
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Definition 12.13. Let u =< u1, u2, u3 > and v =< v1, v2, v3 >. Then the
dot product is

u · v = u1 v1 + u2 v2 + u3 v3, (12.8)

which is sometimes referred as the Euclidean inner product. Note
that v · v = |v|2.

Theorem 12.14. Let θ be the angle between u and v (so 0 ≤ θ ≤ π).
Then

u · v = |u| |v| cos(θ). (12.9)

Corollary 12.15. Two vectors u and v are orthogonal if and only if
u · v = 0.

Problem 12.16. Find the angle between the vectors a =< 2, 2, 1 > and
b =< 3, 0, 3 >.
Solution.

Ans: π/4 (= 45◦)
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Definition 12.17. Let u =< u1, u2, u3 > and v =< v1, v2, v3 >. Then the
cross product is the determinant of the following matrix:

u× v = det

 i j k
u1 u2 u3

v1 v2 v3


= det

[
u2 u3

v2 v3

]
i− det

[
u1 u3

v1 v3

]
j + det

[
u1 u2

v1 v2

]
k

= < u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1 > .

(12.10)

Problem 12.18. Find the cross product a × b, when a =< 1, 3, 4 > and
b =< 3,−1,−2 >.
Solution.

Ans: < −2, 14,−10 >

Theorem 12.19. The vector a× b is orthogonal to both a and b.

Theorem 12.20. Let θ be the angle between a and b (so 0 ≤ θ ≤ π).
Then

|a× b| = |a| |b| sin(θ). (12.11)
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Claim 12.21. The length of the cross product a× b is equal to the area
of the parallelogram determined by a and b.

Figure 12.1

Problem 12.22. Prove that two nonzero vectors a and b are parallel if and
only if a× b = 0.
Solution.

Figure 12.2: Finding the direction of the
cross product by the right-hand rule.

The cross product a×b is defined as

a vector that is perpendicular (or-
thogonal) to both a and b, with a
direction given by the right-hand
rule and a magnitude equal to the
area of the parallelogram that the
vectors span.
If the fingers of your right hand
curl in the direction of a rotation
(through an angle less than 180◦)
from a to b, then the thumb points
in the direction of a × b. See Fig-
ure 12.2.
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Exercises 12.1
1. Find the cross product a× b and verify that it is orthogonal to both a and b.

(a) a =< 1, 2,−1 >, b =< 2, 0,−3 >
(b) a =< 1, t, 1/t >, b =< t2, t, 1 >

2. Find |u× v| and determine whether u× v is directed into the page or out of the page.

Figure 12.3

3. (i) Find a nonzero vector orthogonal to the plane through the points P , Q, and R, and
(ii) find the area of the triangle PQR.

(a) P (1, 0, 1), Q(2, 1, 3), R(−3, 2, 5)
Ans: < 0,−12, 6 >, 3

√
5

(b) P (1,−1, 0), Q(−3, 1, 2), R(0, 3,−1)
Ans: < −10,−6,−14 >,

√
83

4. Find the angle between a and b, when a · b = −
√

3 and a× b =< 2, 2, 1 >.
Ans: 120◦

Note: Exercise problems are added for your homework; answers would be provided for some of
them. However, you have to verify them, by showing solutions in detail.
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12.2. Equations in the 3D Space

Objective: To build equations of lines, line segments, and planes.

Parametrization of a Line. Let P0 = (x0, y0, z0) be a point in R3, and
v = 〈a, b, c〉 be a vector in R3. Then the line through P0 parallel to v is

r = P0 + tv, t ∈ R. (12.12)

This can also be written as

x = x0 + at, y = y0 + bt, z = z0 + ct; t ∈ R. (12.13)

or as the symmetric equation

x− x0

a
=
y − y0

b
=
z − z0

c
. (12.14)

P

Q

Figure 12.4: Parametrization: (left) line and (right) line segment.

Parametrization of a Line Segment. Let P and Q be respectively the
initial and terminal points of a line segment. Then the line segment PQ
can be parametrized as

r(t) = (1− t)⇀OP + t⇀OQ, 0 ≤ t ≤ 1. (12.15)
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Problem 12.23. Find a vector equation and parametric equation for the
line that passes through the point (5, 1, 3) and is parallel to 〈1, 4,−2〉.
Solution.

Ans: x = 5 + t, y = 1 + 4t, z = 3− 2t

Problem 12.24. Find the parametric equation of the line segment from
(2, 4,−3) to (3,−1, 1).

Solution.

Ans: r(t) = 〈2 + t, 4− 5t,−3 + 4t〉, 0 ≤ t ≤ 1.
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Planes. Let x0 = (x0, y0, z0) be a point in the plane and n = 〈a, b, c〉 be a
vector normal to the plane. Then the equation of the plane is

n · (x− x0) = a (x− x0) + b (y − y0) + c (z − z0) = 0. (12.16)

Problem 12.25. Find an equation of the plane that passes through the
points P (1, 2, 3), Q(3, 2, 4), and R(1, 5, 2).
Solution.

Ans: −3(x− 1) + 2(y − 2) + 6(z − 3) = 0.
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Exercises 12.2
1. Find an equation of the line which passes through (1, 0, 3) and perpendicular to the plane

x− 3y + 2z = 4.

2. Find the line of the intersection of planes x + 2y + 3z = 6 and x − y + z = 1. (Hint : The
intersection is a line; consider how the direction of the line is related to the normal vectors of
the planes.)

Ans: r = P0 + tv =< 1, 1, 1 > +t < 5, 2,−3 >

3. Find the vector equation for the line segment from P (1, 2,−4) to Q(5, 6, 0).

4. Find an equation of the plane.

(a) The plane through the point (0, 1, 2) and parallel to the plane x− y + 2z = 4.
(b) The plane through the points P (1,−2, 2), Q(3,−4, 0), and R(−3,−2,−1).

Ans: 3(x− 1) + 7(y + 2)− 4(z − 2) = 0.

5. Use intercepts to help sketch the plane 2x+ y + 5z = 10.
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12.3. Cylinders and Quadric Surfaces

Objective: To visualize surfaces, given their equations.

Definition 12.26. A cylinder is a surface that consists of all lines that
are parallel to a given line and pass through a given plane curve.

Problem 12.27. Sketch z = x2 in R3.

Problem 12.28. Sketch x2 + y2 = 1 in R3.

Problem 12.29. Sketch y2 + z2 = 1 in R3.
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Definition 12.30. A quadric surface is the graph of a second-degree
equation in three variables x, y, and z. By translation and rotation, we
can write the standard form of a quadric surface as

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0. (12.17)

Definition 12.31. The trace of a surface in R3 is the graph in R2 ob-
tained by allowing one of the variables to be a specific real number. For
example, x = a.

Problem 12.32. Use the traces to sketch x2 +
y2

9
+
z2

4
= 1.
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Problem 12.33. Use the traces to sketch z = 4x2 + y2.

Exercises 12.3
1. Sketch the surface.

(a) x2 + y2 = 1
(b) x2 + y2 − 2y = 0
(c) z = sinx

2. Use traces to sketch and identify the surface.

(a) z = y2 − x2
(b) 4y2 + 9z2 = x2 + 36

3. Sketch the region bounded by the surfaces z =
√
x2 + y2 and z = 2− x2 − y2.

4. Sketch the surface obtained by rotating the line r(t) = 〈0, 1, 3〉t about the z-axis; find an
equation of it. (Hint : The line can be expressed as {z = 3y, x = 0}.)

Ans: |z| = 3
√
x2 + y2 or z2 = 9(x2 + y2)



CHAPTER 14
Partial Derivatives
In mathematics, a partial derivative of a function of several variables is
its derivative with respect to one of those variables, with the others held
constant. In this chapter, you will learn about the partial derivatives and
their applications.
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14.1. Functions of Several Variables

14.1.1. Domain and range

Definition 14.1. A function of two variables, f , is a rule that assigns
each ordered pair of real numbers (x, y) in a set D ⊂ R2 a unique real
number denoted by f(x, y). The set D is called the domain of f and its
range is the set of values that f takes on, that is, {f(x, y) : (x, y) ∈ D}.

Definition 14.2. Let f be a function of two variables, and z = f(x, y).
Then x and y are called independent variables and z is called a de-
pendent variable.

Problem 14.3. Let f(x, y) =

√
x+ y + 1

x− 1
. Evaluate f(3, 2) and give its

domain.

Ans: f(3, 2) =
√

6/2; D = {(x, y) : x+ y + 1 ≥ 0, x 6= 1}

Problem 14.4. Find the domain of f(x, y) = x ln
(
y2 − x

)
.
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Problem 14.5. Find the domain and the range of
f(x, y) =

√
9− x2 − y2.

14.1.2. Graphs

Definition 14.6. If f is a function of two variables with domain D, then
the graph of f is the set of all points (x, y, z) ∈ R3 such that z = f(x, y)
for all (x, y) ∈ D.

Problem 14.7. Sketch the graph of f(x, y) = 6− 3x− 2y.

Solution. The graph of f has the equation z = 6−3x−2y, or 3x+2y+z = 6,
which is a plane. Now, we can find intercepts to graph the plane.

Problem 14.8. Sketch the graph of g(x, y) =
√

9− x2 − y2.

Solution. The graph of g has the equation z =
√

9− x2 − y2, or x2 +y2 +z2 =

9, z ≥ 0, which is a upper hemi-sphere.
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14.1.3. Level curves

Definition 14.9. The level curves of a function of two variables, f , are
the curves with equations f(x, y) = k, for k ∈ K ⊂ Range(f).

Figure 14.1: Level curves: (left) the graph of a function vs. level curves and (right) a
topographic map of a mountainous region. Level curves are often considered for an effective
visualization.

Problem 14.10. Sketch the level curves of f(x, y) = 6 − 3x − 2y for k ∈
{−6, 0, 6, 12} .
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Problem 14.11. Sketch the level curves of g(x, y) =
√

9− x2 − y2 for k ∈
{0, 1, 2, 3}

Problem 14.12. Sketch the level curves of h(x, y) = 4x2 + y2 + 1.

Figure 14.2
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Figure 14.3: Computer-generated level curves.

Function visualization is now easy with e.g., Mathematica, Maple, and Mat-
lab, as shown in Figure 14.3.1

1For plotting with Maple, you may exploit plot, plot3d, contourplot3d, and contourplot, which are
available from the plots package. Maple can include packages with the with command, as in Figure 14.3.
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14.1.4. Functions of three or more variables

Definition 14.13. A function of three variables, f , is a rule that
assigns each ordered pair of real numbers (x, y, z) in a set D ⊂ R3 a
unique real number denoted by f(x, y, z).

Problem 14.14. Find the domain of f if f(x, y, z) = ln(z − y) + xy sin z.

Problem 14.15. Find the level surfaces (:=f(x, y, z) = k) of f(x, y, z) =

x2 + y2 + z2.
Solution.

Note: A level surface is the surface where the function values are all the
same as k. Thus the outer normal is the fastest increasing direc-
tion of f .
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Exercises 14.1
1. Find and sketch the domain of the function

(a) f(x, y) = ln(9− 9x2 − y2)

(b) g(x, y) =

√
x− y2

1− y2

2. Let f(x, y) =
√

4− x2 − 4y2.

(a) Find the domain of f .
(b) Find the range of f .
(c) Sketch the graph of the function.

3. Match the function with its contour plot (labeled I–VI). Give reasons for your choices.

(a) f(x, y) = x2 − y2

(b) f(x, y) = x2 + y2

(c) f(x, y) = 3− |x| − |y|
(d) f(x, y) = |xy|

(e) f(x, y) = 1
1+x2+y2

(f) f(x, y) = 1
1+x2y2

I II III

IV V VI

4. Describe the level surfaces of the function f(x, y, z) = x2 + y2 − z2.
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14.2. Limits and Continuity

Limits
Recall: For y = f(x), then we say that the limit of f(x), as x→ a, is L, if

lim
x→a−

f(x) = L = lim
x→a+

f(x),

or, equivalently, if ∀ ε > 0, there exists δ = δ(ε) > 0 such that

if 0 < |x− a| < δ then |f(x)− L| < ε,

which is called the ε-δ argument. In this case, we write

lim
x→a

f(x) = L. (14.1)

Definition 14.16. Let f be a function of two variables whose domain D

includes points arbitrarily close to (a, b). Then we say that the limit of
f(x, y), as (x, y) approaches (a, b), is L:

lim
(x,y)→(a,b)

f(x, y) = L, (14.2)

if ∀ε > 0, there exists δ = δ(ε) > 0 such that

if (x, y) ∈ D and 0 <
√

(x− a)2 + (y − b)2 < δ then |f(x, y)− L| < ε.

Arc length of f(Bδ(a, b))→ 0, as δ → 0.

Figure 14.4: Plots of z = sinx+ sin y (left) and z =
xy

x2 + y2
(right).
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Figure 14.5

Claim 14.17. If f(x, y) → L1

as (x, y) → (a, b) along a path C1

and f(x, y) → L2 as (x, y) → (a, b)
along a path C2, where L1 6= L2,
then lim(x,y)→(a,b) f(x, y) does not
exist.

Problem 14.18. Show that lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.

Solution. Consider two paths: e.g., C1 : {y = 0} and C2 : {x = 0}.

Ans: no

Problem 14.19. Does lim
(x,y)→(0,0)

2xy

x2 + y2
exist?

Solution. Consider a path C : {x = y} with another.

Ans: no



14.2. Limits and Continuity 27

Problem 14.20. Does lim
(x,y)→(1,1)

2xy

x2 + y2
exist?

Solution.

Ans: yes: L = 1

Problem 14.21. Does lim
(x,y)→(0,0)

xy2

x2 + y4
exist?

Solution. Consider a path C : {x = y2} with another.

Ans: no. See Figure 14.6 on p. 31 below.
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Problem 14.22. Use the squeeze theorem to show

lim
(x,y)→(0,0)

3x2y

x2 + y2
= 0.

Solution.

Continuity
Recall: A function (of a single variable) f is continuous at x = a if

lim
x→a

f(x) = f(a).

The above means that
1. the limit on the left side exists,
2. f(a) is defined, and
3. they are the same.

Definition 14.23. A function of two variables f is called continuous
at point (a, b) ∈ R2 if

lim
(x,y)→(a,b)

f(x, y) = f(a, b). (14.3)

If f is continuous at every point (x, y) in a region D ⊂ R2, then we say
that f is continuous on D.

Problem 14.24. Is f(x, y) = 2xy
x2+y2 continuous at (0, 0)? What about at

(1, 1)? Why?
Solution. See Problems 14.19 and 14.20.

Ans: no; yes
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Problem 14.25. Is the following function continuous at (0, 0)? What about
at elsewhere?

g(x, y) =

{
3x2y
x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(14.4)

Solution. See Problem 14.22.

Ans: It is continuous everywhere.

Problem 14.26. Find the limit: lim
(x,y)→(0,0)

(x2 + y2) ln(x2 + y2).

Solution. Consider limx→0 x lnx and introduce a new variable s = x2 + y2.

Ans: L = 0
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Exercises 14.2
1. Find the limit, if it exists, or show that the limit does not exist.

(a) lim
(x,y)→(π,π/2)

x cos(x− y)

Ans: 0

(b) lim
(x,y)→(0,0)

x√
x2 + y2

(c) lim
(x,y)→(0,0)

xy√
x2 + y2

Ans: 0

2. Use polar coordinates to find the limit.

(a) lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
(b) lim

(x,y)→(0,0)

x2 + y2√
4 + x2 + y2 − 2

Ans: (a) 1; (b) 4

3. CAS Use a computer graph of the function to explain why the limit does not exist.2

lim
(x,y)→(0,0)

x2 + 2xy + 4y2

3x2 + y2

4. Determine and verify whether the following functions are continuous at (0, 0) or not.

(a) f(x, y) =


x4 sin y

x4 + y4
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).
Ans: continuous

(b) g(x, y) =


xy

x2 + xy + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).
Ans: discontinuous

2You have to perform a computer implementation for problems indicated by the Computer Algebra System
sign CAS . Of course, you must print hard copies of your computer work to be attached.
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Computer algebra

Figure 14.6: Matlab plot: using ezsurf for
Problem 14.21, p. 27.

In computational mathematics,
computer algebra (also called

symbolic computation) is a sci-
entific area that refers to the study
and development of algorithms and
software for manipulating math-
ematical expressions and other
mathematical objects; it empha-
sizes exact computation with ex-
pressions containing variables that
have no given value and are manip-
ulated as symbols.
There have been about 40 computer
algebra systems available; search
“List of computer algebra systems"
in Wikipedia. Popular ones in com-
putational mathematics are Maple,
Mathematica, and Matlab.

Matlab script
1 syms x y
2

3 f = x*y^2/(x^2+y^4);
4 ezsurf(f,[-1,1,-1,1])
5 view(-45,45)
6 print('-r100','-dpng','matlab_ezsurf.png');

The above Matlab script results in Figure 14.6. Line 1 declares symbolic
variables x y; line 3 defines the function f ; line 4 plots a figure over the rect-
angular domain [−1, 1]× [−1, 1]; line 5 changes the view angle to (−45◦, 45◦)

in the horizontal and vertical directions, respectively; and the final line
saves the figure to matlab_ezsurf.png with the resolution level of 100.
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14.3. Partial Derivatives

14.3.1. First-order partial derivatives

Recall: A function y = f(x) is differentiable at a if

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
exists.

Figure 14.7: Ordinary derivative f ′(a) and partial derivatives fx(a, b) and fy(a, b).

Let f be a function of two variables (x, y). Suppose we let only x vary while
keeping y fixed, say y = b . Then g(x) := f(x, b) is a function of a single
variable. If g is differentiable at a, then we call it the partial derivative
of f with respect to x at (a, b) and denoted by fx(a, b).

g′(a) = lim
h→0

g(a+ h)− g(a)

h

= lim
h→0

f(a+ h, b)− f(a, b)

h
=: fx(a, b).

(14.5)
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Similarly, the partial derivative of f with respect to y at (a, b), denoted
by fy(a, b), is obtained keeping x fixed, say x = a , and finding the ordinary
derivative at b of G(y) := f(a, y) :

G′(b) = lim
h→0

G(b+ h)−G(b)

h

= lim
h→0

f(a, b+ h)− f(a, b)

h
=: fy(a, b).

(14.6)

Problem 14.27. Find fx(0, 0), when f(x, y) = 3
√
x3 + y3.

Solution. Using the definition,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h

Ans: 1

Definition 14.28. If f is a function of two variables, its partial deriva-
tives are the functions fx = ∂f

∂x and fy = ∂f
∂y defined by:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
and

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

(14.7)
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Observation 14.29. The partial derivative with respect to x represents
the slope of the tangent lines to the curve that are parallel to the xz-
plane (i.e. in the direction of 〈1, 0, ·〉). Similarly, the partial derivative
with respect to y represents the slope of the tangent lines to the curve
that are parallel to the yz-plane (i.e. in the direction of 〈0, 1, ·〉).

Rule for finding Partial Derivatives of z = f(x,y)

• To find fx, regard y as a constant and differentiate f w.r.t. x.
• To find fy, regard x as a constant and differentiate f w.r.t. y.

Problem 14.30. If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Solution.

Ans: fx(2, 1) = 16; fy(2, 1) = 8

Problem 14.31. Let f(x, y) = sin
( x

1 + y

)
. Find the first partial derivatives

of f(x, y).

Solution.
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Problem 14.32. Find the first partial derivatives of f(x, y) = xy.
Solution. Use d

dxa
x = ax ln a.

Recall: (Implicit differentiation). When y = y(x) and x2 + y3 = 3, you
have 2x+ 3y2y′ = 0 so that y′ = −2x/(3y2).

Problem 14.33. Find ∂z/∂x and ∂z/∂y if z is defined implicitly as a func-
tion of x and y by

x3 + y3 + z3 + 6xyz = 1.

Figure 14.8: implicitplot3d in Maple: a
plot of surface defined in Problem 14.33.
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Problem 14.34. (Revisit of Problem 14.27). Find fx(x, y), when f(x, y) =
3
√
x3 + y3. Can you evaluate fx(0, 0) easily?

Solution.

Functions of more than two variables
Problem 14.35. Let f(x, y, z) = exy ln z. Find fx, fy, and fz.
Solution.
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14.3.2. Higher-order partial derivatives

Second partial derivatives of z = f(x, y)

(fx)x = fxx =
∂

∂x

(∂f
∂x

)
=

∂2f

∂x2
= f11

(fx)y = fxy =
∂

∂y

(∂f
∂x

)
=

∂2f

∂y∂x
= f12

(fy)x = fyx =
∂

∂x

(∂f
∂y

)
=

∂2f

∂x∂y
= f21

(fy)y = fyy =
∂

∂y

(∂f
∂y

)
=

∂2f

∂y2
= f22

Problem 14.36. Find the second partial derivatives of f(x, y) = x3 +x2y3−
2y2.

Solution.

Theorem 14.37. (Clairaut’s theorem) Suppose f is defined on a disk
D ⊂ R2 that contains the point (a, b). If both fxy and fyx are continu-
ous on D, then

fxy(a, b) = fyx(a, b). (14.8)

Claim 14.38. It can be shown that fxyy = fyxy = fyyx if these functions
are continuous.
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Problem 14.39. Verify Clairaut’s theorem for f(x, y) = xyey.

Problem 14.40. Calculate fyzxx(x, y, z), given f(x, y, z) = sin (3x+ yz).
Solution.
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Exercises 14.3
1. The temperature T (in ◦F) at a location in the Northern Hemi-sphere depends on the

longitude x, latitude y, and time t; so we can write T = f(x, y, t). Let’s measure time in
hours from the beginning of January.

(a) What do the partial derivatives ∂T/∂x, ∂T/∂y, and ∂T/∂t mean?
(b) Mississippi State University (MSU)3 has longitude 88.8◦W and latitude

33.5◦N. Suppose that at noon on January first, the wind is blowing warm air to
northeast, so the air to the west and south is warmer than that in the north and
east. Would you expect fx(88.8, 33.5, 12), fy(88.8, 33.5, 12), and ft(88.8, 33.5, 12) to be
positive or negative? Explain.

2. The following surfaces, labeled a, b, and c, are graphs of a function f and its partial
derivatives fx and fy. Identify each surface and give reasons for your choices.

a b c

3. Find the partial derivatives of the function.

(a) z = y cos(xy)
(b) f(u, v) = (uv − v3)2

(c) w = ln(x+ 2y + 3z)
(d) u = sin(x21 + x22 + · · ·+ x2n)

Ans: (d) ∂u/∂xi = 2xi · cos(x21 + x22 + · · ·+ x2n)

4. Let f(x, y, z) = xy2z3 + arccos(x
√
y) +

√
1 + xz. Find fxyz, by using a different order of

differentiation for each term.
Ans: 6yz2

5. Show that each of the following functions is a solution of the wave equation utt = a2uxx.

(a) u = sin(kx) sin(akt)
(b) u = (x+ at)3 + (x− at)6

(c) u = sin(x+ at) + ln(x− at)
(d) u = f(x+ at) + g(x− at)

where f and g are twice differentiable functions.

3MSU, the land-grant research university, has an elevation of 118 meters, or 387 feet.
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14.4. Tangent Planes & Linear Approximations

Recall: As one zooms into a curve y = f(x), the more the curve resembles
a line. More specifically, the curve looks more and more like the tangent
line. It is the same for surface: the surface looks more and more like the
tangent plane. Some functions are difficult to evaluate at a point; so,
the equation of the tangent plane (which is much simpler) is used to
approximate the value of that curve at a given point.

Figure 14.9: A tangent line and a tangent plane.

Tangent plane for z = f(x, y) at (x0, y0, z0): Any tangent plane passing
through P (x0, y0, z0), z0 = f(x0, y0), has an equation of the form

A(x− x0) +B(y − y0) + C(z − z0) = 0, n =< A,B,C > .

By dividing the equation by C (6= 0) and letting a = −A/C and b = −B/C,
we can write it in the form

z − z0 = a(x− x0) + b(y − y0). (14.9)

Then, the intersection of the plane with y = y0 must be the x-directional
tangent line at (x0, y0, z0), having the slope of fx(x0, y0):

z − z0 = a(x− x0), where y = y0.

Therefore a = fx(x0, y0) . Similarly, we can conclude b = fy(x0, y0) .
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Summary 14.41. Suppose that f(x, y) has continuous partial deriva-
tives. An equation of the tangent plane (equivalently, the linear ap-
proximation) to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0), (14.10)

where z0 = f(x0, y0).

Problem 14.42. Find an equation for the tangent plane to the elliptic
paraboloid z = 2x2 + y2 at the point (1, 1, 3).
Solution.

Ans: z = 4x+ 2y − 3

Linear approximation (linearization) of f at (a, b):
f(x, y) ≈ L(x, y) := f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (14.11)

Problem 14.43. Give the linear approximation of f(x, y) = xexy at (1, 0).

Then use this to approximate f(1.1,−0.1).
Solution.

Ans: L(x, y) = x+ y; L(1.1,−0.1) = 1, while f(1.1,−0.1) = 0.9854 · · · .
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Differentiability for functions of multiple variables:

Recall: A function y = f(x) is differentiable at a if

lim
∆x→0

f(a+ ∆x)− f(a)

∆x
exists. (=: f ′(a))

Thus, if f is differentiable at a, then
f(a+ ∆x)− f(a)

∆x
= f ′(a) + ε and

∆y ≡ f(a+ ∆x)− f(a) = f ′(a)∆x+ ε∆x, (14.12)

where ε→ 0 as ∆x→ 0.
(
∵ f(a+∆x)−f(a)

∆x = f ′(a) + ε
)

Now, for z = f(x, y), suppose that (x, y) changes from (a, b) to
(a+ ∆x, b+ ∆y). Then the corresponding change of z is

∆z = f(a+ ∆x, b+ ∆y)− f(a, b).

Definition 14.44. A function z = f(x, y) is differentiable at (a, b) if ∆z
can be expressed in the form

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y, (14.13)

where ε1, ε2 → 0 as (∆x,∆y)→ (0, 0).

It is sometimes hard to use Definition 14.44 directly to check the differen-
tiability of a function.

Theorem 14.45. If fx and fy exist near (a, b) and are continuous at
(a, b), then z = f(x, y) is differentiable at (a, b).

Note: The above theorem implies that if partial derivatives of f are continuous, then the
slope of f exists for all directions.

Problem 14.46. Let f(x, y) = y + sin(x/y). Explain why the function is
differentiable at (0, 3).
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Differentials

Recall: For y = f(x), let dx be the differential of x (an independent
variable). The differential of y is then defined as

dy = f ′(x) dx. (14.14)

Note: ∆y represents the change in height of the curve y = f(x), while dy
represents the change in height of the tangent line; when x changes
by ∆x = dx.

Definition 14.47. For z = f(x, y), we define differentials dx and dy to
be independent variables. Then the differential dz is defined by

dz = fx(x, y) dx+ fy(x, y) dy, (14.15)

which is also called the total differential.

Problem 14.48. Let z = f(x, y) = x2 + 3xy − y2.

(a) Find the differential dz.

(b) If (x, y) changes from (2, 3) to (2.1, 2.9), compare the values of ∆z and
dz.

Solution.

Ans: (a) dz = (2x+ 3y)dx+ (3x− 2y)dy; (b) dz = 1.3, ∆z = 1.27
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Problem 14.49. Use differentials to estimate the amount of metal in a
closed cylindrical can that is 10 cm high and 4 cm in diameter, if the metal
in the top and bottom is 0.1 cm thick and the metal in the side is 0.05 cm
thick.
Solution. V (r, z) = πr2z. Therefore

dV = Vr dr + Vz dz = 2πrz dr + πr2 dz,

where dr = 0.05 and dz = 2 · 0.1 = 0.2.

Ans: dV = 2.8π = 8.796459431 · · · (∆V = 9.0022337 · · · )

Exercises 14.4
1. Find an equation of the tangent plane to the given surface at the specified point.

(a) z = sin(2x+ 3y), (−3, 2, 0)
(b) z = x2 + 2y2 − 3y, (1,−1, 6)

2. Explain why the function is differentiable at the given point. Then, find the lineariza-
tion L(x, y) of the function at that point.

(a) f(x, y) = 5 + x ln(xy − 1), (1, 2)
(b) f(x, y) = xy + sin(y/x), (2, 0)

3. Given that f is a differentiable function with f(5, 2) = 4, fx(5, 2) = 1, and fy(5, 2) = −1,
use a linear approximation to estimate f(4.9, 2.2).

Ans: 3.7

4. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm
and height 16 cm if the tin is 0.05 cm thick.

Ans: 8π
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14.5. The Chain Rule

14.5.1. Chain rule

Recall: Chain Rule for functions of a single variable: If y = f(x)
and x = g(t), where f and g are differentiable, then y is a differentiable
function of t and

dy

dt
=

dy

dx

dx

dt
. (14.16)

Theorem 14.50. The Chain Rule (Case 1). Suppose that z = f(x, y)
is a differentiable function, where x = g(t) and y = h(t) are both differ-
entiable functions of t. Then z is a differentiable function of t and

dz

dt
=

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
. (14.17)

Observation: Let z = f(x, y) = x y and x and y be functions of t:

z = f(x, y) = x y = x(t) y(t).

Then

dz

dt
= x′(t) y(t) + x(t) y′(t), (product rule)

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= y x′(t) + x y′(t).

Problem 14.51. If z = x2y + xy3, where x = cos t and y = sin t, find dz/dt at
t = 0.
Solution.

Ans: 1



46 Chapter 14. Partial Derivatives

Now, we will solve the above problem using the following script in Maple.
Maple script and answers

1 z := x*y^3+x^2*y:
2 x := cos(t): y := sin(t):
3 zt := diff(z, t)
4 zt := -2 cos(t) sin(t) + cos(t) - sin(t) + 3 cos(t) sin(t)
5 simplify(%)
6 -4 cos(t) + 3 cos(t) + 5 cos(t) - 2 cos(t) - 1
7 eval(zt, t = 0)
8 1

Lines 4, 6, and 8 are answers from Maple.

Theorem 14.52. The Chain Rule (Case 2). Suppose that z = f(x, y)
is a differentiable function, where x = g(s, t) and y = h(s, t) are both
differentiable functions of s and t. Then

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
,

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
. (14.18)

Problem 14.53. If z = ex sin(y), where x = st2 and y = s2t, find
∂z

∂s
and

∂z

∂t
.

Solution.

Ans:
zs = t2est

2
sin (s2t) + 2 est

2
st cos (s2t)

zt = 2 stest
2

sin (s2t) + est
2
s2 cos (s2t)
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Functions of three and more variables:

Theorem 14.54. The Chain Rule (General Version). Suppose that
u is a differentiable function of n variables, x1, x2, . . . , xn, each of which
has m variables, t1, t2, . . . , tm. Then for each i ∈ {1, 2, . . . ,m},

∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+
∂u

∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn
∂ti

.

Problem 14.55. Write the chain rule for w = f(x, y, z, t), where x =

x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v). That is, find ∂w
∂u and ∂w

∂v .

Problem 14.56. If g(s, t) = f
(
s2 − t2, t2 − s2

)
and f is differentiable, show

that g satisfies the equation

t
∂g

∂s
+ s

∂g

∂t
= 0.

Solution. Let x = s2 − t2 and y = t2 − s2.
Then gs = fx xs + fy ys and gt = fx xt + fy yt.
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Problem 14.57. If z = x3 + x2y, where x = s + 2t− u and y = stu, find the
values of zs, zt, and zu, when s = 2, t = 0, u = 1.
Solution.

Ans: zs = 3, zt = 8, and zu = −3

14.5.2. Implicit differentiation

Consider F (x, y) = 0, where y is a function of x, i.e., y = f(x). Then,

Fx
dx

dx
+ Fy

dy

dx
= 0.

Thus,we have

y′ = −Fx
Fy
. (14.19)

Problem 14.58. Find y′ if x3 + y3 = 6xy.

Solution. Let F = x3 + y3 − 6xy. Then, use (14.19).

Ans: y′ = −(x2 − 2y)/(y2 − 2x)
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Note: You can solve the above problem using the technique you learned
earlier in Calculus I. That is, applying x-derivative to x3 + y3 = 6xy reads

3x2 + 3y2 y′ = 6y + 6xy′.

Thus
3y2 y′ − 6xy′ = −3x2 + 6y ⇒ y′ = −3x2 − 6y

3y2 − 6x
.

Claim 14.59. Let z = f(x, y) and F (x, y, z) = 0. Then Fx ∂x∂x+Fy
∂y
∂x+Fz

∂z
∂x =

0 and Fx ∂x∂y + Fy
∂y
∂y + Fz

∂z
∂y = 0. Thus

∂z

∂x
= −Fx

Fz
and

∂z

∂y
= −Fy

Fz
. (14.20)

Problem 14.60. Find
∂z

∂x
and

∂z

∂y
, if

x3 + y3 + z3 + 6xyz = 1. (14.21)

Solution.

Ans: zx = −3x2+6yz
3z2+6xy

= −x2+2yz
z2+2xy

. See Figure 14.8, p. 35, for a figure of (14.21).
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Exercises 14.5
1. Use the Chain Rule to find dz/dt or dw/dt.

(a) z = cosx sin y; x = t3, y = 1/t
(b) w = (x+ y2 + z3)2; x = 1 + 2t, y = −2t, z = t2

2. Suppose f is a differentiable function of x and y, and g(u, v) = f(u+ cos v, u2 + 1 + sin v).
Use the table of values to find gu(0, 0) and gv(0, 0).

f g fx fy

(0, 0) 1 2 -1 10
(0, 1) 3 5 10 5
(1, 1) 2 7 20 2

Ans: gu(0, 0) = 20 & gv(0, 0) = 2

3. Use the Chain Rule to find the indicated partial derivatives.

(a) z = x2 + y4; x = s+ 2t− 3u, y = stu;
∂z

∂s
,
∂z

∂t
,
∂z

∂u
when s = 3, t = 1, and u = 1

Ans: zs(3, 1, 1) = 112 & zu(3, 1, 1) = 312

(b) w = xy + yz + zx; x = r cos θ, y = r sin θ;
∂w

∂r
,
∂w

∂θ
,
∂w

∂z
when r = 2, θ = π/2, and z = 1

Ans: wz = 2

4. Use the formulas in (14.20) to find ∂z/∂x and ∂z/∂y, where z is function of (x, y).

(a) x2 + 2y2 + 3z2 − 4 = 0
(b) ez = xy + z

Ans: (b) zx = y/(ez − 1)
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14.6. Directional Derivatives and the Gradient
Vector

Figure 14.10

Recall: If z = f(x, y), then the
partial derivatives fx and fy rep-
resent the rates of change of z in
the x- and y-directions, that is, in
the directions of the unit vectors i
and j.

Note: It would be nice to be able to
find the slope of the tangent line to a
surface S in the direction of an arbi-
trary unit vector u = 〈a, b〉.

Definition 14.61. The directional derivative of f at (x0, y0) in the
direction of a unit vector u = 〈a, b〉 is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
, (14.22)

if the limit exists.

Note that

f(x0 + ha, y0 + hb)− f(x0, y0) = f(x0 + ha, y0 + hb)− f(x0, y0 + hb)

+ f(x0, y0 + hb)− f(x0, y0)

Thus

f(x0 + ha, y0 + hb)− f(x0, y0)

h
= a

f(x0 + ha, y0 + hb)− f(x0, y0 + hb)

ha

+ b
f(x0, y0 + hb)− f(x0, y0)

hb
,

which converges to “a fx(x0, y0) + b fy(x0, y0)" as h→ 0.
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Theorem 14.62. If f is a differentiable function of x and y, then f has
a directional derivative in the direction of any unit vector u = 〈a, b〉
and

Duf(x, y) = fx(x, y) a+ fy(x, y) b

= 〈fx(x, y), fy(x, y)〉 · 〈a, b〉
= 〈fx(x, y), fy(x, y)〉 · u.

(14.23)

Problem 14.63. Find the directional derivative Duf(x, y), if f(x, y) = x3 +

2xy+y4 and u is the unit vector given by the angle θ = π
4 . What is Duf(2, 3)?

Solution. u = 〈cos(π/4), sin(π/4)〉 =
〈
1/
√

2, 1/
√

2
〉
.

Figure 14.11

Ans: 65
√

2
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Note: 1. The only reason we are restricting the directional derivative to
the unit vector is because we care about the rate of change in f per unit
distance. Otherwise, the magnitude is irrelevant.
2. If the unit vector u makes an angle θ with the positive x-axis, then
u = 〈cos θ, sin θ〉. Thus

Duf(x, y) = fx(x, y) cos θ + fy(x, y) sin θ. (14.24)

Self-study 14.64. Find the directional derivative of f(x, y) = x+ sin(xy) at
the point (1, 0) in the direction given by the angle θ = π/3.
Solution.

Ans: (1 +
√

3)/2

Problem 14.65. If f(x, y, z) = x2 − 2y2 + z4, find the directional derivative
of f at (1, 3, 1) in the direction of v = 〈2,−2,−1〉 .
Solution.

Ans: 8
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Gradient Vector
Definition 14.66. Let f be a differentiable function of two variables x
and y. Then the gradient of f is the vector function

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
∂f

∂x
i +

∂f

∂y
j. (14.25)

Problem 14.67. If f(x, y) = sin(x) + exy, find ∇f(x, y) and ∇f(0, 1).

Solution.

Ans: 〈2, 0〉

Note: With this notation of the gradient vector, we can rewrite
Duf(x, y) = ∇f(x, y) ·u = fx(x, y)a+fy(x, y)b, where u = 〈a, b〉 . (14.26)

Problem 14.68. Find the directional derivative of f(x, y) = x2y3−4y at the
point (2,−1) and in the direction of the vector ⇀v = 〈3, 4〉 .
Solution.

Ans: 4
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Maximizing the Directional Derivative

Note that
Duf = ∇f · u = |∇f | |u| cos θ = |∇f | cos θ,

where θ is the angle between ∇f and u; the maximum occurs when θ = 0.

Theorem 14.69. Let f be a differentiable function of two or three vari-
ables. Then

max
u

Duf(x) = |∇f(x)| (14.27)

and it occurs when u has the same direction as ∇f(x).

Problem 14.70. Let f(x, y) = xey.

(a) Find the rate of change of f at P (1, 0) in the direction from P toQ(−1, 2).
(b) In what direction does f have the maximum rate of change? What is

the maximum rate of change?
Solution.

Ans: (a) 0; (b)
√

2

Remark 14.71. Let u =
∇f(x)

|∇f(x)|
, the unit vector in the gradient direc-

tion. Then

Duf(x) = ∇f(x) · u = ∇f(x) · ∇f(x)

|∇f(x)|
= |∇f(x)|. (14.28)

This implies that the directional derivative is maximized in the gradient
direction.

Claim 14.72. The gradient direction is the direction where the function
changes fastest, more precisely, increases fastest!
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The Gradient Vector of Level Surfaces

Figure 14.12: Level surfaces x2+y2+z2 = k2,
where k = 1, 1.5, 2, and the gradient vector at
P (−1, 1,

√
2), when k = 2.

Suppose S is a surface with equation

F (x, y, z) = k

and P (x0, y0, z0) ∈ S. Let C be
any curve that lies on the surface S,
passes through P , and is described
by a continuous vector function

r(t) = 〈x(t), y(t), z(t)〉 . (14.29)

Then, any point 〈x(t), y(t), z(t)〉 must
satisfy

F (x(t), y(t), z(t)) = k. (14.30)

Apply the Chain Rule to have

d

dt
F = Fx

dx

dt
+ Fy

dy

dt
+ Fz

dz

dt
= ∇F · r′(t) = 0.

In particular, letting t = t0 be such that r(t0) = 〈x0, y0, z0〉,

∇F (x0, y0, z0) · r′(t0) = 0, (14.31)

where r′(t0) is the tangent vector at P (x0, y0, z0).

Summary 14.73. (Gradient Vector). Given a level surface F (x, y, z) =
k, the gradient vector ∇F (x, y, z) is normal to the surface and pointing
the fastest increasing direction.
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Tangent Plane to a Level Surface

Suppose S is a surface given as F (x, y, z) = k and x0 = (x0, y0, z0) is on S.
Then the tangent plane to S at x0 is

∇F (x0)·(x−x0) = Fx(x0)(x−x0)+Fy(x0)(y−y0)+Fz(x0)(z−z0) = 0. (14.32)

The normal line to S at x0 is

x− x0

Fx(x0)
=
y − y0

Fy(x0)
=
z − z0

Fz(x0)
. (14.33)

Problem 14.74. Find the equations of the tangent plane and the normal
line at P (−1, 1, 2) to the ellipsoid

x2 + y2 +
z2

4
= 3.

Solution.

Figure 14.13

Ans: −2x− 6 + 2y + z = 0; x+1
−2 = y−1

2
= z−2

1
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Exercises 14.6
1. Find the directional derivative of f at the point P in the direction indicated by either

the angle θ or a vector v.

(a) f(x, y) = x sin(xy), P (0, 1), θ = π/4
(b) f(x, y, z) = y2exyz, P (0, 1,−1), v =< −1, 2, 2 >

Ans: (b) 5/3

2. Find the maximum rate of change of f at the given point and the direction in which it
occurs.

(a) f(x, y) = sin(xy), (0, 1)

(b) f(x, y, z) =
z

x+ y
, (1, 1, 4)

Ans: (b) |∇f(1, 1, 4)| = 3/2, ∇f(1, 1, 4) =< −1,−1, 1/2 >

Note: We know that a differentiable function f increases most rapidly in the direc-
tion of ∇f . Thus, it is natural to claim that the function decreases most rapidly in
the direction opposite to the gradient vector, that is, −∇f .

3. Find the direction in which the function f(x, y, z) = x2 + y2 + z2 decreases fastest at the
point (1, 1, 1).

4. Find directions (unit vectors) in which the directional derivative of f(x, y) = x2 + xy2 at
the point (1, 2) has value 0.

Ans: u = ±<2,−3>√
13

5. Find the equations of (i) the tangent plane and (ii) the normal line to the given surface
at the specified point.

(a) (x− 1)2 + (y − 2)2 + (z − 3)2 = 3, (2, 1, 4)
(b) xy + yz + zx− 5 = 0, (1, 1, 2)

Ans: (b) 3(x− 1) + 3(y − 1) + 2(z − 2) = 0 & x−1
3 = y−1

3 = z−2
2
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14.7. Maximum and Minimum Values

Recall: To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

1. Find values of f at the critical points of f in (a, b).
2. Find values of f at the end points of the interval.
3. The largest is the absolute maximum value;

the smallest is the absolute minimum value.

Recall: (Second Derivative Test for y = f(x)) Suppose f ′′ is continu-
ous near c.
(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

14.7.1. Local extrema

Definition 14.75. Let f be a function of two variables x and y.
• It has a local minimum at (a, b) if f(x, y) ≥ f(a, b) when (x, y) is

near (a, b).

• It has a local maximum at (a, b) if f(x, y) ≤ f(a, b) when (x, y) is
near (a, b).

Theorem 14.76. (First Derivative Test). If f has a local extreme at
(a, b) and the first order partial derivatives exist, then fx(a, b) = 0 and
fy(a, b) = 0, that is, ∇f(a, b) = 0.

Problem 14.77. Find the critical points of

f(x, y) = 2x3 − 3x2 + y2 + 4y + 1.

Ans: (0,−2), (1,−2)
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Theorem 14.78. (Second Derivative Test). Suppose that the second
order partial derivatives of f are continuous near (a, b) and suppose that
∇f(a, b) = 0. Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy (a, b)]2 .

• If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
• If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
• If D < 0, then f(a, b) is a saddle point.

Note:
1. If D = 0, then no conclusion can be drawn from this test.

2. D = det
[
fxx fxy
fyx fyy

]
= fxxfyy − fxyfyx = fxxfyy − (fxy)

2

3. Let D > 0. Then, fxx(a, b) >< 0 is equivalent to fyy(a, b) >< 0.

Problem 14.79. Find all local extrema of f(x, y) = x4 + y4 − 4xy + 1.

Solution.

Figure 14.14

Ans: local min: (±1,±1); saddle point: (0, 0)



14.7. Maximum and Minimum Values 61

Problem 14.80. Find the shortest distance from the point (1, 0, 2) to the
plane 2x+ 2y − z + 2 = 0.

Solution. (a) You may use the formula d = |ax0 + by0 + cz0 +d|/
√
a2 + b2 + c2.

(b) Let d be the distance. Then

f(x, y) = d2 = (x− 1)2 + (y − 0)2 + (z − 2)2 = (x− 1)2 + y2 + (2x+ 2y)2

Ans: 2/3
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Problem 14.81. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one vertex on the plane
3x+ 2y + z = 6.
Hint : Maximize V = xyz, subject to 3x + 2y + z = 6. Thus V = xy(6− 3x− 2y). Try to find

the maximum by setting ∇V = 0.

Solution.

Ans: (x, y, z) = (2/3, 1, 2); V = xyz = 4/3
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14.7.2. Absolute extrema

Theorem 14.82. (Existence). If f is continuous on a closed and
bounded set D ⊂ R2, then f attains an absolute minimum value
f(x0, y0) and an absolute maximum value f(x1, y1) at some points
(xi, yi) ∈ D, i = 0, 1.

Strategy 14.83. To find absolute extrema,
1. Find critical points and values of f at those critical points.
2. Find the extreme values that occur on the boundary.
3. Compare all of those values for the largest and smallest values.

Problem 14.84. Find the absolute extrema of f(x, y) = x2−2xy+2y on the
rectangle R = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2} .
Solution.

Figure 14.15: R = [0, 3]× [0, 2]

Ans: abs.min=0; abs.max=9
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Exercises 14.7
1. (i) Find the local maxima and minima and saddle points of the function.

(ii) CAS Use Maple’s plot3d and contourplot functions to verify them.

(a) f(x, y) = x3 − 3xy2

(b) f(x, y) = (2x2 + y2)e−x
2−y2

(Note: You may use Mathematica, if you want.)

2. Find the absolute maximum and minimum values of f on D.

(a) f(x, y) = x2 + y2 − 2x; D is the closed triangular region with vertices (2, 0), (0, 2),
and (0,−2).

Ans: max: f(0,±2) = 4; min: f(1, 0) = −1

(b) f(x, y) = 4x2 + y4; D = {(x, y)|x2 + y2 ≤ 1}.
Ans: max: f(±1, 0) = 4; min: f(0, 0) = 0

3. Find three positive numbers whose sum is 60 and whose product is maximum.
Hint : The problem can read: max

(x,y,z)
xyz, subject to x + y + z = 60. Thus for example it can be

reformulated as: max
(x,y)

xy(60 − x − y), with each component being positive. From this, you may

conclude x = y.

4. Find the volume of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex in the plane 2x + 5y + z = 30. Clue: Try to use the hint
given for Problem 14.81.
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14.8. Lagrange Multipliers

In Problem 14.81, on p. 62, we maximized a volume function V = xyz subject
to the constraint 3x + 2y + z = 6, which was the plane having a vertex of
the rectangular box.

In this section, we consider Lagrange’s method to solve the problem of
the form

max
x

f(x) subj.to g(x) = c. (14.34)

Figure 14.16: The method of Lagrange multipliers in R2: ∇f //∇g, at maximum .

Strategy 14.85. (Method of Lagrange multipliers). For the maxi-
mum and minimum values of f(x,y, z) subject to g(x,y, z) = c,
(a) Find all values of (x, y, z) and λ such that

∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c . (14.35)

(b) Evaluate f at all these points, to find the maximum and mini-
mum.
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Problem 14.86. (Revisit of Problem 14.81, p. 62). Find the volume
of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex on the plane 3x + 2y + z = 6, using the
method of Lagrange multipliers.
Solution.

Ans: 4/3

Problem 14.87. A topless rectangular box is made from 12m2 of cardboard.
Find the dimensions of the box that maximizes the volume of the box.
Solution. Maximize V = xyz subj.to 2xz + 2yz + xy = 12.

Ans: 4 (x = y = 2z = 2)
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Problem 14.88. Find the extreme values of f(x, y) = x2 + 2y2 on the circle
x2 + y2 = 1.

Solution. ∇f = λ∇g =⇒
[
2x
4y

]
= λ

[
2x
2y

]
. Therefore,


2x = 2xλ 1

4y = 2y λ 2

x2 + y2 = 1 3
From 1 , x = 0 or λ = 1.

Ans: min: f(±1, 0) = 1; max: f(0,±1) = 2

Problem 14.89. Find the extreme values of f(x, y) = x2 + 2y2 on the disk
x2 + y2 ≤ 1.

Solution. Hint : You may use Lagrange multipliers when x2 + y2 = 1.

Ans: min: f(0, 0) = 0; f(0,±1) = 2
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Two Constraints

Consider the problem of the form
max

x
f(x) subj.to g(x) = c and h(x) = d. (14.36)

Then, at extrema we must have
∇f ∈ Plane(∇g,∇h) := {c1∇g + c2∇h}. (14.37)

Thus (14.36) can be solved by finding all values of (x, y, z) and (λ, µ) such
that

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
g(x, y, z) = c
h(x, y, z) = d

(14.38)

Problem 14.90. Find the maximum value of the function f(x, y, z) = z

on the curve of the intersection of the cone 2x2 + 2y2 = z2 and the plane
x+ y + z = 4.
Solution. Letting g = 2x2 + 2y2− z2 = 0 4 and h = x+ y+ z = 4 5 , we have0

0
1

 = λ

 4x
4y
−2z

+ µ

1
1
1

 =⇒


0 = 4λx+ µ 1

0 = 4λy + µ 2

1 = −2λz + µ 3

From 1 and 2 , we conclude x = y; using 4 , we have z = ±2x.

Ans: 2
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Exercises 14.8
1. Use Lagrange multipliers to find extreme values of the function subject to the given

constraint.

(a) f(x, y) = xy; x2 + 4y2 = 2
(b) f(x, y) = x+ y + 2z; x2 + y2 + z2 = 6

Ans: max: f(1, 1, 2) = 6; min: f(−1,−1,−2) = −6

2. Find extreme values of f subject to both constraint.

f(x, y, z) = x2 + y2 + z2; x− y = 3, x2 − z2 = 1.

Ans: f(1,−2, 0) = 5

Note: The value just found for Problem 2 is the minimum. Why? See the figure below.

Figure 14.17: implicitplot3d. red: x− y = 3; green: x2 − z2 = 1; blue: f(x, y, z) = 5.

3. Use Lagrange multipliers to solve Problem 3 in Exercise 14.7. (See p. 64.)

4. Use Lagrange multipliers to solve Problem 4 in Exercise 14.7.
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R.14. Review Problems for Ch. 14

1. Let f(x, y) =
√

4− x2 − 4y2.

(a) Find the domain of f .
(b) Sketch the graph of the function.

Ans: (a) {(x, y) | x2 + 4y2 ≤ 4}

2. Determine and verify whether the following functions are continuous at (0, 0)
or not.

(a) f(x, y) =


xy2

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).
Circle: continuous discontinuous

(b) g(x, y) =


sin(x2 + y2)

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).
Circle: continuous discontinuous

Ans: (a) continuous; (b) discontinuous

3. Let f(x, y) = sin(2x− 3y).

(a) Find fx(3, 2) and fy(3, 2).
(b) Find fxyx(3, 2) and fyxx(3, 2).

Ans: (a) 2, −3; (b) 12, 12

4. Let f(x, y) = 1 + x ln(xy − 5).

(a) Explain why f is differentiable at (2, 3).
(b) Find the linearization L(x, y) of f at (2, 3).

Ans: (a): fx = ln(xy − 5) + xy
xy−5 and fy = x2

xy−5 are continuous near (2, 3).

(b) L(x, y) = 1 + 6(x− 2) + 4(y − 3).

5. Suppose f is a differentiable function of x and y, and g(u, v) = f(u+ev+cos v, u2+

sin v). Use the table of values to find gu(0, 0) and gv(0, 0).

f g fx fy

(0, 0) 2000 2 100 9
(2, 0) 3 4 9 12
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Ans: gu(0, 0) = 9, gv(0, 0) = 21

6. Let f(x, y) = x+ sin(xy) and P (1, 0).

(a) Find the directional derivative of f at P in the direction given by the
angle θ = π/3.

(b) Determine max
u
Duf(P ), where u is a unit vector.

Ans: (a) < 1, 1 > · < cos(π/3), sin(π/3) >= (1 +
√

3)/2. (b)
√

2

7. Consider the ellipsoid
x2

4
+ y2 +

z2

9
= 3. Find the tangent plane to it at point

(2, 1,−3).
Ans: (x− 2) + 2(y − 1)− 2

3(z + 3) = 0

8. Find the absolute maximum and minimum values of f over D:

f(x, y) = 3x2 + y2, D = {(x, y) | x2 + y2 ≤ 1}.

Ans: min:0, max:3

9. Use the method of Lagrange multipliers to find the maximum and minimum
values of f subject to the given constraint:

f(x, y) = x2 − y2; x2 + y2 = 1

Hint : ∇f = λ∇g⇒


2x = λ · 2x 1
−2y = λ · 2y 2
x2 + y2 = 1 3

Then, it follows from 1 and 2 that λ = ±1. When λ = −1,

for example, x = 0 from 1 , with which 3 makes y = ±1.

Ans: min:−1, max:1

10. Use the method of Lagrange multipliers to find three positive numbers
whose sum is 15 and the sum of whose squares is as small as possible.
Clue: minx2 + y2 + z2, subject to x+ y + z = 15.

Ans: x = y = z = 5
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Project 1. Linear and Quadratic Approximations
This project is designed for students to experience computer algebra, while solving some
calculus problems with computer coding. Although it includes examples written in Maple
only, students can finish the project using Maple, Mathematica, or MathCad.

Getting familiar with Computer Algebra CAS

For a smooth function of one variable, f , its Taylor series about a is given
as

f(x) ∼
∞∑
k=0

f (k)(a)

k!
(x− a)k = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · . (14.39)

As with any convergent series, f(x) is the limit of the sequence of partial
sums. That is,

f(x) = lim
n→∞

Tn(x), (14.40)

where Tn(x) is called the Taylor polynomial of degree n:

Tn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.

Example 14.91. Let
f(x) = arctan(x)− 1

3
. (14.41)

Then, when it is expanded about a = 1/2, Tn(x) can be obtained using Maple:

a := 1/2:
Tn := x-> convert(taylor(f(x),x=a,n+1),polynom):

See Figure 14.184 (p. 73). For the function in (14.41),

T1(x) = arctan
(1

2

)
− 1

3
+

4

5

(
x− 1

2

)
,

T2(x) = arctan
(1

2

)
− 1

3
+

4

5

(
x− 1

2

)
− 8

25

(
x− 1

2

)2

.
(14.42)

4In Maple, taylor(f(x),x=a,n+1) returns a polynomial of (n + 1) terms plus the remain-
der, Tn(x) + O((x − a)n+1); while the command convert(g,polynom) converts g into a polyno-
mial form, which is Tn(x). In Mathematica, Series[f[x],x,a,n] produces the same result as for
taylor(f(x),x=a,n+1) in Maple. Now, the Mathematica-command Normal can be used to convert
the result into normal expressions of polynomials.
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Figure 14.18: Screen-shot of Maple window, which plots linear and quadratic approxima-
tions of f(x) = arctan(x)− 1

3
about a = 1/2.
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Maple: 3D Plots
First load the plots package, along with other frequently used packages, using the entry:

with(plots): with(plottools):
with(VectorCalculus): with(Student[MultivariateCalculus]):

1. Plot z = f(x, y) in Cartesian coordinates, using

plot3d( f(x, y), x = a..b, y = c..d, options)

Consider the options
(a) style = patchcontour Puts contour curves on the surface.
(b) axes = boxed Puts the axes on the edges of a box enclosing the surface.
(c) scaling = constrained Makes the scale on the three axes the same.
(d) orientation =[40, 70] Orients the viewpoint so it is closer to what you see in your

text.

2. Plot F (x, y, z) = 0 in Cartesian coordinates, using

implicitplot3d(F (x, y, z) = 0, x = a..b, y = c..d, z = s..t, options)

Consider the options listed above along with the following.
(a) grid = [m,n, k] Where m,n, k are positive integers, try [30, 30, 30] for example.

This plots 30 points in each direction for a smoother surface.
(b) axes = framed Puts axes along the edges of a frame around the plot.
(c) orientation = [−50, 60] Another nice viewing angle.

3. Plot r = f(θ, z) in cylindrical coordinates, using

plot3d( f(θ, z), θ = a..b, z = s..t, coords = cylindrical, options)

To plot z = g(r, θ), use

plot3d( [r, θ, g(r, θ)], r = a..b, θ = α..β, coords = cylindrical, options)

Options are more or less the same as the above.
4. Plot ρ = f(θ, φ) in spherical coordinates, using

plot3d( f(θ, φ), θ = α..β, φ = γ..δ, coords = spherical, options)

5. Implicit plots can also be made in cylindrical or spherical coordinates. For ex-
ample, to plot the equation r2 + 2z2 = r cos θ in cylindrical coordinates, use

implicitplot3d( r2+2 z2 = r cos(θ), r = a..b, θ = α..β, z = s..t, coords = cylindrical, options)

6. (Contour plots in 2D). For z = f(x, y), use

contourplot(f(x, y), x = a..b, y = c..d, options)
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P.1.1. Newton’s method
As one can see from Figure 14.18, the first-degree Taylor series T1(x) is the tangent line to
the curve y = f(x) at the point (a, f(a)). One of popular applications exploiting the tangent
line is Newton’s method for the problem of root-finding.

Given a differentiable function f(x), find r such that f(r) = 0, (14.43)

where r is an x-intercept of the curve y = f(x).

The idea behind Newton’s method:

• The tangent line is close to the curve and so its x-intercept must be
close to the x-intercept of the curve.

• Let x0 be the initial approximation close to r. Then, the tangent line at
(x0, f(x0)) reads

L(x) = f ′(x0)(x− x0) + f(x0). (14.44)

Let x1 be the x-intercept of y = L(x). Then,

0 = f ′(x0)(x1 − x0) + f(x0).

Solving the above equation for x1 becomes

x1 = x0 −
f(x0)

f ′(x0)
, (14.45)

which hopefully is a better approximation for the root r.

• Repeat the above till the convergence.

Algorithm 14.92. (Newton’s method for solving f(x) = 0). For x0 cho-
sen close to a root r, compute {xn} repeatedly satisfying

xn = xn−1 −
f(xn−1)

f ′(xn−1)
, n ≥ 1. (14.46)

Problem 14.93. Consider the function f(x) = arctan(x)− 1
3

in (14.41).

1. Implement a code for Newton’s method to approximate a root of f(x) =

0.
(You can use Maple, Mathematica, or MathCad.)
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2. Run a few iterations, starting from x0 = 0.5, and measure how the
error decreases as the iteration count grows.
(Note that the exact root r = tan(1/3) ≈ 0.34625354951057549103.)

P.1.2. Estimation of critical points

The second part of the project involves a min-max analysis of a function in
(x, y) that is based on each student’s ID number, so that each student has
his/her own function to work with. If a student’s ID number is 123-45-6789,
then he/she will study the behavior of the function

f(x, y) = 1∗sin(x−2)+3∗cos(y−4)+5∗x2−6∗xy+7∗y2−8∗x+9∗y, (14.47)

where the alternating signs are used to create a little more “action". We will
call such a function the ID function.

Figure 14.19: Contour plot of f(x, y) in (14.47).

Problem 14.94. Create your ID function. Then,

1. Include a variety of surface plots with different views and contour plots
with different windows to provide a good picture of the behavior of your
ID function.5

5In Maple, you can use the commands plot3d and countourplot. In Mathematica, Plot3D and
CountourPlot are available.



14.8. Lagrange Multipliers 77

2. Label the figures and refer to them in your write-up, as you discuss
the kinds of critical points you observe. (If you have no or one critical
point, change the signs and/or shuffle the digits in your ID function to
get more action.)

3. Zoom in sufficiently so that you can estimate the coordinates of each of
the critical points.

P.1.3. Quadratic approximations

We have discussed the linear approximation (or, linearization) of a
function f of two variables at a point (a, b):

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b), (14.48)

which is also called the first-degree Taylor polynomial of f at (a, b). If f
has continuous second-order partial derivatives at (a, b), then the second-
degree Taylor polynomial of f at (a, b) is

Q(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) +

1

2
fyy(a, b)(y − b)2,

(14.49)
and the approximation f(x, y) ≈ Q(x, y) is called the quadratic approxi-
mation of f at (a, b).

Problem 14.95. Answer the following.

1. Verify that the quadratic approximation Q has the same first- and
second-order partial derivatives as f at (a, b). (This is the only portion
of the project that you can finish without using computer implementa-
tion.) Hint : The partial derivatives evaluated at (a, b), appeared in Q, are all constant.

2. Use computer algebra to find the first- and second-degree Taylor poly-
nomials L and Q for your ID function f at a critical point C(x0, y0)

that you estimated from Problem 14.94.

3. Compare the values of f , L, and Q at (x0 + 0.1, y0 − 0.1).



78 Chapter 14. Partial Derivatives

4. Graph f , L, and Q; comment on how well L and Q approximate f .

Report. Submit hard copies of your experiences.
• Solve Problems 14.93, 14.94, and 14.95, using computer program-

ming.
• Make hard copies of your work, and collect them in order.
• Attach a “summary" or “conclusion" page at the beginning of report.

You may work in a small group; however, you must report individually.



CHAPTER 15
Multiple Integrals

The multiple integral is a definite integral of a function of more than one
real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two
variables over a region in R2 are called double integrals, and integrals of
a function of three variables over a region of R3 are called triple integrals.

In this chapter, you will learn double integrals and triple integrals in
rectangular coordinates, polar coordinates, cylindrical coordinates, and spher-
ical coordinates. Also, you will learn how to perform integration by changing
variables between or inside coordinates.
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15.1. Double Integrals over Rectangles

Recall: (Review on Definite Integrals). We know the following:
• We defined the integral in terms of Riemann Sum.
• That is, we found the area underneath the curve y = f(x) by divid-

ing the area into rectangles. We then added up their areas to get
the area under the curve.

• We then found the exact area of this by evaluatingˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ∆x, ∆x =
b− a
n

.

• We could also get it using the Fundamental Theorem of Calcu-
lus (Part 2): ˆ b

a

f(x) dx = F (b)− F (a), (15.1)

where F is a function such that F ′ = f (antiderivative).

Figure 15.1: Riemann Sum.
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15.1.1. Volumes as double integrals

Figure 15.2

Let R = [a, b]× [c, d] ⊂ R2 be a rectan-
gle. Define

∆x = (b− a)/m, ∆y = (d− c)/n,

for some m,n > 0. Let

xi = a+ i∆x, i = 0, 1, · · · ,m,
yj = c+ j∆y, j = 0, 1, · · · , n,

and

Rij = [xi−1, xi]× [yj−1, yj].

Let SR = {(x, y, z) | 0 ≤ z ≤ f(x, y), (x, y) ∈ R} define the solid that lies
above R. Let ∆A = ∆x∆y denote the area of each Rij. Then we can express
this volume of SR as

V ≈
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A, (15.2)

where (x∗ij, y
∗
ij) is a sample point in each division Rij.

Definition 15.1. The double integral of f over the rectangle R is

x

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A. (15.3)

We can simplify this if we choose each sample point to be the point in the
upper right corner of each sub-rectangle, (x∗ij, y

∗
ij) = (xi, yj):

x

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(xi, yj) ∆A. (15.4)
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Problem 15.2. Estimate the volume of the solid that lies above the square
R = [0, 2]× [0, 2] and below the elliptic paraboloid z = 16− x2− 2y2. Divide R
into four equal squares and choose the sample point to be the upper right
corner of each square Rij. Approximate the Volume.
Solution.

Ans: 34

Problem 15.3. (Midpoint rule). Estimate the volume of the solid that
lies above the square R = [0, 2] × [1, 2] and below the function f(x, y) =

5x2− 4y. Divide R into four equal rectangles and choose the sample point to
be the midpoint of each rectangle Rij. Approximate the volume.
Solution.

Ans: 1
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15.1.2. Iterated integrals

Okay; so, taking these Riemann Sums is a bit of a pain.

Recall: Earlier in Calculus, we equated these Riemann sums to the def-
inition of an integral. We will attempt to do the same here; however, we
will use two partial integrals.

Suppose that f is a function of two variables that is integrable on the rect-
angle R = [a, b]× [c, d].

Figure 15.3: A(x).

Definition 15.4. We define

A(x) =

ˆ d

c

f(x, y) dy (15.5)

as the partial integral with re-
spect to y. We evaluate this in-
tegral by treating x as a constant,
and integrate f(x, y) with respect
to y.

Definition 15.5. We define

B(y) =

ˆ b

a

f(x, y) dx (15.6)

as the partial integral with respect to x. We evaluate this integral
by treating y as a constant, and integrate f(x, y) with respect to x.

Note: The Fundamental Theorem of Calculus, Part 2, Equation (15.1) on
p. 80, can be used to evaluate the partial integrals.
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Definition 15.6. The iterated integral is defined as follows:
ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ b

a

[ˆ d

c

f(x, y) dy
]
dx =

ˆ b

a

A(x) dx. (15.7)

In other words, we work this integral from the inside out.

Problem 15.7. Evaluate the integrals

(a)
ˆ 3

0

ˆ 2

1

x2y dy dx and (b)
ˆ 2

1

ˆ 3

0

x2y dx dy.

Solution. R = [0, 3]× [1, 2].

Ans: 27/2

Theorem 15.8. (Fubini’s Theorem). If f is continuous on the rectan-
gle R = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}, then

x

R

f(x, y) dA =

ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ d

c

ˆ b

a

f(x, y) dx dy. (15.8)
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Problem 15.9. (Revisit of Problem 15.3). Evaluate the double integralx

R

(5x2 − 4y) dA,, where R = {(x, y) ∈ R2 | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Solution.

Ans: 4/3

Problem 15.10. Evaluate
x

R

y sin(xy) dA, where R = [1, 2]× [0, π].

Solution. Let’s try the iterated integrals with x-first and y-first.

Ans: 0
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Separable functions f(x, y) = g(x)h(y):
Let R = [a, b]× [c, d]. Then

x

R

f(x, y) dA =

ˆ d

c

ˆ b

a

f(x, y) dx dy =

ˆ d

c

( ˆ b

a

g(x)h(y) dx
)
dy

=

ˆ d

c

h(y)
( ˆ b

a

g(x) dx
)
dy

=
( ˆ b

a

g(x) dx
) ˆ d

c

h(y) dy,

where the underlined (in maroon) are treated as constants.

x

R

g(x)h(y) dA =

ˆ b

a

g(x) dx ·
ˆ d

c

h(y) dy, R = [a, b]× [c, d]. (15.9)

Problem 15.11. Evaluate
s
R e

x+3y dA, where R = [0, 3]× [0, 1].
Solution.

Ans: (e3 − 1)2/3
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Average Value

Recall: The average value of a function f of one variable defined on an
interval [a, b] is

fave =
1

b− a

ˆ b

a

f(x) dx.

Definition 15.12. In a similar fashion, we define the average value
of f of two variables defined on R to be

fave =
1

A(R)

x

R

f(x, y) dA, (15.10)

where A(R) is the area of R.

Problem 15.13. Find the average value of f(x, y) = x2 + sin(2y) over R =

[0, 3]× [0, π].
Solution. Use symmetry, for a simpler calculation!

Ans: 3
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Exercises 15.1
1. Estimate the volume of the solid that lies below the surface z = x2 + y and above the

rectangle
R = {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 6}.

Use a Riemann sum with m = 2, n = 3, and the Midpoint Rule.
Ans: 48 · 4 = 192

2. Let V be the volume of the solid that lies under the surface z = 30 − 4x − y2 and above
the rectangle R = {(x, y) | 2 ≤ x ≤ 6, 0 ≤ y ≤ 2}. Use the lines x = 4 and y = 1 to divide
R into four subrectangles. Let L and U be the Riemann sums computed respectively
using lower left corners and upper right corners. Without using the actual numbers V ,
L, and U , arrange them in increasing order and describe your reasoning.

3. Evaluate the double integral by first identifying it as the volume of a solid.

(a)
x

R

(x+ 1) dA, R = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}

(b)
x

R

(4− 2y) dA, R = [0, 1]× [0, 1]

4. Calculate the iterated integral.

(a)
ˆ 3

1

ˆ 2

0

(6xy2 − 12x2) dx dy

(b)
ˆ 2

0

ˆ 3

1

(6xy2 − 12x2) dy dx

(c)
ˆ 1

0

ˆ 2

0

2πxy sin(πxy2) dy dx

(d)
ˆ 2

0

ˆ 1

0

2πxy sin(πxy2) dx dy

Ans: (a) 40, (c) 1

5. Calculate the double integral.

(a)
x

R

y sec2(x) dA, R = [0, π/4]× [0, 4] (b)
x

R

xe−xy dA, R = [0, 2]× [0, 1]

Ans: (a) 8; (b) 1− e−2

6. Find the volume of the solid in the first octant bounded by the cylinder z = 9 − y2 and
the plane x = 2.

Ans: 36
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15.2. Double Integrals over General Regions

Okay. So, now we know how to find the volume of the solid under a surface,
when the projection of the solid down to the xy-plane is a rectangular region.

Figure 15.4: A general region D and its surrounding rectangle R.

Let D ⊂ R2 be a bounded region of general shape as in Figure 15.4. For a
bounded function f defined over D, define

F (x, y) =

{
f(x, y) if (x, y) ∈ D
0 if (x, y) 6∈ D.

Then, x

D

f(x, y) dA =
x

R

F (x, y) dA, (15.11)

which implies the following.

• The integral
s
D f(x, y) dA exists.

• The iterated integral can be applied to get the double integral over
general regions.
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Quesiton. What if the region D is not rectangular but defined as the
boundary between two functions?

Figure 15.5: General regions D: Type 1 (left) and Type 2 (right).

Let the region D be given as

D1 = {(x, y) ∈ R2 | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
D2 = {(x, y) ∈ R2 | h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d},

Then
x

D1

f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy dx

x

D2

f(x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)

f(x, y) dx dy

(15.12)

Strategy 15.14. Double integral over general regions D:
1. Visualize to recognize the region.
2. Decide the order of integration.
3. If the calculation becomes complicated, try the other order.
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Problem 15.15. Evaluate
x

D

(x + 2y) dA, where D is the region bounded

by the parabolas y = 2x2 and y = 1 + x2.
Solution. First, visualize the region.

Ans: 32
15
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Problem 15.16. Find the volume of the solid that lies under the plane
z = 1 + 2y and above the region D in the xy-plane bounded by the line
y = 2x and the parabola y = x2.
Solution. Try for both orders.

Ans: 28/5

Note: Here, the main concern is how to access the domain D; the
iterated integration must access points in D, once–and–only–once.
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Problem 15.17. Evaluate
x

D

2xy dA, where D is the region bounded by

the line y = x− 2 and the parabola x = y2.
Solution.

Ans: 45/4
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Problem 15.18. Evaluate
ˆ 1

0

ˆ 1

x

sin(y2) dy dx.

Solution. Visualize the region and try to change the order of integration.

Ans: (1− cos 1)/2

Proposition 15.19. (Properties of double integrals). Let f and g

be continuous functions defined in D and c ∈ R. Then

1
x

D

[
f(x, y) + g(x, y)

]
dA =

x

D

f(x, y) dA+
x

D

g(x, y) dA

2
x

D

c f(x, y) dA = c
x

D

f(x, y) dA

3
x

D

f(x, y) dA ≥
x

D

g(x, y) dA, if f(x, y) ≥ g(x, y), ∀ (x, y) ∈ D

4
x

D

f(x, y) dA =
x

D1

f(x, y) dA+
x

D2

f(x, y) dA, when D = D1

⋃̇
D2

5
x

D

1 dA = A(D)

6 m · A(D) ≤
x

D

f(x, y) dA ≤M · A(D), if m ≤ f(x, y) ≤M, ∀ (x, y) ∈ D

Problem 15.20. Show that 5
s

D

1 dA = A(D), where A(D) denotes the

area of the region D.
Hint : Consider a solid cylinder whose base is D and whose height is 1.
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Problem 15.21. Use Property 6 in Proposition 15.19 to estimate the in-
tegral I =

s
D e

sinx cos ydA, where D is the disk with center the origin and
radius 2.
Solution.

Ans: 4π/e ≤ I ≤ 4πe

Problem 15.22. Evaluate the integral
ˆ 1

0

ˆ 1

x

2 ex/y dy dx by reverting the

order of integration.
Solution.

Ans: e− 1
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Exercises 15.2
1. Evaluate the double integral, by setting up an iterated integral in the easier order.

(a)
x

D

2e−x
2

dA, D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ x}

(b)
x

D

x dA, D is bounded by y = x+ 2 and y = x2

(c)
x

D

y sin πx dA, D is bounded by x = 0, x = y2, and y = 2

Ans: (a) 1− e−4; (c) 2/π

2. Evaluate the volume of the solid that lies under the surface z = x(y + 2) and above the
triangle with vertices P (1, 1), Q(3, 1), and R(1, 3).

Ans: 12

3. Sketch the region of the integral and change the order of integration.

(a)
ˆ 1

0

ˆ y2

0

f(x, y) dx dy (b)
ˆ e

1

ˆ lnx

0

f(x, y) dy dx

Ans: (b)
´ 1
0

´ e
ey f(x, y) dx dy

4. Evaluate the integral by reversing the order of integration:

(a)
ˆ 1

0

ˆ 1

x2

√
y cos(y2) dy dx (b)

ˆ 4

0

ˆ √4−y
0

e12x−x
3

dx dy

Ans: (a) sin 1
2

5. In evaluating a double integral over a region D, a sum of iterated integrals was obtained
as follows: x

D

f(x, y) dA =

ˆ 1

0

ˆ y

0

f(x, y) dx dy +

ˆ 2

1

ˆ 2−y

0

f(x, y) dx dy.

(a) Sketch the region D.
(b) Express the double integral as a single iterated integral with reversed order of

integration.
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15.3. Double Integrals in Polar Coordinates
We have spent most of our lives in the Cartesian/Rectangular coordinate system, which
was invented by none other than René Descartes, who was because he thought. Some-
times, however, functions (and consequently integrals) become simpler when expressed in
different coordinate systems. There are many different coordinate systems. Here, we will
focus on one that was invented by Sir Isaac Newton – the polar coordinate system.

Definition 15.23. (Polar point). Points in polar coordinate system
are defined by two parameters (r, θ), where r is the distance the point is
from the origin and θ is the angle between the polar axis (positive x-axis)
and the line that connects the point to the origin.

Since a picture is worth a thousand words, here is a picture describing what
was just described:

Figure 15.6: Point in Rectangular/Cartesian and Polar coordinates.

Naturally, there is a conversion from the Polar Coordinates to the Rectan-
gular Coordinate system and vice versa. That conversion looks like:

(x, y)R ← (r, θ)P (r, θ)P ← (x, y)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x

(15.13)
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Frequently used trigonometric formulas

sin2 x+ cos2 x = 1 1 + tan2 x = sec2 x
sin 2x = 2 sin x cosx cos 2x = cos2 x− sin2 x

sin2 x =
1− cos 2x

2
cos2 x =

1 + cos 2x

2

(15.14)

Figure 15.7

Sectors: arc length and area

Arc length: ` = rθ

Area: A =
1

2
r` =

1

2
r2θ

(15.15)

More study on trigonometry and sectors

Figure 15.8
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Double integrals with polar coordinates

Polar rectangle:

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}.

Let ∆r = (b− a)/m and ∆θ = (β − α)/n, for some m,n, and

ri = a+ i∆r, i = 0, 1, · · · ,m,
θj = α + j∆θ, j = 0, 1, · · · , n.

Figure 15.9: Dividing the polar rectangle R = ([a, b] × [α, β])P : (left) polar subrectangles
and (right) zoom-in of Rij = ([ri−1, ri]× [θj−1, θj])P .

The area of Rij is

∆Aij =
1

2
r2
i∆θ −

1

2
r2
i−1∆θ =

1

2
(ri + ri−1)(ri − ri−1)∆θ = r∗i∆r∆θ, (15.16)

where r∗i = (ri + ri−1)/2.

Theorem 15.24. (Polar version of iterated integral). If f is contin-
uous on the polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β, where
0 ≤ β − α ≤ 2π, then

x

R

f(x, y) dA =

ˆ β

α

ˆ b

a

f(r cos(θ), r sin(θ)) r dr dθ. (15.17)

Note: 1 Do not forget the “r" before the dr dθ!
2 It follows from Figure 15.9 that ∆Aij ≈ ∆r · rj∆θ = rj ∆r∆θ.
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Problem 15.25. Evaluate
x

R

(3x + 4y2) dA, where R is the region in the

upper half-plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

Solution.

Ans: 15π/2

Problem 15.26. Find the volume of the solid bounded by the plane z = 0

and the paraboloid z = 1− x2 − y2.
Solution. Volume V =

s
D(1− x2 − y2) dA, where D = {(x, y) | x2 + y2 ≤ 1}.

Ans: π/2
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Theorem 15.27. (Polar version of (15.12), p. 90). If f is continuous
on a polar region of the form D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)},
then

x

D

f(x, y) dA =

ˆ β

α

ˆ h2(θ)

h1(θ)

f(r cos(θ), r sin(θ)) r dr dθ. (15.18)

Figure 15.10

Problem 15.28. Use a double integral to find the area enclosed by one
loop of the four-leaved rose r = cos(2θ).
Solution. A(D) =

s
D dA =

´ π/4
−π/4

´ cos 2θ

0 r dr dθ.

Ans: π/8
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Problem 15.29. Find the volume of the solid that lies under the paraboloid
z = x2 + y2, above the xy-plane, and inside the cylinder x2 + y2 = 2x.

Hint.
• First, find what the “polar region” looks like.
• That is to say, translate x2 + y2 = 2x into polar coordinates and see

what that region looks like. (Also, you may refer to (x− 1)2 + y2 = 1.)
• Then, look at z = x2 + y2 as a polar function and use it as your inte-

grand.
• Evaluate.
• Don’t forget the r in “r dr dθ”!

Solution.

Ans: 3
2
π
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Problem 15.30. (A variant of Problem 15.29). Evaluate the double
integral

´ 2

0

´ √2x−x2
0

√
x2 + y2 dy dx, by recognizing the region and converting

it to polar coordinates.
Solution. Hint : D = {θ = 0..π/2, r = 0..2 cos θ}

Ans: 16/9
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Volume of n-Ball : The unit interval [−1, 1] can be rewritten as

B1
def
== {x | x2 ≤ 1} ⊂ R. (15.19)

Similarly, the unit circle and the unit sphere (of radius 1) read

B2
def
== {(x, y) | x2+y2 ≤ 1} ⊂ R2 and B3

def
== {(x, y, z) | x2+y2+z2 ≤ 1} ⊂ R3.

(15.20)
In general, an n-dimensional ball (or n-Ball) of radius r is defined as

Bn,r = {(x1, x2, · · · , xn) | x2
1 + x2

2 + · · ·+ x2
n ≤ r2} ⊂ Rn. (15.21)

It is possible to define volume of n-Ball of radius r, Vn,r; in R it is length,
in R2 it is area, in R3 it is ordinary volume, and in Rn, n ≥ 4, it is called a
hypervolume. For example,

V1,r = V (B1,r) = 2r, V2,r = V (B2,r) = πr2, V3,r = V (B3,r) =
4

3
πr3. (15.22)

Note that Vn,r = Vn,1 · rn, n ≥ 1.

Challenge 15.31. Let Bn = Bn,1 and Vn = V (Bn,1). Use polar coordi-
nates to find Vn, the volume of the unit n-Ball Bn, n ≥ 4.

Solution. See Figure 15.11. Then,

Vn =

ˆ 2π

0

ˆ 1

0

(
Vn−2

(√
1− r2

)n−2
)
r dr dθ

Figure 15.11: The unit n-Ball, Bn,1.

Ans: Vn = 2π
n Vn−2. (You will solve this problem differently in Project 2, p. 143.)
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Exercises 15.3
1. Use polar coordinates to evaluate the double integral, or the volume of the solid.

(a)
x

D

ex
2+y2 dA, where D is the region bounded by the semi-circle x =

√
1− y2 and the

y-axis.
(b) The solid that lies above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 8.

Ans: (a) (e− 1)π/2; (b) 32(
√
2−1)π
3

2. A swimming pool is circular with 60–ft diameter. The depth is constant along east-
west lines and increases linearly from 2 ft at the east end to 8 ft at the west end. Find
the volume of water in the pool, using a double integral in polar coordinates. Hint :
V =

s
D(5 + x

10) dA, where D is the circle of radius 30 and centered at the origin.

3. Use polar coordinates to evaluate
x

Da

e−x
2−y2 dA, (15.23)

where Da is the disk of radius a centered at the origin.
Ans: π(1− e−a2)

4. We may define the improper integral (over the entire plane R2)

I :=
x

R2

e−x
2−y2 dA =

ˆ ∞
−∞

ˆ ∞
−∞

e−x
2−y2 dx dy = lim

a→∞

x

Da

e−x
2−y2 dA. (15.24)

(a) Use the result from the previous problem (Problem 3, Exercises 15.3) to conclude
ˆ ∞
−∞

e−x
2

dx =
√
π. (15.25)

(b) Let σ > 0. Use the change of variable x = σt to evaluate
ˆ ∞
−∞

e−x
2/σ2

dx. (15.26)
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15.4. Applications of Double Integrals

Objectives. Find the mass and center of mass of a planar lamina
and moments of inertia, using double integrals. Then, apply them for
probability and mean values.

Density and Mass

Figure 15.12

Let a lamina occupy a region D in xy-plane. Then its density is defined
as

ρ(x, y) = lim
∆A→0

∆m

∆A
, (15.27)

where ∆m and ∆A the mass and the area of a small rectangle that contains
(x, y). Thus, the mass of the lamina over D approximates

m =
m∑
i=1

n∑
j=1

ρ(x∗ij, y
∗
ij)∆A.

By increasing the number of subrectangles, we obtain the total mass of
the lamina

m = lim
m,n→∞

m∑
i=1

n∑
j=1

ρ(x∗ij, y
∗
ij)∆A =

x

D

ρ(x, y) dA. (15.28)
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Problem 15.32. Find the mass of the triangular lamina with vertices
(0, 0), (2, 2), and (0, 4), given that the density at (x, y) is ρ(x, y) = 2x+ y.
Solution.

Ans: 40/3

Definition 15.33. The moment of a particle about an axis is the prod-
uct of its mass and its directed distance from the axis. Say, Mx = m · y,
My = m · x.

Theorem 15.34. The moments (first moments) of the entire lamina
about x- and y-axes:

Mx =
x

D

y ρ(x, y) dA, My =
x

D

x ρ(x, y) dA. (15.29)

When we define the center of mass (x, y) so that mx = My and my =
Mx, then

x =
My

m
=

1

m

s
D x ρ(x, y) dA, y =

Mx

m
=

1

m

s
D y ρ(x, y) dA. (15.30)
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Problem 15.35. (Revisit of Problem 15.32). Find the center of mass
for the triangular lamina with vertices (0, 0), (2, 2), and (0, 4), given that the
density at (x, y) is ρ(x, y) = 2x+ y.
Solution. We know m = 40/3.

Ans: (x, y) = (4/5, 11/5)
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Probability
Recall: The probability density function f of a continuous random
variable X is a function such that

f(x) ≥ 0, ∀x ∈ R, and
ˆ ∞
−∞

f(x) dx = 1.

The probability that X lies between a and b is

P (a ≤ X ≤ b) =

ˆ b

a

f(x) dx.

Definition 15.36. The joint density function of a pair of random
variables X and Y is a function f such that

f(x, y) ≥ 0, ∀ (x, y) ∈ R2, and
x

R2

f(x, y) dA = 1.

The probability that (X, Y ) lies in a region D is

P ((X, Y ) ∈ D) =
x

D

f(x, y) dA.

Problem 15.37. If the joint density function for X and Y is given by

f(x, y) =

{
k(3x− x2) (2y − y2), if (x, y) ∈ [0, 3]× [0, 2],
0, otherwise.

find the constant k. Then, find P (X ≤ 2, Y ≥ 1).
Solution.

Ans: k = 1/6; P (X ≤ 2, Y ≥ 1) = 10/27
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Expected Values of X and Y

Recall: If f is a probability density function of a random variable X,
then its mean is

µ =

ˆ ∞
−∞

x f(x) dx.

Definition 15.38. Let f(x, y) be a joint density function of random vari-
ables X and Y . We define the X-mean and Y -mean, also called the
expected values, of X and Y , to be

µ1 =
x

R2

x f(x, y) dA, µ2 =
x

R2

y f(x, y) dA.

Problem 15.39. Let f(x, y) =

{
4−2x2−2y2

3π , if x2 + y2 ≤ 1,
0, otherwise.

(a) Verify f is a joint density function.
(b) Find P (X ≤ 0, Y ≥ 0).
(c) Find the expected values of X and Y .

Solution.

Ans: (b) 1/4; (c) µ1 = µ2 = 0
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Exercises 15.4
1. Find the mass and center of mass of the lamina that occupies the region D and has the

given density function ρ.

(a) D is the triangle with vertices (0, 0), (4, 0), and (2, 2); ρ(x, y) = y

(b) D is the part of the disk x2 + y2 ≤ 4 in the first quadrant; ρ is proportional to its
distance from the origin Hint : Set ρ(x, y) = k

√
x2 + y2 and use polar coordinates for the

integrals.
Ans: (a) m = 8/3, (x, y) = (2, 1); (b) m = 4kπ/3, (x, y) = (3/π, 3/π)

2. CAS Use a computer algebra system (Maple, Mathematica, etc.) to find the mass and
center of mass of the lamina that occupies the region D and has the given density func-
tion.

(a) D = {(x, y) | 0 ≤ x ≤ ye−y, 0 ≤ y ≤ 1}; ρ(x, y) = (1 + x2) cos y
Ans: m ≈ 0.2167, (x, y) ≈ (0.1507, 0.5697)

(b) D is the region closed by the right loop of the four-leaved rose r = cos 2θ (as shown
in Figure 15.10 on page 101); ρ(x, y) =

√
x2 + y2

3. Suppose X and Y are random variable with joint density function

f(x, y) =

{
k(x+ 1)y, if 0 ≤ x ≤ 2, 0 ≤ y ≤ 1,
0, otherwise.

(a) Find the value of the constant k.
(b) Find P (x ≤ 1, y ≤ 1)

(c) Find P (x− y ≥ 1)

(d) Find X-mean and Y -mean.
Ans: (a) k = 1/2; (c) 11/48
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15.5. Surface Area

Figure 15.13

We may define the surface area of
S to be

A(S) = lim
m,n→∞

m∑
i=1

n∑
j=1

∆Tij, (15.31)

where
∆Tij = |a× b|.

Here,

a = 〈∆x, 0, fx(xij)∆x〉 ,
b = 〈0,∆y, fy(xij)∆y〉 .

Since

a× b = det

 i j k
∆x 0 fx∆x
0 ∆y fy∆y

 = 〈−fx,−fy, 1〉 ∆x∆y, (15.32)

we have (∆A = ∆x∆y)

∆Tij = |a× b| =
√
f 2
x + f 2

y + 1 ∆A. (15.33)

Definition 15.40. The surface area of S with z = f(x, y), (x, y) ∈ D,
where ∇f is continuous, is

A(S) =
x

D

√
fx(x, y)2 + fy(x, y)2 + 1 dA. (15.34)

Recall: For y = f(x), x ∈ [a, b], the arc length is obtained as

L =

ˆ b

a

√
1 + [f ′(x)]2 dx. (15.35)
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Note: The surface area will be considered again when we learn Para-
metric Surfaces and Their Areas; see §16.6.3, p. 207.
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Problem 15.41. Find the area of the part of the paraboloid z = x2 +y2 that
lies under the plane z = 9.
Solution. (See Problem 16.88 on p. 210.)

Ans: π
6
(37
√

37− 1)

Problem 15.42. Find the area of the part of the surface z = xy that lies
within the cylinder x2 + y2 = 1.
Solution.

Ans: 2π
3

(2
√

2− 1)
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Exercises 15.5
1. Find the area of the surface.

(a) The part of the plane 2x+ y + 5z = 10 that lies in the first octant
(b) The part of the sphere x2 + y2 + z2 = 2 that lies above the plane z = 1

Ans: (b) 2
√

2π (
√

2− 1)

2. Find the area of the finite part of the paraboloid z = x2 + y2 cut of by the plane z = 9.

3. CAS Use your calculator (or, a computer algebra system) to estimate the area of the
surface correct to four decimal places.

The part of the surface z = sin(x2 + y2) that lines in the cylinder x2 + y2 = 4.

Hint : If you use Maple for numeric integration for
´ b
a f(x) dx, the command looks:

int(f(x),x=a..b,numeric)
Ans: 27.7291
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15.6. Triple Integrals

Figure 15.14

Let’s begin with a function of three
variables defined on a rectangular
box:

w = f(x, y, z), (x, y, z) ∈ B,

where

B = [a, b]× [c, d]× [r, s].

In defining a triple integral, the first
step is to divide B into sub-boxes.

For some positive integers
`,m, n > 0,

∆x =
b− a
`

, ∆y =
d− c
m

, ∆z =
s− r
n

.

Let Bijk be the (ijk)-th sub-box:

Bijk = [xi−1, xi]× [yj−1, yj]× [z`−1, z`];

each sub-box has volume ∆V =

∆x∆y∆z.

Definition 15.43. The triple integral of f over the box B is

y

B

f(x, y, z) dV = lim
`,m,n→∞

∑̀
i=1

m∑
j=1

n∑
k=1

f(x∗ijk)∆V.

where x∗ijk = (x∗i , y
∗
j , z
∗
k) ∈ Bijk.

Theorem 15.44. (Fubini’s Theorem for Triple Integrals). If f is
continuous on B = [a, b]× [c, d]× [r, s], then

y

B

f(x, y, z) dV =

ˆ b

a

ˆ d

c

ˆ s

r

f(x, y, z) dz dy dx; (15.36)

the integration order can be changed for five other choices.
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Problem 15.45. Evaluate the triple integral
t

B xyz
2 dV , where B =

[0, 1]× [−1, 2]× [0, 3].
Solution.

Ans: 27/4

Triple integral over a general bounded region E:

Strategy 15.46. To evaluate a given triple integral over E:
1. Recognize (visualize in your brain) the domain E.
2. Separate the domain, e.g., E = D × [u1(x, y), u2(x, y)], D ⊂ R2.

Then,
t

E f(x, y, z) dV =
s
D

´ u2(x,y)

u1(x,y) f(x, y, z) dz dA.
3. The principle is: you must find a scheme to cover the whole do-

main E (without missing, without duplicating).

Let’s go on a journey!!
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Problem 15.47. Evaluate
t

E z dV , whereE is the solid tetrahedron bounded
by the four planes x = 0, y = 0, z = 0, and x+ y + z = 1.
Solution. E = D × [0, 1 − x − y], where D is the unit right triangle in the
xy-plane.

Ans: 1/24
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Problem 15.48. Evaluate
t

E

√
x2 + y2 dV , where E is the region bounded

by the paraboloid z = x2 + y2 and the plane z = 4.
Solution. E = D × [x2 + y2, 4], where D is the disk of center the origin and
radius 2.

Ans: 128π/15
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Applications of Triple Integrals

Claim 15.49. Let f(x, y, z) = 1 for all points in E. Then triple integral
of f over E represents the volume of E:

V (E) =
y

E

1 dV. (15.37)

Problem 15.50. Use the triple integral to find the volume of the tetrahe-
dron T bounded by the four planes x = 0, y = x, z = 0, and x+ y + z = 2.
Solution.

Ans: 2/3
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Changing the order of integration
Problem 15.51. Write a couple of other iterated integrals that are equiv-
alent to ˆ 1

0

ˆ 1

y

ˆ y

0

f(x, y, z) dx dz dy

Hint : Change the order for adjacent two variables in the integral, keeping the other
the same. For example, start with x↔ z or z ↔ y.

Solution.
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Exercises 15.6
1. Evaluate the iterated integral.

(a)
ˆ 2

0

ˆ 1

0

ˆ lnx

0

xe−y dy dx dz (b)
ˆ π

0

ˆ 2

0

ˆ √4−z2
0

z cosx dy dz dx

Ans: (a) −1; (b) 0

2. Evaluate the triple integral.

(a)
y

E

ez/x dV , E = {(x, y, z) | 0 ≤ x ≤ 1, x ≤ y ≤ 1, 0 ≤ z ≤ x}

(b)
y

E

y dV , E is determined by the paraboloid y = x2 + z2 and the plane y = 4

Ans: (a) (e− 1)/6; (b) 64π/3

3. Fill the lower and upper bounds appropriately for the triple integral.

ˆ 1

0

ˆ 1

z

ˆ 1

y

f(x, y, z) dx dy dz =

ˆ 2

1

ˆ 4

3

ˆ 6

5
f(x, y, z) dx dz dy

=

ˆ 8

7

ˆ 10

9

ˆ 12

11
f(x, y, z) dz dx dy

Ans: 5 : y; 6 : 1; 7 : 0; 8 : 1 11 : 0; 12 : y
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15.7. Triple Integrals in Cylindrical Coordinates

Recall: (Equation (15.13)). The conversion between the Polar Coor-
dinates and the Rectangular Coordinate system reads

(x, y)R ← (r, θ)P (r, θ)P ← (x, y)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x

(15.38)

Definition 15.52. In the cylindrical coordinate system, a point P
in the 3D space is represented as an ordered triple (r, θ, z), where r and
θ are polar coordinates of the projection of P onto the xy-plane and z is
the directed distance from the xy-plane to P .

Definition 15.53. The conversion between the Cylindrical Coordi-
nates and the Rectangular Coordinate system gives

(x, y, z)R ← (r, θ, z)C (r, θ, z)C ← (x, y, z)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x
z = z z = z

(15.39)

Note: The triple integral with a Cylindrical Domain E can be carried
out by first separating the domain like

E = D × [u1(x, y), u2(x, y)], where D is a polar region.
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Problem 15.54. (a) Plot the point with the cylindrical coordinates (2, 2π
3 , 1)C

and find its rectangular coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,−3, 7)R.
Solution.

Ans: (a) (−1,
√

3, 1)R; (b) (3
√

2,−π/4, 7)C .

Problem 15.55. Evaluate
ˆ 2

−2

ˆ √4−x2

−
√

4−x2

ˆ 2

√
x2+y2

(x2 + y2) dz dy dx.

Hint. Change the triple integral into cylindrical coordinates.
Solution.

Ans: 16π/5
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Problem 15.56. Find the volume of the solid that lies within both the
cylinder x2 + y2 = 1 and the sphere x2 + y2 + z2 = 4.
Solution.

Ans: 4π
3

(8− 3
√

3)
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Exercises 15.7
1. Identify the surface whose equation is given.

(a) r2 + 4z2 = 4 (b) r = 2 cos θ

Hint : (b) It can be rewritten as r2 = 2r cos θ, which in turn reads x2 + y2 = 2x.

2. Evaluate
ˆ 2

0

ˆ √4−x2
−
√
4−x2

ˆ 2

√
x2+y2

x dz dy dx, by changing the triple integral into cylindrical

coordinates.
Ans: 8/3

3. Use cylindrical coordinates to find the volume of the solid E that is enclosed by the cone
z =

√
x2 + y2 and the sphere x2 + y2 + z2 = 2.

Ans: 4
3π(
√

2− 1)

4. Use cylindrical coordinates to evaluate
y

E

y dV , where E is the solid that lies between

the cylinders x2+y2 = 1 and x2+y2 = 9, above the xy-plane, and below the plane z = y+3.
Ans: 20π
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15.8. Triple Integrals in Spherical Coordinates

Figure 15.15: Spherical coordinates of P .

Definition 15.57. The spher-
ical coordinates (ρ, θ, φ) of a
point P is shown in Figure 15.15,
where ρ = |OP | =

√
x2 + y2 + z2,

θ is the angle from the x-axis to
the line segment OP ′, and φ is the
angle between the positive z-axis
and the line segment OP .

Note: By observing the definition, we can see the following inequalities:

ρ ≥ 0 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

For a convenient conversion formula, consider first
z = ρ cosφ, r = ρ sinφ.

Definition 15.58. The conversion between the Spherical Coordi-
nates and the Rectangular Coordinate system gives

(x, y, z)R ← (ρ, θ, φ)S (ρ, θ, φ)S ← (x, y, z)R

x = r cos θ = ρ sinφ cos θ ρ2 = x2 + y2 + z2

y = r sin θ = ρ sinφ sin θ cosφ =
z

ρ

z = ρ cosφ cos θ =
x

ρ sinφ

(15.40)
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Problem 15.59. (a) Plot the point with the spherical coordinates (2, π/4, π/3)S
and find its rectangular coordinates.
(b) Find spherical coordinates of the point with rectangular coordinates
(0, 2
√

3,−2)R.
Solution.

Ans: (a) (
√

3/2,
√

3/2, 1)R; (b) (4, π/2, 2π/3)S

Figure 15.16: A small spherical wedge Eijk,
of volume ∆Vijk ≈ r ρ∆ρ∆θ∆φ.

Triple Integral with Spherical Coordinates: In the spherical coordi-
nate system, the counter part of a rectangular box is a spherical wedge

E = {(ρ, θ, φ) ∈ R3 | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d},

where a ≥ 0, β − α ≤ 2π, and d− c ≤ π. We divide smaller spherical wedges
{Eijk} by means of equally spaced ρi, θj, φk. Figure 15.16 shows that Eijk is
approximately a rectangular box, of which the volume approximates

∆Vijk ≈ rρ∆ρ∆θ∆φ = ρ2 sinφ∆ρ∆θ∆φ. (15.41)
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Theorem 15.60. (Triple Integral on Spherical Wedges).
y

E

f(x, y, z) dV =

ˆ d

c

ˆ β

α

ˆ b

a

f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

× ρ2 sinφ dρ dθ dφ,
(15.42)

where E is a spherical wedge given by

E = {(ρ, θ, φ) ∈ R3 | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d}.

Note: The scaling factor ρ2 sinφ = rρ

Problem 15.61. Evaluate
y

B

e(x
2+y2+z2)

3/2

dV , where B is the unit ball

B =
{

(x, y, z) | x2 + y2 + z2 ≤ 1
}
.

Solution.

Ans: 4
3
π(e− 1)
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Theorem 15.62. (Spherical Fubini’s Theorem). We can extend The-
orem 15.60 to regions defined by

E = {(ρ, θ, φ) ∈ R3 | g1(θ, φ) ≤ ρ ≤ g2(θ, φ), α ≤ θ ≤ β, c ≤ φ ≤ d},

in such a way:
y

E

f(x, y, z) dV =

ˆ d

c

ˆ β

α

ˆ g2(θ,φ)

g1(θ,φ)
f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφdρ dθ dφ. (15.43)

Problem 15.63. Use spherical coordinates to find the volume of the solid
that lies above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z.

Solution. Sphere: ρ2 = ρ cosφ⇒ ρ = cosφ.
Cone: ρ cosφ = r = ρ sinφ⇒ cosφ = sinφ. So, φ = π/4. Therefore,

V =

ˆ π/4

0

ˆ 2π

0

ˆ cosφ

0

ρ2 sinφ dρ dθ dφ

Figure 15.17

Ans: π/8
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Exercises 15.8
1. Write the equation in spherical coordinates.

(a) x2 + y2 + z2 = 1

(b) z = x2 + y2
(c) 2x2 + 2y2 + z2 = 4

(d) z = x2 − y2

Hint : (c) 2x2 + 2y2 + z2 = (x2 + y2 + z2) + (x2 + y2)

2. Sketch the solid whose volume is given by the integral; evaluate the integral.

(a)
ˆ π/4

0

ˆ π

0

ˆ 2

0

ρ2 sinφ dρ dθ dφ (b)
ˆ π/2

0

ˆ 2π

0

ˆ cosφ

0

ρ2 sinφ dρ dθ dφ

Ans: (b) π/6

3. Use spherical coordinates to to find the volume of the solid that lies above the cone
z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 1.

4. Use spherical coordinates to evaluate
y

B

x e(x
2+y2+z2)

2

dV , where B is the portion of the

unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant.
Ans: (e− 1)π/16
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15.9. Change of Variables in Multiple Integrals

We have done changes of variables several times in the past. Dating as
far back when we learned integration with the “u-substitution", we started
using changes of variables (we made u = g(x).) Indeed,

ˆ d

c

f(g(x))g′(x) dx =

ˆ g(d)

g(c)

f(u) du. (15.44)

Another way of expressing (15.44) isˆ b

a

f(x) dx =

ˆ d

c

f(x(u))
dx

du
du, (15.45)

where x = x(u) : c 7→ a, d 7→ b.

Example 15.64. Evaluate
´ 2

0 xe
x2 dx.

Solution. u = x2 ⇒ du = 2 x dx ⇒ x dx =
du

2
; u(0) = 0, u(2) = 4.

Thereforeˆ 2

0

xex
2

dx =

ˆ 4

0

eu
du

2
=

1

2

ˆ 4

0

eu du =
1

2
eu
∣∣∣4
0

=
1

2
(e4 − 1).

Another way: x = x(u) =
√
u ⇒ dx

du
=

1

2
√
u

. Therefore

ˆ 2

0

xex
2

dx =

ˆ 4

0

√
u eu

1

2
√
u
du =

1

2

ˆ 4

0

eu du =
1

2
(e4 − 1).

Example 15.65. A change of variable is also useful in multiple integrals,
as in double integrals in polar coordinates. For a polar region R, we have
used the conversion:

x = r cos θ, y = r sin θ,

which is a transformation from the rθ-plane to the xy-plane. Then,
x

R

f(x, y) dA =
x

Q

f(r cos θ, r sin θ) r dr dθ, (15.46)

where Q is the region in the rθ-plane.
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Goal: The goal of this section is to write a general form for a change of
variables, which turns the integral easier.

Definition 15.66. A change of variables is a transformation T : Q →
R (from the uv-plane to the xy-plane), T (u, v) = (x, y), where x and y are
related to u and v by the equations

x = g(u, v), y = h(u, v). [or, r(u, v) = 〈g(u, v), h(u, v)〉]

We usually take these transformations to be C1-Transformation,
meaning g and h have continuous first-order partial derivatives, and
one-to-one.

Figure 15.18: Transformation: R = T (Q), the image of T .

Problem 15.67. A transformation is defined by r(u, v)

= 〈2u− v, u+ v〉 . Find the image of the unit square Q = {(u, v) | 0 ≤ u ≤
1, 0 ≤ v ≤ 1}.
Solution.

Ans: A rectangle of vertices (0, 0), (2, 1), (1, 2), (−1, 1).
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Figure 15.19: A small rectangle in the uv-plane and its image of T in the xy-plane.

Now, let’s see how a change of variables affects a double integral.
• See Figure 15.19, where T : Q→ R given by

r(u, v) = 〈x, y〉 = 〈g(u, v), h(u, v)〉 . (15.47)

• The tangent vectors at r(u0, v0) w.r.t the u- and v-directions are

ru(u0, v0) = 〈gu, hu〉 (u0, v0), rv(u0, v0) = 〈gv, hv〉 (u0, v0).

• We can approximate the image region R = T (Q) by a parallelogram
determined by the scaled tangent vectors. Therefore,

∆A = A(R) ≈ |(ru∆u)× (rv∆v)| = |ru × rv|∆u∆v. (15.48)

• Computing the cross product, we obtain

ru × rv = det

 i j k
xu yu 0
xv yv 0

 = det

[
xu yu
xv yv

]
k (15.49)

Definition 15.68. The Jacobian of T : x = g(u, v), y = h(u, v) is

∂(x, y)

∂(u, v)
def
== det

[
xu xv
yu yv

]
= xu yv − xv yu. (15.50)

Summary 15.69. For a differentiable transformation T : Q → R given
by r(u, v) = 〈x(u, v), y(u, v)〉,

∆A ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v. (15.51)



15.9. Change of Variables in Multiple Integrals 135

Theorem 15.70. Suppose that T is a C1-transformation whose Jaco-
bian is nonzero, and suppose that T maps a regionQ in the uv-plane onto
a region R in the xy-plane. Let f be a continuous function on R. Suppose
also that T is an one-to-one transformation except perhaps along the
boundary of the regions. Then

x

R

f(x, y) dA =
x

Q

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv. (15.52)

Example 15.71. (Transformation to polar coordinates). The transforma-
tion from Q = [a, b] × [α, β] in the rθ-plane to R in the xy-plane is given
by

T : x = g(r, θ) = r cos θ, y = h(r, θ) = r sin θ.

The Jacobian of T is

∂(x, y)

∂(r, θ)
= det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r.

Thus Theorem 15.24 (p. 99) gives
x

R

f(x, y) dA =
x

Q

f(r cos(θ), r sin(θ))

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ dr dθ
=

ˆ β

α

ˆ b

a

f(r cos(θ), r sin(θ)) r dr dθ.

(15.53)
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Problem 15.72. Evaluate
s

R

(x+y) dA, where R is the quadrilateral region

with vertices given by (0, 0), (3,−3), (6, 0), and (3, 3), using the transforma-
tion x = u+ 3v and y = u− 3v.

Solution.

Ans: 54
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Problem 15.73. Evaluate the integral
s

R

e(x+y)/(x−y) dA, where R is the

trapezoidal region with vertices (1, 0), (2, 0), (0,−2), and (0,−1).

Solution.

Ans: 3
4
(e− e−1)
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Problem 15.74. Evaluate
s
R sin(x2 + 4y2) dA, where R is the region in the

first quadrant bounded by x2 + 4y2 = 4.
Solution. Consider the transformation: x = 2u, y = v.

Ans: π
8
(1− cos 4)
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Triple Integrals
Definition 15.75. (Higher order Jacobian). The Jacobian of T ,
given by

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w),

is the following determinant:

∂(x, y, z)

∂(u, v, w)
= det

 xu xv xw
yu yv yw
zu zv zw

 . (15.54)

Theorem 15.76. Under hypotheses similar to those in Theorem 15.70,
we have the following formula for triple integrals:

y

R

f(x, y, z) dV =
y

Q

f (x (u, v, w) , y (u, v, w) , z (u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw. (15.55)

Self-study 15.77. Show that when dealing with spherical coordinates,

dV = ρ2 sinφ dρ dθ dφ. (15.56)

Recall. x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cosφ.
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Exercises 15.9
1. Use the given transformation to evaluate the integral.

(a)
x

R

y2 dA, where R is the region bounded by 4x2 + 9y2 = 36; (x, y) = (3u, 2v)

(b)
x

R

(3x− y) dA, where R is the triangular region with the three vertices (0, 0), (2, 1),

and (1, 3); (x, y) = (2u+ v, u+ 3v)

Hint : (a)
s
R y

2 dA =
s
Q 4v2 · 6 du dv, where Q = {(u, v) | u2 + v2 ≤ 1}

Hint : (b)
s
R(3x− y) dA =

s
Q 5u · 5 du dv; figure out Q by yourself

Ans: (a) 6π; (b) 25/6

2. Make an appropriate change of variables to evaluate the integral
x

R

sin(x2 + 4y2) dA,

where R is the region in the first quadrant bounded by the ellipse x2 + 4y2 = 1.

3. Make an appropriate change of variables to evaluate
x

R

2(x− y)ex
2−y2dA, where R is the

rectangle enclosed by the lines: x− y = 0, x− y = 1, x+ y = 0, x+ y = 2.

4. Make an appropriate change of variables to evaluate the integral
x

R

ex+y dA, where R is

given by the inequality |x|+ |y| ≤ 1.
Ans: e− e−1
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R.15. Review Problems for Ch. 15

1. Estimate the volume of the solid that lies below the surface z = x+ y and above the
rectangle R = {(x, y) | 0 ≤ x ≤ 6, 0 ≤ y ≤ 4}. Use a Riemann sum with m = 3,
n = 2, and the Midpoint Rule.

Ans: 120

2. Evaluate the double integral following the direction.
x

R

(4− x) dA, R = [0, 4]× [0, 5]

(a) Identify it as the volume of a solid. (You should visualize the solid.)
(b) Evaluate the double integral, by measuring the volume.

Ans: 40

3. Evaluate the double integral:
x

R

y

1 + xy
dA, R = [0, 1]× [0, 2].

Hint : Use
ˆ

lnx dx = x lnx− x+ C, if necessary.

Ans: −2 + 3 ln(3)

4. Evaluate the double integralˆ 1

0

ˆ 3

3y

ex
2

dx dy

Ans: −1/6 + e9/6

5. Evaluate the iterated integral by converting to polar coordinates.
ˆ 3

−3

ˆ √9−y2

0

2 sin(x2 + y2) dx dy

Ans: π(1− cos 9)

6. A swimming pool is circular with 40–ft diameter. The depth is constant along east-
west lines and increases linearly from 2 ft at the south end to 6 ft at the north end.
Find the volume of water in the pool, using a double integral in polar coor-
dinates.

Ans: 1600π
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7. Find the surface area of the part of the plane z = 2x+28y+2030 that lies inside
the cylinder x2 + y2 = 1.

Ans:
√

789π

8. Fill the lower and upper bounds appropriately for the triple integral.

ˆ 1

0

ˆ x

0

ˆ y

0

f(x, y, z) dz dy dx =

ˆ 2

1

ˆ 4

3

ˆ 6

5
f(x, y, z) dz dx dy

=

ˆ 8

7

ˆ 10

9

ˆ 12

11
f(x, y, z) dx dz dy

Ans: From 1 to 12 : [0, 1, y, 1, 0, y; 0, 1, 0, y, y, 1]

9. Use cylindrical coordinates to evaluate
y

E

x2 dV , where E is the solid that

lies within the cylinder x2 + y2 = 1, above the plane z = 0, and below the cone
z2 = 4x2 + 4y2.

Ans: 2π/5

10. Use spherical coordinates to evaluate
y

E

e(x2+y2+z2)3/2 dV , where E is the portion

of the unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant.
Ans: (e− 1)π/6

11. Use the transformation x = 2u, y = v to evaluate
x

R

(x2 + 4y2) dA, where R is the

region bounded by the ellipse
x2

4
+ y2 = 1.

Ans: 4π

12. Evaluate
x

R

(x+ y)ex
2−y2 dA, where R is rectangle enclosed by the lines x− y = 0,

x−y = 1, x+y = 0, and x+y = 1. Hint : If you set u = x+y, v = x−y, then the transformation

becomes x = (u+ v)/2, y = (u− v)/2.

Ans: e/2− 1
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Project 2. The Volume of the Unit Ball in n-Dimensions

In this project, we will find formulas for the volume of the unit ball in n-
dimensions (nD). From your high school, you learned volumes of unit balls
for n = 1, 2, 3.

n Bn Vn

1 {x | x2 ≤ 1} = [−1, 1] 2
2 {(x, y) | x2 + y2 ≤ 1} π
3 {(x, y, z) | x2 + y2 + z2 ≤ 1} 4π/3

(15.57)

Define the 4D unit ball (hypersphere) as

B4 = {(x, y, z, w) | x2 + y2 + z2 + w2 ≤ 1}. (15.58)

Before finding its volume, V4, let’s try to verify V3 =
4π

3
by using a specific

integration technique.

Figure 15.20: B3 and its projection to R2 × R: the volume V3 approximates the sum of
the volume of circular slices having radius cos θi and thickness ∆ sin θi := sin θi+1 − sin θi =
sin θi+1 − sin θi

∆θ
∆θ ≈ cos θi ∆θ.
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The computation of V3: We first partition B3 into horizontal circular
slices. Let, for k > 0,

∆θ =
π

2
· 1

k
and θi = i∆θ, i = 0, 1, · · · , k. (15.59)

One can see from Figure 15.20 that the volume V3 approximates the sum
of the volume of circular slices. The i-th circular slice Si has radius
cos θi; its area is

A(Si) = V2 · cos2 θi = π cos2 θi. (15.60)

Since Si has thickness ∆ sin θi = sin θi+1 − sin θi, we have

V3 ≈ 2
k−1∑
i=0

(π cos2 θi) ∆ sin θi. (15.61)

Therefore,

V3 = lim
k→∞

2
k−1∑
i=0

(π cos2 θi) ∆ sin θi

= 2π

ˆ π/2

0

cos2 θ d(sinθ) = 2π

ˆ π/2

0

cos3 θ dθ = 2π · 2
3
.

(15.62)

Note: Equation (15.62) can be rewritten as

V3 = 2V2

ˆ π/2

0

cos3 θ dθ. (15.63)

The computation of V4: We are now ready for it! First image B4 and
its projection to R3 × R. With the same partitioning of the last dimension,
the i-th horizontal piece Si now becomes a spherical slice, rather than a
circular slice, but having the same radius cos θi and thickness ∆ sin θi. Thus,
the volume of the i-th spherical slice reads

V (Si) = V3 cos3 θi ·∆ sin θi ≈ V3 cos4 θi ∆θ. (15.64)

Recall that ∆ sin θi = sin θi+1 − sin θi ≈ cos θi ∆θ. By summing up for i =

0, 1, · · · , k − 1, and multiplying the result by 2 (due to symmetry), we have

V4 ≈ 2V3

k−1∑
i=0

cos4 θi ∆θ. (15.65)
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Problem 15.78.

1. Complete a formula for V4, by applying k →∞ to (15.65).
Hint : Your result must be similar to (15.63).

2. Apply the above arguments recursively to find formulas for Vn, n ≥ 2.

3. Use a computer algebra system (e.g., Maple) to evaluate exact values
of Vn, for n = 1, 2, · · · , 20.

4. Plot {(n, Vn) | n = 1, 2, · · · , 20}.
Hint : You may use Maple-code 15.79 and your plot must look like Figure 15.21.

Figure 15.21: A plot for Vn, where max(V ) = V5 =
8π2

15
≈ 5.263789.

Maple-code 15.79. Assume you have a formula for Vn of the form

Vn = Vn−1 g(n). (15.66)

Then you may implement a Maple code:
Maple Script for the Computation of Vn and Plotting

1 with(plots): with(plottools):
2 with(VectorCalculus): with(Student[MultivariateCalculus]):
3

4 m := 20:
5 V := Vector(m):
6 V[1] := 2:
7 for n from 2 to m do V[n] := V[n-1]*g(n); end do:
8 max[index](V); max(V); evalf(%);
9

10 X := [seq(n, n = 1..m)]:
11 pp := pointplot(Vector(X), Vector(V), color = blue, symbol = solidcircle, symbolsize = 12):
12 pl := plot(Vector(X), Vector(V), color = blue, thickness = 3):
13 display(pp, pl, scaling = constrained, labels = ["n", V__n], labelfont = ["times", "bold", 13])
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Figure 15.21 is constructed using the above code, with m := 10: and g(n)
defined appropriately.

Report. Submit hard copies of your experiences.
• Derive a formula for Vn of the form in (15.66).
• Implement a code to evaluate Vn, n = 1, 2, · · · , 20, exactly.
• Plot the results.
• Collect all your work, in order.
• Attach a “summary" or “conclusion" page at the beginning of report.

You may work in a small group; however, you must report individually.



CHAPTER 16
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In this chapter, we study the calculus of vector fields. In particular, you will
learn

Subjects Applications

Line integral Work done by a force vector field
in moving an object along a curve

Surface integral The rate of fluid flow across a surface

Fundamental theorem Green’s theorem, Stokes’s theorem,
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16.1. Vector Fields

16.1.1. Definitions

Definition 16.1. If D is a region in R2 , a (2D) vector field on D is
a function F that assigns to each point (x, y) ∈ D a two-dimensional
vector F (x, y). If D is a solid region in R3, a (3D) vector field on D is
a function F that assigns to each point (x, y, z) ∈ D a three-dimensional
vector F (x, y, z).

Expressions for vector fields:

F (x, y) = 〈P (x, y), Q(x, y)〉
= P (x, y) i +Q(x, y) j,

F (x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉
= P (x, y, z) i +Q(x, y, z) j +R(x, y, z) k.

Example 16.2. F (x, y) = 〈x, x − y〉 is a vector field in R2. G(x, y, z) =

x2 i + y2 j + z2 k is a vector field in R3. Let’s sketch F .
(x, y) F (x, y) = 〈x, x− y〉

(0, 0)

(1, 0)

(1, 1)

(0, 1)
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Problem 16.3. Let F (x, y) = 〈−y, x〉. Describe F by sketching some of the
vectors F (x, y).
Solution.

(x, y) F (x, y) = 〈−y, x〉

(1, 0)

(0, 1)

(−1, 0)

(0,−1)

Note:

• x · F (x) = 〈x, y〉 · 〈−y, x〉 = −xy + xy = 0.
Thus, F (x) = 〈−y, x〉 is perpendicular to the position vector x.

• |F (x)| =
√
y2 + x2 = |x|.

Therefore, F (x) has the same magnitude as x.

Figure 16.1: The vector field F = 〈−y, x〉, showing directions only.
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Vector fields in R3

Problem 16.4. Sketch the vector field on R3 given by F (x, y, z) = z k =

〈0, 0, z〉.

Example 16.5.

Figure 16.2: Airfoil simulation, showing the velocity field.
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16.1.2. Gradient fields and potential functions

• Suppose that f(x, y) is a differentiable function on D. Earlier we de-
fined the gradient ∇f of f :

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 = fx i + fy j.

We now see that ∇f is a two-dimensional vector field on D.
• Similarly, if f(x, y, z) is a differentiable function on a solid D ⊂ R3,

then ∇f(x, y, z) is a three-dimensional vector field on D.

From now on, we will refer to the gradient of a function f as the gradient
vector field of f .

Problem 16.6. Find the gradient vector field of

f(x, y) = x2y − y3.

Solution.

Ans: 〈2xy, x2 − 3y2〉

Definition 16.7. A vector field F is conservative if there is a differ-
entiable function f such that

∇f = F .

The function f is called a potential function of F , or simply potential.

Claim 16.8. Gradient fields are, always, conservative.
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Problem 16.9. (Continuation of Problem 16.6). Let F (x, y) = 〈2xy, x2−
3y2〉. Then F is conservative.
Solution. Let’s try to find f such that ∇f = F .

Ans: f(x, y) = x2y − y3 +K

Note: Not every vector field is conservative, and it is not difficult to give an
example of a vector field that is nonconservative.

Example 16.10. Show that the vector field F (x, y) = (x2 + y) i + y3 j is not
conservative.
Proof. Assume that F is conservative. Then, there exists f such that
∇f = 〈fx, fy〉 = F :

fx = x2 + y, fy = y3.

Then
fxy = 1 and fyx = 0. (16.1)

Since both mixed partials are constants, they are continuous everywhere.
Thus, by the Clairaut’s theorem, we must have

fxy = fyx.

However, in (16.1), they are not equal. Contradiction!

We will study properties of conservative vector fields in Section 16.3
below, in detail.
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Problem 16.11. At time t = 1, a particle is located at (1, 3). When it moves
in a velocity field v(x, y) = 〈xy − 2, y2 − 10〉, find its approximate location at
t = 1.05.
Solution. Clue: r(t) ≈ r(t0) + r′(t0) · (t− t0), where r′ is the velocity vector.

Ans: 〈1.05, 2.95〉
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Exercises 16.1
1. Match the vector fields F with the plots labeled (I)–(IV). Give reasons for your choices.

(a) F = 〈ex, 5y〉
(b) F = 〈sin(x+ y), x〉

(c) F = 〈x+ y, y〉
(d) F = 〈x,−y〉

(I) (II)

(III) (IV)

Figure 16.3: Maple fieldplot.

Hint : Let’s see Figure (III), for example; arrows are directing up for x > 0 and down for x < 0,
which implies that the second component of F is closely related to x. Now, what can you say
about Figure (IV)? Arrows never look the west direction, which implies that the first component
of F is nonnegative.

2. CAS Use a CAS (fieldplot in Maple and PlotVectorField in Mathematica) to plot

F (x, y) = (y3 − xy2) i + (2xy − 2x2) j.

Explain the appearance by finding the set of points (x, y) such that F (x, y) = 0. (Attach
the figure.)
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3. Find the gradient vector field ∇f and sketch it.

(a) f(x, y) =
(x− y)2

2
(b) f(x, y) =

x3 − y3

3

4. Match the functions f with their gradient vector fields plotted with labels (I)–(IV). Give
reasons for your choices.

(a) f(x, y) = xey

(b) f(x, y) = x2 + y2
(c) f(x, y) = x(x− 2y)

(d) f(x, y) = cos(x2 + y2)

(I) (II)

(III) (IV)

Figure 16.4: Maple fieldplot for ∇f .
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16.2. Line Integrals

Recall: In single-variable calculus, if a force f(x) is applied to an object
to move it along a straight line from x = a to x = b, then the amount
of work done is given by the integral

W =

ˆ b

a

f(x) dx
(

= lim
n→∞

n∑
i=1

f(x∗i )∆x
)
. (16.2)

Up to this point, our intervals of integration were always either bijective
function or a closed interval [a, b]. In this section, we will be integrating
over a parametrized curve instead of a nice interval as before.

Goal: To integrate functions along a curve, as opposed to along an inter-
val.

Definition 16.12. A plane curve C is given by the vector equation

r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b, (16.3)

or equivalently, by the parametric equations

x = g(t), y = h(t), a ≤ t ≤ b. (16.4)

Recall: You have learned

∆si =

√
∆x2

i + ∆y2
i =

√(∆xi
∆t

)2

+
(∆yi

∆t

)2

∆t

and therefore

ds = lim
n→∞

∆si =

√(dx
dt

)2

+
(dy
dt

)2

dt

=
√

(x′(t))2 + (y′(t))2 dt = |r′(t)| dt.

Thus the arc length of C can be computed as

L =

ˆ
C

ds =

ˆ b

a

√
(x′(t))2 + (y′(t))2 dt.
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16.2.1. Line integrals for scalar functions in the plane

Now, suppose that a force is applied to move an object along a path
traced by a curve C. If the amount of force is given by f(x, y), then the
amount of work done must be given by the integral

W =

ˆ
C

f(x, y) ds, (16.5)

where s is the arc length element, i.e., ds =
√
dx2 + dy2.

Figure 16.5: A function defined on a curve C.

Assumption. The curve C is smooth, i.e., r′(t) is continuous and r′(t) 6= 0.

Definition 16.13. If f is defined on a smooth curve C given by (16.3),
then line integral of f along C is

ˆ
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i ) ∆si, (16.6)

if this limit exists. Here ∆si =
√

∆x2
i + ∆y2

i .
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The line integral defined in (16.6) can be rewritten as

´
C f(x, y) ds =

ˆ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

=

ˆ b

a

f(x(t), y(t)) |r′(t)| dt.
(16.7)

Problem 16.14. Evaluate
ˆ
C

(2 + x2y)ds, where C is upper half of the unit

circle x2 + y2 = 1.
Solution. Clue: Find the parametric equation for C and then follow the formula (16.7).

Ans: 2π + 2
3
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Definition 16.15. C is a piecewise smooth curve if it is a union of a
finite number of smooth curves C1, C2, · · · , Cn. That is,

C = C1 ∪ C2 ∪ · · · ∪ Cn.

In the case, we define the integral of f along C as the sum of the inte-
grals of f along each of the smooth pieces of C:ˆ

C

f(x, y) ds =

ˆ
C1

f(x, y) ds+

ˆ
C2

f(x, y) ds+ · · ·+
ˆ
Cn

f(x, y) ds. (16.8)

Problem 16.16. Evaluate
ˆ
C

2x ds, where C consists of the arc C1 of the

parabola y = x2 from (0, 0) to (1, 1) followed by the vertical line segment C2

from (1, 1) to (1, 2).

Solution. Clue: Begin with parametric representation of C1 and C2. For example,

C1 : x = t, y = t2, 0 ≤ t ≤ 1 and C2 : x = 1, y = t, 1 ≤ t ≤ 2.

Ans: 1
6
(5
√

5− 1) + 2
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Application to Physics: To compute the mass of a wire that is shaped
like a plane curve C, where the density of the wire is given by a function
ρ(x, y) defined at each point (x, y) on C, we can evaluate the line integral

m =

ˆ
C

ρ(x, y) ds. (16.9)

Thus the center of mass of the wire is the point (x, y), where

x =
1

m

ˆ
C

xρ(x, y) ds, y =
1

m

ˆ
C

yρ(x, y) ds. (16.10)

Problem 16.17. A wire takes the shape of the semicircle, x2+y2 = 1, y ≥ 0,
and its density is proportional to the distance from the line y = 1. Find the
center of mass of the wire.
Solution. Clue: First parametrize the wire and use ρ(x, y) = k(1− y).

Ans: (x, y) =
(

0, 4−π
2(π−2) ≈ 0.38

)
, where m = k(π − 2)



16.2. Line Integrals 161

Definition 16.18. Line integrals of f along C with respect to x
and y are defined as

ˆ
C

f(x, y) dx = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆xi,

ˆ
C

f(x, y) dy = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆yi.

(16.11)

The line integrals can be evaluated by expressing everything in terms of t:

x = x(t), y = y(t), dx = x′(t)dt, dy = y′(t)dt.

ˆ
C

f(x, y) dx =

ˆ b

a

f(x(t), y(t))x′(t) dt,
ˆ
C

f(x, y) dy =

ˆ b

a

f(x(t), y(t))y′(t) dt.

(16.12)

Note: It frequently happens that line integral with respect x and y occur
together. When this happens, it is customary to abbreviate by writingˆ

C

P (x, y) dx+

ˆ
C

Q(x, y) dy =

ˆ
C

P (x, y) dx+Q(x, y) dy.

Let F (x, y) = 〈P (x, y), Q(x, y)〉 and r = 〈x, y〉 = 〈x(t), y(t)〉 represent the
curve C. Then, since dr = 〈dx, dy〉, we can rewrite the above as

ˆ
C

P (x, y) dx+Q(x, y) dy =

ˆ
C

F · dr, (16.13)

which is a line integral of vector fields. We will consider it in detail in
§ 16.2.3 below (p. 166).
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Problem 16.19. Evaluate
ˆ
C

y2 dx+ x dy, where

{
(a) C = C1 : the line segment from (−5,−3) to (0, 2)
(b) C = C2 : the arc of x = 4− y2 from (−5,−3) to (0, 2)

Solution. Clue: C1 : r(t) = (1− t)r0 + tr1, 0 ≤ t ≤ 1 and C2 : x = 4− t2, y = t, −3 ≤ t ≤ 2.

Ans: (a) −5
6

(b) 405
6
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Orientation of curves: It is important to note that the value of line inte-
grals with respect to x or y (or z, in 3-D) depends on the orientation of C,
unlike line integrals with respect to the arc length s. If the curve is traced
in reverse (that is, from the terminal point to the initial point), then the
sign of the line integral is reversed as well. We denote by −C the curve
with its orientation reversed. We then haveˆ

−C
P dx = −

ˆ
C

P dx,

ˆ
−C

Qdy = −
ˆ
C

Qdy. (16.14)

Figure 16.6: Curve C and its reversed curve −C.

Note: For line integrals with respect to the arc length s,ˆ
−C

f ds =

ˆ
C

f ds. (16.15)

Problem 16.20. (Variant of Problem 16.19(a)): The reversed curve −C1

is the line segment from (0, 2) to (−5,−3):

r(t) = (1− t)〈0, 2〉+ t〈−5,−3〉 = 〈−5t,−5t+ 2〉, 0 ≤ t ≤ 1.

Thus we must have
ˆ
−C1

y2 dx+ x dy =
5

6
.

Solution.
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16.2.2. Line integrals in space

First, the definition for the line integral (with respect to arc length) can be
generalized as follows.

Definition 16.21. Suppose that C is a smooth space curve given by

r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.

Then the line integral of f along C is defined in a similar manner as
in Definition 16.13:

ˆ
C

f(x, y, z) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i , z
∗
i ) ∆si. (16.16)

It can be evaluated using a formula similar to (16.7):

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt

=

ˆ b

a

f(x(t), y(t), z(t))
√

(x′)2 + (y′)2 + (z′)2 dt.

(16.17)

Note:

• When f(x, y, z) ≡ 1,ˆ
C

ds =

ˆ b

a

|r′(t)| dt = L : arc length

• When F = 〈P,Q,R〉,ˆ
C

F · dr =

ˆ
C

P dx+Qdy +Rdz.
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Problem 16.22. Evaluate
ˆ
C

y sin z ds, where C is the circular helix given

by r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ 2π.
Solution. Hint : You may use one of formulas: sin2 t = (1−cos 2t)/2, cos2 t = (1+cos 2t)/2.

Ans:
√

2π

Problem 16.23. Evaluate
ˆ
C

z dx + x dy + y dz, where C is given by x =

t2, y = t3, z = t2, 0 ≤ t ≤ 1.

Solution.

Ans: 3
2
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16.2.3. Line integrals of vector fields

Recall: In Calculus III, we have found that the work done by a constant
force F in moving an object from a point to another point Q in the space
is

W = F ·D, (16.18)

where D =
⇀
PQ, the displacement vector.

In general: Let C be a smooth space curve given by

r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.

Then the work done by a force F in moving an object along the curve C
is

W = lim
n→∞

n∑
i=1

F (x∗i , y
∗
i , z
∗
i ) · [T (x∗i , y

∗
i , z
∗
i ) ∆si] =

ˆ
C

F · T ds, (16.19)

where r(ti) = (xi, yi, zi), ∆si = |r(ti)− r(ti−1)|, and T is the unit tangential
vector

T (t) =
r′(t)

|r′(t)|
. (16.20)

Since ds = |r′(t)| dt, we have

W =

ˆ
C

F ·T ds =

ˆ b

a

F · r′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F ·r′(t) dt =

ˆ
C

F ·dr. (16.21)

Figure 16.7
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Definition 16.24. Let F be a continuous vector field defined on a
smooth curve C given by r(t), a ≤ t ≤ b. Then the line integral of F
along C isˆ

C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (16.22)

We say that work is the line integral with respect to arc length of the
tangential component of force.

Note: Although
ˆ
C

F · dr =

ˆ
C

F · T ds and integrals with respect to arc

length are unchanged when orientation is reversed, it is still true thatˆ
−C
F · dr = −

ˆ
C

F · dr.

Why?

Problem 16.25. Evaluate
ˆ
C

F · dr, where F (x, y, z) = xy i + yz j + zxk and

C is given by r(t) =
〈
t, t2, t3

〉
, 0 ≤ t ≤ 1.

Solution.

Ans: 27
28
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Theorem 16.26. (Equivalent to Definition 16.24, p. 167).
Let F = 〈P,Q,R〉. Then

ˆ
C

F · dr =

ˆ
C

P dx+Qdy +Rdz. (16.23)

Problem 16.27. Let F (x, y) =
〈 x√

x2 + y2
,

y√
x2 + y2

〉
and C the parabola

y = 1 + x2 from (−1, 2) to (1, 2).

(a) Use a graph of F and C to guess whether
´
cF · dr is positive, negative,

or zero.

(b) Evaluate the integral.

Solution. Hint : (b) C : r(t) = 〈t, 1 + t2〉 , −1 ≤ t ≤ 1; use Eqn. (16.22).

Ans: 0
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Exercises 16.2
1. Evaluate the line integral, using the formula

´
C f(x, y) ds =

´ b
a f(r(t)) |r′(t)| dt.

(a)
ˆ
C

x2y ds, where C is given by r(t) =< cos 2t, sin 2t >, 0 ≤ t ≤ π/4

(b)
ˆ
C

2xyexyz ds, where C is the line segment from (0, 0, 0) to (2, 1, 2)

Ans: (a) 1/3; (b) e4 − 1

2. Let F be the vector field shown in the Fig-
ure 16.8.

(a) If C1 is the horizontal line segment
from P (3, 2) to Q(−3, 2), determine

whether
ˆ
C1

F ·dr is positive, negative,
or zero.

(b) Let C2 be the clockwise-oriented circle
of radius 3 centered at the origin. De-

termine whether
ˆ
C2

F · dr is positive,

negative, or zero. Figure 16.8

3. Use (16.22) to evaluate the line integral
ˆ
C

F · dr, where C is parameterized by r(t).

(a) F (x, y) = x2y3 i + x3y2 j,
r(t) = (t3 − 2t) i + (t3 + 2t) j, 0 ≤ t ≤ 1

(b) F (x, y, z) = 〈−y, x, xy〉,
r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ π

Ans: (a) −9; (b) π

4. A thin wire is bent into the shape of a semicircle x2 + y2 = 4, y ≥ 0. If the linear
density of the wire is ρ(x, y) = ky, find the mass and center of mass of the wire. Hint :
C : r(t) = 〈2 cos t, 2 sin t〉, 0 ≤ t ≤ π

Ans: 8k, (0, π/2)
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16.3. The Fundamental Theorem for Line Inte-
grals

Recall: The Part 2 of Fundamental Theorem of Calculus (FTC2) is
ˆ b

a

f ′(x) dx = f(b)− f(a). (16.24)

Goal: It would be nice to get a generalization of the FTC2 (16.24) to line
integrals.

16.3.1. Conservative vector fields

Theorem 16.28. Suppose that F is continuous, and is a conservative
vector field; that is, F = ∇f for some f . Thenˆ

C

F · dr =

ˆ
C

∇f · dr = f(r(b))− f(r(a)). (16.25)

Proof. By the Chain rule and the FTC2,
ˆ
C

F · dr =

ˆ b

a

∇f(r(t)) · r′(t) dt =

ˆ b

a

d

dt
[(f ◦ r)(t)] dt

= (f ◦ r)(t)|ba = f(r(b))− f(r(a)).

Theorem 16.28 is the Fundamental Theorem for Line Integrals,
which is a generalization of the FTC2. The function f is called a po-
tential function of F , or simply potential.
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Problem 16.29. Let F (x, y) =
〈
3 + 2xy2, 2x2y − 4

〉
.

(a) Find a function f such that ∇f = F .

(b) Evaluate
´
C F · dr, where C : r(t) = 〈cos t, 2 sin t〉 , 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = 3x+ x2y2 − 4y +K (b) −6

Problem 16.30. (Revisit of Problem 16.27). Let F (x, y) =
x√

x2 + y2
i +

y√
x2 + y2

j and C the parabola y = 1 + x2 from (−1, 2) to (1, 2). Find a poten-

tial of F and evaluate
´
C F · dr.

Solution.

Ans: f(x, y) =
√
x2 + y2 and

´
C
F · dr = 0.
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16.3.2. Independence of path

Definition 16.31. We say the line integral
ˆ
C

F · dr is independent of
path if ˆ

C1

F · dr =

ˆ
C2

F · dr,

for any two paths C1 and C2 that have the same initial and terminal
points.

Observation 16.32. In general,
´
C1
F · dr 6=

´
C2
F · dr. (See Prob-

lem 16.19, p. 162.) However, Theorem 16.28 says that when F = ∇f ,ˆ
C1

F · dr =

ˆ
C1

∇f · dr = f(r(b))− f(r(a)) =

ˆ
C2

∇f · dr =

ˆ
C2

F · dr.

Thus line integrals of conservative fields are independent of path.

Definition 16.33. A curve C is closed if its terminal point coincides
with its initial point, that is, r(b) = r(a). A simple curve is a curve that
does not intersect itself.

Figure 16.9
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Theorem 16.34.
ˆ
C

F · dr is independent of path in D if and only ifˆ
C

F · dr = 0 for every closed path C in D.

Proof. (⇒) For a closed curve C, choose two points A and B to decompose
C into two parts: C = C1 ∪ C2. Thenˆ

C

F · dr =

ˆ
C1

F · dr +

ˆ
C2

F · dr =

ˆ
C1

F · dr−
ˆ
−C2

F · dr = 0,

because C1 and −C2 have the same initial and terminal points.
(⇐) Let C1 and C2 have the same initial and terminal points. Then

0 =

ˆ
C1∪(−C2)

F · dr =

ˆ
C1

F · dr +

ˆ
−C2

F · dr =

ˆ
C1

F · dr−
ˆ
C2

F · dr,

where the first equality comes from the assumption.

Pictorial definitions

Figure 16.10: Pictorial definitions for D.
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Definition 16.35. A set D is said to be open if every point P in D has
a disk with center P that is contained wholly and solely in D. Note. D
cannot contain any boundary points.

Definition 16.36. A set D is said to be connected if for every two
points P and Q in D, there exists a path which connects P to Q.

Theorem 16.37. Suppose that the line integral of a vector field F is
independent of path within an open connected region D, then F is
a conservative vector field on D.

Proof. (sketch). Choose an arbitrary point (a, b) ∈ D and define

f(x, y) =

ˆ (x,y)

(a,b)

F · dr.

Since this line integral is independent of path, we can define f(x, y) using
any path between (a, b) and (x, y). By choosing a path that ends with a
horizontal line segment from (x1, y) to (x, y) contained entirely in D, x1 < x,
we can show that

∂f/∂x(x, y) = ∂/∂x
[ ˆ (x1,y)

(a,b)

F · dr +

ˆ (x,y)

(x1,y)

F · dr
]

= 0 + ∂/∂x

ˆ x

x1

F · 〈dx, 0〉 = P.

Similarly, we can prove that ∂f/∂y(x, y) = Q.

It follows from Observation 16.32 and Theorem 16.37:

Corollary 16.38. In an open connected region, F is conservative if
and only if its line integral is independent of path.
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Theorem 16.39. (Clairaut’s Theorem for conservative vector
fields). If F (x, y) = 〈P (x, y), Q(x, y)〉 is a conservative vector field, where
P and Q have continuous first-order partial derivatives on D, then

∂P

∂y
=
∂Q

∂x
, (16.26)

throughout the domain D.

Quesiton. Does (16.26) imply conservativeness of F ?
Ans: No, in general. But, almost!

Figure 16.11: Simply-connectedness of D.

Definition 16.40. D is a simply-connected region if it is connected
and every simple closed curve contains only points in D.

Theorem 16.41. Let F = 〈P, Q〉 be a vector field on an open simply-
connected region D. If P and Q have continuous first-order partial
derivatives throughout D,

∂P

∂y
=
∂Q

∂x
, (16.27)

then F is conservative.

Note: Theorem 16.41 is a special case of Green’s Theorem which we will
see in Section 16.4.
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Self-study 16.42. Determine whether or not the vector field F (x, y) =

〈3 + 2xy, x2 + x− 3y2〉 is conservative.
Solution. Hint : Check if Py = Qx is satisfied.

Ans: no

Problem 16.43. Determine whether or not the vector field F (x, y) = 〈ey +

y cosx, xey + sinx〉 is conservative.
Solution.

Ans: yes
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16.3.3. Potential functions

Recall: When F is conservative, we know from (16.25) on p.170 thatˆ
C

F · dr =

ˆ
C

∇f · dr = f(r(b))− f(r(a)), (16.28)

which is easy to evaluate when the potential f is known.

Problem 16.44. Given F (x, y) = 〈ey + y cosx, xey + sinx〉,

(a) Find a potential.

(b) Evaluate
´
C F · dr, where C is parameterized as

r(t) = 〈et cos t, et sin t〉, 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = xey + y sinx+K (b) −eπ − 1
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Problem 16.45. Let F (x, y, z) = 〈y2, 2xy + e3z, 3ye3z〉. Find f such that
∇f = F .
Solution.

Ans: f = xy2 + ye3z +K
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Problem 16.46. Let F = 〈P,Q,R〉 be a conservative vector field, where
P, Q, R have continuous first-order partial derivatives. Then,

Py = Qx, Pz = Rx, Qz = Ry. (16.29)

Solution. Hint : Use Clairout’s theorem.

Problem 16.47. Show that
´
C y dx+x dy+yz dz is not independent of path.

Solution. Hint : Use (16.29) to check if it is conservative.
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Exercises 16.3
1. The figure shows a curve C and a contour map of a function f whose gradient is contin-

uous. Find
ˆ
C

∇f · dr.

Figure 16.12

2. Determine whether the vector field F is conservative or not. If it is, find its potential.

(a) F (x, y) = 〈x+ y, x− y〉
(b) F (x, y) = 〈2xy, x2 + 2xy〉

(c) F (x, y) = 〈2xy4, x2y3〉
(d) F (x, y) = 〈yex, ex − 2y〉

3. (i) Find the potential of F and (ii) use part (i) to evaluate
´
C
F · dr along the given curve

C.

(a) F (x, y) = 〈ey, xey + sin y〉, C : r(t) = 〈− cos t, et sin t〉, 0 ≤ t ≤ π

(b) F (x, y, z) = 〈2y + z, 2x+ z, x+ y〉, C is the line segment from (1, 0, 0) to (2, 2, 2)

(c) F (x, y, z) = 〈sin z, − sin y, x cos z〉, C : r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ π/2

Ans: (a) 2; (b) 16; (c) cos(1)− 1

4. Show that the line integral is independent of path and evaluate the integral.

(a)
ˆ
C

x dx− y dy, C is any path from (0, 1) to (3, 0)

(b)
ˆ
C

(sin y − ye−x) dx+ (e−x + x cos y) dy, C is any path from (1, 0) to (0, π)

Ans: (a) 5; (b) π
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5. The figure below depicts two vector fields, one of which is conservative. Which one is it?
Why is the other one not conservative?

(a) (b)

Figure 16.13: Two vector fields, one of which is conservative.
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16.4. Green’s Theorem

Green’s Theorem gives the relationship between a line integral
around a simple closed curve C and a double integral over the plane
region D bounded by C.

Definition 16.48. The positive orientation of a simple closed curve
C refers to a single counterclockwise traversal of C (with keeping the
domain on the left). The other directional orientation is called the neg-
ative orientation.

⊕ 	

Figure 16.14: ⊕-orientation and 	-orientation of a simple closed curve C.

Theorem 16.49. (Green’s Theorem). Let C be positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = 〈P,Q〉 has continuous partial derivatives on
an open region including D, then

‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (16.30)
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Note: The proof of Green’s Theorem on simple regions is based on the
following identities

˛
C

Pdx = −
x

D

∂P

∂y
dA,

˛
C

Qdy =
x

D

∂Q

∂x
dA. (16.31)

Notation 16.50. We denote the line integral calculated by using the
positive orientation of the closed curve C by

˛
C

P dx+Qdy,

‰
C

P dx+Qdy, or
ffi
C

P dx+Qdy.

We denote line integrals calculated by using the negative orientation
of the closed curve C by 

C

P dx+Qdy.

Problem 16.51. Evaluate
˛
C

x4dx+ xydy, where C is the triangular curve

consisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and
from (0, 1) to (0, 0).
Solution. Although the given line integral could be evaluated by the meth-
ods of Section 6.2, we would use Green’s Theorem.

Ans: 1
6
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Problem 16.52. Evaluate
¸
C F · dr, where F = 〈y − cos y, x sin y〉 and C is

the circle (x− 3)2 + (y + 4)2 = 4 oriented clockwise.
Solution. Hint : Check the orientation of the curve.

Ans: 4π

16.4.1. Application to area computation

Recall
A(D) =

x

D

1 dA.

If we choose P and Q such that

∂Q/∂x− ∂P/∂y = 1, (16.32)

then the area of D can be computed as

A(D) =
x

D

1 dA =

‰
C

Pdx+Qdy. (16.33)

The following choices are common:{
P (x, y) = 0
Q(x, y) = x

{
P (x, y) = −y
Q(x, y) = 0

{
P (x, y) = −y

2

Q(x, y) = x
2

(16.34)

Then, Green’s Theorem give the following formulas for the area of D:

A(D) =

‰
C

x dy = −
‰
C

y dx =
1

2

‰
C

x dy − y dx (16.35)
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Problem 16.53. Find the area enclosed by
x2

a2
+
y2

b2
= 1, an ellipse.

Solution. Clue: The ellipse has parametric equations x = a cos t and y = b sin t, 0 ≤ t ≤
2π. Hint : You may use sin2 x = 1−cos 2x

2 or cos2 x = 1+cos 2x
2 .

Ans: abπ

Problem 16.54. Use a formula in (16.35) to find the area of the shaded
region in Figure 16.15.
Solution. Hint : For the slanted edge (C3) : x = t, y = 3− t, 1 ≤ t ≤ 3.

Figure 16.15

Ans: 14
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Problem 16.55. Using the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

‰
∂D

x dy,

we will try to show that the area of D (the shaded region) is 6.

• First, observe that the line integrals on
vertical and horizontal line segments
of the figure are all zero.

• Thus the area must be the same as the
line integral on the slant side, the line
segment from P (4, 0) to Q(2, 2), which
we denote by C2. Figure 16.16

(a) Evaluate
ˆ
C2

x dy, where C2 is parametrized by

r(t) = (1− t)P + tQ, 0 ≤ t ≤ 1.

(b) Evaluate
ˆ
C2

x dy, where C2 is parametrized by

r(t) = 〈t, 4− t〉, with t moving 4↘ 2.

(c) Find “the mid value of x” and “the change in y”, on C2. Multiply the
results to see if it is the same as the output in (a) and (b).1

Solution.

1The method introduces an effective algorithm for the computation of area. See Project
3, p.230.
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16.4.2. Generalization of Green’s Theorem

Although Green’s Theorem is proved only for the case where D is simple, we
can now extend it to the case where D is either a finite union of simple
regions or of holes.

Figure 16.17: Regions having holes.

For example: For the right figure above,
x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

x

D1

(∂Q
∂x
− ∂P

∂y

)
dA+

x

D2

(∂Q
∂x
− ∂P

∂y

)
dA

=

‰
∂D1

P dx+Qdy +

‰
∂D2

P dx+Qdy.

(16.36)

Along the common boundary, the opposite directional line integral will be
canceled. Thus

x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

‰
∂D

P dx+Qdy. (16.37)
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Theorem 16.56. (Generalized Green’s Theorem). Let D be either a
finite union of simply-connected regions or of holes, of which the bound-
ary is finite and oriented. If F = 〈P,Q〉 has continuous partial
derivatives on an open region including D, then

‰
∂D

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA, (16.38)

where ∂D is the boundary of D positively oriented.

Problem 16.57. Evaluate
˛
C

(1−y3)dx+(x3 +ey
2

)dy, where C is the bound-

ary of the region between the circles x2 + y2 = 4 and x2 + y2 = 9, having the
positive orientation.
Solution.

Ans: 195π
2
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Example 16.58. Let F (x, y) = 〈 −y
x2 + y2

,
x

x2 + y2
〉. Show that

‰
C

F · dr = 2π

for any positively oriented simple closed curve C that encloses the origin.
Warning : You CANNOT use Green’s Theorem for this problem. Why?

Solution. Clue: Choose C ′ : x2 + y2 = a2, for small a. Then,‰
∂D

F · dr =

˛
C

F · dr +

˛
−C ′
F · dr =

x

D

(∂Q
∂x
− ∂P

∂y

)
dA,

where D is the region bounded by C and −C ′. However,

∂Q

∂x
− ∂P

∂y
=

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0. (16.39)

Thus we have ˛
C

F · dr =

˛
C ′
F · dr (16.40)

By introducing parametric representation of C ′ : r(t) = 〈a cos t, a sin t〉, 0 ≤
t ≤ 2π, we can conclude

˛
C ′
F · dr =

ˆ 2π

0

F (r(t)) · r′(t) dt =

ˆ 2π

0

a2 sin2 t+ a2 cos2 t

a2
dt = 2π.

Problem 16.59. Let F (x, y) = 〈 −y
x2 + y2

,
x

x2 + y2
〉, the same as in the above

example. Show that
˛
C

F · dr = 0 for any simple closed path C that does not

pass through or enclose the origin.

Now, you CAN use Green’s Theorem. Why?
Solution. Clue: See if F is conservative, i.e., Qx = Py, checking conditions of Theo-

rem 16.41 (p. 175) or Green’s Theorem.
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Let’s try to solve another problem before closing the section.

Problem 16.60. Evaluate
˛
c

y2 dx+ 3xy dy, where C is the boundary of the

semiannual region D in the upper half-plane between the circles x2 + y2 = 1

and x2 + y2 = 4.
Solution.

Ans: 14/3

Summary 16.61. Green’s Theorem can be summarized as follows.
‰
∂D

P dx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA (16.41)

is applicable when

1. The boundary of D is finite and oriented.
2. The vector field F = 〈P,Q〉 has continuous partial derivatives

over the whole region D. (It is about quality of the vector field.)
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Exercises 16.4

1. Evaluate the line integral
‰
C

y2 dx + 3xy dy, where C is the triangle with vertices (0, 0),

(2, 0), and (2, 2):

(a) directly (b) using Green’s theorem

Hint : For (a), you should parametrize each of three line segments.
For example: C3 : r(t) = 〈t, t〉, t = 2↘ 0.

Ans: 4/3

2. Use Green’s Theorem to evaluate the line integral along the given positively oriented
curve.

(a)
ˆ
C

(2y+ ln(1 + x2))dx+ (6x+ y2)dy, where C is the triangle with vertices (0, 0), (3, 0),

and (1, 1)

(b)
ˆ
C

(x2 − y3 + y)dx+ (x3 + x− y2)dy, where C is the circle x2 + y2 = 4

Ans: (b) 24π

3. Use Green’s Theorem to evaluate
ˆ
C

F · dr. (Check the orientation of the curve before

applying the theorem.)

(a) F (x, y) =< y3 cosx, x + 3y2 sinx >, C is the triangle from (0, 0) to (8, 0) to (4, 4) to
(0, 0)

(b) F (x, y) =< 5y − 2030x2 + sin y, y2 + x cos y >, C consists of the three line segments:
from the origin to (0, 2), then to (2, 0), and then back down to the origin

(c) F (x, y) =< y + y2 − cos y, x sin y >, C is the circle x2 + y2 = 4 oriented clockwise
Ans: (a) 16; (c) 4π

4. Use the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

ˆ
∂D

x dy

to show that the area of D (the shaded region) is 6. You should compute the line integral
for each line segment of the boundary, first introducing an appropriate parametrization.
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16.5. Curl and Divergence

16.5.1. Curl

We now define the curl of a vector field, which helps us represent rotations
of different sorts in physics and such fields. It can be used, for instance, to
represent the velocity field in fluid flow.

Definition 16.62. Let F = 〈P,Q,R〉 be a vector field on R3 and the
partial derivatives of P, Q, and R all exist. Then the curl of F is the
vector field on R3 defined by

curl F =
〈∂R
∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
. (16.42)

Definition 16.63. Define the vector differential operator ∇ (“del")
as

∇ =
〈 ∂
∂x
,
∂

∂y
,
∂

∂z

〉
= 〈∂x, ∂y, ∂z〉.

Then

∇× F = det

 i j k
∂x ∂y ∂z
P Q R


= 〈Ry −Qz, Pz −Rx, Qx − Py〉
= curl F

(16.43)

So, the easiest way to remember Definition 16.62 is

curl F = ∇× F . (16.44)

Note: If F represents the velocity field in fluid flow, then the particles in
the fluid tend to rotate about the axis that points in the direction of ∇× F ;
the magnitude |∇ × F | measures how quickly the fluid rotates.

Quesiton. Why do tornado evolve? What is the change in the air
after a tornado? Answer: Energy consumption
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Remark 16.64. If F is conservative and has continuous partial
derivatives, then

curl F = 0. (16.45)

(See also Problem 16.46 on p.179.)

Theorem 16.65. If f is a function of three variables that has continu-
ous second-order partial derivatives, then

curl (∇f) = ∇× (∇f) = 0. (16.46)

Proof. Use Clairout’s Theorem.

Problem 16.66. Show that the vector field F = 〈xz, xyz,−y2〉 is not con-
servative.
Solution. Clue: Check if curlF 6= 0.
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Theorem 16.67. If F is a vector field whose component functions have
continuous partial derivatives on a simply-connected domain and
curlF = 0, then F is conservative.

Note: The above theorem is a 3D version of Theorem 16.41, p. 175.

Problem 16.68. Let F = 〈y2z3, 2xyz3, 3xy2z2〉.

(a) Show that F is conservative.

(b) Find f such that F = ∇f .

Solution.

Ans: (a) curlF = 0, (b) f(x, y) = xy2z3 +K



16.5. Curl and Divergence 195

16.5.2. Divergence

Definition 16.69. Let F = 〈P, Q, R〉 be a vector field on R3 and its
partial derivatives exist. Then the divergence of F is defined as

divF ≡ ∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= ∇ · F .

Theorem 16.70. Let F = 〈P, Q, R〉 whose components have continuous
second-order partial derivatives. Then

∇ · (∇× F ) = 0. (16.47)

Note: The above theorem is analogous to a · (a× b) = 0 for all a, b ∈ R3.

Problem 16.71. Show that F = 〈xz, xyz,−y2〉 cannot be the curl of another
vector field.
Solution. Clue: Check if ∇ · F = 0
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Remark 16.72. The reason for the name divergence can be under-
stood in the context of fluid flow. If F is the velocity of a fluid, the divF
represents the net change rate of the mass per unit volume. Thus,
if divF = 0, then F is said to be incompressible. Another differential
operator occurs when we compute the divergence of a gradient vector
field ∇f :

div (∇f) = ∇ · (∇f) = ∇2f = ∆f.

The operator ∇2 = ∇ · ∇ = ∆ is called the Laplace operator, which is
also applicable to vector fields like

∆F = ∆〈P, Q, R〉 = 〈∆P, ∆Q, ∆R〉.

16.5.3. Vector forms of Green’s Theorem

Recall: Green’s Theorem (p. 182): Let F = 〈P, Q〉. Then
‰
C

F · dr ≡
‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (16.48)

Now, regard F as a vector field in R3 with the 3rd component 0. Then

∇× F = det




i j k

∂/∂x ∂/∂y ∂/∂z

P Q 0


 = 〈0, 0, Qx − Py〉.

So we can rewrite the equation in Green’s Theorem as
‰
C

F · dr ≡
‰
C

F · T ds =
x

D

(∇× F ) · k dA, (16.49)

which expresses the line integral of the tangential component of F along
C as the double integral of the vertical component of curlF over the
region D enclosed by C.
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Line integral of the normal component of F

Example 16.73. Let F = 〈P, Q〉. What is
‰
C

F · n ds ?

Solution. Let r = 〈x(t), y(t)〉 define the curve C. Then

T =
r′

|r′|
=
〈x′, y′〉
|r′|

and n =
〈y′,−x′〉
|r′|

, (16.50)

where n is the outward unit normal vector, 90◦ clockwise rotation of T .
Thus we have

F · n ds = 〈P, Q〉 · 〈y
′,−x′〉
|r′|

|r′| dt

= (P y′ −Qx′) dt
= −Qdx+ P dy.

Figure 16.18

It follows from Green’s Theorem that
‰
C

F · n ds =

‰
C

−Qdx+ P dy =
x

D

(
Px − (−Q)y

)
dA

=
x

D

(
Px +Qy

)
dA =

x

D

∇ · F dA.
(16.51)

when P and Q have continuous partial derivatives over D.
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Exercises 16.5
1. Find (i) the curl and (ii) the divergence of the vector field.

(a) F (x, y, z) = x2yz j + y2z2 k (b) F (x, y, z) = 〈x sin y, y sin z, z sinx〉

Ans: (b) ∇× F = −〈y cos z, z cosx, x cos y〉, ∇ · F = sinx+ sin y + sin z

2. The vector field F is shown in the xy-plane and looks the same in all other horizontal
planes. (That is, F is independent of z and its third component is 0.)

(a) Is divF positive, negative, or zero? Explain.
(b) Determine whether curlF = 0. If not, in which direction does it point?
(c) Use Theorem 16.67 to conclude if F is conservative.

Hint : The vector field in (I): You may express it as F = 〈P (x), 0, 0〉, where P is a decreasing
function of x only. Thus divF < 0. The vector field in (II): Let F = 〈P (x, y), Q(x, y), 0〉. Then
divF = Px +Qy and curlF = 〈0, 0, Qx − Py〉. For example, Py < 0 in (II), because the horizontal
components of the arrows (P ) become smaller as y increases. What can you say about Px, Qy,
and Qx?

(I) (II)

Figure 16.19

3. Determine whether or not F is conservative. If it is conservative, find its potential.

(a) F = 〈yz4, xz4 + 2y, 4xyz3〉
(b) F = 〈sin z, 1, x cos z〉

Ans: (b) f = y + x sin z +K
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16.6. Parametric Surfaces and Their Areas

16.6.1. Parametric surfaces

Goal: This section will aim to describe surfaces by a function r(u, v) =
〈x(u, v), y(u, v), z(u, v)〉 , in a similar fashion that we described vector
functions by r(t) earlier.

Definition 16.74. A parametric surface is the set of points {(x, y, z)}
in R3 such that the components are expressed by a vector function of the
form

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, (u, v) ∈ D ⊂ R2.

Figure 16.20: Examples of parametric surfaces.

Maple Script
1 with(plots): with(plottools):
2

3 plot3d([(4+2*cos(p))*cos(t), (4+2*cos(p))*sin(t), 2*sin(p)], p = 0..2*Pi, t = 0..2*Pi,
4 axes = none, lightmodel = light1, scaling = constrained, orientation = [30,55]);
5

6 r := z/2+sin(z):
7 plot3d([r, t, z], t = 0..2*Pi, z =0..10, coords = cylindrical,
8 axes = none, lightmodel = light1, scaling = constrained, orientation = [30,55]);
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Problem 16.75. Identify and sketch r(u, v) = 〈2 cosu, v, 2 sinu〉, when
(u, v) ∈ D ≡ [0, 2π]× [0, 5].
Solution. Clue: x2 + z2 = 4.

Figure 16.21

Self-study 16.76. Sketch r(s, t) = 〈s cos 3t, s sin 3t, s2〉, when (s, t) ∈ [0, 2]×
[0, 2π]. Discuss what the effect of the “3" is.



16.6. Parametric Surfaces and Their Areas 201

Quesiton. Given a surface, what is a parametric representation of it?

Problem 16.77. Find a parametric representation of the plane which
passes P0(1, 1, 1) and contains a = 〈1, 2, 0〉 and b = 〈2, 0,−3〉.
Solution. Clue: r(u, v) = P0 + u a + v b.

Problem 16.78. Find a parametric representation of x2 + y2 + z2 = a2.
Solution. Clue: Use the spherical coordinates; the parameters are (θ, φ).

Ans: r(θ, φ) = 〈a sinφ cos θ, a sinφ sin θ, a cosφ〉, D ?
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Problem 16.79. Find a parametric representation of the cylinder x2 +y2 =

4, 0 ≤ z ≤ 1.
Solution. Hint : Use cylindrical coordinates (r = 2, θ, z).

Problem 16.80. Find a vector representation of the elliptic paraboloid
z = x2 + 2y2.
Solution. Hint : Let x, y be parameters.

Ans: r(x, y) = 〈x, y, x2 + 2y2〉
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In general, for z = f(x, y),

r(x, y) = 〈x, y, f(x, y)〉 (16.52)

is considered as a parametric representation of the surface.

Note: Parametric representations are not unique.

Problem 16.81. Find a parametric representation of z = 2
√
x2 + y2.

Clue: A representation is as in (16.52), while another one can be formulated using (r, θ) as with

polar coordinates. Also, recall that when polar coordinates are considered, x = r cos θ, y = r sin θ.

Solution. 1

Figure 16.22
2
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Surfaces of Revolution

Figure 16.23: Surface of revolution

Let S be the surface obtained by rotating

y = f(x), a ≤ x ≤ b,

about the x-axis (where f(x) ≥ 0). Then, S can be represented as

r(x, θ) = 〈x, f(x) cos θ, f(x) sin θ〉,
(x, θ) ∈ [a, b]× [0, 2π].

(16.53)

Problem 16.82. Find parametric equations for the surface generated by
rotating the curve y = sin(x), 0 ≤ x ≤ 2π, about the x-axis.
Solution.
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16.6.2. Tangent planes

Recall: The plane passing x0 = (x0, y0, z0) and having a normal vector
v = 〈a, b, c〉 can be formulated as

v · (x− x0) = 0,

or equivalently
a(x− x0) + b(y − y0) + c(z − z0) = 0. (16.54)

Now, we will find the tangent plane to a parametric surface S traced out by

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉

at a point P0 with position vector r(u0, v0).

Figure 16.24

What we need: a normal vector, which can be determined by

ru × rv.

Definition 16.83.

1. A surface S represented by r is smooth if ru × rv 6= 0 over the whole
domain.

2. A tangent plane is the plane containing ru and rv and having a nor-
mal vector ru × rv.
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Problem 16.84. Find the tangent plane to

S : x = u2, y = v2, z = u+ 2v; at (1, 1, 3)

Solution.

Ans: −2(x− 1)− 4(y − 1) + 4(z − 3) = 0
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16.6.3. Surface area

Let r : D ⊂ R2 → S ⊂ R3. Then the surface area of S is

A(S) =
x

S

dS. (16.55)

Figure 16.25: r : Rij 7→ Sij.

Figure 16.26: Approximating a patch by a parallelogram.

The area of the patch Sij can be approximated by

∆Sij ≈ A(parallelogram)

= |(∆u ru)× (∆v rv)| = |ru × rv|∆u∆v
(16.56)
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Definition 16.85. If a smooth surface S is represented by

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, (u, v) ∈ D,

and S is covered just once as (u, v) ranges throughout the parameter
domain D, then the surface area of S is

A(S) =
x

S

dS =
x

D

|ru × rv| dA. (16.57)

That is, dS = |ru × rv| dA.

Problem 16.86. Find the area of the surface given by parametric equa-
tions x = u2, y = uv, z = 1

2v
2, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Solution.

Ans: 1
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Change of Variables vs. ∆S ≈ |ru × rv|∆u∆v

Recall: (Summary 15.69 in § 15.9, p. 134). For a differentiable trans-
formation T : Q ⊂ R2 → R ⊂ R2 given by r(u, v) = 〈x(u, v), y(u, v)〉,

∆A ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v, (16.58)

where ∂(x, y)/∂(u, v) is the Jacobian of T defined as

∂(x, y)

∂(u, v)
= det

[
xu xv
yu yv

]
= xu yv − xv yu. (16.59)

Now, consider R as a flat region embedded in R3. Define

R̃ = R× {0} ⊂ R3.

Then, T̃ : Q→ R̃ is represented by r̃(u, v) = 〈x(u, v), y(u, v), 0〉;

r̃u × r̃v = det

 i j k
xu yu 0
xv yv 0

 = 〈0, 0, xu yv − xv yu〉 . (16.60)

Therefore
|̃ru × r̃v| =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ . (16.61)

Eqn. (16.58) is a special case of ∆S ≈ |ru × rv|∆u∆v .

Summary 16.87. Let r : D ⊂ R2 → S ⊂ R3 be a parametric repre-
sentation of the surface S. Then

1. The map r can be viewed as a change of variables.
2. The quantity |ru × rv| is simply the scaling factor for r.
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Surface Area of the Graph of a Function
As a special case, consider the surface S made by the graph of

z = g(x, y), (x, y) ∈ D.

Then the surface S can be represented by

r(x, y) = 〈x, y, g(x, y)〉.

Since
rx = 〈1, 0, gx〉 and ry = 〈0, 1, gy〉,

we obtain

rx × ry = det

i j k
1 0 gx
0 1 gy

 = 〈−gx, −gy, 1〉 (16.62)

Thus we conclude the following.

Let S be made by the graph of z = g(x, y), (x, y) ∈ D. Then the surface
area of S is

A(S) =
x

D

√
g2
x + g2

y + 1 dA. (16.63)

Problem 16.88. Find the area of the part of paraboloid z = x2 + y2 that
lies under the plane z = 9.
Solution. (See Problem 15.41 on p. 114.)

Ans: π
6
(37
√

37− 1)
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Exercises 16.6
1. Identify the surface with the vector equation.

(a) r(u, v) = 〈u− 3, u+ v, 4u+ 3v − 2〉 (b) r(s, t) = 〈2 cos t, s, 2 sin t〉, 0 ≤ t ≤ π

2. Match the parametric equations with the graphs labeled (I)–(III) and give reasons for
your choices. Determine which families of grid curves on the surface have u constant
and which have v constant.

(a) r(u, v) = 〈u cos v, u sin v, v〉
(b) r(u, v) = 〈v, 2 cosu, 2 sinu〉
(c) r(u, v) = 〈v sinu, v cosu, cos v sin v〉

(I) (II) (III)

Figure 16.27

3. Find the parametric representation for the surface.

(a) The part of the sphere x2 + y2 + z2 = 4 that lies above the plane z = 1.
(b) The part of the plane y + z = 1 that lies inside the cylinder x2 + z2 = 1. (See

Figure 16.28.)

Figure 16.28

Hint : For (a), use the spherical coordinates
(with ρ = 2) to specify the values of φ appro-
priately. Of course, 0 ≤ θ ≤ 2π. For (b), use the
polar coordinates for the region in the xz-plane;
that is, x = r cos θ, z = r sin θ. Then, you may
set y = 1 − z. You have to specify the domain,
values of r and θ, appropriately.
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4. Find an equation of the tangent plane to the given surface at the specific point.

(a) r(x, y) = 〈x, y, x2 − y2〉, (2, 1, 3)

(b) r(u, v) = 〈u cos v, u sin v, v〉, (u, v) = (1, π/2)

Ans: (b) ru × rv(1, π/2) = 〈1, 0, 1〉 ⇒ 1 · (x− 0) + 0 · (y − 1) + 1 · (z − π/2) = x+ z − π/2 = 0

5. Find the area of the surface.

(a) The part of the paraboloid y = x2 + z2 cut off by the plane y = 6

(b) The surface parametrized by r(u, v) = 〈u2, uv, v
2

2
〉, defined on {(u, v) | u2 + v2 ≤ 1}

Ans: (a) 62π
3 ; (b) 3π/4
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16.7. Surface Integrals

This section deals with surface integrals of the form
x

S

f(x, y, z) dS or
x

S

F · dS

16.7.1. Surface integrals of scalar functions

Suppose that the surface S has a parametric representation

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, (u, v) ∈ D.

Then, from the previous section, we have

dS = |ru × rv| dA

Thus we can reach at the formula
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (16.64)

Remark 16.89.

• When z = g(x, y), rx × ry = 〈−gx,−gy, 1〉 . Thus the formula (16.64)
reads

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2
x + g2

y + 1 dA. (16.65)

• Similarity: For line integrals,
ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt.
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Problem 16.90. Compute the surface integral
x

S

xy dS, where S is the

triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2).
Solution. Clue: The surface S (triangular region) can be expressed by

x

1
+
y

2
+
z

2
= 1.

Thus z = 2− 2x− y. Now, what is D?

Ans: 1√
6
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Problem 16.91. Evaluate
x

S

z dS, where S is the surface whose side S1 is

given by the cylinder x2 + y2 = 1, whose bottom S2 is the disk x2 + y2 ≤ 1 in
the plane z = 0, and whose top S3 is the disk x2 + y2 ≤ 1 in the plane z = 1.
Solution. Clue: S1 : x = cos θ, y = sin θ, z = z; (θ, z) ∈ D ≡ [0, 2π] × [0, 1]. Then

|rθ × rz| = 1.

Ans: π + 0 + π = 2π
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16.7.2. Surface integrals of vector fields

Oriented Surfaces

Figure 16.29: Oriented surface and Möbius strip.

Definition 16.92. Let the surface S have a vector representation r.

• A unit normal vector n is defined as

n =
ru × rv
|ru × rv|

. (16.66)

• The surface S is called an oriented surface if the (chosen) unit
normal vector n varies continuously over S.
(A counter example: Möbius strip.)

• For closed surfaces, the positive orientation is the one outward.

Is it confusing? Then, consider this:

Definition 16.93. A surface S is called orientable if it has two sepa-
rate sides.
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A Historic View, for Surface Integrals of Vector Fields

Figure 16.30: A vector field on a surface.

Suppose that S is an oriented sur-
face. Imagine we have a fluid flow-
ing through S, such that v(x) deter-
mines the velocity of the fluid at x.
The flux is defined as the quantity
of fluid flowing through S per unit
time.

The illustration implies that if the
vector field is tangent to S at each
point, then the flux is zero because
the fluid just flows in parallel to S,
and neither in nor out.
Thus, if v has both a tangen-
tial and a normal component, then
only the normal component
contributes to the flux. Based on
this reasoning, to find the flux, we
need to take the dot product of v
with the unit surface normal n to S,
which will give us a scalar field to
be integrated over S appropriately.

Definition 16.94. Let F be a continuous vector field defined on an
oriented surface S with unit normal vector n. The surface integral of
F over S is x

S

F · dS def
==

x

S

F · n dS. (16.67)

This integral is also called the flux of F across S.

For the computation of the flux, the right side of (16.67), you may utilize

n =
ru × rv
|ru × rv|

and dS = |ru × rv| dA, (16.68)

when S is parametrized by r : D → S.
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Surface Integrals of Vector Fields . Let r be a parametric represen-
tation of S, from D ⊂ R2. The flux across the surface S can be mea-
sured by

x

S

F · dS def
==

x

S

F · n dS

=
x

D

F (r) ·
( ru × rv
|ru × rv|

)
|ru × rv| dA

=
x

D

F (r) · (ru × rv) dA.

(16.69)

Note that F · n and F (r) · (ru × rv) are scalar functions.

Remark 16.95. Line integrals of vector fields is defined to measure
quantities along the curve. That is,ˆ

C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt,
(16.70)

where C is parametrized by r : [a, b]→ C.

Problem 16.96. Find the flux of F = 〈x, y, 1〉 across a upward helicoid:
r(u, v) = 〈u cos v, u sin v, v〉, 0 ≤ u ≤ 2, 0 ≤ v ≤ π.
Solution. Hint : ru × rv = 〈sin v,− cos v, u〉.

Figure 16.31
Ans: 2π
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Example 16.97. Find the flux of F = 〈z, y, x〉 across the unit sphere
x2 + y2 + z2 = 1.
Solution. First, consider a vector representation of the surface:

r(φ, θ) = 〈sinφ cos θ, sinφ sin θ, cosφ〉, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Then,
F (r) = 〈cosφ, sinφ sin θ, sinφ cos θ〉,
rφ × rθ = 〈sin2 φ cos θ, sin2 φ sin θ, sinφ cos θ〉,

from which we have

F (r) · (rφ × rθ) = 2 sin2 φ cosφ cos θ + sin3 φ sin2 θ.

Thus
Flux =

x

S

F · dS =
x

D

F (r) · (rφ × rθ) dA

=

ˆ 2π

0

ˆ π

0

(2 sin2 φ cosφ cos θ + sin3 φ sin2 θ) dφdθ

=

ˆ 2π

0

ˆ π

0

(sin3 φ sin2 θ) dφdθ

=

ˆ 2π

0

sin2 θdθ

ˆ π

0

sin3 φ dφ = π · 4
3
.

Note: The answer of the previous example is actually the volume of the
unit sphere. In Section 16.9, we will study the so-called Divergence
Theorem (formulated for closed surfaces)

x

∂E

F · dS =
y

E

∇ · F dV

The above example can be solved easily using the Divergence Theorem;
see Problem 16.105, p. 227.
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Surfaces defined by z = g(x, y):

• A vector representation: r(x, y) = 〈x, y, g(x, y)〉.
• Normal vector: rx × ry = 〈−gx,−gy, 1〉.
• Thus, when F = 〈P, Q, R〉,

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA. (16.71)

Problem 16.98. Evaluate
x

S

F · dS, where F = 〈y, x, z〉 and S is the

boundary of the solid region E enclosed by the paraboloid z = 1−x2−y2 and
the plane z = 0.
Solution. Hint : For S1 (the upper part), use the formula in (16.71). For S2 (the bottom: z = 0),

you may try to get F · n, where n = −k.

Ans: π
2

+ 0 = π
2
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Formula 16.99. Let F =< P,Q,R >.

•
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2x + g2y + 1 dA, when S is given by z = g(x, y)

•
x

S

F · dS =
x

S

F · n dS =
x

D

F · (ru × rv) dA

x

S

F · dS =
x

D

(−Pgx −Qgy +R) dA, when S is given by z = g(x, y)

• Note: When S is given by z = g(x, y), rx × ry = 〈−gx,−gy, 1〉

Exercises 16.7
1. Evaluate the surface integral

x

S

f(x, y, z) dS.

(a) f(x, y, z) = x, S is the helicoid given by the vector equation r(u, v) = 〈u cos v, u sin v, v〉,
0 ≤ u ≤ 1, 0 ≤ v ≤ π/2 (Hint : ru × rv = 〈sin v,− cos v, u〉.)

(b) f(x, y, z) = (x2 + y2)z, S is the hemisphere x2 + y2 + z2 = 1, z ≥ 0

Ans: (a) (2
√

2− 1)/3; (b) π/2

2. Evaluate the surface integral
x

S

F · dS.

(a) F (x, y, z) = xi + yj + 2zk, S is the part of the paraboloid z = x2 + y2, z ≤ 1

(b) F (x, y, z) = 〈z, x − z, y〉, S is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1),
oriented downward

(c) F = 〈y,−x, z〉, S is the upward helicoid parametrized by r(u, v) = 〈u cos v, u sin v, v〉,
0 ≤ u ≤ 2, 0 ≤ v ≤ π (Hint : ru × rv = 〈sin v,− cos v, u〉.)

Ans: (a) 0; (b) −1/3; (c) 2π + π2

3. CAS Use a CAS to find the integral, either
s
S
f(x, y, z) dS or

s
S
F · dS. First try to

find the exact value; if the CAS does not work properly for the exact value, then try to
estimate the integral correct four decimal places.

(a) f(x, y, z) = 2x2 + 2y2 + z2, S is the surface z = x cos y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(b) F (x, y, z) = 〈x2+y2, y2+z2, x2〉, S is the part of the cylinder x2+z2 = 1 that lies above
the xy-plane and between the planes y = 0 and y = 1, with upward orientation
Hint : You may use r(θ, y) = 〈cos θ, y, sin θ〉, for a representation of S.

Ans: (b) 2/3
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16.8. Stokes’s Theorem

Stokes’ Theorem is a high-dimensional version of Green’s Theorem studied
in § 16.4.

Recall: (Green’s Theorem, p. 182). Let C be positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = 〈P,Q〉 have continuous partial derivatives on
an open region including D, then
‰
C

F · dr def
==

‰
C

P dx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

x

D

(curlF ) · k dA.

(16.72)
(For the last equality, see (16.49) on p.196.)

Theorem 16.100. (Stokes’s Theorem) Let S be an oriented piecewise-
smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C with positive orientation. Let F = 〈P, Q, R〉 be a vector field
whose components have continuous partial derivatives on an open
region in R3 that contains S. Then‰

C

F · dr =
x

S

(curlF ) · dS (16.73)

Remark 16.101.

• See Figure 16.29(left) on p. 216, for an oriented surface of which the
boundary has positive orientation.

• Computation of the surface integral: for r : D → S,
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA.

(16.74)
• Green’s Theorem is a special case in which S is flat and lies on the
xy-plane (n = k). Compare the last terms in (16.72) and (16.74).
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Problem 16.102. Evaluate
´
C F · dr, where F = 〈−y2, x, z2〉 and C is the

curve of intersection of the plane y + z = 2 and the cylinder x2 + y2 = 1.
Solution. Clue: You may start with the computation of ∇× F and consider a vector represen-

tation for S: z = g(x, y) = 2− y. Then use the formula (16.74).

Ans: π
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Problem 16.103. Use Stokes’s Theorem to compute the surface integrals
S(∇×F )·dS, where F = 〈xz, yz, xy〉 and S is the part of sphere x2+y2+z2 =

4 that lies inside the cylinder x2 + y2 = 1 and above the xy-plane.

Solution. Hint :
x

S

(∇× F ) · dS =

‰
C
F · dr =

ˆ b

a
F · r′(t) dt. A vector representation

of C is r(t) = 〈cos t, sin t,
√

3〉, 0 ≤ t ≤ 2π.

Ans: 0



16.8. Stokes’s Theorem 225

Exercises 16.8
1. A hemisphere H and a part P of a paraboloid are shown in the figure below. Let F be ba

vector field on R3 whose components have continuous partial derivatives. Which of the
following is true? Give reasons for your choice.

A.
x

H

(curlF ) · dS <
x

P

(curlF ) · dS

B.
x

H

(curlF ) · dS =
x

P

(curlF ) · dS

C.
x

H

(curlF ) · dS >
x

P

(curlF ) · dS

D. cannot compare

Figure 16.32

2. Use Stokes’s Theorem to evaluate
x

S

curlF · dS, where F (x, y) =< −y, x, x2 + y2 > and

S is the part of the sphere x2 +y2 +z2 = 8 that lies inside the cone z =
√
x2 + y2, oriented

upward. (Clue: The boundary of S can be parametrized as r(t) = 〈2 cos t, 2 sin t, 2〉, 0 ≤ t ≤ 2π.)
Hint : Use the formula given in the hint of Problem 16.103.

Ans: 16π

3. Use Stokes’s Theorem to evaluate
ˆ
C

F · dr. For each case, let C be oriented counter-

clockwise when viewed from above.

(a) F (x, y, z) =< z2 + x, x2 + y, y2 + z >, C is the triangle with vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1)

(b) F (x, y, z) =< x, y, z − x >, C is the curve of intersection of the plane 2y + z = 2 and
the cylinder x2 + y2 = 1

Hint :
´
C F · dr =

s
S curlF · dS =

s
D curlF · (rx × ry)dS . (a) curlF = 〈2y, 2z, 2x〉 and rx ×

ry = 〈1, 1, 1〉. Figure out yourself what S, D, and r are.
Ans: (a) 1; (b) 2π
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16.9. The Divergence Theorem

Recall: Let F = 〈P, Q〉. In § 16.5.3, we considered vector forms of
Green’s Theorem including‰

C

F · n ds =
x

D

∇ · F dA. (16.75)

(See (16.51), p. 197.)

The Divergence Theorem is a generalization of the above.

Theorem 16.104. (Divergence Theorem) Let E be a simple solid
region and S be the boundary surface of E, given with positive (outward)
orientation. Let F = 〈P, Q, R〉 have continuous partial derivatives
on an open region that contains E. Then"

S

F · dS =
y

E

∇ · F dV. (16.76)

Note: Let a surface S is parametrized by r. Then, from § 16.7.2 (p. 216),
we know

x

S

F · dS def
==

x

S

F · n dS =
x

D

F · (ru × rv) dA, (16.77)

whether or not S is closed.

Note: The Divergence Theorem is developed mainly for closed surfaces;
however, it can be applied for unclosed surfaces as in Review Prob-
lem R.16.10, p. 235.
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Problem 16.105. (Revisit of Example 16.97, p. 219) Find the flux of
F = 〈z, y, x〉 over the unit sphere x2 + y2 + z2 = 1.
Solution.

Ans: 4
3
π, the volume of the unit sphere

Problem 16.106. Find the flux of F across S, where

F (x, y, z) = (cos z + xy2) i + xe−z j + (sin y + x2z) k

and S is the surface of the solid bounded by the paraboloid z = x2 + y2 and
the plane z = 4.
Solution.

Ans: 32
3
π
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Problem 16.107. Use the Divergence Theorem to evaluatex

S

(x2 + 2y2 + z ex) dS, where S is the unit sphere x2 + y2 + z2 = 1.

Solution. Hint : Find n and express the integrand as F · n; then try to use the Divergence

Theorem.

Ans: 4π

Problem 16.108. Assume that S and E satisfy the conditions of the Diver-
gence Theorem and functions have all required continuous partial deriva-
tives, first or second-order. Prove the following.

1.
x

S

a · n dS = 0, where a is a constant vector.

2. V (E) =
1

3

x

S

F · dS, where F (x, y, z) = 〈x, y, z〉.

3.
x

S

curlF · dS = 0.
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Exercises 16.9
1. Verify the Divergence Theorem is true for the vector field F defined on the region E.

F (x, y, z) = 〈2x, yz, xy〉, E = [0, 1]× [0, 1]× [0, 1], the unit cube
Clue: For the computation of

s
S F · dS, you should evaluate it on each of the six sides.

2. Use the Divergence Theorem to evaluate the total flux
x

S

F · dS.

(a) F (x, y, z) = y i + x j + 2z k, S is the boundary of of the solid region E enclosed by
the paraboloid z = 1− x2 − y2 and the plane z = 0

(b) F (x, y, z) = (x + y2 + cos z) i + [sin(πz) + xe−z] j + z k, S is a part of the cylinder
x2 + y2 = 1 that lies between z = 0 and z = 1

(c) F (x, y, z) = 〈x2y2, xyez, xy2z − xez〉, S is the boundary of the box bounded by the
coordinate planes and the planes x = 1, y = 3, and z = 4

Ans: (b) 2π; (c) 54

3. As a variant of Problem 16.107, let’s consider the following problem:
Evaluate

x

S

(x2 + 2y2 + 3z2 + z ex) dS, where S is the unit sphere x2 + y2 + z2 = 4.

Ans: 128π
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Project 3. The Area of Heart

In this project, we will use the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

‰
∂D

x dy (16.78)

to compute the area of a closed curve saved in a data file. Also we will
explore a mid-point formula for line integrals.

A dataset
• Download a heart data and save it in heart-data.txt:

https://skim.math.msstate.edu/LectureNotes/heart-data.txt.
It includes data points of the form {(xi, yi)}, representing a closed curve
starting and ending at (0, 0), positively oriented.

• When you draw a figure for it, using e.g. heart.m below, you will see a
heart as in Figure 16.33.

heart.m
1 DATA = readmatrix('heart-data.txt');
2 X = DATA(:,1); Y = DATA(:,2);
3 figure, plot(X,Y,'r-','linewidth',2);

Figure 16.33: A plot of the closed curve in heart-data.txt.

https://skim.math.msstate.edu/LectureNotes/heart-data.txt
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We will explore a mid-point approximation for line integrals.

What to do

• First, download a heart data and save it in heart-data.txt:
https://skim.math.msstate.edu/LectureNotes/heart-data.txt.

• In the following, let (x̂i, ŷi) be the mid-point of (xi, yi) and (xi+1, yi+1) :

x̂i =
xi + xi+1

2
and ŷi =

yi + yi+1

2
.

1. Draw a figure for the dataset.

2. Implement a computer program for the computation of the area:

A(♥) =

‰
∂♥
x dy =

m−1∑
i=1

ˆ
Ci

x dy ≈
m−1∑
i=1

x̂i · (yi+1 − yi), (16.79)

where m denotes the number of points in the data file and Ci is the
line segment connecting (xi, yi) and (xi+1, yi+1).

Note: The approximation in (16.79) results in the exact value. Why?

3. Implement a program for an approximation of the line integral:
˛
∂♥

(x+ y) dx+ (x− y) dy ≈
m−1∑
i=1

(x̂i + ŷi)(xi+1 − xi) + (x̂i − ŷi)(yi+1 − yi).

(16.80)

(a) In general, the mid-point formula for line integrals may not result
in the exact value. However, the approximation in (16.80) can
produce the exact value for the vector field F = 〈x + y, x − y〉.
Why?

(b) Can you predict how large the integral must be? Why?

https://skim.math.msstate.edu/LectureNotes/heart-data.txt
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Let’s consider a very basic for coding.

Computer implementation, in a nutshell
• In computer implementation, one of the major issues is how to deal

with ‘loop’, which is a recursive execution of operations.

• A loop can start with an initialization.

• For example, let’s try to add the square of integers from 1 to 10.
Then, you may implement a code as in square_sum.m below.

square_sum.m
1 n = 10;
2 sum = 0;
3 for i = 1:n
4 sum = sum + i^2;
5 end

Report. Upload a file including your experiences:

• Plot the given data.

• Implement a code for each of (16.79) and (16.80).

• Collect all your work, in order, including the plot, the code, the re-
sults (the area and the estimation of line integral).

• Attach a “summary” or “conclusion” page at the beginning of report.
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R.16. Review Problems for Ch. 16

1. Evaluate the line integral
ˆ
C

x2y ds, where C is given by r(t) =< cos t, sin t >,

0 ≤ t ≤ π/2. Formula:
´
C f(x, y) ds =

´ b
a f(r(t)) |r′(t)| dt

Ans: 1/3

2. Let F (x, y) = x2y3i + x3y2j.

(a) Is F conservative? Why?
(b) Find a function f such that∇f = F .

(c) Evaluate the line integral
ˆ
C

F · dr, where C is parameterized as

r(t) =
〈
t3 − 2t, t3 + 2t

〉
, 0 ≤ t ≤ 1.

Formula:
´
C F · dr =

´ b
a F (r(t)) · r′(t) dt. When F is conservative,

´
C F · dr = f(r(b))− f(r(a)).

Ans: (a) Yes. (b) f = x3y3/3 +K. (c) −9.

3. Let F (x, y) = 2xe−y i + (2y − x2e−y) j and C is any path from (1, 0) to (2, 1).

(a) Show that the integral
ˆ
C

F · dr is independent of path.

(b) Evaluate the integral
ˆ
C

F · dr.

Ans: (a) Qx = Py = −2xe−y; (b) f(x, y) = x2e−y + y2 +K. f(2, 1)− f(1, 0) = 4/e

4. Use Green’s Theorem to evaluate the line integral
ˆ
C

(y+e
√
x)dx+(2x+3 cos y2)dy,

whereC is the triangle with vertices from (0, 0) to (0, 4) to (2, 0) to (0, 0). Formula:¸
C Pdx+Qdy =

s
D(Qx − Py) dA.

Ans: −4

5. Is there a vector field G on R3 such that curlG =< x sin y, cos y, z − xy >?
Verify your answer.

Ans: No, because∇ · (∇×G) = 1 6= 0.
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6. Use the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

ˆ
∂D

x dy

to show that the area of D (the shaded region) is 16− 4·2
2 = 12. You have to com-

pute the line integral for each of four line segments of the boundary.
For the slant line segment, in particular, you should introduce an appropriate pa-
rameterization for the line integral.

Answer: For the slant line segment (C1) : x = t, y = t/2, 0 ≤ t ≤ 4. So,
´
C1
xdy =

´ 4
0 t

1
2 dt = 4. For

the right vertical line segment (C2):
´
C2
xdy =

´
C2

4dy = 8. For the others, the line integral is zero.

7. Evaluate the surface integral
x

S

F · dS, where F (x, y, z) = x i + y j + 2z k

and S is a part of the paraboloid z = x2 + y2, z ≤ 1.

Formula:
s
S F · dS =

s
S F · n dS =

s
D F · (ru × rv) dA. When F =< P,Q,R > and the surface

is given by z = g(x, y),
s
S F · dS =

s
D(−Pgx −Qgy +R) dA.

Ans:
s
S F · dS =

s
D(−Pgx −Qgy +R) dA =

s
D(−2x2 − 2y2 + 2z) dA =

s
D 0 dA = 0.

8. Use Stokes’s Theorem to evaluate
ˆ
C

F · dr, where

F (x, y, z) =< x+ y2, y + z2, z + x2 >
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and C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). (Orient C to be
counterclockwise when viewed from above.)

Hint : Let S be the part of plane x + y + z = 1 defined over the triangle of vertices (0, 0), (1, 0), and

(0, 1). Then the curve C is the boundary of S. Formula:
´
C F · dr =

s
S(∇× F ) · dS. For the surface

integral, you may use the last equality in Formula of Problem 7.

Answer: ∇ × F =< −2z,−2x,−2y > and rx × ry =< 1, 1, 1 >. G =
s
D(−2x − 2y − 2z) dA =

s
D(−2) dA = −1.

9. Use the Divergence Theorem to evaluate the flux of F across S, where

F (x, y, z) = 12z i + 4y j− 5xk

and S is the boundary of of the solid region E enclosed by the paraboloid z =

1−x2− y2 and the plane z = 0. Formula: Divergence Theorem:
s
S F ·dS =

t
E ∇·F dV

Ans: 2π

10. (Unclosed Surface). Use the Divergence Theorem to evaluate the flux of F
across S, where

F (x, y, z) = 3018y i + (5x+ 3y) j + (z − 1) k

and S is a part of the paraboloid z = 1− x2 − y2, z ≥ 0.

Hint : Note that S is not a closed surface. First compute integrals over S1 and S2 = S ∪ S1, where S1 is

the disk x2 + y2 ≤ 1, z = 0, oriented downward. Formula:
s
S F · dS =

s
S F · n dS. Divergence

Theorem:
s
S F · dS =

t
E ∇ · F dV .

Answer:
s
S2
F · dS =

t
E ∇ · F dV =

t
E 4 dV = 4

s
S1

´ 1−x2−y2
0 dz dA = 2π. And

s
S1
F · dS =

s
S1
F · n dS =

s
S1

(1− z) dS = π, because n =< 0, 0,−1 > and z = 0 on S1. Thus 2π − π = π.
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F.1. Formulas for Chapter 16

Line Integrals
Formula 16.109. (16.17) If f is defined on a smooth curve C given by a vector
equation r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b, then line integral of f along C isˆ

C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt =

ˆ b

a

f(x(t), y(t), z(t))
√

(x′)2 + (y′)2 + (z′)2 dt. (16.81)

Formula 16.110. (16.22) Let F is a continuous vector field defined on a smooth
curve C given by r(t), a ≤ t ≤ b. Then the line integral of F along C isˆ

C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (16.82)

The Fundamental Theorem for Line Integrals
Formula 16.111. (16.25) Suppose that F is continuous, and is a conservative
vector field; that is, F = ∇f for some scalar-valued function f . Thenˆ

C

F · dr =

ˆ
C

∇f · dr = f(r(b))− f(r(a)). (16.83)

Note: If F = 〈P, Q〉 satisfies Py = Qx over an open simply-connected domain, then F is
conservative.
Green’s Theorem
Formula 16.112. (16.30) Let C be positively oriented, piecewise-smooth, simple
closed curve in the plane and D be the region bounded by C. If F = 〈P,Q〉 have
continuous partial derivatives on an open region including D, then‰

C

F · dr def
==

‰
C

Pdx+Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dA. (16.84)

Surface Integrals
Formula 16.113. (16.64) Suppose the surface S is defined by a vector function
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, (u, v) ∈ D. Then

x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (16.85)

Formula 16.114. (16.65) When z = g(x, y), rx × ry = 〈−gx,−gy, 1〉. Thus the
formula (16.85) reads

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2
x + g2

y + 1 dA. (16.86)
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Surface Integrals of Vector Fields
Formula 16.115. (16.70) Let F be a continuous vector field defined on an oriented
surface S with unit normal vector n. The surface integral of F = 〈P, Q, R〉 over S
is ˆ

C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt,
(16.87)

Formula 16.116. (16.71) When the surface S is defined by z = g(x, y), rx × ry =
〈−gx,−gy, 1〉 and

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA. (16.88)

Stokes’ Theorem
Formula 16.117. (16.74) Let S be an oriented piecewise-smooth surface that is
bounded by a simple, closed, piecewise-smooth curve C with positive orientation.
Let F = 〈P, Q, R〉 be a vector field whose components have continuous partial
derivatives. Then‰

C

F · dr =
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA. (16.89)

The Divergence Theorem
Formula 16.118. (16.76) Let E be a simple solid region and S be the boundary
surface of E, given with positive (outward) orientation. Let F = 〈P, Q, R〉 have con-
tinuous partial derivatives on an open region that contains E. Then

"
S

F · dS =
y

E

∇ · F dV. (16.90)
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CHAPTER 17
Optimization Methods

Optimization is the branch of research-and-development that aims to solve the problem
of finding the elements which maximize or minimize a given real-valued function, while
respecting constraints. Many problems in engineering and machine learning can be cast
as optimization problems, which explains the growing importance of the field. An op-
timization problem is the problem of finding the best solution from all feasible
solutions.

In this chapter, we will discuss details about two of common optimization methods:

• Method of Euler-Lagrange equations (variational calculus), and
• Gradient descent method.
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17.1. Variational Calculus: Euler-Lagrange Equa-
tions

Consider the following minimization problem

min
u

ˆ
Ω

|∇u| dx subj. to ‖v0 − u‖ = σ, (17.1)

where ‖v0 − u‖ =
(ˆ

Ω

(v0 − u)2dx
)1/2

and

v0 : given observed data (image)
u : a desired image to be restored
σ : the standard deviation of noise η = v0 − u

Introducing a Lagrange multiplier λ, the problem (17.1) can be written equiva-
lently as

min
u
J (u), J (u)

def
==

ˆ
Ω

|∇u| dx +
λ

2
‖v0 − u‖2

=

ˆ
Ω

[
|∇u|+ λ

2
(v0 − u)2

]
dx.

(17.2)

Method of Lagrange multipliers

Recall: Earlier in § 14.8, we considered a problem of the form

min
x
f(x) subj.to g(x) = c. (17.3)

The problem could be solved by finding (x, λ) such that

∇f(x) = λ∇g(x) and g(x) = c . (17.4)

(See Strategy 14.85, p. 65.) The first equation of (17.4) can be written as

∇ [f(x) + λg(x)] = 0, (17.5)

which (assuming λ found) is a necessary condition for

min
x

[f(x) + λg(x)] . (17.6)
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17.1.1. Total variation
Definition 17.1. Let f be a differentiable function defined on Ω ⊂ Rd. Then the
total variation (TV) of f over Ω is defined as

TV (f) =

ˆ
Ω

|∇f | dx. (17.7)

Remark 17.2. Thus the problem in (17.1),

min
u

ˆ
Ω

|∇u| dx subj. to ‖v0 − u‖ = σ, (17.8)

is the problem of finding a solution that minimizes the TV, given the constraint
‖v0 − u‖ = σ. It has been widely used in the field of image processing, particu-
larly in mathematical denoising.

Example 17.3. Let f be defined on an interval [a, b]. Then it follows from (17.7)
that

TV (f) =

ˆ b

a

|f ′(x)| dx. (17.9)

Problem 17.4. Find the TV of f(x) = 2x3 − 3x2 + 4 over [−1, 2].
Solution.

Ans: 11
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17.1.2. Calculus of variation
For simplicity, we will derive the Euler-Lagrange equation for problems in one vari-
able. Consider

min
u
J (u), J (u) =

ˆ x2

x1

f(x, u, u′)dx. (17.10)

The Question:
What is the function u that satisfies

u(x1) = u1 and u(x2) = u2 (17.11)

and renders J in (17.10) a minimum ?

Figure 17.1: The minimizer u and its variation U as a comparison function.

An Answer:

1. Let u be the minimizing function of J in (17.10).
2. Consider the one-parameter family of comparison functions

U(x) = u(x) + ε η(x), (17.12)

where η is an arbitrary differentiable function such that

η(x1) = η(x2) = 0.

3. See Figure 17.1. Note
U ′(x) = u′(x) + εη′(x). (17.13)

4. Consider
J (ε) =

ˆ x2

x1

f(x, U, U ′) dx =

ˆ x2

x1

f(x, u+ εη, u′ + εη′) dx.

Then, since U = u (the minimizer) when ε = 0, we have

J ′(0) = 0. (17.14)
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Implication of J ′(0) = 0

Differentiating J with respect to ε reads

dJ
dε

= J ′(ε) =

ˆ x2

x1

(
∂f

∂U

∂U

∂ε
+

∂f

∂U ′
∂U ′

∂ε

)
dx =

ˆ x2

x1

(
∂f

∂U
η +

∂f

∂U ′
η′
)
dx. (17.15)

Thus,

J ′(0) =

ˆ x2

x1

(
∂f

∂u
η +

∂f

∂u′
η′
)
dx = 0. (17.16)

Now, apply integration by parts (for the second part) to get

J ′(0) =

ˆ x2

x1

∂f

∂u
η dx +

∂f

∂u′
η

∣∣∣∣x2
x1

−
ˆ x2

x1

d

dx

(
∂f

∂u′

)
η dx

=

ˆ x2

x1

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
η dx = 0.

(17.17)

Since the above holds for arbitrary η, we must have

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0, (17.18)

which is called the Euler-Lagrange equation of J .

Problem 17.5. Let f(x) = |x|α. Find d f

dx
. What is d f

dx
when α = 1 ?

Solution. Hint : Begin with ln f = α ln |x|. Or, define fε(x) =
(√

x2 + ε2
)α

and find lim
ε→0

f ′ε(x).

Ans: d |x|α
dx

= α
x
|x|α; d |x|

dx
= |x|

x
= x
|x|
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Problem 17.6. In 1D, the objective function J in (17.2) reads

J (u) =

ˆ b

a

[
|ux|+

λ

2
(v0 − u)2

]
dx, (17.19)

where ux = du/dx. Find its Euler-Lagrange equation.
Solution.

Ans: −λ(v0 − u)−
( ux
|ux|

)
x

= 0, or −
( ux
|ux|

)
x

= λ(v0 − u).

Self-study 17.7. Find the Euler-Lagrange equation for

J (u) =

ˆ b

a

[
(ux)2 + λ(v0 − u)2

]
dx. (17.20)

Solution.

Ans: −uxx = λ(v0 − u).
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Remark 17.8. In 2D, the objective function (17.2) becomes

J (u) =

ˆ
Ω

[
|∇u|+ λ

2
(v0 − u)2

]
dx =

ˆ
Ω

[√
u2
x + u2

y +
λ

2
(v0 − u)2

]
dx; (17.21)

its Euler-Lagrange equation reads

−∇ ·
( ∇u
|∇u|

)
= λ (v0 − u), (17.22)

where the left-hand side is called the curvature. For a convenient simulation
of (17.22), we can parametrize the energy descent direction by an artificial
time t:

∂u

∂t
−∇ ·

( ∇u
|∇u|

)
= λ (v0 − u), u(x, t = 0) = v0(x). (17.23)

which is called the total variation (TV) model [6] in the literature of image
processing. The stationary solution of (17.23) would show a smaller TV value
than v0.

Example 17.9. The TV model has a tendency to converge to a piecewise constant
image, which is call a staircasing.

(a) (b)

Figure 17.2: Staircasing of the TV model: (a) The original Elaine and (b) its TV result.
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Example 17.10. To overcome the staircasing effect, the TV model can be modified
as ∂u

∂t
− |∇u| ∇ ·

( ∇u
|∇u|

)
= λ |∇u| (v0 − u), (17.24)

where the Euler-Lagrange equation is scaled by |∇u| before applying time parametriza-
tion. The above is call the improved TV (ITV) model [4].

(a) (b)

(c) (d)

Figure 17.3: Lena: (a) The original image, (b) a noisy image, (c) a restored image by ITV,
and (d) a restored image by ITV-END. The PSNR (peak signal-to-noise ratio) measures
22.8, 27.0, and 30.3 respectively for (b), (c), and (d).

Note: END stands for equalized net diffusion, which is invented by Kim [2] as
another scaling operation incorporated with ITV, in order to preserve fine features of
the image more effectively.
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17.2. Gradient Descent Method
The first method is one of the oldest
methods in optimization: gradient de-
scent method, a.k.a steepest de-
scent method. The method was sug-
gested by Augustin-Louis Cauchy in 1847
[3]. He was a French mathematician and
physicist who made pioneering contribu-
tions to mathematical analysis. Today, it
is used to solve problems with thousands
of variables comfortably.

Figure 17.4: Augustin-Louis Cauchy

Optimization Problem

Let Ω ⊂ Rd, d ≥ 1. Given a real-valued function f : Ω → R, the general problem of
finding the value that minimizes f is formulated as follows.

min
x∈Ω

f(x). (17.25)

In this context, f is the objective function. Ω ⊂ Rd is the domain of the function
(also known as the constraint set).

Problem 17.11. (Revisit of Problem 14.79). Find all local extrema of f(x, y) =

x4 + y4 − 4xy + 1. What is the global minimum, min(x,y)∈R2 f(x, y) ?
Solution.

Figure 17.5
Ans: local min at: (±1,±1), saddle point: (0, 0); global min = −1
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Example 17.12. (Rosenbrock function). For example, the Rosenbrock func-
tion in the two-dimensional (2D) space is defined as1

f(x, y) = (1− x)2 + 100 (y − x2)2. (17.26)

Figure 17.6: Plots of the Rosenbrock function f(x, y) = (1− x)2 + 100 (y − x2)2.

Rosenbrock function
Note: The Rosenbrock function is commonly used when evaluating the performance of
optimization algorithms, due to the following reasons.

• Its minimizer x = np.array([1.,1.]) is found in curved valley, and so minimizing
the function is non-trivial, and

• Python: The Rosenbrock function is included in the scipy.optimize package (as
rosen), as well as its gradient (rosen_der) and its Hessian (rosen_hess).

1The Rosenbrock function in 3D is given as f(x, y, z) = [(1− x)2 + 100 (y − x2)2] + [(1− y)2 + 100 (z − y2)2],
which has exactly one minimum at (1, 1, 1). Similarly, one can define the Rosenbrock function in gen-
eral N -dimensional spaces, for N ≥ 4, by adding one more component for each enlarged dimension.

That is, f(x) =

N−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2i )2

]
, where x = [x1, x2, · · · , xN ] ∈ RN . See Wikipedia

(https://en.wikipedia.org/wiki/Rosenbrock_function) for details.

https://en.wikipedia.org/wiki/Rosenbrock_function
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Recall: The gradient∇f is a vector (a direction to move), which is
• pointing in the direction of greatest increase of the function, and
• zero (∇f = 0) at local maxima or local minima.

The goal of the gradient descent (GD) method is to address directly the process of
minimizing the function f , using the fact that−∇f(x) is the direction of steepest descent
of f at x. Given an initial point x0, we move it to the direction of −∇f(x0) so as to get a
smaller function value. That is,

x1 = x0 − γ∇f(x0)⇒ f(x1) < f(x0).

We repeat this process till reaching at a desirable minimum. Thus the method is formu-
lated as follows.

Gradient descent method

Algorithm 17.13. Given an initial point x0, find iterates xn+1 recursively using

xn+1 = xn − γ∇f(xn), (17.27)

for some γ > 0. The parameter γ is called the step length or learning rate.

To understand the basics of GD method thoroughly, we consider the method for solving
unconstrained minimization problems defined in 1D.

17.2.1. The gradient descent method in 1D

Consider the minimization problem in 1D:

min
x

f(x), x ∈ S, (17.28)

where S is a closed interval in R. Then its gradient descent method reads

xn+1 = xn − γ f ′(xn). (17.29)
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Picking the step length γ : Assume that the step length was chosen to be indepen-
dent of n, although one can play with other choices as well. The question is how to
select γ in order to make the best gain of the method. To turn the right-hand side
of (17.29) into a more manageable form, we invoke Taylor’s Theorem:2

f(x+ t) = f(x) + t f ′(x) +

ˆ x+t

x

(x+ t− s) f ′′(s) ds. (17.30)

Assuming that |f ′′(s)| ≤ L, we have

f(x+ t) ≤ f(x) + t f ′(x) +
t2

2
L.

Now, letting x = xn and t = −γ f ′(xn) reads

f(xn+1) = f(xn − γ f ′(xn))

≤ f(xn)− γ f ′(xn) f ′(xn) +
1

2
L [γ f ′(xn)]2

= f(xn)− [f ′(xn)]2
(
γ − L

2
γ2
)
.

(17.31)

The gain (learning) from the method occurs when

γ − L

2
γ2 > 0 ⇒ 0 < γ <

2

L
, (17.32)

and it will be best when γ − L
2 γ

2 is maximal. This happens at the point

γ =
1

L
(17.33)

It follows from (17.31) and (17.33) that

f(xn+1) ≤ f(xn)− 1

2L
[f ′(xn)]2. (17.34)

Theorem 17.14. (Convergence of GD method). If f is bounded from below
and the level sets of f are bounded, there is a point x̂ such that

lim
n→∞

xn = x̂, f ′(x̂) = 0. (17.35)

2Taylor’s Theorem, with integral remainder: Suppose f ∈ Cn+1[a, b] and x0 ∈ [a, b]. Then, for every

x ∈ [a, b], f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn(x), Rn(x) =

1

n!

ˆ x

x0

(x− s)n f (n+1)(s) ds.
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17.2.2. Examples
Here we examine the convergence of gradient descent on three examples: a well-conditioned
quadratic, an badly-conditioned quadratic, and a non-convex function, as shown by Dr. Fabian
Pedregosa, UC Berkeley.

γ = 0.2

Figure 17.7: On a well-conditioned quadratic function, the gradient descent converges in a
few iterations to the optimum

γ = 0.02

Figure 17.8: On a badly-conditioned quadratic function, the gradient descent converges
and takes many more iterations to converge than on the above well-conditioned problem.
This is partially because gradient descent requires a much smaller step length on this
problem to converge.

γ = 0.02

Figure 17.9: Gradient descent also converges on a badly-conditioned non-convex problem.
Convergence is slow in this case.

http://fa.bianp.net/teaching/2018/eecs227at/
http://fa.bianp.net/teaching/2018/eecs227at/
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17.2.3. The choice of step length and line search
The convergence of the gradient descent method can be extremely sensible to the choice of
step length. It often requires to choose the step length adaptively: the step length would
better be chosen small in regions of large variability of the gradient, while in regions with
small variability we would like to take it large.

Backtracking line search procedures allow to select a step length depending on
the current iterate and the gradient. In this procedure, we select an initial (optimistic)
step length γn and evaluate the following inequality (known as sufficient decrease
condition):

f(xn − γn∇f(xn)) ≤ f(xn)− γn
2
‖∇f(xn)‖2. (17.36)

If this inequality is verified, the current step length is kept. If not, the step length is
divided by 2 (or any number larger than 1) repeatedly until (17.36) is verified. To get a
better understanding, refer to (17.34) on p. 250, with (17.33).

GD, with Backtracking Line Search
The GD algorithm with backtracking line search becomes

input: initial guess x0, step length γ > 0;
for n = 0, 1, 2, · · · do

initial step length estimate γn;
while (TRUE) do

if f(xn − γn∇f(xn)) ≤ f(xn)− γn
2 ‖∇f(xn)‖2

break;
else γn = γn/2;

end while
xn+1 = xn − γ∇f(xn);

end for
return xn+1;

(17.37)
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The following examples show the convergence of gradient descent with the aforemen-
tioned backtracking line search strategy for the step length.

Figure 17.10: On a well-conditioned quadratic function, the gradient descent converges in
a few iterations to the optimum. Adding the backtracking line search strategy for the step
length does not change much in this case.

Figure 17.11: In this example we can clearly see the effect of the backtracking line search
strategy: once the algorithm in a region of low curvature, it can take larger step lengths.
The final result is a much improved convergence compared with the fixed step-length
equivalent.

Figure 17.12: The backtracking line search also improves convergence on non-convex prob-
lems.
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17.2.4. Optimizing optimization
Multiple Local Minima Problem

Remark 17.15. Although you can choose the step length smartly, there is
no guarantee for your algorithm to converge to the desired solution (the global
minimum), particularly when the objective involves multiple local minima.

Figure 17.13: Smooth sailing, through a Gaussian smoothing.

• Here, we consider the so-called Gaussian homotopy continuation method [5],
which may overcome the local minima problem for certain classes of optimization
problems.

• The method begins by trying to find a convex approximation of an optimization prob-
lem, using a technique called Gaussian smoothing.

• Gaussian smoothing converts the cost function into a related function that gives not
the value that the cost function would, but a weighted average of all the surrounding
values.

• This has the effect of smoothing out any abrupt dips or ascents in the cost function’s
graph, as shown in Figure 17.13.

• The weights assigned the surrounding values are determined by a Gaussian func-
tion, or normal distribution.
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Problem 17.16. Let f(x) = x4 − 4

3
x3 − 4x2 + 11. Perform two GD iterations to

estimate minx f(x), starting from x0 = 1 and setting γn = 0.1/(n+ 1).
Solution. Clue: f ′(x) = 4x3 − 4x2 − 8x = 4x(x2 − x− 2) and min

x
f(x) = f(2) = 1/3.

Algorithm 17.17. The above problem is implemented as follows.
GD.m

1 %%------------------------------------------------------
2 %% An Example for Gradient Descent Method
3 %%------------------------------------------------------
4 f = @(x) x.^4 -4/3*x.^3 -4*x.^2 +11;
5 df = @(x) 4*x.^3 -4*x.^2 -8*x;
6

7 x0 = 1.0;
8 xn = gd1D(df,x0,tol=1.0e-5,itmax=1000);
9 fprintf("min f = %.7f @ xn= %.10f\n",feval(f,xn),xn);

gd1D.m
1 function xn = gd1D(df,x0,tol,itmax)
2 % function xn = gd1D(df,x0,tol)
3 % Input: df: derivative of f; x0: initial value
4 % Default: gamma = 0.1/n
5 if nargin==2, tol=1.0e-5; itmax=1000; end
6

7 xn = x0;
8 for n=1:itmax
9 gamma = 0.1/n;

10 h = gamma*feval(df,xn); xn = xn - h;
11 if (abs(h)<tol)
12 fprintf('gd1D.m: converged @ n = %d (tol=%g)\n',n,tol); break;
13 end
14 end

The Result
1 [Sat Oct.26] octave GD.m
2 gd1D.m: converged @ n = 8 (tol=1e-05)
3 min f = 0.3333333 @ xn= 2.0000182623
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Exercises 17.2

By solving problems below, you will learn numerical characteristics of GD, particularly
the importance of initial values (x0) and step lengths (γn).

1. CAS Implement GD as in Algorithm 17.17 in MATLAB3 and test it as follows.

(a) Run GD.m with {x0=3.0; itmax=10;}.
(b) Plot y = f(x) with the iterates xn, n = 1, · · · , 10, being located on the x-axis.
(c) First edit gd1D.m to replace gamma=0.1/n with gamma=0.1/(n+3) and then run GD.m

again with {x0=3.0; itmax=10;}.
(d) Plot y = f(x) again with the iterates xn, n = 1, · · · , 10, being located on the x-axis.
(e) Discuss your experiments, focusing on the importance of initial values (x0) and step

lengths (γn).

2. CAS Now, consider the last four digits of your student ID (say, a b c d). Let

g(x) = â x4 − b x3 − c x2 + d,

where â = max(a, 1).

(a) Plot y = g(x).
(b) Examine the figure to find an accurate initial value x0 for solving min

x
g(x).

(c) Edit gd1D.m to set gamma for GD to converge as fast as possible.
(d) Report your experiments.

3MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and proprietary
programming language developed by MathWorks.
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A.1. (§14.4) Tangent Planes and Linear Approx-
imations

Definition A.1. Given z = f(x, y), the linear (tangent plane) approximation
of f near (a, b) is

L(x, y) ≡ z0 + fx(a, b) (x− a) + fy(a, b) (y − b), (A.1)

where z0 = f(a, b).

Note: The equation of the tangent plane is

z − z0 = fx(a, b) (x− a) + fy(a, b) (y − b),

or equivalently −fx(a, b) (x− a)− fy(a, b) (y − b) + (z − z0) = 0. (A.2)

A level surface form of z = f(x, y) can be rewritten as

F (x, y, z) = z − f(x, y) = 0;

its gradient beclomes
∇F = 〈−fx, −fy, 1〉. (A.3)

Preveal A.2. (§ 16.6. Parametric Surfaces and Their Areas): Let a surface S
be formed by the graph of z = f(x, y) and parametrized by r(x, y) = 〈x, y, f(x, y)〉.
Then

rx × ry = 〈−fx, −fy, 1〉; (A.4)

see (16.62) on p. 210.

Theorem A.3. If fx and fy exist near (a, b) and continuous at (a, b), then f is
differentiable at (a, b).

Definition A.4. For a differentiable function z = f(x, y), the (total) differen-
tial is

dz = fx(x, y) dx+ fy(x, y) dy, (A.5)

where dx and dy represent the change in the x and y directions, respectively.
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Problem A.5. Find an equation for the tangent plane to the elliptic paraboloid
z = x2 + 4y2 at the point (1, 1, 5).
Solution.

Ans: z − 5 = 2 · (x− 1) + 8 · (y − 1)⇔ z = 2x+ 8y − 5.
Problem A.6. Let f(x, y) = ln(x + 1) + cos(x/y). Explain why the function is differ-
entiable at (0, 2).

Problem A.7. Use a linear approximation to estimate f(2.2, 4.9), provided that
f(2, 5) = 6, fx(2, 5) = 1, and fy(2, 5) = −1.
Solution.

Ans: 6.3
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A.2. (§14.6) Directional Derivatives and Gradi-
ent Vector

Claim A.8. For a unit vector u, the directional derivative for a differential
function f is

Duf(x, y) = ∇f(x, y) · u.

Theorem A.9. Let f be differentiable. Then,

max
u

Duf = |∇f | (A.6)

Note: The gradient vector ∇f is directing the fastest increasing direction.

Tangent Plane and Normal Line to a Level Surface

Suppose S is a surface given as F (x, y, z) = k and x0 = (x0, y0, z0) is on S. Then the
tangent plane to S at x0 is

∇F (x0) · (x− x0) = Fx(x0)(x− x0) + Fy(x0)(y − y0) + Fz(x0)(z − z0) = 0. (A.7)

The normal line to S at x0 is

x− x0

Fx(x0)
=
y − y0

Fy(x0)
=
z − z0

Fz(x0)
. (A.8)
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Problem A.10. Let f(x, y) = x+ sin(xy).

1. Find the directional derivative of f at the point (1, 0) in the direction given by
the angle θ = π/3.

2. In what direction does f have the maximum rate of change? What is the maxi-
mum rate of change?

Solution.

Ans: (a) (1 +
√

3)/2 (b)
√

2

Problem A.11. Find the equations of the tangent plane and the normal line at
P (0, 0, 1) to x+ y + z = exyz.

Solution.

Ans: (a) x+ y + z = 1 (b) x = y = z − 1
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A.3. (§14.8) Lagrange Multipliers

Consider the optimization problem[
max /min f(x)

subject to g(x) = c

Strategy A.12. (Method of Lagrange multipliers). For the max/min values
of the optimization problem,

(a) Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c.

(b) Evaluate f at all these points, to find the maximum and minimum.

Example A.13. Use Lagrange Multipliers to prove that the rectangle with maxi-
mum area that has a give perimeter p is a square.
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Problem A.14. Find the maximum and minimum values of f(x, y) = 2x2 + (y − 1)2

on the circle x2 + y2 = 4.

Solution. ∇f = λ∇g =⇒
[

4x
2(y − 1)

]
= λ

[
2x
2y

]
. Therefore,

 2x = λx 1
y − 1 = λ y 2
x2 + y2 = 4 3

From 1 , x = 0 or λ = 2.

Ans: min: f(0, 2) = 1; max: f(±
√

3,−1) = 10

Problem A.15. Find the maximum and minimum values of f(x, y) = 2x2 + (y − 1)2

on the disk x2 + y2 ≤ 4.

Solution. Hint : You should check values at critical points as well.

Ans: min: f(0, 1) = 0; f(±
√

3,−1) = 10
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A.4. (§15.2) Double Integrals over General Re-
gions

Multiple integrals can be computed with iterated integral where the given do-
main must be covered once-and-only-once, without missing and without overlap.
Furthermore, you should be able to change the order of integration properly.

Problem A.16. (Problem 15.16). Find the volume of the solid that lies under the
plane z = 1 + 2y and above the region D in the xy-plane bounded by the line y = 2x

and the parabola y = x2.
Solution. Try for both orders.

Ans: 28/5
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Problem A.17. Evaluate the integral by reversing the order of integration:
ˆ 4

0

ˆ 2

√
y

ex
3

dx dy

Solution.

Ans: 1
3
(e8 − 1)

Self-study A.18. Sketch the region of integration and change the order of integra-
tion. ˆ 2

−2

ˆ √4−y2

0

f(x, y) dx dy

ˆ ln 2

0

ˆ 2

ey
f(x, y) dx dy

Solution.
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A.5. (§15.7) Triple Integrals in Cylindrical Co-
ordinates

Definition A.19. (Definition 15.53). The conversion between the Cylindri-
cal Coordinates and the Rectangular Coordinate system gives

(x, y, z)R ← (r, θ, z)C (r, θ, z)C ← (x, y, z)R
x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x
z = z z = z

(A.9)

Note: The triple integral with a Cylindrical Domain E can be carried out by first
separating the domain like

E = D × [u1(x, y), u2(x, y)], where D is a polar region.

Problem A.20. Evaluate
y

E

y dV , where E is the solid that lies between the cylin-

ders x2 + y2 = 1 and x2 + y2 = 9, above the xy-plane, and below the plane z = y + 3.
Solution.

Ans: 20π
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Self-study A.21. Use the cylindrical coordinates to find the volume of the solid E

that is enclosed by the cone z =
√
x2 + y2 and the sphere x2 + y2 + z2 = 8.

Solution.

Ans: 32
3
π(
√

2− 1)
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A.6. (§15.9) Change of Variables in Multiple In-
tegrals

Definition A.22. A change of variables is a transformation T : Q → R (from
the uv-plane to the xy-plane), T (u, v) = (x, y), where x and y are related to u and v
by the equations

x = g(u, v), y = h(u, v). [or, r(u, v) = 〈g(u, v), h(u, v)〉]

We usually take these transformations to be C1-Transformation, meaning g
and h have continuous first-order partial derivatives, and one-to-one.

Figure A.1: Transformation: R = T (Q), the image of T .

Definition A.23. The Jacobian of T : x = g(u, v), y = h(u, v) is

∂(x, y)

∂(u, v)

def
== det

[
xu xv
yu yv

]
= xu yv − xv yu. (A.10)

Claim A.24. Suppose T : Q → R is an one-to-one C1 transformation whose
Jacobian is nonzero. Then

x

R

f(x, y) dA =
x

Q

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv (A.11)

Note: In linear algebra, an n × n matrix A is considered as a transformation from
Rn to Rn. Furthermore its determinant can be viewed as a volume scaling factor.
For details, see Section 3.1 of Introduction to Linear Algebra:
https://skim.math.msstate.edu/LectureNotes/Linear_Algebra_LectureNote.pdf.

https://skim.math.msstate.edu/LectureNotes/Linear_Algebra_LectureNote.pdf
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Problem A.25. Make an appropriate change of variables to evaluate the integral
x

R

sin(9x2 + 4y2) dA,

where R is the region in the first quadrant bounded by the ellipse 9x2 + 4y2 = 1.
Solution.

Ans: π(1−cos 1)
24
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A.7. (§16.2) Line Integrals

Definition A.26. If f is defined on a smooth curve C given by

r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b, (A.12)

then line integral of f along C is
ˆ
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i ) ∆si, (A.13)

if this limit exists. Here ∆si =
√

∆x2
i + ∆y2

i .

The line integral defined in (A.13) can be evaluated as

´
C
f(x, y) ds =

ˆ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

=

ˆ b

a

f(x(t), y(t)) |r′(t)| dt.
(A.14)

Definition A.27. Let F be a continuous vector field defined on a smooth curve
C given by r(t), a ≤ t ≤ b. Then the line integral of F along C is

ˆ
C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (A.15)

We say that work is the line integral with respect to arc length of the tangential
component of force.
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Problem A.28. Evaluate the line integral
ˆ
C

x ey
2−z2 ds, where C is the line segment

from (0, 0, 0) to (2,−2, 1).
Solution.

Ans: e3 − 1

Problem A.29. Find the work done by the vector field F (x, y) = 〈x, yex〉 on the
particle that moves along the parabola x = y2 + 1 from (1, 0) to (2, 1).
Solution.

Ans: 3
2

+ e2−e
2
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A.8. (§16.3) The Fundamental Theorem for Line
Integrals

Let C be a curve represented by

r(t) = 〈x(t), y(t)〉 or r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.

Theorem A.30.

1. Suppose that F is continuous, and is a conservative vector field; that is,
F = ∇f for some f . Then

ˆ
C

F · dr =

ˆ
C

∇f · dr = f(r(b))− f(r(a)). (A.16)

2.
´
C
F · dr is independent of path in D if and only if

´
C
F · dr = 0 for every

closed path in D.
3. Suppose F is a vector field that is continuous on an open connected do-

main D. If
´
C
F · dr is independent of path in D, then F is conservative

(i.e., there is f such that F = ∇f).
4. If F = 〈P, Q〉 is conservative, where P and Q have continuous partial deriva-

tives, then
∂Q

∂x
=
∂P

∂y
. (A.17)

5. When D is a simply-connected domain, the equality (A.17) implies conser-
vativeness of F .

Roughly speaking: When F = 〈P, Q〉 is smooth enough,

conservativeness ⇔ independence of path ⇔ Qx = Py
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Problem A.31. Find the work done by

F = 2y3/2i + 3x
√
y j

in moving an object from A(1, 1) to B(2, 4).
Solution. First, check if F is conservative: Qx = 3

√
y, Py = 2 · 3

2y
1/2 = 3

√
y.

Ans: 30
Problem A.32. Given F (x, y) = 〈ey + y cosx, xey + sinx〉,

(a) Find a potential.
(b) Evaluate

´
C
F · dr, where C is parameterized as

r(t) = 〈et cos t, et sin t〉, 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = xey + y sinx+K (b) −eπ − 1
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A.9. (§16.4) Green’s Theorem

Theorem A.33. (Green’s Theorem). Let C be positively oriented, piecewise-
smooth, simple closed curve in the plane and D be the region bounded by C. If
F = 〈P,Q〉 has continuous partial derivatives on an open region including D,
then ‰

C

Pdx+Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dA. (A.18)

The theorem gives the following formulas for the area of D:

A(D) =

‰
C

x dy = −
‰
C

y dx =
1

2

‰
C

x dy − y dx (A.19)

Problem A.34. Evaluate
¸
C
F · dr, where F = 〈e−x + y2, e−y + x2 + 2xy〉 and C is the

circle x2 + (y − 1)2 = 1 oriented clockwise.
Solution. Hint : Check the orientation of the curve.

Ans: 0
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Problem A.35. Use the identity (an example of Green’s Theorem)

A(D) =
x

D

dA =

‰
∂D

x dy

to show that the area of D (the shaded region) is 6. You have to compute the line
integral for each of four line segments of the boundary. For the slant line
segment, in particular, you should introduce an appropriate parameterization for
the line integral.

Figure A.2
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A.10. (§16.7) Surface Integrals
Suppose that the surface S has a parametric representation

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, (u, v) ∈ D.

Then, surface integrals of scalar functions give
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (A.20)

Remark A.36.

• dS = |ru × rv| dA.

• For line integrals,
ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt.

• When z = g(x, y), rx × ry = 〈−gx,−gy, 1〉. Thus the formula (16.64) reads
x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2
x + g2

y + 1 dA. (A.21)

Surface Integrals of Vector Fields . Let r be a parametric representation of S,
from D ⊂ R2. The flux across the surface S can be measured by

x

S

F · dS def
==

x

S

F · n dS

=
x

D

F (r) ·
(

ru × rv
|ru × rv|

)
|ru × rv| dA

=
x

D

F (r) · (ru × rv) dA.

(A.22)

Note that F · n and F (r) · (ru × rv) are scalar functions.
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Remark A.37. Line integrals of vector fields is defined to measure quanti-
ties along the curve. That is, for C parametrized by r : [a, b]→ C,

ˆ
C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt.
(A.23)

Surfaces defined by z = g(x, y):

• A vector representation: r(x, y) = 〈x, y, g(x, y)〉.
• Normal vector: rx × ry = 〈−gx,−gy, 1〉.
• Thus, when F = 〈P, Q, R〉,

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA. (A.24)

Problem A.38. Evaluate
x

S

(x2 + y2 + z) dS, where S is the surface whose side S1 is

given by the cylinder x2 + y2 = 1, whose bottom S2 is the disk x2 + y2 ≤ 1 in the plane
z = 0, and whose top S3 is the disk x2 + y2 ≤ 1 in the plane z = 1.
Solution. Hint : Use (A.19). Clue: S1 : x = cos θ, y = sin θ, z = z; (θ, z) ∈ D ≡
[0, 2π]× [0, 1]. Then |rθ × rz| = 1.

Ans: 3π + 1
2
π + 3

2
π = 5π
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Problem A.39. Find the flux of F = 〈x, y, 1〉 across a upward helicoid: r(u, v) =

〈u cos v, u sin v, v〉, 0 ≤ u ≤ 2, 0 ≤ v ≤ π.
Solution. Hint : Use (A.22). Clue: ru × rv = 〈sin v,− cos v, u〉.

Figure A.3

Ans: 2π
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Problem A.40. Evaluate
x

S

F · dS, where F = 〈x, y, z〉 and S is the boundary of the

solid region E enclosed by the paraboloid z = 1− x2 − y2 and the plane z = 0.
Solution. Clue: For S1 (the upper part), use the formula in (A.24). For S2 (the bottom:
z = 0), you may try to get F · n, where n = −k.

Ans: 3π
2

+ 0 = 3π
2



280 Appendix A. Review for 12 Selected Sections

A.11. (§16.8) Stokes’s Theorem
Stokes’s Theorem is a high-dimensional version of Green’s Theorem studied in § 16.4.

Recall: (Green’s Theorem, p. 274). Let C be positively oriented, piecewise-
smooth, simple closed curve in the plane and D be the region bounded by C. If
F = 〈P,Q〉 have continuous partial derivatives on an open region including D,
then‰

C

F · dr def
==

‰
C

P dx+Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

x

D

(curlF ) · k dA. (A.25)

Theorem A.41. (Stokes’s Theorem) Let S be an oriented piecewise-smooth
surface that is bounded by a simple, closed, piecewise-smooth curve C with pos-
itive orientation. Let F = 〈P, Q, R〉 be a vector field whose components have
continuous partial derivatives on an open region in R3 that contains S. Then

‰
C

F · dr =
x

S

(curlF ) · dS (A.26)

Remark A.42.

• See Figure 16.29(left) on p. 216, for an oriented surface of which the boundary
has positive orientation.

• Computation of the surface integral: for r : D → S,
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA. (A.27)

• Green’s Theorem is a special case in which S is flat and lies on the xy-plane
(n = k). Compare the last terms in (A.25) and (A.27).

Try to solve problems in Section 16.8, once more.
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A.12. (§16.9) The Divergence Theorem

Theorem A.43. (Divergence Theorem) Let E be a simple solid region and
S be the boundary surface of E, given with positive (outward) orientation. Let
F = 〈P, Q, R〉 have continuous partial derivatives on an open region that
contains E. Then "

S

F · dS =
y

E

∇ · F dV. (A.28)

Problem A.44. Use the Divergence Theorem to evaluate the (total) flux
x

S

F · dS,

where
F (x, y, z) = (x+ y2 + cos z) i + [sin(πz) + xe−z] j + z k

and S is a part of the cylinder x2 + y2 = 4 that lies between z = 0 and z = 1.
Solution.

Ans: 8π
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Problem A.45. Use the Divergence Theorem to evaluate

x

S

(
x2 + y sinx+

z2

2

)
dS,

where S is the unit sphere x2 + y2 + z2 = 4.
Solution. Clue: What is n?

Ans: 32π
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differentials, 43
directed distance, 107
directional derivative, 51, 260
distance, 2
divergence, 195
Divergence Theorem, 219, 226, 237, 281
domain, 18, 247
dot product, 6
double integral, 81

END, 246
energy descent direction, 245
epsilon-delta argument, 25
equalized net diffusion, 246
Euclidean inner product, 6
Euler-Lagrange equation, 242, 243
existence of absolute extrema, 63
expected values, 110
ezsurf, in Matlab, 31

fastest increasing direction, 23
feasible solution, 239
fieldplot, Maple, 154, 155
First Derivative Test, 59
first moment, 107
flux, 217
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Fubini’s Theorem, 84, 116
function of three variables, 23
function of two variables, 18
Fundamental Theorem for Line Integrals,

170
Fundamental Theorem of Calculus, 80,

170

Gaussian homotopy continuation, 254
Gaussian smoothing, 254
GD.m, 255
gd1D.m, 255
generalized Green’s Theorem, 188
gradient, 54
gradient descent method, 247
gradient vector field, 151
graph, 19
Green’s Theorem, 182, 230, 236, 274

heart-data.txt, 230, 231
heart.m, 230
helicoid, 218, 221
helix, 165
hypervolume, 104

ID function, 76
image, 133, 268
image processing, 241, 245
implicit differentiation, 35, 48
implicitplot3d, 35
improved TV model, 246
incompressible, 196
independence of path, 172
independent variable, 18
integration by parts, 243
Introduction to Linear Algebra, 268
iterated integral, 84, 99, 264
ITV model, 246

Jacobian, 134, 135, 209, 268
Jacobian, higher order, 139
joint density function, 109

Lagrange multiplier, 65, 240, 262
land-grant research university, 39
Laplace operator, 196

learning rate, 249
length, 4
level curve, 20
level surface, 23
limit, 25
line integral, 157, 270
line integral in 3D, 164
line integral of vector fields, 167, 270
linear algebra, 268
linear approximation, 41, 77, 258
linearization, 41, 77
local extrema, 59
local maximum, 59
local minima problem, 254
local minimum, 59

magnitude, 4
Maple 3D plots, 74
Maple script for Vn, 146
mass, 106, 160, 169
mathematical denoising, 241
MATLAB, 256
mean, 110
method of Lagrange multipliers, 240
mid-point approximation, 231
mid-point formula, 230
midpoint rule, 82
Mississippi State University, 39
moment, 107
multiple integral, 79
multiple local minima problem, 254

n-Ball, 104
n-dimensional ball, 104
negative orientation of curves, 182
Newton’s method, 75
Newton, Isaac, 97
nonconservative, 152
norm, 4
normal line, 57, 260
normal vector, outward unit, 197

objective function, 247
one-to-one, 133, 135, 268
open connected region, 174
open set, 174
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optimization, 239
optimization problem, 239, 247
orientable, 216
orientation of curves, 163
oriented surface, 216

parametric equations, 156
parametric surface, 199
parametrization of line, 10
parametrization of line segment, 10
partial derivative, 33
partial integral w.r.t x, 83
partial integral w.r.t y, 83
peak signal-to-noise ratio, 246
piecewise smooth curve, 159
plane, 12, 205
plane curve, 156
plot3d, 64
polar point, 97
polar rectangle, 99
polar region, 102
position vector, 4
positive orientation, 216
positive orientation of curves, 182
potential, 151, 170
potential function, 151, 170
probability, 109
probability density function, 109
Projects, 72, 143, 230
PSNR, 246

quadratic approximation, 77
quadric surface, 15

range, 18
Riemann Sum, 80
right-hand rule, 8
root-finding, 75
Rosenbrock function, 248

sample point, 81
scalar multiplication, 5
scaling factor, 209
Second Derivative Test, 59, 60
second partial derivative, 37
sectors, 98

separable function, 86
simple curve, 172
simply-connected region, 175
smooth surface, 205
spherical coordinates, 127
spherical Fubini’s Theorem, 130
spherical slice, 144
spherical wedge, 128
square_sum.m, 232
squeeze theorem, 28
staircasing, 245
standard deviation, 240
standard unit vectors, 5
steepest descent, 249
steepest descent method, 247
step length, 249
Stokes’ Theorem, 237
Stokes’s Theorem, 222, 280
sufficient decrease condition, 252
surface area, 112, 207, 208
surface integral, 217
surface of revolution, 204
symbolic computation, 31
symmetry, 87

tangent line, 40
tangent plane, 40, 41, 57, 205, 258, 260
tangent plane approximation, 258
tangent vector, 134
tangential component, 167, 270
Taylor polynomial of degree n, 72
Taylor polynomial, first-degree, 77
Taylor polynomial, second-degree, 77
Taylor series, 72
Taylor’s Theorem, with integral remain-

der, 250
taylor, in Maple, 72
tornado, 192
total differential, 43
total variation, 241
total variation model, 245
trace, 15
transformation, 132, 133, 268
transformation, C1, 135
trigonometric formulas, 98
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triple integral, 116
triple integral on spherical wedges, 129
TV model, 245

unit ball, 143
unit circle, 104
unit interval, 104
unit sphere, 104
unit vector, 5

variational calculus, 240
vector, 4

vector addition, 4
vector differential operator del, 192
vector equation, 156
vector field, 148
volume, 120
volume of n-Ball, 104
volume scaling factor, 268

work, 157, 166

X-mean, 110

Y-mean, 110
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