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Prologue

This lecture note is closely following two books:

• Stewart’s Calculus, 8th Ed. [3]

• Thomas’ Calculus, 15th Ed. [4]

In organizing the part of Vector Calculus, I am indebted by Cedar Crest College Calculus
IV Lecture Notes, Dr. James Hammer [2].

Projects. Several projects are included for students to experience computer algebra.
Computer algebra (also called symbolic computation) is a scientific area that refers to
the study and development of algorithms and software for manipulating mathematical
expressions and other mathematical objects; it emphasizes exact computation with ex-
pressions containing variables that have no given value and are manipulated as symbols.
In practice, you can use a computer algebra system (CAS) to effectively handle complex
math equations and problems that would be simply too complicated/time-consuming to do
by hand. The projects are organized using Matlab or Maple.

Programming Scripts. Also added are some of programming scripts in Matlab/Maple.
The end of each section includes exercise problems. For problems indicated by the CAS
sign CAS , you are recommended to use a CAS to solve the problem.

Currently the lecture note is not fully grown up; other useful techniques and interesting
examples would be soon incorporated. Any questions, suggestions, comments will be deeply
appreciated.

Seongjai Kim
April 22, 2024
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4 Chapter 1. Functions

1.1. Functions and Their Graphs

Introduction . Functions are a tool for describing the real world in
mathematical terms. A function can be represented by an equation,
a graph, a numerical table, or a verbal description; we will use all
four representations throughout the lecture note. This section reviews
these ideas.

1.1.1. Functions; Domain and Range

Definition 1.1. A function f from a set D to a set Y is a rule that
assigns a unique value f(x) ∈ Y to each x ∈ D. That is,

f : D → Y

x 7→ f(x), where f(x) is a unique value for x
(1.1)

• A function produces the same output for the same input.
• Let y be the output value of f at x. Then,

y = f(x),

where x is the independent variable, representing the input value
to f , and y is the dependent variable or output value of f at x.

Definition 1.2. The set D of all possible input values is called the
domain of the function. The set of all output values f(x), as x varies
throughout D, is called the range of the function. The range might not
include every element in the set Y .

• For a function y = f(x), if the domain is not stated explicitly or
restricted by context, the domain is assumed to be the largest set
of real x-values for which the function gives real y-values. This is
called the natural domain of f .
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Example 1.3. Find the natural domain and associated range of each func-
tions. The domain in each case is the values of x for which the formula
makes sense.
(a) y = x2 (b) y = 1/x (c) y =

√
1− x2

Solution.

1.1.2. Graphs of Functions

Definition 1.4. If f is a function with domain D, its graph consists of
the points in the Cartesian plane whose coordinates are the input-output
pairs for f . In set notation, the graph is

G(f) := {(x, f(x)) | x ∈ D}. (1.2)

Example 1.5. Graph the functions

(a) y = x2 over [−2, 2] (b) y = 1/x over [−2, 2] (c) y =
√
1− x2

Solution.
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Representing a Function Numerically

Note: We have seen how a function may be represented algebraically
by a formula and visually by a graph.

• Another way to represent a function is numerically, through a table
of values.

• From an appropriate table of values, a graph of the function can be
obtained, possibly with the aid of a computer. The graph consisting of
only the points in the table is called a scatterplot.

Example 1.6.

A Matlab code
1 a=0; b=pi;
2 n=8; h=(b-a)/n; angle = (a:h:b)';
3

4 % y = sqrt(1-x^2)
5 X = cos(angle); Y = sin(angle);
6 Data = [X Y]
7

8 plot(X,Y,'r.','MarkerSize',30);
9 hold on; axis equal; grid on

10 plot(X,Y,'b-','LineWidth',2);
11 hold off
12

13 print -dpng 'plot-Data.png';

Data set
1 x y
2 ------------------
3 1.0000 0
4 0.9239 0.3827
5 0.7071 0.7071
6 0.3827 0.9239
7 0.0000 1.0000
8 -0.3827 0.9239
9 -0.7071 0.7071

10 -0.9239 0.3827
11 -1.0000 0.0000

A Matlab code generated a data set
in a table form. The data can be vi-
sualized using a computer program.
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1.1.3. The Vertical Line Test for a Function

Claim 1.7. Vertical Line Test

• Not every curve in the coordinate plane can be the graph of a function.
• A function f can have only one value f(x) for each x in its domain, so

no vertical line can intersect the graph of a function more than once.
• If a is in the domain of the function f , then the vertical line x = a will

intersect the graph of f at the single point (a, f(a)).

Example 1.8. Are they functions?

(a) Circle x2 + y2 = 1 (b) Upper semicircle (c) Lower semicircle

Solution.

Ans: (a) no. (b) yes. (c) yes.

Example 1.9. Derive an equation of the circle centered at (h, k) and having
radius r.
Solution.
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1.1.4. Various Function Types

Piecewise-Defined Functions
Example 1.10. Graph the piecewise-defined functions.

(a) f(x) =

{
x, x ≥ 0

−x, x < 0 (b) g(x) =


−x, x < 0

x2, 0 ≤ x ≤ 1

1, x > 0

Solution.

Example 1.11.

• The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the inte-
ger floor function. e.g., ⌊2.3⌋ = 2, ⌊1.0⌋ = 1, ⌊−1.5⌋ = −2.

• The function whose value at any number x is the smallest integer greater
than or equal to x is called the least integer function or the integer
ceiling function. e.g., ⌈2.3⌉ = 3, ⌈1.0⌉ = 1, ⌈−1.5⌉ = −1.

Figure 1.1: The greatest integer function (left) and the least integer function (right).
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Increasing and Decreasing Functions

Definition 1.12. Let f be a function defined on an interval I and let x1
and x2 be two distinct points in I.

1. If f(x1) < f(x2) whenever x1 < x2, then f is said to be increasing
on I.

2. If f(x1) > f(x2) whenever x1 < x2, then f is said to be decreasing
on I.

Note: It is important to realize that the definitions of increasing and
decreasing functions must be satisfied for every pair of points x1 and x2 in
I with x1 < x2. Because we use the inequality < to compare the function
values, instead of ≤, it is sometimes said that f is strictly increasing
or strictly decreasing on I.

Example 1.13. For each of given functions, find regions on which it is
either increasing or decreasing.

(a) y = x2 (b) y = x3

Solution.

Ans: (a) (−∞, 0]: decreasing; [0,∞): increasing
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Even Functions and Odd Functions: Symmetry

Definition 1.14. A function y = f(x) is an

even function of x if f(−x) = f(x)

odd function of x if f(−x) = −f(x)
(1.3)

for every x in the function’s domain.

Note: The names ‘even’ and ‘odd’ come from powers of x.

Example 1.15. Find if the given functions are even, odd, or neither.

(a) y = 2x2 − 2 (b) y = x3 − 4x (c) y = x2 + x

Solution.

Remark 1.16. Symmetry

• The graph of an even function is symmetric about the y-axis.
A reflection across the y-axis leaves the graph unchanged.

• The graph of an odd function is symmetric about the origin.
A rotation of 180◦ about the origin leaves the graph unchanged.
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1.1.5. Common Functions

Linear Functions
• A function of the form f(x) = mx + b is called a linear function. The

function f(x) = x, where m = 1 and b = 0, is called the identity
function.

Figure 1.2: (a) Lines through the origin with slope m. (b) A constant function with slope
m = 0.

• Two variables y and x are proportional (to one another), if one is
always a constant multiple of the other – that is, if y = kx for some
nonzero constant k.

– If the variable y is proportional to the reciprocal 1/x, then some-
times it is said that y is inversely proportional to x.
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Power Functions
A function f(x) = xa, where a is a constant, is called a power function.
There are several important cases to consider.

(a) f(x) = xa with a = n, a positive integer.

Figure 1.3: Graphs of f(x) = xn, n = 1, 2, 3, 4, 5.

Each curve passes through the origin and the point (1, 1).
Are they symmetric? Where are they increasing? What happens
when x approaches −∞ or∞?

(b) f(x) = xa with a = −1 or a = −2.

Figure 1.4: Graphs of the power functions f(x) = xa. (a) a = −1. (b) a = −2.

(c) a = 1/2, 1/3, 3/2, and 2/3.

• f(x) = x1/2 =
√
x and g(x) = x1/3 = 3

√
x are the square root and

cube root functions, respectively.
• Note that x3/2 = (x1/2)3 and x2/3 = (x1/3)2.
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Figure 1.5: Graphs of the power functions f(x) = xa for a = 1/2, 1/3, 3/2, and 2/3.

Polynomials

A function p is a polynomial if

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (1.4)

where n is a nonnegative integer, a0, a1, · · · , an ∈ R, and an ̸= 0.

• n is called the degree of the polynomial
• a0, a1, · · · , an are called the coefficients of the polynomial
• p is called a quadratic polynomial when n = 2, while it is a cubic

polynomial if n = 3.
• All polynomials have domain (∞,∞).

Example 1.17. Sketch the graph of each polynomial function.

(a) y = x3 − 3x2 + 2x (b) y = (x+ 1)(x− 1)3(x− 2)2
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Rational Functions
A rational function is a quotient or ratio

f(x) =
p(x)

q(x)
, (1.5)

where p and q are polynomials. The domain of a rational function is the
set of all real x for which q(x) ̸= 0.

Figure 1.6: Graphs of three rational functions. The straight red lines approached by
the graphs are called asymptotes and are not part of the graphs.

Self-study 1.18. Sketch the graph of f(x) =
x2 − 2x

x− 1

Note: Other common functions are trigonometric functions, exponential
functions, and logarithmic functions, which we will deal with in detail
later in this chapter.
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Exercises 1.1
1. Sketch the graph and find the domain and range of each function.

(a) f(x) = 1− 2
√
x

(b) g(t) =
3

t− 4

(c) h(x) =
√
4x− x2

Ans: (b) D: {t ̸= 4}. R: {y ̸= 0}.

2. Consider the point (x, y) lying on the graph of the line 2x + y = 1. Let L be the distance
from the point (x, y) to the origin (0, 0). Write L as a function of x.
Clue: Start with the distance: L = (x2 + y2)1/2, which comes from the Pythagorean
theorem.

Ans: L =
√
5x2 − 4x+ 1

3. Graph the following equations and explain why they are not graphs of functions of x.

(a) |y| = 2x

(b) y2 = x2

Hint : (a) Consider cases that |y| is nonnegative or negative. (b) It can be written as
|y| = |x|.

4. Find a formula for the piecewise-defined function.

5. Say whether the function is even, odd, or neither. Give reasons for your answer.

(a) f(x) = x3 − 5x

(b) f(x) = x−5

(c) g(t) = |t3|+ t

(d) g(x) =
x2 − 1

x2 + 1

Ans: (c) neither, ∵ g(−t) ̸= g(t) and g(−t) ̸= −g(t). (d) even, ∵ g(−x) = g(x).
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6. The accompanying figure shows a rectangle inscribed in an isosceles right triangle whose
hypotenuse is 2 units long.

(a) Express the y-coordinate of P in terms of x.
(b) Express the area of the rectangle in terms of x.

Clue: (a) You might start by writing an equation for the line AB.

Ans: (b) A = x(1− x).
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1.2. Combining Functions; Shifting and Scal-
ing Graphs

Sums, Differences, Products, and Quotients

• Like numbers, functions can be added, subtracted, multiplied, and
divided to produce new functions.

• If f and g are functions, we define functions f + g, f − g, fg, f/g by
the formulas

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(fg)(x) = f(x) g(x)

(f/g)(x) = f(x)/g(x)

(1.6)

– Domain of f + g, f − g, and fg: every x that belongs to the
domains of both f and g; that is, x ∈ D(f) ∩D(g).

– Domain of f/g: x ∈ D(f) ∩D(g), except g(x) = 0.

Example 1.19. The functions defined by the formulas

f(x) =
√
x and g(x) =

√
1− x

have domains D(f) = [0,∞) and D(g) = (−∞, 1]. The points common to
these domains are the points in

[0,∞) ∩ (−∞, 1] = [0, 1].

Find the formulas and domains for the various algebraic combinations of
the two functions, where f · g = fg.
Solution. Let’s complete filling the following table.
Function Formula Domain
f + g

f − g

f · g (f · g)(x) = f(x)g(x) =
√

x(1− x)

f/g

g/f
( g
f

)
(x) =

g(x)

f(x)
=

√
1− x

x
(0, 1] (x = 0 excluded)
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Composite Functions

Definition 1.20. If f and g are functions, the composite function f ◦ g
(“f composed with g”) is defined by

(f ◦ g)(x) = f(g(x)). (1.7)

The domain of f ◦g consists of the numbers x in the domain of g for which
g(x) lies in the domain of f :

D(f ◦ g) = {x ∈ G(g) | g(x) ∈ D(f)}. (1.8)

Figure 1.7: Arrow diagram for f ◦ g.

Example 1.21. Let f(x) =
√
x and g(x) = x+ 1. Find f ◦ g, g ◦ f , f ◦ f , and

g ◦ g, and their domains.
Solution.

Composition Formula Domain
(f ◦ g)(x) = f(g(x)) =

√
g(x) =

√
x+ 1 [−1,∞)

(g ◦ f)(x) =

(f ◦ f)(x) = f(f(x)) =
√

f(x) =
√√

x = x1/4 [0,∞)

(g ◦ g)(x) =
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Shifting a Graph of a Function

Figure 1.8: Shift from the
graph of y = x2.

Observation 1.22. Note that → and ↑ are
positive directions of x and y, respectively.

shift the graph → 2 =⇒ x→ (x− 2)

shift the graph → −3 =⇒ x→ (x+ 3)

shift the graph ↑ 2 =⇒ y→ (y − 2)

shift the graph ↑ −2 =⇒ y→ (y + 2)

Shift Formula
If the graph of y = f(x) is shifted (c, d),
then the resulting graph is formulated as

y − d = f(x − c). (1.9)

Example 1.23. Sketch the graph of the functions.

(a) y = −(x− 3)2 (b) y − 2 = −x2 (c) y = −(x+ 1)2 + 4

Solution.

Ans: (a) vertex= (3, 0). (c) vertex= (−1, 4).
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Summary 1.24. If the graph of y = f(x) is shifted (c, d), then the
resulting graph is formulated with

x being replaced by x − c

y being replaced by y − d
(1.10)

Why does this formula make sense algebraically?
• The equation

y = f(x) (1.11)

expresses the relation between x and y of each point (x, y) on the graph
of f .

• Let the graph be shifted (c, d). Let (x, y) be shifted to (X,Y ).
• Then, we should find the relation between X and Y , to formulate

the shifted graph.
• Since (X, Y ) = (x+ c, y + d), we may get

(x, y) = (X − c, Y − d). (1.12)

• Using (1.11) and (1.12), we obtain

Y − d = f(X − c). (1.13)

So (1.10) follows.
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Scaling a Graph of a Function
Scaling Formula

• If the graph of y = f(x) is scaled horizontally by a factor of b > 0,
then the resulting graph is formulated as

y = f(x/b). (1.14)

• If the graph of y = f(x) is scaled vertically by a factor of a > 0,
then the resulting graph is formulated as

y/a = f(x). (1.15)

• If the graph of y = f(x) is scaled by factors of (b, a),
then the resulting graph is formulated as

y/a = f(x/b) or y = a f(x/b) (1.16)

Note: The reference book (Thomas’ Calculus) explains scaling in terms
of “stretch” and “compress”.

stretched by a factor of b ⇔ scaling factor = b

compressed by a factor of b ⇔ scaling factor = 1/b

Reflecting a Graph of a Function
Reflecting Formula
Reflection is the same as scaling by a factor of −1. That is,

reflect G(f) across the x-axis ⇔ y is replaced by −y
reflect G(f) across the y-axis ⇔ x is replaced by −x

(1.17)
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Example 1.25. The graph in (a) depicts y = f(x). Find the scaling factor
and the reflection for graphs in (b) and (c) to be expressed in the form

y = pf(qx).

Solution.

(b) c = 1/2 & y-axis reflection

(c) d = 1/2 & x-axis reflection

Ans: (b) y = f(−2x). (c)
y

−1/2
= f(x)⇒ y = −1

2
f(x).
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Exercises 1.2
1. If f(x) = x− 1 and g(x) = 1/(x+ 1), find the following.

(a) f(g(x))

(b) f(g(1/2))

(c) g(f(x))

(d) g(f(1/2))

Ans: (c) g(f(x)) = 1/(f(x) + 1) = 1/x. (d) 2.

2. Write a formula for f ◦ g ◦ h.

(a) f(x) = 3x+ 4, g(x) = 2x− 1, h(x) = x2

(b) f(x) =
√
2x+ 1, g(x) =

1

x+ 4
, h(x) =

1

x

Ans: (b)
√

5x+ 1

4x+ 1
.

3. Copy and complete the following table.

g(x) f(x) (f ◦ g)(x)
a. x− 7

√
x ?

b. x+ 2 3x ?

c. ?
√
x− 5

√
x2 − 5

d.
x

x− 1

x

x− 1
?

e. ? 1 +
1

x
x

f.
1

x
? x

Ans: (c) x2. (e) 1/(x− 1).

4. Find a function g(x) so that

(a) f(x) =
x

x− 2
and (f ◦ g)(x) = x.

(b) f(x) = 2x3 − 4 and (f ◦ g)(x) = x+ 2.

Ans: (a) g(x) =
2x

x− 1
.
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5. The accompanying figure shows the graph
of y = −x2 shifted to four new positions.
Write an equation for each new graph.

6. Challenge 1 Assume that f is an even function, g is an odd function, and both f and g
are defined on the entire real line (−∞,∞). Which of the following (where defined) are
even? odd?

fg(a) f/g(b) g/f(c)

f 2 = f f(d) g2 = g g(e) f ◦ g(f)

g ◦ f(g) f ◦ f(h) g ◦ g(i)

Ans: (a) Odd. (c) Odd. (e) Even. (i) Odd.

7. Challenge Can a function be both even and odd? Give reasons for your answer.

1 Challenge indicates the problem may be harder than usual. Challenge it!
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1.3. Trigonometric Functions

You might learn the following in your High school.

Sides of a right triangle:
• The hypotenuse of a right trian-

gle is the side opposite the right
angle. It must be the longest side
of the right triangle.

• The adjacent side is the non-
hypotenuse side that is adjacent
to the given angle.

• The opposite side is the side
across from a given angle.

SOH–CAH–TOA :

sinx =
opposite

hypotenuse
⇒ SOH

cosx =
adjacent

hypotenuse
⇒ CAH

tanx =
opposite
adjacent

⇒ TOA

Cosecant, Secant, Cotangent :

cscx =
1

sinx
, secx =

1

cosx
, cotx =

1

tanx
(1.18)
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1.3.1. Angles and Sectors

Definition 1.26. An angle is the figure formed by two rays sharing a
common endpoint, called the vertex of the angle.

The angle can be defined with the unit circle, the circle of radius 1.

“The angle is θ (radian), when the corresponding arc length is θ.”

• The angle of the whole circle is 2π (radian).
• 2π = 360◦

• π = 180◦ ⇒ ◦ =
π

180

Figure 1.9: Geometric definition of the angle.

Example 1.27. Figure the following angles, using the unit circle.

(a) 30◦

(b) −60◦

(c) 420◦

(d) −3
2
π
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Sectors

Figure 1.10: The angle and the arc length of the sector.

Definition 1.28. A sector (a.k.a. circular sector) is the the portion
of a disc enclosed by two radii and a circular arc.

Formula 1.29. A sector is given as in the right of Figure 1.10. Then,

Arc length ℓ = rθ Area A =
1

2
rℓ =

1

2
r2θ

* A sector is like a triangle!

Example 1.30. Find the arc length of the sectors.

(a) r = 12, angle =
5

4
π

(b) r = 4, angle = 240◦

Solution.

Ans: (a) 15π. (b) 16π/3.
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1.3.2. The Six Basic Trigonometric Functions

Definition 1.31. The trigonometric functions of an acute angle are
given in terms of the sides of a right triangle (SOH–CAH–TOA).

• We extend this definition to ob-
tuse and negative angles by
first placing the angle in stan-
dard position in a circle of radius
r.

• We then define the trigonometric
functions in terms of the coordi-
nates of the point P (x, y) where
the angle’s terminal ray inter-
sects the circle.

sine : sin θ =
y

r
cosecant : csc θ =

1

sin θ
=

r

y

cosine : cos θ =
x

r
secant : sec θ =

1

cos θ
=

r

x

tangent : tan θ =
y

x
cotangent : cot θ =

1

tan θ
=

x

y

(1.19)

Example 1.32. Evaluate the exact values of these trigonometric ratios for
common angles.

(a) {sin, cos, tan}π
4

=
1√
2
,

1√
2
, 1

(b) {sin, cos, tan}π
6

=
1

2
,

√
3

2
,

1√
3

(c) {sin, cos, tan}π
3

=

√
3

2
,
1

2
,
√
3
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Geometric interpretation of trigonometric functions

Figure 1.11: Geometric interpretation of trigonometric functions.

Definition 1.33. The trigonometric functions are defined with the
unit circle, the circle of radius 1.

Point A(x, y) is chosen on the unit circle as in the figure.

∗ A(x, y) = (cos θ, sin θ)

∗ “sin” is the vertical component of the right triangle.

∗ tan θ =
y

x
= slope ⇒ tan θ =

sin θ

cos θ
=

tan θ

1

∗ These hold for all angles θ, i.e., all choices of A on the unit circle.

Example 1.34. Let θ be the angle made by the line segment from O(0, 0)

to P (−4, 3). Evaluate the following.

(a) sin θ

(b) cos θ

(c) tan θ

Ans: (a) 3/5. (b) −4/5. (c) −3/4.
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Formula 1.35. Frequently Used Trigonometric Formulas:
For all angle x,

sin2 x+ cos2 x = 1 tanx =
sinx

cosx
= slope

Graphs of Trigonometric Functions

Figure 1.12: Graphs of y = sinx, y = cosx, and y = tanx.

Periodicity of the Trigonometric Functions

Definition 1.36. A function f(x) is periodic if there is a number p > 0
such that f(x+ p) = f(x) for every value of x. The smallest such value of
p is the period of f .
For example,

Period of “sin” and “cos” = 2π

Period of “tan” = π



1.3. Trigonometric Functions 31

Observation 1.37. sin(−x) = − sinx and cos(−x) = cosx.
The following holds also when sin and cos are interchanged.

• When the graph of y = sinx is moved by ±π, the result becomes
y = − sinx.

• When the graph of y = sin(±x) is moved by ±π
2

(or, ±3π/2), the
result should match with either y = cosx or y = − cosx.

Figure 1.13: Graphs of y = sinx and y = cosx, superposed.

Example 1.38. Which one is the same as cos
(3π
2
− x
)

?

A. cosx

B. − cosx

C. sinx

D. − sinx

E. None of these
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Transformations of Trigonometric Graphs

The rules for shifting, scaling, and reflecting the graph of a function,
studied in §1.2 and summarized in the following, apply to the trigono-
metric functions:

y − d

a
= f

(x− c

b

)
or y = a f

(x− c

b

)
+ d, (1.20)

where (b, a) are scaling factors and (c, d) are shifting units.

Definition 1.39. The transformation rules applied to the sine function
give the general sine function or sinusoid formula

f(x) = A sin
(2π
B

(x− C)
)
+D, (1.21)

where where |A| is the amplitude, |B| is the period, C is the horizon-
tal shift, and D is the vertical shift.

Example 1.40. Identify A, B, C, and D for the sine function and sketch
its graph.

y = 2 sin
(x
2
+ π
)
− 1

Solution.

Ans: y = 2 sin
(2π
4π

(x− (−2π))
)
− 1



1.3. Trigonometric Functions 33

1.3.3. Trigonometric Formulas

Trigonometric Identities
cos2 θ + sin2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ

Angle-Sum Formulas
sin(A+B) = sinA cosB + cosA sinB

cos(A+B) = cosA cosB − sinA sinB

Product Formulas

sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

sinA cosB =
1

2
[sin(A−B) + sin(A+B)]

cosA cosB =
1

2
[cos(A−B) + cos(A+B)]

Double-Angle Formulas
sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

Half-Angle Formulas

sin2 θ =
1− cos 2θ

2
cos2 θ =

1 + cos 2θ

2

(1.22)

The Law of Cosines
If a, b, and c are sides of a triangle ABC, then

c2 = a2 + b2 − 2ab cosC. (1.23)
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Exercises 1.3
1. On a circle of radius 10 m, how long is an arc that subtends a central angle of

(a) 7π/5

(b) 120◦

2. Graph the functions. What is the period of each function?

(a) − cos(2πx) (b) 2 sin
(
2x− π

4

)
+ 1

Ans: (b) Period: π.

3. Use the Half-Angle Formulas to find the exact function values.

(a) cos2
π

8 (b) sin2 3π

8

Ans: (b) 1/2 +
√
2/4.

4. Solve for the angle θ, where 0 ≤ θ ≤ 2π

(a) cos2 θ =
3

4
(b) cos2 θ − 3

2
sin θ = 0.

Hint : (b). cos2 θ = 1− sin2 θ. Thus the equation reads sin2 θ+
3

2
sin θ− 1 = 0, which is a quadratic

equation of x = sin θ.
Ans: (b). θ = π/6, 5π/6.

5. A triangle has sides a = 2 and b = 3 and angle C = 60◦. Find the length of side c.
Ans:

√
7.
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1.4. Graphing with Software

• Through the course, you will learn how to

– visualize functions, solve equations, and analyze data.

• You may use

– Maple, Mathematica, Matlab, or Python

which are available on computers campus-wide.
• However, for a bit simpler work in Calculus, you may try online graph-

ing software. For example,

– GeoGebra https://www.geogebra.org/

for which you may find Tutorials https://www.geogebra.org/a/14.
Learn about “CAS Calculator”.

Note: In modern society, becoming a good programmer would be quite
advantageous. Thus, first, try to be familiar with computational envi-
ronments for computer software. I recommend you to start with one of
Maple, Mathematica, and Matlab. The simplest one is Matlab.

Mathematica

Figure 1.14: Examples in Mathematica.

https://www.geogebra.org/
https://www.geogebra.org/a/14
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Maple

Figure 1.15: An example code in Maple.

Example 1.41. Let’s play with Maple a little more.
maple-plot-derivative.mw

1 with(plots, implicitplot):
2 implicitplot(x^2+2 x = -y^2+4 y-1, x=-3..1, y=0..4)
3 implicitplot(r=1-cos(theta), r=0..2, theta=0..2 Pi, coords=polar,
4 size=[250, 250], axis=[color=red], background=green)
5 g := x -> if x<3 then x+1 else -x^2+13 end if:
6 plot(g, 0..5, size=[300,200])

Figure 1.16: Maple plots: A circle, a cardioid, and a piecewise-defined function.
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Matlab
y_sin_x.m

1 x = linspace(-pi, 2*pi, 100);
2 y = sin(x);
3

4 plot(x,y,'r',linewidth=2); grid on
5 xticks([-pi,0,pi,2*pi]); xticklabels({'-\pi','0','\pi','2\pi'})
6 yticks([-1,-0.5,0,0.5,1])
7 title('Matlab: $y=\sin x $','fontsize',18,'interpreter','latex')
8 axis tight
9 if exist('__octave_config_info__') %octave

10 print('y=sin-x-matlab.png')
11 else
12 exportgraphics(gcf,'y=sin-x-matlab.png','Resolution',100)
13 end

Python
y_sin_x.py

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 x = np.linspace(-np.pi, 2*np.pi, 100)
5 y = np.sin(x)
6

7 plt.plot(x,y,'r',linewidth=2)
8 plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)
9 plt.xticks([-np.pi,0,np.pi,2*np.pi],['$-\pi$',0,'$\pi$','$2\pi$'])

10 plt.yticks([-1,-0.5,0,0.5,1])
11 plt.title('Python: $y=\sin x $',fontsize=18)
12 #plt.show()
13 plt.savefig('y=sin-x-python.png',bbox_inches='tight')

Figure 1.17: y=sin-x-matlab.png and y=sin-x-python.png
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Exercises 1.4
1. CAS 2Find an appropriate graphing software viewing window for the given function and

use it to display its graph. The window should give a picture of the overall behavior of
the function. There is more than one choice, but incorrect choices can miss important
aspects of the function.

(a) f(x) = x4 − 4x3 + 15

(b) f(x) = x
√
9− x2

(c) y = x1/3(x2 − 8)

(d) y =
8

(x− 20)2 − 1

Note: Finding a Viewing Window:

If you do not specify the viewing window,
then the CAS will use a default window.
• For example, for (d), if you implement

plot
( 8

(x− 20)2 − 1

)
in Maple, then you

will see the figure right.
• You should specify a viewing window,

as in Example 1.41, not to miss impor-
tant aspects of the function.

• A good strategy for the determination
of a viewing window is to (1) start
with a large window and then (2)
specify a right one to see important
features in detail.

2. CAS Graph the function y = cosx+
1

100
sin 100x

3. CAS Graph four periods of the function f(x) = − tan 2x.

2Problems with the sign CAS must be done with a Computer Algebra System such as Maple, Mathe-
matica, or Matlab.
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1.5. Exponential Functions

Definition 1.42. A function of the form

f(x) = ax, where a > 0 and a ̸= 1, (1.24)

is called an exponential function (with base a).

• All exponential functions have domain (−∞,∞) and range (0,∞), so
an exponential function never assumes the value 0.

• All exponential functions are either increasing (a > 1) or decreasing
(0 < a < 1) over the whole domain.

Figure 1.18: Exponential functions.

Example 1.43. Sketch the graph of the function f(x) = 3 − 2x and deter-
mine its domain and range.
Solution.
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Example 1.44. Table 1.1 shows data for the population of the world in
the 20th century. Figure 1.19 shows the corresponding scatter plot.

• The pattern of the data points in Figure 1.19 suggests an exponen-
tial growth.

• Use an exponential regression algorithm to find a model of the
form

P (t) = a · bt, (1.25)

where t = 0 corresponds to 1900.

Table 1.1

t Population P

(years since 1900) (millions)
0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

Figure 1.19: Scatter plot for world population
growth.

Solution.
population.m

1 Data =[0 1650; 10 1750; 20 1860; 30 2070;
2 40 2300; 50 2560; 60 3040; 70 3710;
3 80 4450; 90 5280; 100 6080; 110 6870];
4 m = size(Data,1);
5

6 % exponential model, through linearization
7 A = ones(m,2);
8 A(:,2) = Data(:,1);
9 r = log(Data(:,2));

10 lm = (A'*A)\(A'*r);
11 a = exp(lm(1)), b = exp(lm(2)),
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12

13 plot(Data(:,1),Data(:,2),'k.','MarkerSize',20)
14 xlabel('Years since 1900');
15 ylabel('Millions'); hold on
16 print -dpng 'population-data.png'
17 t = Data(:,1);
18 plot(t,a*b.^t,'r-','LineWidth',2)
19 print -dpng 'population-regression.png'
20 hold off

The program results in

a = 1.4365× 103, b = 1.0140.

Thus the exponential model reads

P (t) = (1.4365×109)·(1.0140)t. (1.26)

Figure 1.20 shows the graph of this
exponential function together with
the original data points. We see that
the exponential curve fits the data
reasonably well.

Figure 1.20: Exponential model for world
population growth.

Integer and Rational Exponents

• When x = n is a positive integer,
an = a · a · ... · a︸ ︷︷ ︸

n times

.

• When x = −n for some positive integer n,

a−n =
1

an
=
(1
a

)n
.

• When x = p/q is a rational number,
ap/q = q

√
ap = ( q

√
a)p
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Laws of Exponents

If a > 0 and b > 0, the following rules hold for all real numbers x and y.

1. ax · ay = ax+y

2.
ax

ay
= ax−y

3. (ax)y = (ay)x = axy

4. ax · bx = (ab)x

5.
ax

bx
=
(a
b

)x
The Number e

Of all possible bases for an exponential function, there is one that is
most convenient for the purposes of calculus. The choice of a base a is
influenced by the way the graph of y = ax crosses the y-axis.

• As we will see later, that some of the formulas of calculus will be
greatly simplified, if we choose the base a so that the slope of the
tangent line to y = ax at x = 0 is exactly 1. See Exercise 5, p. 44.

• In fact, there is such a number and it is denoted by the letter e,
called the Euler’s number. It will be further studied as a project
when you learn integration; see Section P.3, p. 707.
(The notation e was chosen by the Swiss mathematician Leonhard
Euler in 1727, probably because it is the first letter of the word
exponential.)

• It turns out that the number e lies between 2 and 3. Later, we will
see that the value of e, correct to six decimal places, is

e ≈ 2.718282 (1.27)

Figure 1.21: The number e.



1.5. Exponential Functions 43

Remark 1.45. Properties of the Natural Exponential Function
The exponential function f(x) = ex is an increasing continuous function
with domain R and range (0,∞). Thus ex > 0 for all x and the x-axis is a
horizontal asymptote of f(x) = ex.

Example 1.46. Find the domain of the following functions.

(a) f(x) =
1 + x

ecosx (b) f(x) =
1− ex

2

1− e1−x2

Solution.

Example 1.47. Graph the function y = 1
2e
−x + 1 and state the domain and

range.
Solution.
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Exercises 1.5
1. Use the Laws of Exponents to rewrite and simplify each expression.

(a) 162 · 16−1.75

(b)
35/3

32/3
(c) (
√
3)1/2 ·(

√
12)1/2 (d) (36

√
2)

√
2/4

Ans: (a) 2. (d) 6.

2. Make a rough sketch by hand of the graph of the function.

(a) y = e|x| (b) h(x) = 2
(1
2

)x
− 3

3. The population of Starkville, Mississippi, was 2,689 in the year 1900 and 25,495 in
2020. Assume that the population in Starkville grows exponentially with the model

Pn = P0 · (1 + r)n,

where n is the elapsed year and r denotes the growth rate per year. Then, we can find
r = 0.018921(= 1.8921%).

(a) Estimate the population in 1950 and 2000.
(b) Approximately when is the population going to reach 50,000?

Ans: (b) 2056.

4. Let f(x) = 5x. Show that
f(x+ h)− f(x)

h
= 5x

(5h − 1

h

)
5. The number e is determined so that the slope of the graph of y = ex at x = 0 is exactly 1.

Let h be a point near 0. Then

S(h) :=
eh − e0

h− 0
=

eh − 1

h

represents the average slope of the graph between the two points (0, 1) and (h, eh). Use
your calculator to evaluate S(h), for h = 0.1, 0.01, 0.001, 0.0001. What can you say about
the results?

Ans: For example, S(0.01) = 1.0050.
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1.6. Inverse Functions and Logarithms

1.6.1. Inverse Functions

Key Idea 1.48. Let f : X → Y be a function. For simplicity, consider

y = f(x) = 2x+ 1. (1.28)

• Then, f is a rule that performs two actions: ×2 and followed by +1.
• The reverse of f must be: −1 followed by ÷2.

– Let y ∈ Y . Then the reverse of f can be written as

x = (y − 1)/2 =: g(y) (1.29)

The function g is the inverse function of f .
– However, it is conventional to choose x for the independent vari-

able. Thus it can be formulated as

y = g(x) = (x− 1)/2. (1.30)

• Let’s summarize the above:

(a) Solve y = f(x) for x: x = (y − 1)/2 =: g(y).
(b) Exchange x and y: y = g(x) = (x− 1)/2.

Note: The first step for finding the inverse function of f is to solve y =
f(x) for x, to get x = g(y). Here the required is for g to be a function.

Definition 1.49. A function f is called a one-to-one function if it
never takes on the same value twice; that is,

f(x1) ̸= f(x2) whenever x1 ̸= x2. (1.31)
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Claim 1.50. Horizontal Line Test.
A function is one-to-one if and only if no horizontal line intersects its
graph more than once.

• f(x) = x3 is one-to-one.
• The function in Figure 1.23 is not one-to-one because f(x1) = f(x2) for

x1 ̸= x2.

Figure 1.22: f(x) = x3 is one-to-one.
Figure 1.23: This function is not one-to-
one because f(x1) = f(x2) for x1 ̸= x2.

Example 1.51. Check if the function is one-to-one.

1. f(x) = x2 2. g(x) = x2, x ≥ 0 3. h(x) = x3

Solution.
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Definition 1.52. Let f be a one-to-one function with domain X and
range Y . Then its inverse function f−1 has domain Y and range X and
is defined by

f−1(y) = x ⇐⇒ f(x) = y, (1.32)

for any y ∈ Y .

Remark 1.53.
The definition says that if f maps x into
y, then f−1 maps y back into x. From
(1.32), we can obtain the cancellation
equations

f−1(f(x)) = x for all x ∈ X

f(f−1(y)) = y for all y ∈ Y
(1.33)

Example 1.54. For example, if f(x) = x3, then f−1(x) = x1/3 and so that
the cancellation equations read

f−1(f(x)) = f−1(x3) = (x3)1/3 = x

f(f−1(y)) = f(y1/3) = (y1/3)3 = y

Example 1.55. Assume f is a one-to-one function.

(a) If f(1) = 5, what is f−1(5)? (b) If f−1(8) = −10, what is f(−10)?

Solution.
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Caution 1.56.

• Do not mistake the −1 in f−1 for an exponent.

f−1(x) does not mean
1

f(x)
. (1.34)

• If f were not one-to-one, then its inverse would not be uniquely de-
fined and cannot be a function. ⇒ An inverse function does not exist.

Strategy 1.57. How to Find the Inverse Function of a One-to-One
Function f : Write y = f(x).

Step 1: Solve this equation for x in terms of y (if possible).
Step 2: Interchange x and y; the resulting equation is y = f−1(x).

Example 1.58. Find the inverse of the function h(x) =
6− 3x

5x+ 7
.

Solution.
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Example 1.59. Find the inverse of the function f(x) = x3 + 2, expressed
as a function of x.

Solution. Write y = x3 + 2.

Step 1: Solve it for x:

x3 = y − 2 ⇒ x = 3
√

y − 2.

Step 2: Exchange x and y:

y = 3
√
x − 2.

Therefore the inverse function is
f−1(x) = 3

√
x− 2.

Observation 1.60. The graph of f−1 is obtained by reflecting the graph
of f about the line y = x.

Example 1.61. Let f(x) = x2 − 2x+ 1, x ≥ 1. Then the range of f is [0,∞).

(a) Find the inverse of f .

(b) Find its domain and range.

(c) Plot the graphs of f and f−1 in
the same coordinates.

Solution.
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1.6.2. Logarithmic Functions

Recall: If a > 0 and a ̸= 1, the exponential function f(x) = ax is either
increasing or decreasing and so it is one-to-one by the Horizontal Line
Test. It therefore has an inverse function.

Definition 1.62. The logarithmic function with base a, written
y = loga x, is the inverse of y = ax (a > 0, a ̸= 1). That is,

loga x = y ⇐⇒ ay = x. (1.35)

Example 1.63. Find the inverse of y = 2x.

Solution.

1. Solve y = 2x for x:

x = log2 y

2. Exchange x and y:

y = log2 x

Thus the graph of y = log2 x must the
reflection of the graph of y = 2x about
y = x.

Figure 1.24: Graphs of y = 2x and y = log2 x.

Note:

• Equation (1.35) represents the action of “solving for x”
• The domain of y = loga x must be the range of y = ax, which is (0,∞).
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The Natural Logarithm and the Common Logarithm
Of all possible bases a for logarithms, we will see later that the most conve-
nient choice of a base is the number e.

Definition 1.64.

• The logarithm with base e is called the natural logarithm and has
a special notation:

loge x = ln x (1.36)

• The logarithm with base 10 is called the common logarithm and
has a special notation:

log10 x = log x (1.37)

Remark 1.65.

• From your calculator, you can see buttons of LN and LOG , which
represent ln = loge and log = log10, respectively.

• When you implement a code on computers, the functions ln and
log can be called by “log” and “log10”, respectively.

Properties of Logarithms

• Algebraic Properties: for (a > 0, a ̸= 1)

Product Rule: loga xy = loga x+ loga y

Quotient Rule: loga
x

y
= loga x− loga y

Power Rule: loga x
α = α loga x

Reciprocal Rule: loga
1

x
= − loga x

(1.38)

• Inverse Properties

aloga x = x, x > 0; loga a
x = x, x ∈ R

elnx = x, x > 0; ln ex = x, x ∈ R
(1.39)
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Example 1.66. Use the laws of logs to expand ln
(x2√x2 + 3

3x+ 1

)
.

Solution.

Example 1.67. Simplify the following.

(a) log3 75− 2 log3 5 (b) 2 log5 100− 4 log5 50

Solution.
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Example 1.68. Solve for x.

(a) e5−3x = 3.

(b) log3 x+ log3(x− 2) = 1

(c) ln(lnx) = 0

Solution.

Ans: (a) x = 1
3
(5− ln 3). (b) x = 3. (Caution: x = −1 cannot be a solution.)

Claim 1.69.

(a) Every exponential function is a power of the natural exponential
function.

ax = ex ln a. (1.40)

(b) Every logarithmic function is a constant multiple of the natural log-
arithm.

loga x =
lnx

ln a
, (a > 0, a ̸= 1) (1.41)

which is called the Change-of-Base Formula.

Proof. (a). ax = eln(a
x) = ex ln a.

(b). lnx = ln(aloga x) = (loga x)(ln a), from which one can get (1.41).



54 Chapter 1. Functions

1.6.3. Inverse Trigonometric Functions

Note: Trigonometric functions are periodic.

• When we try to find the inverse trigonometric functions, we have a
difficulty: because the trigonometric functions are not one-to-one.

• The difficulty is overcome by restricting the domains of these func-
tions so that they become one-to-one.

Figure 1.25: Domain restrictions that make the trigonometric functions one-to-one.
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Figure 1.26: Graphs of the six basic inverse trigonometric functions.

Definition 1.70. (The Arcsine and Arccosine Functions)

y = arcsinx is the number in [−π/2, π/2] for which sin y = x

y = arccosx is the number in [0, π] for which cos y = x

Example 1.71. Evaluate (a) arcsin
(√3

2

)
and (b) arccos

(
− 1

2

)
.

Solution.

Ans: (b). 2π/3.
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Example 1.72. Is it correct? If not, why?

(a) arcsin
(
sin

9π

4

)
=

9π

4
(b) cos(arccos 2) = 2

Solution.

Definition 1.73. (Inverses of tanx, cotx, secx, and cscx)

y = arctanx is the number in (−π/2, π/2) for which tan y = x

y = arccotx is the number in (0, π) for which cot y = x

y = arcsecx is the number in [0, π]\{π/2} for which sec y = x

y = arccscx is the number in [−π/2, π/2]\{0} for which csc y = x

Example 1.74. Find the exact value for the expression.

(a) cos−1(−1)

(b) arctan(−1)

(c) sin
(
arcsin

(
− 1√

2

))
Solution.
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Example 1.75. Simplify the expression cos(tan−1 x).
Solution. Let y = tan−1 x. Then y ∈ (−π/2, π/2) and tan y = x. Here{

What we must find : cos(y)

What we know : tan(y) = x
(1.42)

Now, sec2 y = 1 + tan2 y = 1 + x2.
⇒ sec y =

√
1 + x2 (because sec y > 0 for y ∈ (−π/2, π/2))

⇒ cos(y) =
1√

x2 + 1
.

Ans: cos(tan−1 x) =
1√

x2 + 1
.

Note: You can reach the final outcome from (1.42), with a geometric
manipulation.

Self-study 1.76. Simplify the expression sin(tan−1 x).
Solution.

Ans: sin(tan−1 x) =
x√

x2 + 1
.
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Exercises 1.6
1. Let f(x) =

√
1− x2, 0 ≤ x ≤ 1.

(a) What symmetry does the graph have?
(b) Show that f is its own inverse.

Hint : (b) Use Strategy 1.57.
Ans: (a). It is symmetric about y = x.

2. Find a formula for the inverse of the function; identify its domain and range.

(a) f(x) = x2 − 2x, x ≤ 1 (b) f(x) =
x+ 3

x− 2

Ans: (b). f−1(x) = (2x+ 3)/(x− 1); D: {x ̸= 1}; R: {y ̸= 2}

3. Simplify to find the exact value of each expression.

log5(1/125)(a) ln(ln ee
30
)(b)

e−2 ln 5(c) eln(ln e2)(d)

Ans: (b) 30. (d) 2.

4. Solve each equation for x.

(a) ln(x+ 3) = 2 (b) ln(lnx) = 1

Ans: (b) x = ee.

5. For log2 x+ log2(x− 3) = 2.

(a) Solve it for x.
(b) How many solutions does it have? If there is only one solution, why?

6. Find the exact value of each expression.

tan−1
√
3(a) arcsin(sin(5π/4))(b)

sec−1 2(c) cos(sin−1( 5
13
))(d)

Ans: (d) 12/13.
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2.1. Rates of Change and Tangent Lines to Curves

Note: In the late 16th century, Galileo discovered that a solid object
dropped from rest (initially not moving) near the surface of the earth
and allowed to fall freely will fall a distance proportional to the square
of the time it has been falling.

• This type of motion is called free fall.
• It assumes negligible air resistance to slow the object down, and that

gravity is the only force acting on the falling object.
• If y denotes the distance fallen in feet after t seconds, then the

Galileo’s law of free-fall is

y = 16t2 ft. (2.1)

The Galileo’s law of free-fall states that, in the absence of air resistance, all
bodies fall with the same acceleration, independent of their mass.
Average and Instantaneous Speed

Average Speed. When f(t) measures the distance traveled at time t,

Average speed over [t0, t1] =
distance traveled

elapsed time
=

f(t1)− f(t0)

t1 − t0
(2.2)

Example 2.1. A rock breaks loose from the top of a tall cliff. What is its
average speed

(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution.

Ans: (a) 32 ft/sec. (b) 48 ft/sec.
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Example 2.2. Find the speed of the falling rock in Example 2.1 at t = 1

and t = 2.
Solution. We can calculate the average speed of the rock over a time inter-
val [t0, t0 + h], having length ∆t = (t0 + h)− (t0) = h, as

∆y

∆t
=

16(t0 + h)2 − 16t20
h

ft
sec

. (2.3)

• We cannot use this formula to calculate the instantaneous speed at
the exact moment t0 by simply substituting h = 0, because we cannot
divide by zero.

• But we can use it to calculate average speeds over shorter and shorter
time intervals.

• When we do so, by taking smaller and smaller values of h, we see a
pattern.

Table 2.1: Average speeds over short time intervals [t0, t0 + h].

• The average speed on intervals starting at t0 = 1 seems to approach
a limiting value of 32, as the length of the interval decreases.

• This suggests that the rock is falling at a speed of 32 ft/sec at t0 = 1.
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Let’s confirm this algebraically.

• When t0 = 1, Equation (2.3) reads

∆y

∆t
(t0 = 1) =

16(1 + h)2 − 16(1)2

h
=

16(1 + 2h+ h2)− 16(1)2

h

=
32h+ 16h2

h
= 32 + 16h → 32, as h→ 0.

(2.4)

• Similarly, when we set t0 = 2, Equation (2.3) reads

∆y

∆t
(t0 = 2) =

16(2 + h)2 − 16(2)2

h
=

16(4 + 4h+ h2)− 16(2)2

h

=
64h+ 16h2

h
= 64 + 16h → 64, as h→ 0.

(2.5)

As h gets closer and closer to 0, the average speed has the limiting
value 64 ft/sec when t0 = 2 sec, as suggested by Table 2.1.

Average Rates of Change and Secant Lines

Definition 2.3. The average rate of change of y = f(x) with respect
to x over [x1, x2], x2 = x1 + h, is

∆y

∆x
=

f(x2)− f(x1)

x2 − x1
=

f(x1 + h)− f(x1)

h
, h ̸= 0. (2.6)

Remark 2.4. Geometrically, the rate of
change of f over [x1, x2] is the slope of the
line through the points P (x1, f(x1)) and
Q(x2, f(x2)) (Figure 2.1). In geometry, a
line joining two points of a curve is called
a secant line. Thus, the average rate of
change of f over [x1, x2] is identical with
the slope of secant line PQ.

Figure 2.1: A secant to the graph of
y = f(x).
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Defining the Tangent Line

We use an approach that analyzes the behavior of the secant lines that
pass through P and nearby points Q as Q moves toward P along the
curve (Figure 2.2).

Figure 2.2: Secant lines and the tangent line to the curve at P .

Definition 2.5. (Rough Definition of the Tangent Line)
The tangent line to the curve at P is the limit of the secant lines, as
Q→ P from either side. (We clarify the limit idea in the next section.)

Example 2.6. Find the slope of the tangent line to the parabola y = x2 at
the point (2, 4) by analyzing the slopes of secant lines through (2, 4). Write
an equation for the tangent line to the parabola at this point.
Solution. The slope of the secant line through (2, 22) and (2 + h, (2 + h)2):

Ans: y − 4 = 4(x− 2).

Remark 2.7. Examples 2.2 and 2.6 show that if the average rate of
change of y = f(x) converges to a certain number, as h → 0, then the
number can be viewed as the instantaneous rate of change, i.e., the
slope of the tangent line.
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Exercises 2.1
1. Use the method in Example 2.6 to find (1) the slope of the curve at the given point P ,

and (2) an equation of the tangent line at P .

(a) y = 7− x2, P (2, 3) (b) y = x3 − 12x, P (1,−11)

Ans: (b) slope: −9

2. The deck of a bridge is suspended 275 feet above a river. If a pebble falls off the side of
the bridge, the height, in feet, of the pebble above the water surface after t seconds is
given by y = 275− 16t2.

(a) Find the average velocity of the pebble for the time period beginning when t = 4
and lasting

(i) 0.1 seconds (ii) 0.05 seconds (iii) 0.01 seconds
(b) Estimate the instantaneous velocity of the pebble when t = 4.

Ans: (a)(ii). −128.8 ft/sec

3. The table shows the position of a motorcyclist after accelerating from rest. Find the
average velocity for each time period:

(a) [2, 4] (b) [3, 4] (c) [4, 6]

t (sec) 0 1 2 3 4 5 6
s (feet) 0 4.9 20.6 46.5 79.2 124.8 176.7

4. Let f(x) = x2 − x.

(a) Use the method in (2.4)-(2.5), p.62, to estimate the instantaneous slopes of f at four
different points: (x, f(x)) for x = 0, 1, 2, 3.

(b) Plot the results of (a) in the x-and-slope coordinates to find the best-fitting curve.
Ans: (b) slope(x) = 2x− 1.
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2.2. Limit of a Function and Limit Laws

Example 2.8. How does the function

f(x) =
x2 − 1

x− 1

behave near x = 1?
Solution. The given formula defines f for all real numbers x except x = 1

(since we cannot divide by zero). When x ̸= 1, it can be simplified as

f(x) =
(x+ 1)(x− 1)

x− 1
= x+ 1, for x ̸= 1.

• The graph of f is the line y = x+ 1 with the point (1, 2) removed.

• This removed point is shown as a hole in Figure 2.3.

• Even though f(1) is not defined, it is clear that we can make the value of
f(x) as close as we want to 2 by choosing x close enough to 1.

Figure 2.3: The graph of y = (x2 − 1)/(x− 1).

Intuitive Definition of a Limit
Definition 2.9. Suppose that f(x) is defined on an open interval about
a, except possibly at a. Then we write

lim
x→a

f(x) = L, (2.7)

and say “the limit f(x), as x approaches a, is L”,
if we can make the values of f(x) arbitrarily close to L (as close to L as
we like) by restricting x to be sufficiently close to a (on either side of a)
but not equal to a.
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Example 2.10.

• The limit of a function does not depend on how the function is defined
at the point being approached.

• It does not even matter whether the function is defined at the point.

Example 2.11. Discuss the behavior of the following functions, explaining
why they have no limit as x→ 0.

(a) U(x) =

{
0, x < 0

1, x ≥ 0
(b) g(x) =

{
1/x, x ̸= 0

0, x = 0 (c) f(x) =

 0, x ≤ 0

sin
1

x
, x > 0

Solution. (a) The unit step function U(x) jumps at x = 0. (b) g grows too
large to have a limit. (b) f oscillates too much to have a limit.
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Example 2.12. For the function f(t) graphed below, find the following
limits or explain why they do not exist.

(a) lim
t→−2

f(t) (b) lim
t→−1

f(t) (c) lim
t→0

f(t) (d) lim
t→1

f(t)

Solution.

The Limit Laws

Theorem 2.13. Limit Laws
Let L, M , c, and k be real numbers, n a positive integer, and

lim
x→a

f(x) = L and lim
x→a

g(x) = M. (2.8)
Then,

1. Sum Rule: lim
x→a

(f(x) + g(x)) = L+M

2. Difference Rule: lim
x→a

(f(x)− g(x)) = L−M

3. Constant Multiple Rule: lim
x→a

(k · f(x)) = k · L

4. Product Rule: lim
x→a

(f(x) · g(x)) = L ·M

5. Quotient Rule: lim
x→a

f(x)

g(x)
=

L

M
, M ̸= 0

6. Power Rule: lim
x→a

[f(x)]n = Ln,

7. Root Rule: lim
x→a

n
√
f(x) =

n
√
L = L1/n

(If n is even, we assume that f(x) ≥ 0 for x in an interval containing a.)

The Key: Apply limx→a to each term, if the limit exists.
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Example 2.14. Find the limits.

(a) lim
x→0

(
x4 +

cos 2x

100

)
(b) lim

x→1

x2 + x− 2

x2 − x

Solution.

Ans: (a) 1/100. (b) 3.

Example 2.15. Evaluate the limits, by rationalization.

(a) lim
x→0

√
x2 + 100− 10

x2
(b) lim

h→1

h− 1√
3h+ 1− 2

Solution.

Ans: (a) 1/20. (b) 4/3.
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The Sandwich Theorem

Theorem 2.16. Sandwich Theorem
Suppose that g(x) ≤ f(x) ≤ h(x) for all x in some open interval containing
a, except possibly at x = a itself. Suppose also that

lim
x→a

g(x) = lim
x→a

h(x) = L.

Then limx→a f(x) = L.

Example 2.17. Prove that for all θ,

(a) −|θ| ≤ sin θ ≤ |θ|
(b) 0 ≤ 1− cos θ ≤ |θ|

(2.9)

Solution. Hint : Use the geometric definition of the angle in Figure 1.9, p. 26, and the

geometric interpretation of trigonometric functions in Figure 1.11, p. 29.

Example 2.18. Use the Sandwich Theorem to verify the following

(a) lim
θ→0

sin θ = 0

(b) lim
θ→0

cos θ = 1

(c) For any function f , lim
x→a
|f(x)| = 0 implies lim

x→a
f(x) = 0.

Solution. Clue: (b) Use (2.9) with cos θ = 1− (1− cos θ)
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Basics of Computer Programming

The very basics of computer programming is to understand how to
deal with

• recursive iterations (loops)
• conditional statements
• calling functions
• data input/output

Example 2.19. Estimate

lim
n→∞

(
1 +

1

n

)n
, (2.10)

by choosing n = 10i, i = 1, 2, · · · , 7.
Solution.

estimate_e.m
1 for i=1:7
2 n = 10^i;
3 f = (1+1/n)^n;
4 % print out the quantities
5 fprintf('n= %6g; f(n)= %.8g\n',n,f)
6 end

Result
1 n= 10; f(n)= 2.5937425
2 n= 100; f(n)= 2.7048138
3 n= 1000; f(n)= 2.7169239
4 n= 10000; f(n)= 2.7181459
5 n= 100000; f(n)= 2.7182682
6 n= 1e+06; f(n)= 2.7182805
7 n= 1e+07; f(n)= 2.7182817

Using Maple:
maple-estimate-e.mw

1 for i to 7 do
2 n := 10^i;
3 f := (1 + 1/n)^n;
4 # print out the quantities
5 printf("n= %6g; f= %.8g\n",n,f);
6 end do:

The result must be the same as that of the Matlab program.

As you can see from the example, computer programming is not about
computational languages but about mathematical logic.

Note: The number e can be defined as the limit in (2.10).
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Exercises 2.2
1. Explain why the limits do not exist.

(a) lim
x→0

x

|x| (b) lim
x→1

1

x− 1

Hint : (a) Consider two cases: x < 0 and x > 0.

2. Find the limits.

(a) lim
x→6

8(x− 5)(x− 7) (b) lim
x→2

2x+ 5

11− x3

Ans: (b) 3.

3. Find the limits.

(a) lim
t→1

t2 + t− 2

t2 − 1
(b) lim

x→4

4− x

5−
√
x2 + 9

Ans: (b) 5/4.

4. Evaluate the limit
lim
h→0

f(x+ h)− f(x)

h

for the given function f and the value of x.

(a) f(x) = x2, x = −2
(b) f(x) = 1/x, x = 2

Ans: (b) −1/4.

5. Solve the following.

(a) If lim
x→4

f(x)− 5

x− 2
= 1, find lim

x→4
f(x).

(b) If lim
x→2

f(x)− 5

x− 2
= 1, find lim

x→2
f(x).

(c) If lim
x→2

f(x)− 5

x− 2
= 2, find lim

x→2
f(x).

Ans: (b) 5.

6. Challenge If lim
x→2

x2 + ax+ b

x− 2
= 1, find the constants a and b.
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2.3. The Precise Definition of a Limit

Example 2.20. Consider the function f(x) = 2x−1 near x = 4. Intuitively
it seems clear that f(x) is close to 7 when x is close to 4, so we may write

lim
x→4

f(x) = 7. (2.11)

However, how close to x = 4 does x have to be so that f(x) differs
from 7 by, say, less than 1 unit?
Solution. Asked: For what values of x is |f(x)− 7| < 1?

• To find the answer, express f(x) explicitly in terms of x:

|f(x)− 7| = |(2x− 1)− 7| = |2x− 8| < 1.

• We solve the inequality:

−1 < 2x− 8 < 1

⇒ 7 < 2x < 9

⇒ 3.5 < x < 4.5

⇒ −0.5 < x− 4 < 0.5

• Thus, keeping x within 0.5 units of x = 4 will keep f(x) within 1 unit of
y = 7. That is,

|f(x)− 7| < 1, whenever |x− 4| < 0.5. (2.12)

Remark 2.21. In general: For the function f(x) = 2x− 1, for arbitrary
ε > 0, there exists a number δ = δ(ε) > 0 such that

|f(x)− 7| < ε, whenever |x− 4| < δ. (2.13)

• In the above example, if ε = 1, then we have found δ = 0.5.
• Another example: if ε = 0.01, then we can set δ = 0.005.
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The Precise Definition of a Limit
Definition 2.22. Let f(x) be defined on an open interval about a, except
possibly at a itself. We say that

the limit of f(x) is L as x approaches a,

and write
lim
x→a

f(x) = L, (2.14)

if, for every number ε > 0, there exists a corresponding number δ > 0
such that

|f(x)− L| < ε whenever 0 < |x− a| < δ. (2.15)

Note: The value of f at x = a does not influence the existence of a limit;
x = a is excluded. The above definition is sometimes called the ε-δ defi-
nition of the limit.

Example 2.23. Use Definition 2.22 to show

lim
x→1

(5x− 3) = 2.

Solution. Let f(x) = 5x − 3 and ε > 0 be set arbitrarily. Then, we should
find δ > 0 such that

|f(x)− 2| < ε whenever 0 < |x− 1| < δ. (2.16)

• As in Example 2.20, start with |f(x)− 2| < ε:

|f(x)− 2| = |(5x− 3)− 2| = |5x− 5| < ε

5|x− 1| < ε

|x− 1| < ε/5

• Thus, we can take δ = ε/5. Such a δ would satisfy (2.16).

Remark 2.24. In the last example, the value of δ = ε/5 is not the only
value that satisfies (2.16). Any smaller positive δ will do as well. The
definition does not ask for the “best” positive δ, just one that will work.
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Example 2.25. For the limit limx→5

√
x− 1 = 2, find a δ that works for

ε = 1. That is, find a δ such that

|
√
x− 1− 2| < 1 whenever 0 < |x− 5| < δ.

Solution.

Ans: δ = 3.

Strategy 2.26. The process of finding a δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ

can be accomplished in two steps.

1. Solve the inequality |f(x) − L| < ε to find an open interval (c, d)
containing a.

2. Find a value of a δ > 0 that places the open interval (a − δ, a + δ)
inside the interval (c, d).



2.3. The Precise Definition of a Limit 75

Exercises 2.3
1. Each of the following gives a function f(x) and numbers L, a, and ε > 0. In each case,

an open interval about a on which the inequality |f(x)−L| < ε holds. Then give a value
for δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ.

(a) f(x) = 1/x, L = 1/4, a = 4, ε = 0.05

(b) f(x) =
√
x− 7, L = 4, a = 23, ε = 1

Ans: (a) (10/3, 5), δ = 2/3.

2. Each of the following gives a function f(x) and numbers a and ε > 0. Find L =
limx→a f(x). Then find a number δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ.

(a) f(x) =
x2 − 4

x− 2
, a = 2, ε = 0.05

(b) f(x) =
√
1− 5x, a = −3, ε = 0.5

Ans: (b) L = 4, δ = 0.75.

3. Use the ε-δ definition of the limit, Definition 2.22, to prove the limit statements.

(a) lim
x→9

√
x− 5 = 2.

(b) lim
x→−3

x2 − 9

x+ 3
= −6.

Hint : (b) Start with
∣∣∣x2 − 9

x+ 3
+ 6
∣∣∣ < ε. When x ̸= −3, it can be written as |(x− 3) + 6| < ε.

Now, solve the inequality.

4. Challenge Use Definition 2.22 to prove that limx→a

√
x =
√
a.

Hint : Use |
√
x−
√
a| = |x− a|√

x+
√
a

.
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2.4. One-Sided Limits

Definition 2.27. A one-sided limit is the value the function f(x) ap-
proaches, as x approaches a specified point from one side only, either
from the left or from the right.

• If x approaches a from the right, the limit L+ is a right-hand limit
or limit from the right; we write

lim
x→a+

f(x) = L+. (2.17)

• If x approaches from the left, the limit L− is a left-hand limit or
limit from the left; we write

lim
x→a−

f(x) = L−. (2.18)

Example 2.28. Let f(x) = x/|x|. Then lim
x→0

f(x) does not exist; see Exer-
cise 1 of Section 2.2. Find one-sided limits for f(x) at x = 0.
Solution.

Theorem 2.29. Suppose that a function f is defined on an open inter-
val containing a, except perhaps at a itself. Then f(x) has a limit as x
approaches a if and only if it has left-hand and right-hand limits there
and these one-sided limits are equal:

lim
x→a

f(x) = L ⇐⇒ lim
x→a−

f(x) = L and lim
x→a+

f(x) = L (2.19)
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Example 2.30. For the function graphed, complete the table.

a lim
x→a−

f(x) lim
x→a+

f(x) lim
x→a

f(x)

0 does not exist 1 1

1

2

3

4 1

Note: Equation (2.19) is exceptionally applied at domain endpoints.

Definition 2.31. Precise Definitions of One-Sided Limits

(a) Assume the domain of f contains an interval (a, c) to the right of a.
We say that f(x) has right-hand limit L at a, and write

lim
x→a+

f(x) = L, (2.20)

if for every number ε > 0 there exists a corresponding number δ > 0
such that

|f(x)− L| < ε whenever a < x < a+ δ. (2.21)

(b) Assume the domain of f contains an interval (b, a) to the left of a.
We say that f(x) has left-hand limit L at a, and write

lim
x→a−

f(x) = L, (2.22)

if for every number ε > 0 there exists a corresponding number δ > 0
such that

|f(x)− L| < ε whenever a− δ < x < a. (2.23)
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Example 2.32. Prove that limx→0+
√
x = 0.

Solution. Let ε > 0 be given. Then we should find δ > 0 such that

|
√
x− 0| < ε whenever 0 < x < 0 + δ, (2.24)

or √
x < ε whenever 0 < x < δ.

Squaring both sides of this last inequality gives

x < ε2 whenever 0 < x < δ.

Thus we may choose δ = ε2, with which (2.24) follows.

Theorem 2.33. Limits involving sin θ/θ

lim
θ→0

sin θ

θ
= 1. (θ in radians) (2.25)

Solution. Collect Figure 1.9 and Figure 1.11.

It follows from the geometric interpretations that for |θ| small,

sin θ < θ < tan θ, when θ > 0

sin θ > θ > tan θ, when θ < 0

Dividing the inequalities by sin θ reads

1 <
θ

sin θ
<

1

cos θ
=⇒ 1 >

sin θ

θ
> cos θ.

Since lim
θ→0

cos θ = 1, (2.25) follows from the Sandwich Theorem.
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Example 2.34. Show that (a) lim
x→0

sin 2x

5x
=

2

5
and (b) lim

x→0

cosx− 1

x
= 0.

Solution. Hint : (b) Use the half-angle formula cosx = 1− 2 sin2(x/2).

sinc function
Definition 2.35. The sinc function, denoted by sinc (x), has two
forms, normalized and unnormalized.

(a) The unnormalized sinc function is defined by

sincx =

{
(sinx)/x, x ̸= 0

1, x = 0
(2.26)

which is also called the sampling function.
(b) The normalized sinc function is defined by

sincx =

{
(sin πx)/(πx), x ̸= 0

1, x = 0
(2.27)

Figure 2.4: The normalized sinc function.
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Exercises 2.4
1. Let g(x) =

√
x sin(1/x), as graphed in the figure.

(a) Does lim
x→0+

g(x) exist? If so, what is it? If not, why not?

(b) Does lim
x→0−

g(x) exist? If so, what is it? If not, why not?

(c) Does lim
x→0

g(x) exist? If so, what is it? If not, why not?

Ans: (c) Yes. 0.

2. Let f(x) =


√
1− x2, 0 ≤ x < 1

1, 1 ≤ x < 2

2, x = 2

Graph the function and answer these questions.

(a) What are the domain and range of f?
(b) At what points a, if any, does lim

x→a
f(x) exist?

(c) At what points does the left-hand limit exist but not the right-hand limit?
(d) At what points does the right-hand limit exist but not the left-hand limit?

Ans: (b) [0, 1) ∪ (1, 2]. (c) x = 2.

3. Find the limits.

lim
x→1+

√
x (x− 1)

|x− 1|
(a) lim

x→1−

√
x (x− 1)

|x− 1|
(b)

lim
x→0+

| sinx|
x

(c) lim
x→0−

| sinx|
x

(d)

Ans: (b) −1.

4. Use (2.25) to find limits.

lim
h→0+

h

sin 3h
(a) lim

x→0

tan 2x

x
(b)

lim
t→0

tan(1− cos t)

1− cos t
(c) lim

θ→0
sin θ cot 2θ(d)

Ans: (c) 1. (d) 1/2.
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5. Let f(x) =
{

x2 sin(1/x), x < 0√
x, x > 0

(a) Find lim
x→0−

f(x).

(b) Find lim
x→0+

f(x).

(c) Based on your conclusions in parts (a) and (b), can you say anything about lim
x→0

f(x)?
Give reasons for your answer.

Ans: (c) The limit exists and is 0. Why?
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2.5. Continuity

2.5.1. Definition of Continuity

Note: When the graph of f has no breaks at a, we would say that
f is continuous at a.

Definition 2.36. A function f is continuous at a if

lim
x→a

f(x) = f(a). (2.28)

Remark 2.37. Continuity Test
A function f(x) is continuous at a point x = a if and only if it meets the
following three conditions.

1. f(a) is defined ( ⇔ a lies in the domain of f )
2. lim

x→a
f(x) exists (f has a limit as x→ a)

3. lim
x→a

f(x) = f(a) (the limit equals the function value)
(2.29)

Example 2.38. If any of three conditions in (2.29) fail, then f is discon-
tinuous at a. There are four different types of discontinuities:

Figure 2.5: Removable discontinuity, infinite discontinuity, jump discontinuity,
and oscillating discontinuity.
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Example 2.39. Where are each of the following functions discontinuous?

(a) f(x) =
x2 − x− 2

x− 2 (b) g(x) =


1

x2
, if x ̸= 0

1, if x = 0

Solution.

Definition 2.40. One-Sided Continuity

• A function f is right-continuous at a (or continuous from the
right) if

lim
x→a+

f(x) = f(a). (2.30)

• A function f is left-continuous at a (or continuous from the left)
if

lim
x→a−

f(x) = f(a). (2.31)

Example 2.41. State the numbers
at which f is discontinuous. For each
number, state whether f is continu-
ous from the right, from the left, or
neither.
Solution.

Figure 2.6: The figure used in Example 2.30.
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Theorem 2.42. Properties of Continuous Functions
If f and g are continuous at a and k is a constant, then the following
functions are also continuous at a:

(a) f + g

(b) f − g

(c) kf

(d) fg

(e) f/g, if g(a) ̸= 0

(f) fn, n a positive integer

Note: The following types of functions are continuous at every number
in their natural domains:

• Polynomials
• Rational functions
• Root functions
• Trigonometric functions
• Exponential functions
• Logarithmic functions
• Inverse functions: When a continuous function defined on an in-

terval has an inverse, the inverse function is itself a continuous
function over its own domain.

Example 2.43. Where is the function f(x) =
lnx+ tan−1 x

x2 − 1
continuous?

Solution.

Ans: x > 0, x ̸= 1; which is its natural domain.
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Example 2.44. Use the definition of continuity and the properties of limits
to show that the following function is continuous at the given number a.

g(t) =
t2 + 5t

2t+ 1
, a = 2.

Solution.

Example 2.45. Show that f is continuous on (−∞,∞).

f(x) =

{
1− x2, if x ≤ 1

lnx, if x > 1

Solution.
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Example 2.46. Explain why the function is discontinuous at x = 3. Is it
continuous from one side?

f(x) =


2x2 − 5x− 2

x− 3
, if x ̸= 3

6, if x = 3

Solution.

Example 2.47. For what value of the constant c is the function f continu-
ous everywhere?

f(x) =

{
cx2 + 2x, if x < 2

x3 − cx if x ≥ 2

Solution.
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2.5.2. More Properties of Continuous Functions

Continuity of Compositions of Functions

Theorem 2.48. If f is continuous at a and g is continuous at f(a), then
the composition g ◦ f is continuous at a.

Example 2.49. Show that the following functions are continuous on their
natural domains.

(a) y =
∣∣∣ x− 2

x2 − 2

∣∣∣ (b) y =
( sin2 x

x2 + 2

)1/2
Solution.

Limits of Continuous Functions

Theorem 2.50. If lim
x→a

f(x) = b and g is continuous at b, then

lim
x→a

g(f(x)) = g
(
lim
x→a

f(x)
)
= g(b) (2.32)

Note: Continuity and limit are commutative, when the limit exists.

Example 2.51. Find lim
x→π/2

cos
(
2x+ sin

(3π
2

+ x
))

.

Solution.

Ans: −1
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Theorem 2.52. Intermediate Value Theorem (IVT)
Suppose that f is continuous on a closed interval [a, b] and let N be
any number between f(a) and f(b), where f(a) ̸= f(b). Then there exists
a number c ∈ (a, b) such that f(c) = N .

Figure 2.7: There is at least one such c that f(c) = N .

Remark 2.53. Consequences of the IVT

• Connectedness of the Graph: The IVT implies that the graph of
a continuous function cannot have any breaks over the interval. It
will be connected – a single, unbroken curve.

• Root Finding: We call a solution of the equation f(x) = 0 a root of
the equation or a zero of the function f . The IVT tells us that if
f is continuous, then any interval on which f changes sign contains
a zero of the function.
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Example 2.54. Use the Intermediate Value Theorem to show that there
is a root of the given equation in the specified interval.

(a) ex = 3− 2x, [0, 1] (b) f(x) = x3 + x2 − 4x− 4, [1, 3]

Solution.

Continuous Extension to a Point

Example 2.55. Define f(4) in a way that extends f(x) =
x2 − 16

x2 − 3x− 4
to be

continuous at x = 4.
Solution.
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Exercises 2.5
Exercises 1-4 refer to the function f graphed.

1. (a) Does f(−1) exist?
(b) Does lim

x→−1+
f(x) exist?

(c) Does lim
x→−1+

f(x) = f(−1)?

(d) Is f continuous at x = −1?
Ans: All: yes

2. (a) Does f(1) exist?
(b) Does lim

x→1
f(x) exist?

(c) Does lim
x→1

f(x) = f(1)?

(d) Is f continuous at x = 1?
Ans: (c) no.

3. (a) Is f defined at x = 2?
(b) Is f continuous at x = 2?

Ans: no.

4. What value should be assigned to f(2) to make the extended function continuous at
x = 2?

5. At what points are the functions continuous?

(a) y =
x+ 3

x2 − 3x− 10
(b) f(x) =


x3 − 8

x2 − 4
, x ̸= 1, x ̸= −2

3, x = 2

4, x = −2

Ans: (b) x ̸= −2

6. Find the limits. Are the functions continuous at the point being approached?

(a) lim
t→0

sin
(π
2
cos(tan t)

)
(b) lim

x→0
tan
(
1− sinx

x

)
Ans: (b) 0, no.

7. For what value of b is

g(x) =


x− b

b+ 1
, x ≤ 0

x2 + b, x > 0

continuous at every x?
Ans: b = 0,−2
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8. Use the Intermediate Value Theorem to show that the equation x3 − 15x + 1 = 0 has
three solutions in the interval [−4, 4].

9. (a) Show that the absolute value function f(x) = |x| is continuous everywhere.
(b) Prove that if f is a continuous function on an interval, then so is |f |.
(c) Is the converse of the statement in part (b) also true?

In other words, if |f | is continuous, does it follow that f is continuous?
If so, prove it. If not, find a counterexample.
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2.6. Limits Involving Infinity; Asymptotes

Let’s begin by investigating the behavior of the function f graphed

You can see
lim

x→−∞

x2 − 1

x2 + 1
= 1 and lim

x→∞

x2 − 1

x2 + 1
= 1

Definition 2.56. Intuitive Definition of a Limit at Infinity
Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L (2.33)

means that the values of f(x) can be made arbitrarily close to L by re-
quiring x to be sufficiently large.

Figure 2.8: Examples illustrating lim
x→∞

f(x) = L.

Remark 2.57. Definition 2.56 can be stated formally:
f(x) has the limit L as x approaches infinity and write

lim
x→∞

f(x) = L, (2.34)

if, for every number ε > 0, there exists a corresponding number M such
that for all x in the domain of f ,

|f(x)− L| < ε whenever x > M. (2.35)
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Definition 2.58. Let f be a function defined on some interval (−∞, a).
Then

lim
x→−∞

f(x) = L (2.36)

means that the values of f(x) can be made arbitrarily close to L by re-
quiring x to be sufficiently large negative.

2.6.1. Horizontal Asymptotes

Definition 2.59. The line y = L is called a horizontal asymptote of
the curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L. (2.37)

Example 2.60. Find lim
x→∞

1

x
and lim

x→−∞

1

x
.
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Example 2.61. Evaluate the limit or show that it does not exist.

lim
x→∞

6x2 + 8x− 3

3x2 + 2
Solution. Hint : Divide the numerator and the denominator by the highest
power of x in the denominator.

Example 2.62. Find the limits.

(a) lim
x→∞

x−1 + x−4

x−2 + x−3
(b) lim

x→−∞

(x2 + x− 2

8x2 − 3

)1/3
Solution.
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Example 2.63. Evaluate the limits or show that they do not exist.

(a) lim
x→∞

(
√

x2 + 1− x) (b) lim
x→2+

arctan
( 1

x− 2

)
(c) lim

x→2−
arctan

( 1

x− 2

)
Solution.

Example 2.64. Find

(a) lim
x→∞

sin(1/x) (b) lim
x→±∞

x sin(1/x)

Clue: (b) Let t = 1/x. Then it can be written as lim
t→0±

1

t
sin t.

Solution.
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Example 2.65. Find the horizontal asymptotes of the graph of

f(x) =

√
4x6 + 1

2− x3
.

Solution. Clue: When x < 0,
√
4x6 + 1 = |x3|

√
4 + 1/x6 = −x3

√
4 + 1/x6.

Ans: y = ±2.

Self-study 2.66. Find the horizontal asymptotes of the graph of

f(x) =
x3 − 2

|x|3 + 1
.

Solution.

Ans: y = ±1.
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Example 2.67. Evaluate the limits or show that they do not exist.

(a) lim
x→0−

e1/x (b) lim
x→0+

e1/x

Solution.

Example 2.68. Find lim
x→0+

x
⌊1
x

⌋
, where ⌊·⌋ denotes the greatest integer func-

tion.

Solution. Clue: Let t = 1/x. For t > 0,

t− 1 ≤ ⌊t⌋ ≤ t. ⇒ 1− 1

t
≤ 1

t
⌊t⌋ ≤ 1.

Ans: 1.
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2.6.2. Oblique Asymptotes

Example 2.69. Find the oblique asymptote (or slant line asymptote)
of the graph of

f(x) =
x2 − 3

2x− 4
.

Then sketch the graph. (Note that the numerator has one order higher than
the denominator.)

Solution. Hint : Try to divide 2x − 4 into x2 − 3, to find a linear part and a remainder

for f .

Ans: y = x/2 + 1.

2.6.3. Infinite Limits

Example 2.70. Discuss the behavior of

f(x) =
1

1− x
as x→ 1±, −∞, ∞.

Solution.
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Definition 2.71. Infinite Limits

1. We say that f(x) approaches infinity as x approaches a, and
write

lim
x→a

f(x) =∞, (2.38)

if for every positive real number K there exists a corresponding δ > 0
such that

f(x) > K whenever 0 < |x− a| < δ. (2.39)

2. We say that f(x) approaches negative infinity as x approaches
a, and write

lim
x→a

f(x) = −∞, (2.40)

if for every negative real number K there exists a corresponding
δ > 0 such that

f(x) < K whenever 0 < |x− a| < δ. (2.41)

Example 2.72. Prove that lim
x→0

1

x2
=∞.

Solution. Clue: Start with f(x) =
1

x2
> K for an arbitrary K > 0. What to do is to find

a corresponding δ > 0.
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2.6.4. Vertical Asymptotes

Definition 2.73. A line x = a is a vertical asymptote of the graph of
a function y = f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞. (2.42)

Example 2.74. Find the vertical, horizontal, and oblique asymptotes of
each curve.

(a) f(x) =
2

x2 − 3x
(b) g(x) =

x2 + 2x

x+ 1

Solution.
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Exercises 2.6
1. For the function f whose graph is given, determine the following limits.

(a) lim
x→−3−

f(x)

(b) lim
x→−3+

f(x)

(c) lim
x→−3

f(x)

(d) lim
x→0−

f(x)

(e) lim
x→0+

f(x)

(f) lim
x→0

f(x)

(g) lim
x→2−

f(x)

(h) lim
x→2+

f(x)

(i) lim
x→2

f(x)

(j) lim
x→−∞

f(x)

(k) lim
x→∞

f(x)

2. Find the limits.

(a) lim
x→−∞

√
x2 + 1

x+ 1
(b) lim

x→∞

x− 3√
4x2 + 25

Ans: (a) −1

3. Find the limits.

(a) lim
x→0+

2

3x1/3
(b) lim

x→0−

2

3x1/3

Ans: (b) −∞.

4. Find the limits.

(a) lim
x→∞

(√
x2 + 25−

√
x2 − 1

)
(b) lim

x→−∞

(
2x+

√
4x2 + 3x− 2

)
Hint : Try multiplying or dividing by the conjugate.

Ans: (b) −3/4.

5. For each, determine the domain and then use various limits to find the asymptotes and
the range.

(a) y = 4 +
3x2

x2 + 1
. (b) y =

2x

x2 − 1
.

Ans: (b) D: x ̸= ±1. R: (−∞,∞).
Specify yourself two vertical asymptotes and a horizontal asymptote.

6. Graph the rational equations, including the graphs and equations of asymptotes.

(a) y =
x2

x− 1
(b) y =

x2 − 1

x

Ans: (a) Asymptotes: y = x+ 1 and x = 1



102 Chapter 2. Limits and Continuity



CHAPTER 3
Derivatives

In This Chapter:
Topics Applications/Properties

Derivative & Differentiation Rules
Powers, multiples, sums, & differences Tangent Lines
Derivative of exponential functions
Products and quotients
Second- and higher-order derivatives

Derivatives
Trigonometric Function

Chain Rule Implicit Differentiation
Inverse Functions and Logarithms

Related Rates
Linearization and Differentials

Contents of Chapter 3
3.1. Tangent Lines and the Derivative at a Point . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2. The Derivative as a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3. Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4. The Derivative as a Rate of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.5. Derivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.6. The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.7. Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.8. Derivatives of Inverse Functions and Logarithms . . . . . . . . . . . . . . . . . . . . . 148
3.9. Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.10.Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.11.Linearization and Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

103



104 Chapter 3. Derivatives

3.1. Tangent Lines and the Derivative at a Point

Recall: In Definition 2.5, p. 63, the tangent line to the curve at P is
roughly defined as the limit of the secant lines, as Q → P from either
side.

Figure 3.1: Secant lines and the tangent line to the curve at P .

Definition 3.1.
The slope of the curve y = f(x) at the point P (x0, f(x0)) is the number

lim
h→0

f(x0 + h)− f(x0)

h
(provided the limit exists). (3.1)

The tangent line to the curve at P is the line through P with this slope.

Figure 3.2: The slope at P , as the limit of the average rates of change.
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Example 3.2. Find the slope of the parabola y = x2 at the point P (1, 1),
and state an equation of the tangent line to the curve at P .
Solution.

Ans: slope = 2; y − 1 = 2(x− 1)

Example 3.3. In Examples 2.1 and 2.2 in Section 2.1, we studied the speed
of a rock falling freely from rest near the surface of the earth. The rock fell

y = 16t2 (feet)

during the first t sec, and we used a sequence of average rates over increas-
ingly short intervals to estimate the rock’s speed at the instant t = 1. What
was the rock’s exact speed at this time?
Solution. Let y = f(t) = 16t2. Then

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
=
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Definition 3.4. The derivative of a function f(x) at a point x0, denoted
f ′(x0), is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
, (3.2)

provided that the limit exists.

Remark 3.5. If we write x = x0 + h, then (3.2) can be written as

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (3.3)

Claim 3.6. The tangent line to y = f(x) at (x0, f(x0)) is the line through
point (x0, f(x0)) whose slope is equal to f ′(x0), the derivative of f at x0.

Example 3.7. If the tangent line to y = f(x) at (4, 3) passes through the
point (0, 2), find f ′(4).
Solution.
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Summary 3.8. The following are all interpretations for the limit of
the difference quotient

lim
h→0

f(x0 + h)− f(x0)

h
. (3.4)

1. The slope of the graph of y = f(x) at x = x0

2. The slope of the tangent line to the curve y = f(x) at x = x0

3. The rate of change of f(x) with respect to x at x = x0

4. The derivative f ′(x0)

Example 3.9. Find and simplify the difference quotients
f(x+ h)− f(x)

h
for the functions, and then apply lim

h→0
.

(a) f(x) = x2 (b) f(x) = x3

Solution.
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Exercises 3.1
1. Find an equation for the tangent line to the curve at the given point. Then sketch the

curve and tangent line together.

(a) y = x3, (2, 8) (b) y = (x− 1)2 − 1, (1,−1)

Ans: (b) y = −1

2. Find the slope of the curve at the point indicated.

(a) y =
√
x, x = 4 (b) y =

1

x− 1
, x = 3

Ans: (b) f ′(3) = −1/4

3. At what points does the graph of the function have a horizontal tangent line?

f(x) = x3 − 3x

Hint : Find f ′(a) = lim
h→0

f(a+ h)− f(a)

h
, and solve f ′(a) = 0 for a.

Ans: (1,−2) and (−1, 2)

4. Find an equation of the straight line having slope 1/4 that is tangent to the curve y =√
x.

5. Let f(x) =
{

x2 sin(1/x), x ̸= 0

0, x = 0

(a) Is f continuous at x = 0?
(b) Does f ′(0) exist?
(c) Does f have a tangent line at the origin? If yes, what is it?

Ans: (c) y = 0.

(Continued on the next page)
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6. (a) f(x) = x3 + 2x, a = 1 (b) g(x) = cos x+ 4 sin(2x), a = π

CAS Use a CAS to perform the following steps for the functions.

(i) Plot y = f(x) over the interval [a− 1, a+ 4].
(ii) Define the difference quotient

Q(h) =
f(a+ h)− f(a)

h
, (3.5)

which is a function of the step size h, when holding a fixed.
(iii) Find the limit of Q as h→ 0; define the tangent line

y = T (x) :=
(
lim
h→0

Q(h)
)
· (x− a) + f(a) (3.6)

(iv) Define the secant lines

y = S(x, h) := Q(h) · (x− a) + f(a) (3.7)

for h = 3, 2, 1.
(v) Graph the secant lines together with f and the tangent line over the interval in

part (i).

Note: You may use Maple, Mathematica, or Matlab. The following shows a part of
Matlab implementation.

• Line 6: In Matlab, to put graphs together, you should say “hold on”
⇒ You can command “hold off” after adding all graphs.

• Line 11: The line is added earlier than Step (v), for your convenience.

• After Line 11: You should add S(x,h) defined as in (3.7).

• In order to graph e.g. S(x,3), you may add a line
fplot(S(x,3),Interval, ’b- -’,’LineWidth’,1.5)

• You result for (a) must look like Figure 3.3 below.

A part of tangent_secant.m
1 syms f(x) Q(h) %also, views x and h as symbols
2

3 f(x) = x^3+2*x; a=1;
4 Interval = [a-1,a+4];
5 fplot(f(x),Interval, 'k-','LineWidth',3) %Step 1
6 hold on
7

8 Q(h) = (f(a+h)-f(a))/h; % Step 2
9 slope = limit(Q(h),h,0); % Step 3

10 T(x) = slope*(x-a)+f(a);
11 fplot(T(x),Interval, 'r-','LineWidth',2)
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Figure 3.3: The result for Exercise 6 (a).

Note: When you decide to use Maple, you may start with the following. Lines 7, 10,
and 13–16 are Maple’s outputs respectively for Lines 6, 9, and 12.

maple-tangent-secant.mw
1 with(plots): with(Student[Calculus1]):
2

3 f := x -> x^3 + 2*x:
4 a := 1:
5 Q := h -> (f(a + h) - f(a))/h:
6 slope := limit(Q(h), h = 0);
7 slope := 5
8 T := x -> slope*(x - 1) + f(a):
9 T(x)

10 5 x - 2
11 S := (x, h) -> Q(h)*(x - a) + f(a):
12 S(x, h)
13 / 3 \
14 \(1 + h) - 1 + 2 h/ (x - 1)
15 ---------------------------- + 3
16 h
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3.2. The Derivative as a Function

Note: Since derivatives can also be thought of as the slope of the tan-
gent line and also as the rate of change, we may sketch the graph of
f ′(x) using the graph of f(x).

Example 3.10. The graph of a function f is given below. Use it to sketch
the graph of the derivative f ′(x).

Solution.

Strategy 3.11. Graphing the Derivative

1. See where the rate of change of f is positive, negative, or zero.
2. Estimate the rough size of the growth rate at any x and its size in

relation to the size of f(x).
3. See where the rate of change itself is increasing or decreasing.
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Example 3.12. The graph of a function f is given below. Use it to sketch
the graph of the derivative f ′(x).

Solution.

Note: In the previous section, we have focused on finding the derivative
of a function f at a particular point (x0, f(x0)), which is equal to the slope
of the tangent line at that point.

• In this section, we investigate the derivative as a function derived
from f by considering the limit at each point x in the domain of f .

Definition 3.13. The derivative of the function f(x) with respect to
the variable x is the function f ′ whose value at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(3.8)

provided the limit exists.

Remark 3.14. The domain of f ′ may be either the same as or smaller
than the domain of f .
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Example 3.15. Using the definition of derivative, find the derivative of
f(x) = 4− 8x− 5x2.
Solution.

Example 3.16. Let f(x) =
√
x.

(a) Use the definition of derivative to find f ′.

(b) State the domain of f ′.

(c) Find the tangent line to the curve y = f(x) at x = 4.

Solution.

Ans: (a) f ′(x) = 1/(2
√
x)
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Notation 3.17. If we use the traditional notation for y = f(x) to indi-
cate that the independent variable is x and the dependent variable is y,
then some common alternative notations for the derivative are:

f ′(x) = y′ =
df

dx
=

dy

dx
=

d

dx
f(x) = D(f)(x) = Dxf(x). (3.9)

The symbols D and
d

dx
are called differentiation operators, because

they indicate the operation of differentiation which is the process of
calculating a derivative.

3.2.1. Differentiability

Differentiable on an Interval; One-Sided Derivatives

Definition 3.18. Differentiability

1. A function y = f(x) is differentiable on an open interval (finite
or infinite) if it has a derivative at each point of the interval.

2. It is differentiable on a closed interval [a, b] if it is differentiable
on the interior (a, b) and if the limits

lim
h→0+

f(a+ h)− f(a)

h
Right-hand derivative at a

lim
h→0−

f(b+ h)− f(b)

h
Left-hand derivative at b

(3.10)

exist at the endpoints.

Example 3.19. In Example 3.16, we found that for x > 0,

d

dx

√
x =

1

2
√
x
.

Apply the definition to examine if the derivative exists at x = 0.
Solution.
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Example 3.20. Show that the function y = |x| is differentiable on (−∞, 0)

and on (0,∞) but has no derivative at x = 0.
Solution.

When Does a Function Not Have a Derivative at a Point?
A function fails to have a derivative at a point for many reasons, including
the examples below:
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Theorem 3.21. Differentiability Implies Continuity:
If f has a derivative at x = c, then f is continuous at x = c.

Proof. Given that f ′(c) exists, we must show that lim
h→0

f(c + h) = f(c). For
h ̸= 0,

f(c+ h) = f(c) + f(c+ h)− f(c) = f(c) +
f(c+ h)− f(c)

h
· h.

Taking limits as h→ 0 reads

lim
h→0

f(c+ h) = lim
h→0

[
f(c) +

f(c+ h)− f(c)

h
· h
]

= f(c) + lim
h→0

f(c+ h)− f(c)

h
· lim
h→0

h

= f(c) + f ′(c) · 0
= f(c),

which completes the proof.

Note: The converse of Theorem 3.21 is false in general.

Example 3.22. Where are the following functions continuous? Differen-
tiable?

(a) f(x) = |x|

(b) g(x) = x1/3

Solution.
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Exercises 3.2
1. Find the indicated derivatives.

(a)
dy

dx
, if y = x3 + x2 (b) v′(t), if v(t) = t+

1

t

Ans: (b) v′(t) = 1− 1/t2

2. Differentiate the functions. Then find an equation of the tangent line at the indicated
point on the graph of the function.

(a) y = f(x) =
1

x
, (x, y) = (1, 1). (b) w = g(z) = 1 +

√
4− z, (z, w) = (3, 2).

Ans: (b) w − 2 = −1

2
(z − 3)

3. (a) The graph in the accompanying figure
is made of line segments joined end to
end in the interval [−4, 6]. At which
points of the interval is f ′ not defined?
Give reasons for your answer.

(b) Graph the derivative of f . (The graph
should show a step function.)

4. The given graph shows the outside temperature T in ◦F, between 6:00 AM and 6:00 PM.

(a) Estimate the rate of temperature
change at the times 9:00 AM and 2:00
PM.

(b) At what time does the temperature in-
crease most rapidly? Decrease most
rapidly? What is the rate for each of
those times?

(c) Use the graphical technique of Strat-
egy 3.11 to graph the derivative of
temperature T versus time t.

Ans: (a) 2.5◦F/hr, 0◦F/hr

5. Determine if the piecewise-defined function is differentiable at the origin. If it is differ-
entiable, what is f ′(0)?

(a) f(x) =

{
2x+ 1 x ≤ 0

x2 + 2x− 1 x > 0 (b) f(x) =

 x− 1 x ≤ 0
1

2
x+
√
1 + x− 2 x > 0

Ans: (a) Not continuous⇒ not differentiable. (b) f ′(0) = 1.
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6. CAS Graph y = 3x2 in a window that has −2 ≤ x ≤ 2, 0 ≤ y ≤ 4. Then, on the same
screen, graph

y =
(x+ h)3 − x3

h
,

for h = −1, −0.2, 0.2, 1. Explain what is going on.
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3.3. Differentiation Rules

3.3.1. Powers, Multiples, Sums, and Differences

• Derivative of a Constant Function
If f has the constant value f(x) = c, then

df

dx
=

d

dx
(c) = 0. (3.11)

• Power Rule: If n is any real number, then

dxn

dx
= nxn−1, (3.12)

for all x where the powers xn and xn−1 are defined.
• Constant Multiple Rule

If f is a differentiable function of x, and c is a constant, then

d

dx
[cf(x)] = c

d

dx
f(x). (3.13)

• Sum and Difference Rules: If f and g are both differentiable, then

d

dx
[f(x)± g(x)] =

d

dx
f(x)± d

dx
g(x). (3.14)

Example 3.23. Find the derivative of the following functions.

(a) f(x) = 205 (b) g(t) = 5t+ 4t2
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Example 3.24. Find the derivative of the following functions.

f(x) = x3/2 + x−3(a) r(t) =
2

t2
+

8

t4
(b)

y =

√
x+ x

x2
(c) g(x) =

1√
x
+ 4
√
x(d)
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3.3.2. Derivative of Exponential Functions

Let f(x) = ax, a > 0, a ̸= 1.

• We first evaluate f ′(0):

f ′(0) = lim
h→0

ah − a0

h
= lim

h→0

ah − 1

h
. (3.15)

• When we apply the definition of the derivative to f(x), we get

d

dx
(ax) = lim

h→0

ax+h − ax

h

= lim
h→0

ax · ah − ax

h

= lim
h→0

ax · a
h − 1

h

= ax · lim
h→0

ah − 1

h
= ax · f ′(0)

(3.16)

Remark 3.25. In Section 1.5, the number e is introduced such that the
slope of the tangent line to y = ex at x = 0 is exactly 1. That is,

d

dx
(ex)

∣∣∣
x=0

= lim
h→0

eh − e0

h
= lim

h→0

eh − 1

h
= 1 (3.17)

• Derivative of the Natural Exponential Function:

d

dx
(ex) = ex (3.18)

Example 3.26. Find the derivative of f(x) = 3ex + 4x2 − 1

x
+ 3

Solution.
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3.3.3. Products and Quotients

Note: A common misconception is that the derivative of a product is
analogous to the sum and difference rules we saw previously:

f and g are differentiable⇒ (fg)′ = f ′g′

However, this is not true.

Let both f and g be differentiable. Then

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)−f(x)g(x + h) +f(x)g(x + h)− f(x)g(x)

h

= lim
h→0

[f(x+ h)− f(x)

h
· g(x+ h) + f(x) · g(x+ h)− g(x)

h

]
= f ′(x)g(x) + f(x)g′(x).

(3.19)

• Product Rule
If both f and g are differentiable, then so is their product fg, and

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x) (3.20)

Alternative notation:

(fg)′ = f ′g + fg′ or
d

dx
[uv] =

du

dx
v + u

dv

dx

Example 3.27. Find the derivative of the following:

(a) y = (4x2 + 3)(2x+ 5) (b) y = 4ex
(
x3 +

1

x

)
Solution.
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Similarly to Product Rule, we can prove the following.

• Quotient Rule
If both f and g are differentiable, then so is their product f/g, and

d

dx

[f(x)
g(x)

]
=

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
(3.21)

Alternative notation:

(f/g)′ =
f ′g − fg′

g2
or

d

dx
[u/v] =

du

dx
v − u

dv

dx
v2

Example 3.28. Find the derivative of the following:

(a) G(x) =
6x4 − 5

x+ 1
(b) y =

6ex

1 + ex

Solution.

Self-study 3.29. Find the derivative of F (x) =
x2ex

x3 + 5ex

Solution.
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3.3.4. Second- and Higher-order Derivatives

Definition 3.30. If y = f(x) is a differentiable function, then

• its derivative f ′(x) is also a function,
• so f ′ may have a derivative of its own, denoted (f ′)′ = f ′′.

This new function is called the second derivative of f , because it is the
derivative of the first derivative.

Other notations: f ′′(x) =
d2f

dx2
=

d2y

dx2
=

d

dx

(dy
dx

)
= y′′.

Higher-Order Derivatives: If y′′ is differentiable, its derivative

y′′′ =
d

dx
y′′ =

d3y

dx3
is the third derivative of y with respect to x.

The names continue as you imagine, with

y(n) =
d

dx
y(n−1) =

dny

dxn
= Dny (3.22)

denoting the n-th derivative of y w.r.t. x for positive integers n.

Example 3.31. When f(x) = 6xex − 2x2 + 3, find f ′, f ′′, and f ′′′.
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Example 3.32. Find the equation of the tangent line to the curve at the
given point.

(a) y = 2x3 − x2 + 2, (1, 3) (b) y =
6ex

1 + ex
, (0, 3)

Solution.

Example 3.33. Find the point(s) on the curve where the tangent line is
horizontal, for y = x3 − 3x− 2.
Solution.
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Exercises 3.3
1. Find the first and second derivatives.

(a) y =
4x3

3
− x+ 2ex

(b) y =
3
√
x9.6 − xe

(c) y =
x3

3
+

x2

2
+ e−x

(d) w = re−r + e−3/2

Hint : (b) It can be rewritten as y = x3.2−xe. (c) Note that e−x =
1

ex
. Now you may apply Quotient

Rule to get [e−x]′ = −e−x. Later you will learn how to get derivative of e−x more conveniently.
Ans: (d) w′ = (1− r)e−r, w′′ = −(2− r)e−r.

2. Find the derivatives of all orders.

(a) y =
x4

2
− 3

2
x2 − x (b) y = (4x2 + 3)(2− x)

Ans: (b) y′ = 8x(2− x)− (4x2 + 3), y′′ = 8[(2− x)− x]− 8x = 16− 24x, y′′′ = −24, and y(n) = 0, n ≥ 4

3. Find the second derivatives of the functions.

(a) y =
x3 + 7

x
(b) w =

(1 + z

z

)
(1− z)

Ans: (b) w′′ = 2/z3

4. Suppose u and v are functions of x that are differentiable at x = 0 and that

u(0) = 5, u′(0) = −3, v(0) = −1, v′(0) = 2.

Find the values of the following derivatives at x = 0.

(a)
d

dx
(uv) (b)

d

dx
(u/v) (c)

d

dx
(v/u)

5. Let f(x) = x3 − 4x+ 1.

(a) Normal line to a curve. Find an equation for the line perpendicular to the tan-
gent line to the curve y = f(x) at the point (2, 1).

(b) Smallest slope. What is the smallest slope on the curve? At what point on the
curve does the curve have this slope?

(c) Tangent lines having specified slope. Find equations for the tangent lines to
the curve at the points where the slope of the curve is 8.

6. Challenge Find the values of a and b that make the following function differentiable
for all x-values.
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(a) f(x) =

{
ax, if x < 0

x2 − 3x if x ≥ 0
(b) g(x) =

{
ax+ b, if x > −1
bx2 − 4, if x ≤ −1

Hint : The limits of values and derivatives, measured from both sides, must be the same. For
example, for (b), the limits of values are −a+ b and b− 4. Thus you can conclude a = 4.

7. CAS Newton’s serpentine is defined as

f(x) =
4x

x2 + 1
.

(a) Plot the graph y = f(x) over the interval [−4, 4].
(b) On the same screen, plot the tangent line to the curve at (1, 2)
(c) Again, on the same screen, plot the curve y = f ′(x).

You may start with
newtons_serpentine.m

1 syms f(x)
2

3 f(x) = 4*x/(x.^2+1);
4 X = linspace(-4,4,101);
5 plot(X,f(X),'r-','linewidth',2); hold on
6 grid on, axis tight
7

8 diff(f(x))
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3.4. The Derivative as a Rate of Change

Motion Along a Line: Position, Velocity, Speed, and Acceleration

Definition 3.34. Let s = f(t) be the position of a particle moving along
a coordinate line. Then,

• Its average rate of change
∆s

∆t
is the average velocity over a time

interval ∆t.

• Its derivative
ds

dt
= v(t) represents the instantaneous velocity.

• Speed is the absolute value of velocity: |v(t)| =
∣∣∣ds
dt

∣∣∣.
• The instantaneous rate of change of velocity with respect to time is

acceleration: a(t) = v′(t) = s′′(t).

Example 3.35. The graphs in the accompanying figure show the position
s, the velocity v = s′, and the acceleration a = s′′ of a moving body along a
coordinate line as functions of time t. Which graph is which? Give reasons
for your answers.
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Example 3.36. A dynamite blast blows a heavy rock straight up with a
launch velocity of 160 ft/sec (about 109 mph). It reaches a height of s(t) =
160t− 16t2 ft after t seconds.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the
ground on the way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after
the blast)?

(d) When does the rock hit the ground again?

Solution.
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Example 3.37. At time t, the position of a body moving along the s-axis is
s = t3 − 6t2 + 9tm.

(a) Find the body’s acceleration each time the velocity is zero.

(b) Find the body’s speed each time the acceleration is zero.

(c) Find the total distance traveled by the body from t = 0 to t = 2.

Solution.
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Derivatives in Economics and Biology
Example 3.38. The marginal cost of production is the rate of change

of cost with respect to the level of production, so it is
dc

dx
. Suppose that the

dollar cost of producing x washing machines is

c(x) = 2000 + 100x− 0.1x2.

(a) Find the average cost per machine of producing the first 100 washing
machines.

(b) Find the marginal cost when 100 washing machines are produced.

(c) The marginal cost also represents the approximate cost of the next item
to be produced. Show that the marginal cost when 100 washing ma-
chines are produced is approximately equal to the cost of producing
one more washing machine after the first 100 have been made by cal-
culating this cost directly.

Solution.
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Example 3.39. When a bactericide was added to a nutrient broth in which
bacteria were growing, the bacterium population continued to grow for a
while, but then stopped growing and began to decline. The size of the popu-
lation at time t hours was

b = 106 + 104t− 103t2.

Find the growth rates at a) t = 0 hours, b) t = 5 hours, and c) t = 10 hours.
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Exercises 3.4
1. Lunar projectile motion. A rock thrown vertically upward from the surface of the

moon at a velocity of 24 m/s reaches a height of s = 24t− 0.8t2 m in t sec.

(a) Find the rock’s velocity and acceleration at time t. (The acceleration in this case is
the acceleration of gravity on the moon.)

(b) How long does it take the rock to reach its highest point?
(c) How high does the rock go?
(d) How long does it take the rock to reach half its maximum height?
(e) How long is the rock aloft?

Ans: (c) 180 m
2. Vehicular stopping distance. Based on data from the U.S. Bureau of Public Roads, a

model for the total stopping distance of a moving car in terms of its speed is

s = 1.1v + 0.054v2,

where s is measured in ft and v in mph. The linear term 1.1v models the distance the
car travels during the time the driver perceives a need to stop until the brakes are
applied, and the quadratic term 0.054v2 models the additional braking distance once
they are applied. Find ds/dv at v = 35 and v = 70mph, and interpret the meaning of the
derivative.

3. CAS Golf Ball Carry. Using a club of a loft angle θ, a golf player hits a ball with the
horizontal head speed v0. Then, the initial velocity of the ball becomes

⟨vx, vz⟩ = v0 cos θ⟨cos θ, sin θ⟩ = ⟨v0 cos2 θ, v0 cos θ sin θ⟩,

where vx and vz are the horizontal and vertical velocities, respectively. For simplicity, we
assume that the golf field is complete flat. Then, incorporating the gravity acceleration
a = ⟨0,−g⟩, where g = 9.8m/s2, the ball location after t seconds can be expressed as

L(t) = ⟨x(t), z(t)⟩ = ⟨0,−g⟩t
2

2
+ ⟨vx, vz⟩t =

〈
(v0 cos

2 θ)t, −g

2
t2 + (v0 cos θ sin θ)t

〉
. (3.23)

(a) Find the time for the ball to hit the ground, tg.
Hint : The ball will hit the ground when z(t) = 0.

(b) Show that the ball carry, as a function of θ, becomes

C(θ) =
v20 cos

2 θ sin(2θ)

g
. (3.24)

(c) The average club-head speed for male amateur golfers is between 80-90 mph. Let
the golfer hit the ball with the head speed 90 mph, which is the same as 40 m/s.
Plot C(θ) over the interval [0, π/2].

(d) At what angle θ does the club make the longest ball carry?

Although we have ignored the ball spin and air resistance, the analysis in this
problem is mostly realistic. Can you see why beginners hit the longest with the
6-Iron or 7-Iron among Irons?
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3.5. Derivatives of Trigonometric Functions

• Consider the angle sum identity for the sine function:

sin(x+ h) = sin x cosh+ cosx sinh. (3.25)

If f(x) = sin x, then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
sinx · cosh− 1

h
+ cosx · sinh

h

]
= sin x · lim

h→0

cosh− 1

h︸ ︷︷ ︸
=0; Example 2.34

+cosx · lim
h→0

sinh

h︸ ︷︷ ︸
=1; Theorem 2.33

= cos x

(3.26)

• Similarly, we can find
d

dx
cosx = − sinx, using the angle sum identity

for the cosine function:

cos(x+ h) = cos x cosh− sinx sinh. (3.27)

• Note that tanx =
sinx

cosx
. For tanx

and other trigonometric functions,
Quotient Rule can be used to get
their derivatives.

Figure 3.4: Visualization of
d

dx
cosx, by

graphing the slopes of the tangent lines.
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Derivatives of Trigonometric Functions

d

dx
sinx = cos x

d

dx
cscx = − cscx cotx

d

dx
cosx = − sinx

d

dx
secx = sec x tanx

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

(3.28)

Example 3.40. Differentiate the following:

g(x) = 3ex + x2 cosx(a) f(θ) =
sin θ

1− cos θ
(b)

y = x secx tanx(c) h(t) =
t sin t

et
(d)
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Example 3.41. Find an equation of the tangent line to the curve y =

2x sinx at the point (π/2, π).
Solution.

Example 3.42. Differentiate f(x) =
secx

3 + sec x
and find the values of x

where the graph of f have a horizontal tangent line.
Solution.
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Example 3.43. By computing the first few derivatives and looking for a
pattern, find the following.

d2022

dx2022
(cosx).

Solution.

Example 3.44. Assume that a particle’s position on the x-axis is given by
x = 3 cos t+4 sin t, where x is measured in feet and t is measured in seconds.
Find the particle’s velocity when a) t = 0 and b) t =

π

2
.

Solution.
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Exercises 3.5
1. Differentiate the following:

y = x2 cosx(a) f(x) = cos x tanx(b)

s = t2 − sec t+ 5e−t(c) g(x) =
tanx

1 + tan x
(d)

Ans: (d) sympy result: 1/((tan(x) + 1)**2*cos(x)**2)

sympy_diff.py
1 import sympy as sym
2

3 x = sym.symbols('x')
4 y = sym.tan(x)/(1+sym.tan(x))
5 print( sym.simplify( y.diff(x) ) )

2. Sketch the curves over the given intervals, together with their tangent lines at the given
values of x. Label each curve and tangent line with its equation.

(a) y = sinx, −3π/2 ≤ x ≤ 2π, x = 0, 3π/2

(b) y = 1 + cosx, −3π/2 ≤ x ≤ 2π, x = −π/3, 3π/2

3. Is there a value of b that will make

g(x) =

{
x+ b, x < 0

cosx, x ≥ 0

continuous at x = 0? Differentiable at x = 0? Give reasons for your answers.
Ans: No value of b for g to be differentiable.

4. Find values of a and b that will make

f(x) =

{
ax+ b, x < 0

1− tanx, x ≥ 0

differentiable at x = 0?
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3.6. The Chain Rule

Let’s differentiate the function

f(x) = (3x2 + 1)2. (3.29)

• The expanded formula for f reads

f(x) = 9x4 + 2 · (3x2) + 1 = 9x4 + 6x2 + 1.

Thus
df

dx
=

d

dx
(9x4 + 6x2 + 1) = 36x3 + 12x. (3.30)

• Now, we will try a different way. Let

u(x) = 3x2 + 1

Then the function f can be formulated in terms of u:

f(x) = (3x2 + 1)2 = u2.

• The derivative
df

dx
is a rate of change of f with respect to x.

Thus it can be written as

df

dx
=

df

du
· du
dx

(3.31)

so that

df

dx
= 2u · 6x = 12u · x = 12(3x2 + 1)x = 36x3 + 12x,

which is the same as in (3.30).
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Theorem 3.45. The Chain Rule: If f(u) is differentiable at the point
u = g(x) and g(x) is differentiable at x, then the composite function
(f ◦ g)(x) = f(g(x)) is differentiable at x, and

(f ◦ g)′(x) = f ′(g(x)) · g′(x) =
d f(g(x))

d g(x)
· dg(x)

dx
. (3.32)

Letting y = f(u) and u = g(x), a simpler form of Leibniz’s notation
reads

dy

dx
=

dy

du
· du
dx

, (3.33)

where dy/du is evaluated at u = g(x).

Proof. For y = f(u) = f(g(x)), define ∆u = g(x + h) − g(x). Then h → 0

implies ∆u→ 0 and

dy

dx
= lim

h→0

f(g(x+ h))− f(g(x))

h
= lim

h→0

f(g(x) + ∆u)− f(g(x))

h

= lim
h→0

f(g(x) + ∆u)− f(g(x))

∆u
· ∆u

h

= lim
h→0

f(g(x) + ∆u)− f(g(x))

∆u
· lim
h→0

∆u

h

= lim
∆u→0

f(g(x) + ∆u)− f(g(x))

∆u
· lim
h→0

g(x+ h)− g(x)

h

= f ′(g(x)) · g′(x),

which completes the proof.
Example 3.46. Differentiate sin(x2 + ex) with respect to x.
Solution.
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Example 3.47. Find dy/dx, by first writing the function in the form y =

f(u).

y = (x3 − 1)100(a) y = sin(2x2)(b)

g(x) = tan3 x(c) y = e(4
√
x+x2)(d)

Note: We sometimes have to use the Chain Rule two or more times
to find the derivative and combine with other rules we’ve previously
learned.

Example 3.48. Find the derivative of the following:

(a) y =
√
ecosx + 1 (b) y = (2x− 5)−2(x2 − 5x)6

Solution.
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Example 3.49. Find the derivative of the following:

(a) y = esin
2(πt−1) (b) y = cos4(sec 3t)

(c) y =
( t2

t3 − 4

)3

Example 3.50. Find the value of (f ◦ g)′ at the given value of x. Use this
to find an equation of the tangent line to the curve at the given point.

f(u) = u5 + 1, u = g(x) =
√
x, x = 1

Solution.
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Exercises 3.6
1. Given y = f(u) and u = g(x), find dy/dx = f ′(g(x))g′(x).

(a) y = sinu, u = 3x+ 1 (b) y = − secu, u =
1

x
+ 7x

Ans: (b) dy/dx = − sec(1/x+ 7x) tan(1/x+ 7x)(−1/x2 + 7)

2. Find the derivatives of the functions.

y =
(x2

8
+ x− 1

x

)4
(a) y = cos−4 x(b)

y = xe−x + ex
3

(c) f(x) = x2 sec(1/x)(d)

Ans: (b) −4 cos−5 x(− sinx) = 4 cos−5 x sinx. (c) (1− x)e−x + 3x2ex
3

3. Find y′′.

(a) y = ex
2
+ (2x+ 1)4 (b) y = sin(ex)

Ans: (b)
(
− ex sin(ex) + cos(ex)

)
ex

4. Suppose that functions f and g and their
derivatives with respect to x have the val-
ues in the table at x = 2 and x = 3.

x f(x) g(x) f ′(x) g′(x)

2 8 2 1/3 −3

3 3 −4 2π 5

Find the derivatives with respect to x of the following combinations at the given value
of x.

f(x) · g(x), x = 3(a) f(g(x)), x = 2(b)√
f(x), x = 2(c) 1/g2(x), x = 3(d)

Ans: (b) f ′(g(x))g′(x)
∣∣
x=2

= f ′(2)g′(2) = −1. (c)
√
2/24. (d) (1/g2)′ = −2g′/g3

∣∣
x=3

= 5/32

5. Let f(x) = tan(πx/4).

(a) Find an eauation of the tangent line to the curve y = f(x) at t = 1.
(b) Slopes on a tangent curve. What is the smallest value the slope of the curve can

ever have on the interval −2 < x < 2? Give reasons for your answer.
Ans: (b) f ′(x) = sec2(πx/4) · π4 . Since min

−2<x<2
sec2(πx/4) = 1, the minimum of f ′(x) = π/4.

6. Challenge Verify each of the following statements.

(a) If f is even, then f ′ is odd.
(b) If f is odd, then f ′ is even.
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3.7. Implicit Differentiation

Implicitly Defined Functions

• The functions we have dealt with so far have been defined explicitly
– for example, y =

√
x3 + 1 and y = x2 sinx.

• Some functions are defined implicitly by a relation between x and
y such as

x2 + y2 − 25 = 0 and x2 + y3 − 9xy = 0.

• Implicitly Defined Functions are in the form of F (x, y) = 0, in
which y is a function of x.

Implicit Differentiation: An application of Chain Rule.

• Differentiate the equation (both sides) with respect to x, treating y

as a differentiable function of x.
• Collect the terms with dy/dx on one side of the equation and solve

for it.

Example 3.51. If x2 + y2 − 25 = 0, find the derivative dy/dx.
Solution.
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Example 3.52. Find the derivative.

(a) 2xy + y2 = x+ y (b) e2x = sin(x+ 3y)

Solution.

Example 3.53. Find the derivative:

x3 =
2x− y

x+ 3y

Solution.
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Example 3.54. Use implicit differentiation to find equations of the tan-
gent line and the normal line to the curve at the given point.

x2 + xy − y2 = 1, (2, 3)

Solution. Start with figuring out y′ = −(2x+ y)/(x− 2y).

Example 3.55. Use implicit differentiation to find an equation of the tan-
gent line to the curve at the given point.

2xy + π sin y = 11π, (2, 5π/2)

Solution. Start with figuring out y′ = −2y/(2x+ π cos y).
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Exercises 3.7
1. Use implicit differentiation to find dy/dx.

2xy + y2 = x+ y(a) e2x = sin(x+ 3y)(b)

x = sec y(c) 3 + sin y = y − x3(d)

Ans: (a) (1− 2y)/(2x+ 2y − 1). (b) 2e2x/(3 cos(x+ 3y))− 1/3.

2. Use implicit differentiation to find dy/dx and then d2y/dx2. Write the solutions in terms
of x and y only.

(a) x2 + y2 = 1 (b) xy + y2 = 1

Ans: (b) y′′ = 2y(x+ y)/(x3 + 6x2y + 12xy2 + 8y3)

3. Verify that the given point is on the curve and find the lines that are (1) tangent and (2)
normal to the curve at the given point.

(a) x2 + y2 = 25, (3,−4) (b) x sin 2y = y cos 2x, (π/4, π/2)

Hint : (b) y′ = −(2y sin(2x) + sin(2y))/(2x cos(2y)− cos(2x))

4. Verify that the following pairs of curves meet orthogonally.

x2 + y2 = 4, x2 = 3y2

5. Challenge Normals to a parabola.

(a) Show that if it is possible to draw three normals from the point (a, 0) to the parabola
x = y2 shown in the accompanying diagram, then a must be greater than 1/2.

(b) One of the normals is the x-axis. For what value of a are the other two normals
perpendicular?

Hint : y′ = 1/(2y). Thus the normal line at
(x0, y0) reads y − y0 = −2y0(x − x0). (a) Now,
the value a is decided when y = 0. (b) The two
normal lines will be perpendicular when each
of them makes an angle of 45◦ with the coordi-
nate axes, i.e., their slope is either 1 or −1.
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3.8. Derivatives of Inverse Functions and Log-
arithms

3.8.1. Derivatives of inverses of differentiable functions

Let f be differentiable and have inverse f−1.

• Then
f−1(f(x)) = x.

• Applying Chain Rule results in

[f−1]′(f(x)) · f ′(x) = 1 ⇐⇒ [f−1]′(f(x)) =
1

f ′(x)
, (3.34)

which can be interpreted geometrically as in Figure 3.5.

Figure 3.5: The derivative of the inverse function.

• Similarly, starting from f(f−1(x)) = x, we obtain

[f−1]′(x) =
1

f ′(f−1(x))
. (3.35)

We will see exactly what (3.35) means, solving examples.
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Example 3.56. Let f(x) = x3 − 2, x > 0. Find
df−1

dx
(6).

Solution.

(a) Explicit construction of f−1:
The inverse of f can be found ex-
plicitly as

f−1(x) = 3
√
x+ 2.

(b) Using Formula (3.35):
Note that f−1 is defined in the
range of f , f(X). The point 6

must be one of them, that is,

6 = f(x)

for some x. Thus

x = f−1(6) = 2.

Ans: 1/12

Example 3.57. Let f(x) = x3 − 3x2 − 1, x ≥ 2. Find
df−1

dx
(−1).

Solution.
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Example 3.58. Let f(x) = x2 − 4x− 5, x > 2. Fund the value of df−1/dx at
x = 0.
Solution.

3.8.2. Derivatives of Logarithmic Functions

Let f(x) = loga x.

• It follows from the definition of log that

y = loga x ⇐⇒ x = ay = eln a
y

= ey ln a. (3.36)

• Apply implicit differentiation to the right side of (3.36) to get

1 = ey ln a · y′ ln a =⇒ y′ =
1

ey ln a · ln a
=

1

x ln a
. (3.37)

Note: If x > 0, then x = elnx.

Summary 3.59. We may apply above arguments and Chain Rule to get
the following formulas.

d

dx
loga x =

1

x ln a

d

dx
lnx =

1

x
d

dx
ax = ax ln a

d

dx
ex = ex

d

dx
ln f(x) =

f ′(x)

f(x)

d

dx
ln |x| =

1

x

(3.38)

See Example 3.64 below for the formula:
d

dx
ax = ax ln a.
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Example 3.60. Differentiate f = xx, x > 0.
Solution. Note that xx = elnx

x

= ex lnx.

Ans: f ′(x) = xx(lnx+ 1)

Example 3.61. Find the derivative of the following:

y = ln(3x2)(a) g(x) =
√
lnx(b)

y = ln(cos θ)(c) y = ln(3te−t)(d)

Solution.
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Example 3.62. Find
d

dx

[
ln

(√
(x+ 1)10

(2x+ 1)5

)]
.

Solution.

Note: From the previous example, we see that using the properties of
logarithms prior to differentiation may simplify our derivatives overall.

3.8.3. Logarithmic Differentiation

Let’s try to use the natural logarithm to manipulate products and powers
effectively for a convenient calculation of the derivative.

Algorithm 3.63. Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and
use the Laws of Logarithms to conveniently reform the right side.

2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y′.
4. Replace y with f(x).
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Example 3.64. Let y = ax. Use logarithmic differentiation to prove that
y′ = ax ln a.
Solution.

Example 3.65. Use logarithmic differentiation to find the derivative of

(a) y = (x+ 1)x. (b) y = (sinx)lnx.

Solution.
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Theorem 3.66. The Euler’s number e as a Limit: It can be calcu-
lated as the limit

e = lim
x→0

(1 + x)1/x. (3.39)

Proof. If f(x) = ln x, then f ′(x) = 1/x and f ′(1) = 1. By the definition of
derivative,

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

x→0

f(1 + x)− f(1)

x

= lim
x→0

1

x
ln(1 + x) = lim

x→0
ln(1 + x)1/x

= ln
[
lim
x→0

(1 + x)1/x
]
= 1,

(3.40)

from which (3.39) follows.

Remark 3.67. The formula in (3.39) can be rewritten in various forms.
A popular form of the Euler’s number e reads

e = lim
n→∞

(
1 +

1

n

)n
, (3.41)

where the right-side is an increasing sequence, approaching e, as n

grows.
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Exercises 3.8
1. Suppose that the differentiable function y = f(x) has an inverse and that the graph of

f passes through the point (1, 5) and has a slope of 1/2 there. Can you find each of the
following? If yes, find it.

(a)
df−1

dx
(1/2). (b)

df−1

dx
(1). (c)

df−1

dx
(5).

2. Let f(x) = x2 − 4x− 5, x > 2. Find
df−1

dx
(0).

Hint : 0 = f(5)

3. Suppose that the function f ans its derivative have the following values at x = 0, 1, 2, 3, 4.

x 0 1 2 3 4

f(x) −4 3 −1 2 1

f ′(x) 3 2 5/4 2/3 1/5

Assuming the inverse function f−1 is differentiable, find the slope of f−1(x) at

(a) x = 1 (b) x = 2 (c) x = 3

Ans: (c) 1/2

4. Logarithmic Differentiation. Use logarithmic differentiation to find the derivative
of y.

y = x(x+ 1)(x+ 2)(a) y =
√
x(x+ 1)(b)

y =
θ sin θ√
sec θ

(c) y = (tan θ)
√
2θ + 1(d)

5. Use logarithmic differentiation or the method used in Example 3.60 to find dy/dx.

y = x
√
x(a) y = (sinx)x(b)

yx = x3y(c) x = yxy(d)

Ans: (d)
1− xy ln y

x2(1 + ln y)
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3.9. Inverse Trigonometric Functions

Recall from Section 1.6.3

Figure 1.26 (p.55): Graphs of the six basic inverse trigonometric functions.

The trigonometric functions are not one-to-one. If we restrict their domains,
we can make them one-to-one and they will have inverses. For example,

Definition 1.70 (p.55). (The Arcsine and Arccosine Functions)

y = arcsinx is the number in [−π/2, π/2] for which sin y = x

y = arccosx is the number in [0, π] for which cos y = x
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Example 3.68. Find the exact value for the expression:

(a) cos−1(1/2) (b) arctan(1)
(c) arcsin

(
−
√
3

2

)
Solution.

Derivatives of the Inverse Trigonometric Functions

The derivatives can be found by using the definition of inverses.

• y = arcsinx: Then, x = sin y. Implicit differentiation gives

1 = (cos y)y′ =⇒ y′ =
1

cos y
=

1√
1− sin2 y

=
1√

1− x2

• y = arctanx: Then, x = tan y. Implicit differentiation gives

1 = (sec2 y)y′ =⇒ y′ =
1

sec2 y
=

1

1 + tan2 y
=

1

1 + x2

• The derivatives can be found similarly for other inverse trigonometric
functions.
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Summary 3.69. Here we collect the derivatives of the inverse trigono-
metric functions.

d

dx
(arcsinx) =

1√
1− x2

(|x| < 1)
d

dx
(arccosx) = − 1√

1− x2
(|x| < 1)

d

dx
(arctanx) =

1

1 + x2

d

dx
(arccotx) = − 1

1 + x2

d

dx
(arcsecx) =

1

|x|
√
x2 − 1

(|x| > 1)
d

dx
(arccscx) = − 1

|x|
√
x2 − 1

(|x| > 1)

(3.42)

Note: We can also combine these derivatives with ALL the rules we’ve
previously covered.

Example 3.70. Find the derivative of the functions.

y = arcsin(
√
2t)(a) y = sec−1(5s)(b)

y = ln(arccot(9x2))(c) y = x arcsinx+
√
1− x2(d)
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Exercises 3.9
1. Find exact angles:

arcsin(−1/2)(a) arccos(1/2)(b)

tan−1
√
3(c) csc−1

√
2(d)

Ans: (d) π/4

2. Find the values.

(a) sin
(
cos−1

( 1√
2

))
(b) tan

(
arcsin

(
− 1

2

))
Ans: (b) −1/

√
3

3. Find the derivative of y.

y = arccos(1/x)(a) y = ln(tan−1 x)(b)

y = tan−1(lnx)(c) y = cos(x− arccosx)(d)

Ans: (a) 1/(x2
√

1− 1/x2). (d) −(1 + 1/
√
1− x2) sin(x− arccosx).

4. Use implicit differentiation to find dy/dx and then an equation of the tangent line to the
curve at P (0, 1/2).

arcsin(x+ y) + arccos(x− y) =
5π

6
Ans: y = 1/2

5. Find the angle α (in degrees). Hint : α+ β = 65◦.
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3.10. Related Rates

Note: In this section, we look at questions that arise when two or more
related quantities are changing (w.r.t. a common variable, e.g., time). The
problem of determining how the rate of change of one of them affects the
rate of change of the others is called a related rates problem.

Example 3.71. Suppose we are pumping air into a spherical balloon.

• Both the volume and radius of the balloon are increasing over time.

• If V is the volume and r is the radius of the balloon at an instant of time,
then

V =
4

3
πr3. (3.43)

• Using the Chain Rule, we differentiate both sides with respect to t to find
an equation relating the rates of change of V and r,

dV

dt
=

dV

dr
· dr
dt

= 4πr2
dr

dt
. (3.44)

• The rates dV /dt and dr/dt are related by (3.44). If we know one, then the
other can be computed by the relation.

Strategy 3.72. Related Rates Problem Strategy:

1. Let t denote time, and name the variables and constants.

• We will assume that all variables are differentiable functions of t.
• For most cases, to draw a picture would be helpful.

2. Write an equation that relates the variables.

• You may have to combine two or more equations to get a single equation that
relates the variable whose rate you want to the variables whose rates you
know.

3. Differentiate with respect to t to obtain a related rates equation.
4. Use known values (data) to find the unknown rate.
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Example 3.73. A spherical balloon is inflated with helium at a rate of
100π ft3/min. How fast is the balloon’s radius increasing at the instant the
radius is 5 ft?
Solution.

Ans: 1 ft/min

Example 3.74. The length of a rectangle is decreasing at a rate of 2 cm/sec
and its width is increasing at a rate of 2 cm/sec. When the length is 12 cm
and the width is 5 cm, how fast is the area of the rectangle changing?
Solution.
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Example 3.75. Sand falls from a conveyor belt at a rate of 10 m3/min onto
the top of a conical pile. The height of the pile is always three-eights of the
base diameter. How fast is the height of the pile increasing when the pile is
4 m high?

Solution. Begin with V =
1

3
πr2h and h =

3

8
· 2r.

Example 3.76. A lighthouse sits 1 km offshore, and its beam of light
rotates counterclockwise at the constant rate of 3 full circles per minute. At
what rate is the image of the beam moving down the shoreline when the
image is 1 km from the spot on the shoreline nearest the lighthouse?

Solution. Begin with x = tan θ.

Ans: 12 km/min
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Example 3.77. A sliding ladder. A 13 ft ladder is leaning against a
house when its base starts to slide away. By the time the base is 12 ft from
the house, the base is moving at the rate of 5 ft/sec.

(a) How fast is the top of the ladder sliding down the wall then?

(b) At what rate is the area of the triangle formed by the ladder, wall, and
ground changing then?

(c) At what rate is the angle θ between the ladder and the ground changing
then?

Solution. Begin with
(a) h2 + b2 = 132 = 169,
(b) A =

1

2
hb, and

(c) tan θ =
h

b
.

Ans: (b) −59.5 ft2/sec. (c) −1 rad/sec.
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Exercises 3.10
1. If x2 + y2 = 25 and dx/dt = −2, then what is dy/dt when x = 3 and y = −4?

2. (a) Assume that y = 5x and dx/dt = 2. Find dy/dt.
(b) Assume that 2x+ 3y = 12 and dy/dt = −2. Find dx/dt.

Ans: (b) 3.

3. Let x and y be differentiable functions of t and let s =
√

x2 + y2 be the distance between
the points (x, 0) and (0, y) in the xy-plane.

(a) How is ds/dt related to dx/dt if y is constant?
(b) How is ds/dt related to dx/dt and dy/dt if neither x nor y is constant?
(c) How is dx/dt related to dy/dt if s is constant?

Ans: (b)
ds

dt
=

x√
x2 + y2

dx

dt
+

y√
x2 + y2

dy

dt
.

Note: Let s = xy, for example. Then, we know
ds

dt
=

dx

dt
y + x

dy

dt
. Such Product Rule

can be rephrased as the following:
ds

dt
=

ds

dx

dx

dt
+

ds

dy

dy

dt
= y

dx

dt
+ x

dy

dt
.

4. Hauling in a dinghy. A dinghy is pulled toward a dock by a rope from the bow through
a ring on the dock 6 ft above the bow. See the figure below. The rope is hauled in at the
rate of 2 ft/sec.

(a) At what rate is the angle θ changing when 10 ft of rope are out?
(b) How fast is the boat approaching the dock at this instant?

Hint : Begin with (a) r cos θ = 6 and (b) tan θ = x/6.
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3.11. Linearization and Differentials

3.11.1. Linearization

In general, the tangent line to y =
f(x) at a point x = a, where f is
differentiable, passes through the
point (a, f(a)), so its point-slope
equation is

y = f(a) + f ′(a)(x− a).

Definition 3.78. If f is differentiable at x = a, then the approximating
function

L(x) := f(a) + f ′(a)(x− a) (3.45)

is the linearization of f at a. The approximation

f(x) ≈ L(x) (3.46)

of f by L is the linear approximation (or, tangent line approxima-
tion) of f at a. The point x = a is the center of the approximation.

Note: As long as this line remains close the graph of f , as we move off
the point of tangency, L(x) gives a good approximation to f(x).

Example 3.79. Find the linearization L(x) of f(x) = x3 − 3x+ 2 at a = 0.
Solution.
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Example 3.80. Find the linearization L(x) of f(x) = 3
√
x at a = −8.

Solution.

Example 3.81. Find the linearization L(x) of f(x) = 2 tanx at a = π.
Solution.

Example 3.82. Use a linear approximation to estimate the given number:
(1.0002)50.
Solution.
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3.11.2. Differentials

We often use the Leibniz notation dy/dx to represent the derivative of
y with respect to x. Contrary to its appearance, it is not a ratio. We
now introduce two new variables dx and dy, of which their ratio
(when exists) is equal to the derivative.

Definition 3.83. Let y = f(x) be a differentiable function. The differ-
ential dx is an independent variable. The differential dy is a dependent
variable, defined as

dy = f ′(x)dx. (3.47)

Remark 3.84. What is dy?
Often the variable dx is chosen to be ∆x, the change in x. Then the
differential dy is the change in the linearization of f at x = a, ∆L.

Example 3.85. Let f(x) = x5 + 37x.

(a) Find dy.

(b) Find the value of dy when x = 1

and dx = 0.2.

Figure 3.6: Geometrically, the differential
dy = ∆L, when x = a and dx = ∆x.

Note: Differentials
You may consider differentials as changes, small changes. The equation
dy = f ′(x) dx gives a relation between the change in x (dx) and the change
in y (dy).
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Example 3.86. Find the differential dy of the following functions.

(a) y = 4ex
2

(b) y = ln
( x+ 1√

x− 1

)
Solution.

Example 3.87. Find the differential dy and evaluate it for the given values
of x and dx.

(a) f(x) = 2x2 + 4x− 3,
x = −2, dx = 0.1

(b) y = x−1, x = 0.5, dx = 0.1

Solution.
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Exercises 3.11
1. Common linear approximations at x = 0. Find the linearizations of the following

functions at x = 0.

(a) sinx

(b) cosx

(c) tanx

(d) ex

Ans: (b) L(x) = 1. (c) L(x) = x.

2. (i) Find f(a). (ii) Find a linearization at a suitably chosen integer near a at which the
given function and its derivative are easy to evaluate. (iii) Use the linearization to
estimate f at a.

(a) f(x) = x2 + 2x, a = 0.1 (b) f(x) = 2x2 + 3x− 3, a = −0.9

Ans: (b) (i) −4.08. (ii) L(x) = −x− 5. (iii) −4.1.

3. Each function f(x) changes value when x changes from x0 to x0 + dx.
Find ∆f = f(x0 + dx)− f(x0) and df = f ′(x0)dx.

(a) f(x) = 2x2+4x−3, x0 = −1, dx = 0.1 (b) f(x) = x3 − x, x0 = 1, dx = 0.05

4. Estimating volume. Estimate the volume of material in a cylindrical shell with length
30 in., radius 6 in., and shell thickness 0.5 in.

Hint : The whole volume V = πr2 · 30 = 30πr2.
Thus dV = 60πr · dr. Now, what are r and dr?

Definition 3.88. A quadratic approximation Q(x) = b0 + b1(x− a) + b2(x− a)2 to
f(x) at x = a is defined to satisfy the properties:

(i) Q(a) = f(a)

(ii) Q′(a) = f ′(a)

(ii) Q′′(a) = f ′′(a)

Thus, b0 = f(a), b1 = f ′(a), and b2 =
f ′′(a)

2
.

5. CAS Let f(x) =
√
1 + x.

(a) Find the linear and quadratic approximations of f at x = 0.
(b) Graph f and its linear and quadratic approximations over the interval [−1, 2].
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4.1. Extreme Values of Functions on Closed In-
tervals

Definition 4.1. Let f be function with domain D. Then f has

• absolute maximum value on D at a point c
if f(c) ≥ f(x) for all x in D

• absolute minimum value on D at a point c
if f(c) ≤ f(x) for all x in D

The number f(c) is a

• local maximum value at a point c
if f(c) ≥ f(x) when x is in an open interval containing c

• local minimum value at a point c
if f(c) ≤ f(x) when x is in an open interval containing c

Example 4.2. For each point, a–e, identify whether it corresponds to a
local/absolute maximum or minimum.
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Example 4.3. Determine from the graph whether the function has any
absolute extreme values on [a, b].

Theorem 4.4. The Extreme Value Theorem. If f is continuous on
a closed interval [a, b], then f attains both an absolute maximum value
M and an absolute minimum value m in [a, b], i.e.,

• there are numbers x1 and x2 in [a, b] with f(x1) = m, f(x2) = M , and

m ≤ f(x) ≤M, for every x ∈ [a, b]. (4.1)
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Finding Extrema
How do we know where to look for a function’s extrema? The following
theorem and definition can help.

Theorem 4.5. The First Derivative Theorem for Local Extreme
Values. If f has a local maximum or minimum value at an interior point
c of its domain, and if f ′ is defined at c, then

f ′(c) = 0.

Definition 4.6. An interior point in the domain of a function f

where f ′ is zero or undefined is a critical point of f .

Example 4.7. Determine all critical points for each function.

(a) f(x) = 6x2 − x3 (b) f(x) = 4x− tanx (c) f(x) = x− 3x
2
3

Solution.
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Strategy 4.8. Finding the Absolute Extrema of a Continuous
Function ƒ on a Finite Closed Interval

1. Find all critical points of f on the interval.
2. Evaluate f at all critical points and endpoints.
3. Take the largest and smallest of these values.

Example 4.9. Find the absolute maximum and minimum values of each
function on the given interval.

(a) f(x) = 3x4 − 4x3 − 12x2 + 1, 0 ≤ x ≤ 4

(b) f(x) = cscx,
π

3
≤ x ≤ 2π

3

(c) f(x) =
1

x
+ lnx,

1

e
≤ x ≤ 4
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Exercises 4.1
1. Sketch the graph of each function and determine whether the function has any absolute

extreme values on its domain. Explain how your answer is consistent with the Extreme
Value Theorem, p.173.

(a) f(x) = |x|, −1 < x < 2 (b) g(x) =

{
−x, 0 ≤ x < 1

x− 1, 1 ≤ x ≤ 2

Clue: (b) g is not continuous.

2. Find the absolute maximum and minimum values of each function on the given interval.
Then graph the function. Identify the points on the graph where the absolute extrema
occur, and include their coordinates.

f(x) = 4− x3, −2 ≤ x ≤ 1(a) g(x) = −1

x
, −2 ≤ x ≤ −1(b)

h(t) = 2− |t|, −1 ≤ t ≤ 3(c) F (x) = secx, −π

3
≤ x ≤ π

6
(d)

Ans: (d) absolute maximum: (−π/3, 2), absolute minimum: (0, 1).

3. Determine all critical points for each function.

(a) f(x) = x(x− 3)3 (b) g(x) =
x2

x− 2

Clue: (b) Is x = 2 is a critical point of g? See Definition 4.6.
Ans: (b) x = 0, 4

4. CAS You will use a CAS to help find the absolute extrema of the given function over the
specified closed interval. Perform the following steps.

(1) Plot the function over the interval to see its general behavior there.
(2) Find the interior points where f ′ = 0. (You may want to plot f ′ as well.)
(3) Find the interior points where f ′ does not exist.
(4) Evaluate the function at all points found in parts (2) and (3) and at the endpoints

of the interval.
(5) Find the function’s absolute extreme values on the interval and identify where they

occur.

(a) f(x) =
√
x+ cosx, [0, 2π] (b) f(x) = ln(2x+ x sinx), [1, 15]
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4.2. The Mean Value Theorem

To arrive at the Mean Value Theorem, we first investigate a special case.

Theorem 4.10. Rolle’s Theorem. Suppose that y = f(x) is contin-
uous over the closed interval [a, b], and differentiable at every point
of its interior (a, b). If f(a) = f(b), then there is at least one number
c ∈ (a, b) at which

f ′(c) = 0. (4.2)

Figure 4.1: Rolle’s Theorem

Note: The Mean Value The-
orem, first stated by Joseph-
Louis Lagrange, is a slanted
version of Rolle’s Theorem. The
Mean Value Theorem guarantees
that there is a point where the
tangent line is parallel to the se-
cant line that joins A and B.

Figure 4.2: The Mean Value Theorem

Theorem 4.11. The Mean Value Theorem (MVT). Suppose y = f(x)
is continuous over a closed interval [a, b], and differentiable on the
interval’s interior (a, b). Then there is at least one point c ∈ (a, b) at which

f ′(c) =
f(b)− f(a)

b− a
. (4.3)
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Example 4.12. Verify that the function satisfies the hypotheses of the
MVT on the given interval. Find the value or values c that satisfy (4.3).

(a) f(x) = x2 + 2x− 1

[0, 1]
(b) f(x) = x+

1

x[1
2
, 2
] (c) f(x) = ln(x− 1)

[2, 4]

Solution.

Example 4.13. Suppose that f ′(x) ≤ 1 for 1 ≤ x ≤ 4. Show that
f(4)− f(1) ≤ 3.
Solution.
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Example 4.14. It took 14 seconds for a mercury thermometer to rise from
−19◦C to 100◦C when it was taken from a freezer and placed in boiling water.

(a) Show that somewhere along the way, the temperature of the mercury
was rising at a rate of 8.5◦C/sec.

(b) Can we find a moment when the temperature of the mercury was rising
at a rate of 9◦C/sec?

Solution.

Corollary 4.15. Mathematical Consequences of the MVT

1. If f ′(x) = 0 at each point x of an open interval (a, b), then f(x) = C
for all a ≤ x ≤ b, where C is a constant.

2. If f ′(x) = g′(x) at each point x in an open interval (a, b), then there
exists a constant C such that f(x) = g(x) + C for all a ≤ x ≤ b. That
is, f − g is a constant function on (a, b).



180 Chapter 4. Applications of Derivatives

Example 4.16. Find the function f(x) whose derivative is sinx and whose
graph passes through the point (0, 2).
Solution.

Ans: f(x) = − cosx+ 3.

Example 4.17. Find all possible functions with the given derivative.

(a) y′ = 2x− 1 (b) y′ = sin 2t+
√
t

Solution.
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Exercises 4.2

1. Find the value or values of c that satisfy the equation f ′(c) =
f(b)− f(a)

b− a
.

(a) f(x) = x3 − x2, [−1, 2] (b) f(x) =
√
x− 1, [1, 3]

2. Suppose that f(0) = 5 and that f ′(x) = 2 for all x. Must f(x) = 2x + 5 for all x? Give
reasons for your answer.

3. Suppose that f ′(x) = 2x for all x. Find f(2) if

(a) f(0) = 0 (b) f(1) = 0 (c) f(−2) = 3

Ans: (b) f(2) = 3.

4. Find the function with the given derivative whose graph passes through the point P .

(a) f ′(x) =
1

x2
+ 2x, P (−1, 1) (b) g′(t) = sec t tan t− 1, P (0, 0)

Ans: (b) g(t) = sec t− t− 1

5. Show that for any numbers x and y, the sine inequality | sinx− sin y| ≤ |x− y| is true.
Hint : Use the MVT.

6. The arithmetic mean of two numbers a and b is the number (a + b)/2. Show that the
value of c in the conclusion of the Mean Value Theorem for f(x) = x2 on any interval
[a, b] is c = (a+ b)/2.

7. Challenge Suppose that f ′′ is continuous on [a, b] and that f has three zeros in the
interval. Show that f ′′ has at least one zero in (a, b). Hint : You may assume that f has
three distinct zeros. The problem is to apply Rolle’s Theorem.
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4.3. Monotonic Functions and the First Deriva-
tive Test

Corollary 4.18. Another corollary to the Mean Value Theorem.
Suppose that f is continuous on [a, b] and differentiable on (a, b).

(a) If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
(b) If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

Remark 4.19. Let x1 and x2 be any two points in [a, b] with x1 < x2.

• Then the Mean Value Theorem says that

f(x2)− f(x1) = f ′(c)(x2 − x1), (4.4)

for some c ∈ (x1, x2). Corollary 4.18 follows from (4.4).
• A function that is increasing or decreasing on an interval is said to

be monotonic on the interval.

Example 4.20. Find the critical points of f(x) = x3 − 12x− 5 and identify
the open intervals on which f is increasing and on which f is decreasing.
Solution.

x −2 2

Sign of f ′(x) 0 0

Value of f(x)

Behavior of f
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First Derivative Test for Local Extrema
Suppose that c is a critical point of a continuous function f , and that
f is differentiable at every point in some interval containing c, except
possibly at c itself. Moving across this interval from left to right,

1. if f ′ changes from negative to positive at c,
then f has a local minimum at c;

2. if f ′ changes from positive to negative at c,
then f has a local maximum at c;

3. if f ′ does not change sign at c,
then f has no local extremum at c.

Figure 4.3: First Derivative Test for local extrema.



184 Chapter 4. Applications of Derivatives

Example 4.21. Let f(x) = (x2 − 3)ex.

(a) Find the critical points of the function.

(b) Identify the open intervals on which f is increasing and on which f is
decreasing.

(c) Find the function’s local and absolute extreme values.
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Exercises 4.3
1. (i) Find the open intervals on which the function is increasing and decreasing. (ii) Iden-

tify the function’s local and absolute extreme values, if any, saying where they occur.

(a) f(x) = −x3 + 3x2 (b) g(x) = x4 − 4x3 + 4x2

2. (a) Prove that f(x) = x− lnx is increasing for x > 1.
(b) Using part (a), show that lnx < x if x > 1.

Hint : (a) f ′(x) = 1− 1/x, which is clearly positive for x > 1.

3. Determine the values of constants a and b so that f(x) = ax2 + bx has an absolute
maximum at the point (1, 2). Hint : f(1) = 2 and f ′(1) = 0.

4. CAS (i) Identify the function’s local extreme values in the given domain, and say where
they occur. (ii) Which of the extreme values, if any, are absolute? (iii) Support your
findings with a CAS.

(a) f(x) = x3 − 3x2, −∞ < x ≤ 3 (b) g(x) =
x− 2

x2 − 1
, 0 ≤ x < 1
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4.4. Concavity and Curve Sketching

Definition 4.22. The graph of a differentiable function y = f(x) is

(a) concave up (convex) on an open interval I if f ′ is increasing on I;
(b) concave down on an open interval I if f ′ is decreasing on I.

Figure 4.4: Concavity

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval I.

(a) If f ′′ > 0 on I, the graph of f over I is concave up.
(b) If f ′′ < 0 on I, the graph of f over I is concave down.

Definition 4.23. A point (c, f(c)) where the graph of a function has a
tangent line and where the concavity changes is a point of inflection.

Example 4.24. For f(x) = x3, as in Figure 4.4, (0, 0) is an inflection point.
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Remark 4.25. At a point of inflection (c, f(c)), either f ′′(c) = 0 or f ′′(c)
fails to exist.

Example 4.26. Determine the concavity and find the inflection points of

(a) f(x) = x3 − 3x2 + 2 (b) g(x) = x5/3

Solution.

Theorem 4.27. Second Derivative Test for Local Extrema
Suppose f ′′ is continuous on an open interval that contains x = c.

(a) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at x = c.
(b) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at x = c.
(c) If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function f may

have a local maximum, a local minimum, or neither.
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Example 4.28. Sketch a graph of the function f(x) = x4−4x3+10. Identify
the coordinates of any local extreme points, inflection points, and concavity.
Solution.

x 0 2 3

f ′(x) 0 0

f ′′(x) 0 0

f(x)

Behavior of f

Strategy 4.29. Procedure for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.
2. Find the derivatives f ′ and f ′′.
3. Find the critical points of f , if any, and identify the function’s be-

havior at each one.
4. Find where the curve is increasing and where it is decreasing.
5. Find the points of inflection, if any occur, and determine the con-

cavity of the curve.
6. Plot key points, such as the intercepts and the points found in

Steps 3–5, and sketch the curve together with any asymptotes
that exist.
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Example 4.30. Graph the following functions using appropriate methods
from the graphing procedures, identify the coordinates of any local extreme
points and inflection points.

(a) y = x3 − 3x+ 3

(b) y = 5
√
3x+ 10 cosx, 0 ≤ x ≤ 2π
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Note: For many functions, the graph can be sketched without computing
the second derivative.

Example 4.31. Graph the following functions using appropriate methods
from the graphing procedures, identify the coordinates of any local extreme
points and inflection points.

(a) y = ln(3− x2)

(b) y =
x

x2 − 1
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Exercises 4.4
1. For the functions, identify (i) the inflection points, (ii) local maxima and minima, and

(iii) the intervals on which the functions are concave up and concave down.

(a) (b)

Hint : (b) y′ = 1 + 2 cos 2x, y′′ = −4 sin 2x, and −4π
3 ≤ 2x ≤ 4π

3 . Thus y′ = 0 implies 2x = ±2π
3 ,

±4π
3 , and y′′ = 0 implies 2x = 0, ±π. Thus, for example, the three inflection points are (0, 0) and

±(π2 ,
π
2 ).

2. Identify the coordinates of any local and absolute extreme points and inflection points.
Then, graph the function.

(a) y = x2(6− x2)− 4 (b) y = cosx+
√
3 sinx, 0 ≤ x ≤ 2π

3. The graph of f ′ is given. Determine x-values corresponding to local minima, local max-
ima, and inflection points for the graph of f .

(a) (b)

Hint : (b) Local minima: at x = −1, 4. Inflection points: at x = −3, 1, 3. Note that f ′′ = 0 at
x = −1; however the corresponding point is not an inflection point.
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4.5. Indeterminate Forms and L’Hôpital’s Rule

4.5.1. L’Hôpital’s Rule

Definition 4.32. Consider a limit of the form

lim
x→a

f(x)

g(x)
. (4.5)

(a) If both f(x) → 0 and g(x) → 0 as x → a, then this limit may or may
not exist and is called an indeterminate form of type 0/0.

(b) If both f(x) → ∞ and g(x) → ∞ as x → a, then this limit may or
may not exist and is called an indeterminate form of type∞/∞.

Theorem 4.33. L’Hôpital’s Rule (Bernoulli’s Rule)
Assume that f and g are differentiable and g′(x) ̸= 0 on an open interval
I containing a (except possibly at a). Suppose that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0 (4.6)

or that
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞. (4.7)

(In other words, we have an indeterminate form of type
0

0
or
∞
∞

.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. (4.8)

Remark 4.34.

• We can continue to differentiate f and g so long as we still get
0

0
or

∞
∞

form.

• L’Hôpital’s Rule does not apply when either the numerator or the
denominator has a finite nonzero limit.
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Example 4.35. Use L’Hôpital’s Rule to evaluate the limit. Compare this
with the methods studied in Chapter 2.

(a) lim
x→−2

x+ 2

x2 − 4

The method from Chap.2 L’Hôpital’s Rule

(b) lim
x→∞

5x2 − 3x

7x2 + 1

The method from Chap.2 L’Hôpital’s Rule
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Example 4.36. Use L’Hôpital’s Rule to find the limit.

lim
t→0

sin 5t

2t
(a) lim

θ→0

cos θ − 1

eθ − θ − 1
(b)

lim
x→0

x− sinx

x3
(c) lim

x→0

x2x

2x − 1
(d)
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4.5.2. Other Indeterminate Forms

Indeterminate Products (Type 0 · ∞)
Example 4.37. Use L’Hôpital’s Rule to find the limit.

(a) lim
x→∞

x3e−x
2 (b) lim

x→0+
x2 lnx

Solution.

Indeterminate Differences (Type ∞ − ∞)
Example 4.38. Find the limit of functions on the∞−∞ form.

(a) lim
x→0

[ 1

sinx
− 1

x

] (b) lim
x→∞

[ln 2x− ln(x+ 1)]

Solution.

Ans: (a) 0.
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Indeterminate Powers: 1∞, 00, ∞0

If lim
x→a

ln f(x) = L, then

lim
x→a

f(x) = lim
x→a

eln f(x) = eL. (4.9)

Here a may be either finite or infinite.

Example 4.39. Apply L’Hôpital’s Rule to show that

lim
x→0+

(1 + x)1/x = e. (4.10)

Solution. Start with lim
x→0+

ln f(x) = lim
x→0+

ln(1 + x)

x
.

Example 4.40. Find lim
x→∞

x1/x

Solution.

Ans: 1.
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Exercises 4.5
1. Use L’Hôpital’s Rule to evaluate the limit.

(a) lim
x→0

1− cosx

x2 (b) lim
x→∞

ln(1 + 1/x)

sin(1/x)
(c) lim

x→0+

√
x lnx

Ans: (b) 1. (c) 0.

2. Use L’Hôpital’s Rule to evaluate the limit.

lim
x→0

sinx2

x
(a) lim

x→∞

ln(x+ 1)

log2 x
(b)

lim
x→0+

[lnx− ln sinx](c) lim
h→0

eh − (1 + h)

h2
(d)

Ans: (c) 0.

3. L’Hôpital’s Rule may not help with the limits. Try it first – you will just keep on cycling.
Find the limits some other way.

(a) lim
x→(π/2)+

secx

tanx (b) lim
x→∞

ex
2

xex
(c) lim

x→∞

2x − 3x

3x + 4x

Hint : (a) Try to simplify the fraction. (b) Apply the natural logarithm.
Ans: (b)∞. (c) 0.

4. Challenge For what values of a and b is

lim
x→0

[sinx
x2

+
a

x
+

sin bx

x

]
= 2?

5. CAS This problem explores the difference between the limits

lim
x→∞

(
1 +

1

x

)x
and lim

x→∞

(
1 +

1

x2

)x
(a) Use L’Hôpital’s Rule to show that lim

x→∞

(
1 +

1

x

)x
= e.

(b) Graph

f(x) =
(
1 +

1

x

)x
and g(x) =

(
1 +

1

x2

)x
together for x ≥ 0. How does the behavior of g compare with that of f? Estimate
the value of limx→∞ g(x).

(c) Confirm your estimate of limx→∞ g(x) by calculating it with L’Hôpital’s Rule.
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4.6. Applied Optimization

Strategy 4.41. Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it.
What is given? What is the unknown quantity to be optimized?

2. Introduce variables. List every relevant relation in the problem as
an equation. In most problem it is helpful to draw a picture.

3. Write an equation for the unknown quantity.
Express the quantity to be optimized as a function of a single
variable. This may require considerable manipulation.

4. Test the critical points and endpoints in the domain of the function
found in the previous step. Use what you know about the shape of
the function’s graph. Use the first and second derivatives to identify
and classify the function’s critical points.

Note: Mostly, the optimization problem will be formulated with two
quantities and two variables; the quantity to be optimized can be
expressed as a function of a single variable.

Example 4.42. What is the smallest perimeter possible for a rectangle
whose area is 16 in2, and what are its dimensions?
Solution.
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Example 4.43. A 2048 ft3 open-top rectangular tank with a square base x

ft on a side and y ft deep is to be built with its top flush with the ground to
catch runoff water. What dimensions of the tank will minimize the weight?
Solution.

Ans: x = 16, y = 8

Example 4.44. You have been
asked to design a one-liter can
shaped like a right circular cylinder
(Figure 4.5). What dimensions will
use the least material?
Solution. Surface area: A = 2πr2 +

2πrh, with πr2h = 1000.

Figure 4.5: The one-liter can.

Ans: r = 3
√

500/π and h = 2r.
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Example 4.45. A rectangular plot of farmland will be bounded on one side
by a river and on the other three sides by a single-strand electric fence. With
800 m of wire at your disposal, what is the largest area you can enclose, and
what are its dimensions?
Solution.

Example 4.46. A 216 m2 rectangular pea patch is to be enclosed by a
fence and divided into two equal parts by another fence parallel to one of
the sides. What dimensions for the outer rectangle will require the smallest
total length of fence? How much fence will be needed?
Solution.

Example 4.47. Find a positive number for which the sum of it and its
reciprocal is the smallest (least) possible.
Solution.
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Exercises 4.6
1. A rectangle has its base on the x-axis and its upper two vertices on the parabola y =

12 − x2. What is the largest area the rectangle can have, and what are its dimensions?
Hint : Using symmetry, let [−x, x] be the base, where x > 0. Then the area A = 2xy = 2x(12−x2).

2. Two sides of a triangle have lengths a and b, and the angle between them is θ. What
value of θ will maximize the triangle’s area? What kind of triangle is it?
Hint : A = 1

2ab sin θ.
Ans: π

2 .

3. Find the point on the line
x

a
+

y

b
= 1 that is closest to the origin. Clue: Let (x, y) be a point

on the line. Then the square-distance from the point to the origin is d2 = x2 + y2. Note that the

equation of the line can be rewritten as y = b(1− x/a) = b− b

a
x. Thus d2 = x2 + (b− b

ax)
2, which

can be minimized.

4. Among all triangles in the first quadrant
formed by the x-axis, the y-axis, and tan-
gent lines to the graph of y = 3x− x2, what
is the smallest possible area?
Clue: First of all, a ∈ (3/2, 3). The tangent line
reads y = (3 − 2a)(x − a) + 3a − a2, of which

the x-intercept is x =
a2

2a− 3
. Now, find the

y-intercept. Then the area of the triangle is

A =
1

2
xy, as a function of a.

Ans: A = 8 when a = 2.

5. What value of a makes f(x) = x2 +
a

x
have

(a) a local minimum at x = 2?
(b) a point of inflection at x = 1?

Ans: (a) 16. (b) −1.
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4.7. Newton’s Method

In this section we study a numerical method called Newton’s method
or the Newton-Raphson method, which is a technique to approximate
the solutions to an equation

f(x) = 0. (4.11)

• Newton’s method estimates the solutions using tangent lines of the
graph of y = f(x) near the points where f is zero.

• We call a solution of the equation f(x) = 0 a root of the equation
or a zero of the function f .

Procedure for Newton’s Method
We can derive a formula for generating the successive approximations in
the following way.

• Given an initial approxima-
tion x0, the point-slope equation
for the tangent to the curve at
(x0, (x0)) is

y = f ′(x0)(x− x0) + f(x0).
(4.12)

• We can find where it crosses the
x-axis by setting y = 0:

f ′(x0)(x− x0) = −f(x0),

which implies

x = x0 −
f(x0)

f ′(x0)
, (4.13)

when f ′(x0) ̸= 0.

• This value of x is the next ap-
proximation x1.

• Repeat the steps to find new ap-
proximations.
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Algorithm 4.48. Newton’s Method

1. Guess a first approximation to a solution of the equation f(x) = 0.
A graph of y = f(x) may help.

2. Use the first approximation to get a second, the second to get a third,
and so on, using the formula

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0. (4.14)

Example 4.49. Approximate the positive root of the equation

f(x) = x2 − 2 = 0.

Solution. Since f ′(x) = 2x,

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − 2

2xn
= xn −

1

2

(
xn −

2

xn

)
=

1

2

(
xn +

2

xn

)
newton_method.m

1 % Solving f(x) = x^2 - 2 =0
2

3 x=1;
4 for n = 1:6
5 x = (x + 2/x)/2;
6 fprintf('x_%d = %.15f\n',n,x)
7 end

Output
1 x_1 = 1.500000000000000
2 x_2 = 1.416666666666667
3 x_3 = 1.414215686274510
4 x_4 = 1.414213562374690
5 x_5 = 1.414213562373095
6 x_6 = 1.414213562373095

Details of the correction:
newton_method2.m

1 % Solving f(x) = x^2 - 2 =0
2

3 x=1;
4 for n = 1:6
5 h = (x-2/x)/2;
6 x = x -h;
7 fprintf('x_%d = %.15f; h = %.15f\n',n,x,h)
8 end
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Output
1 x_1 = 1.500000000000000; h = -0.500000000000000
2 x_2 = 1.416666666666667; h = 0.083333333333333
3 x_3 = 1.414215686274510; h = 0.002450980392157
4 x_4 = 1.414213562374690; h = 0.000002123899820
5 x_5 = 1.414213562373095; h = 0.000000000001595
6 x_6 = 1.414213562373095; h = 0.000000000000000

Example 4.50. Find the x-coordinate of the point where the curve y =

x3 − x crosses the horizontal line y = 1.
Solution. What we should solve is x3 − x = 1. Let

f(x) = x3 − x− 1.

Then f(1) = −1 and f(2) = 5⇒ There is a solution in (1, 2), by the IVT.
Since f ′(x) = 3x2 − 1, Newton’s method reads

xn+1 = xn −
x3n − xn − 1

3x2n − 1
.

newton_method3.m
1 % Solving f(x) = x^3 - x -1 =0
2

3 x=1.5;
4 for n = 1:6
5 fx= x^3-x-1;
6 h = fx/(3*x^2-1);
7 x = x -h;
8 fprintf('x_%d = %.15f; h = %.15f; f(xn)= %.15f\n',n,x,h,fx)
9 end

Output
1 x_1 = 1.347826086956522; h = 0.152173913043478; f(xn)= 0.875000000000000
2 x_2 = 1.325200398950907; h = 0.022625688005615; f(xn)= 0.100682173091148
3 x_3 = 1.324718173999054; h = 0.000482224951853; f(xn)= 0.002058361916663
4 x_4 = 1.324717957244790; h = 0.000000216754264; f(xn)= 0.000000924377760
5 x_5 = 1.324717957244746; h = 0.000000000000044; f(xn)= 0.000000000000187
6 x_6 = 1.324717957244746; h = 0.000000000000000; f(xn)= 0.000000000000000
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Convergence of the Approximations

• Newton’s method does not always converge,
particularly when the initial approximation is not accurate enough.

• If Newton’s method does converge, it converges to a root.
• When Newton’s method converges to a root, it may not be the root

you have in mind.

Theorem 4.51. (Convergence of the Newton’s method): Let the
second derivative of f(x) be continuous, f(x̂) = 0, and f ′(x̂) ̸= 0. When
x0 is chosen near to x̂, the Newton’s method generates a convergent
sequence {xn} satisfying

|xn+1 − x̂| < C |xn − x̂|2, (4.15)

for a positive constant C.
Such a convergence is called a quadratic convergence.
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Example 4.52. Let

f(x) = arctan(x).

Then x̂ = 0 is the only root of f(x).
Use the Newton’s method to find a
root, starting with

(a) x0 = π/2 (b) x0 = π/4
Figure 4.6: The graph of y = arctan(x).

Solution.
newton_method_convergence.m

1 % Newton's Method: for f(x) = atan(x) = 0
2

3 f = @(x) atan(x); df= @(x) 1/(1+x^2);
4

5 x=pi/4
6 for n = 1:5
7 h = f(x) / df(x);
8 x = x -h;
9 fprintf('x_%d = %g; h = %g; f(xn) = %g\n',n,x,h,f(x))

10 end

Output
1 x = 1.5708 %x=pi/2
2 x_1 = -1.91008; h = 3.48087; f(xn) = -1.08849
3 x_2 = 3.14967; h = -5.05974; f(xn) = 1.26337
4 x_3 = -10.6468; h = 13.7965; f(xn) = -1.47715
5 x_4 = 158.273; h = -168.92; f(xn) = 1.56448
6 x_5 = -39033.9; h = 39192.1; f(xn) = -1.57077
7

8 x = 0.7854 %x=pi/4
9 x_1 = -0.291058; h = 1.07646; f(xn) = -0.283233

10 x_2 = 0.0161691; h = -0.307227; f(xn) = 0.0161677
11 x_3 = -2.81804e-06; h = 0.016172; f(xn) = -2.81804e-06
12 x_4 = 1.49192e-17; h = -2.81804e-06; f(xn) = 1.49192e-17
13 x_5 = 0; h = 1.49192e-17; f(xn) = 0
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Exercises 4.7
1. Using your calculator (or pencil-and-paper), run two iterations of Newton’s method to

find x2 for given f and x0.

(a) f(x) = x4 − 2, x0 = 1

(b) f(x) = xex − 1, x0 = 0.5

Ans: (b) x2 = 0.56715557

2. CAS Implement Newton’s method to solve f(x) = arctan(x) = 0,

(a) with x0 = π/2.
(b) with x0 = π/4.

3. CAS The graphs of y = x2(x + 1) and y = 1/x (x > 0) intersect at one point x = r. Use
Newton’s method to estimate the value of r to eight decimal places.
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4.8. Antiderivatives

Many problems require to recover a function from its derivative.

• For instance, the laws of physics tell us the acceleration of an ob-
ject falling from an initial height, and we can use this to compute
its velocity and its height at any time.

• More generally, starting with a function f , we want
to find a function F whose derivative is f .

4.8.1. Finding Antiderivatives

Definition 4.53. A function F is an antiderivative of f on an interval
I if F ′(x) = f(x) for all x in I.

Example 4.54. Find an antiderivative for each of the following functions.

(a) f(x) = 2x (b) g(x) = cos x (c) h(x) = sec2 x+
1

2
√
x

Solution.

Note: If F is an antiderivative of f , so is F + C, for all constants C.

Theorem 4.55. Let F and G be antiderivatives of f on an interval I.
Then

F (x) = G(x) + C, for some C. (4.16)



4.8. Antiderivatives 209

Table 4.1: Antiderivative formulas, k a nonzero constant.

Function General antiderivative

xn 1

n+ 1
xn+1 + C, n ̸= −1

1/x ln |x|+ C

sin kx −1

k
cos kx+ C

cos kx
1

k
sin kx+ C

sec2 kx
1

k
tan kx+ C

csc2 kx −1

k
cot kx+ C

sec kx tan kx
1

k
sec kx+ C

csc kx cot kx −1

k
csc kx+ C

Example 4.56. Find the general antiderivative of each of the following
functions.

(a) f(x) =
1√
x

(b) g(x) = cos
x

2
+sec2 2x (c) h(x) =

3

x3
+

1

x2

Solution.
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4.8.2. Initial Value Problems and Differential Equations

Example 4.57. Find an antiderivative of f(x) = 3x2 that satisfies
F (1) = −1.
Solution.

Remark 4.58. Antiderivatives play important roles in mathematics
and its applications. Methods and techniques for finding them are a
major part of calculus, and we take up that study in Chapter 8.

• Finding an antiderivative for a function f(x) is the same prob-
lem as finding a function y(x) that satisfies the equation

dy

dx
= f(x), (4.17)

which is called a differential equation.
• We can fix the arbitrary constant C, arising in the antidiffer-

entiation process, by specifying an initial value

y(x0) = y0. (4.18)

• The combination of a differential equation and an initial condition,
(4.17) and (4.18), is called an initial value problem.

• Such problems play important roles in all branches of science.
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Example 4.59. Solve the initial value problems.

(a)
df

dx
= cosx+ sinx, f(π) = 1

(b)
d2y

dx2
= 2− 6x, y′(0) = 4, y(0) = 1.

Solution.

4.8.3. Indefinite Integrals

Definition 4.60. The collection of all antiderivatives of f is called
the indefinite integral of f with respect to x, and is denoted by

ˆ
f(x) dx. (4.19)

The symbol
ˆ

is an integral sign. The function f is the integrand of

the integral, and x is the variable of integration.

Example 4.61. Evaluate
ˆ (

x2 − 2

x
+ 5
)
dx.

Solution.
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Exercises 4.8
1. Find an antiderivative for each function. Check your answers by differentiation.

(a) x3 − 1

x3
(b)
√
x+

1√
x
− 1

3
x−2/3 (c)

1

1 + 4x2

Ans: (c)
1

2
arctan 2x

2. Find the most general antiderivative or indefinite integral. You may need to try a solu-
tion and then adjust your guess. Check your answers by differentiation.

ˆ
3 cos 5θ dθ(a)

ˆ
(3e−2x + 2x)dx(b)

ˆ
(4 secx tanx− 2 sec2 x)dx(c)

ˆ
(2 + tan2 x)dx(d)

Ans: (d) x+ tanx+ C.

3. Which is right? Give a brief reason for your answer.

(a)
ˆ

x sinx dx =
x2

2
sinx+ C

(b)
ˆ

x sinx dx = −x cosx+ C

(c)
ˆ

x sinx dx = −x cosx+ sinx+ C

4. Solve the initial value problems.

(a)
ds

dt
= 1 + cos t, s(0) = 4 (b) y′′ = − cosx+ 8 sin 2x

y′(0) = −2, y(0) = 3

Ans: (b) y = cosx− 2 sin 2x+ 2x+ 2

5. The graph of f ′ is given. Assume that f(0) = 1 and sketch a possible continuous graph
of f .

(a) (b)
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CHAPTER 5
Integrals

A great achievement of classical geometry was obtaining formulas for
the areas and volumes of triangles, spheres, and cones. In this chapter:

• We first develop a method, called integration, to calculate the areas
and volumes of more general shapes.

• The definite integral is the key tool in calculus for defining and
calculating areas and volumes.

• We also show that the process of computing these definite integrals
is closely connected to finding antiderivatives. This connection is
captured in the Fundamental Theorem of Calculus.
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5.1. Area and Estimating with Finite Sums

5.1.1. The Area Problem

In this subsection, we attempt to solve the area problem. It isn’t so
easy to find the area under a graph, a region with a curved side. We
can use rectangles to approximate this area.

Example 5.1. Suppose we want to
find the area of the shaded region R

that lies above the x-axis, below the
graph of y = f(x) = 1 − x2, and be-
tween the vertical lines x = 0 and
x = 1 (see Figure 5.1).

• The area cannot be found by
a simple formula.

• However, we can approximate it
with a finite sum of rectangle
areas.

Figure 5.1: The area of the shaded region R
cannot be found by a simple formula.

Using left-endpoint values

Figure 5.2: Rectangles using left-endpoint values, with (a) 2 subintervals and (b) 4 subin-
tervals. The larger the number of subintervals is, the better the approximation
becomes.
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With four subintervals, the area can be approximated as

area ≈ 1

4
· f(0) + 1

4
· f
(1
4

)
+

1

4
· f
(2
4

)
+

1

4
· f
(3
4

)
=

1

4

[
1 +

15

16
+

12

16
+

7

16

]
=

25

32
= 0.78125.

(5.1)

area_approx_left_sum.m
1 f = @(x) 1-x.^2;
2 a = 0; b = 1;
3

4 for i = 1:10
5 n = 2^i; dx = (b-a)/n;
6 X = (0:n)*dx; Y = f(X);
7 left_sum = sum(Y(1:end-1))*dx;
8 fprintf('n = %4d; left_sum = %.10f\n',n,left_sum)
9 end

Output
1 n = 2; left_sum = 0.8750000000
2 n = 4; left_sum = 0.7812500000
3 n = 8; left_sum = 0.7265625000
4 n = 16; left_sum = 0.6972656250
5 n = 32; left_sum = 0.6821289062
6 n = 64; left_sum = 0.6744384766
7 n = 128; left_sum = 0.6705627441
8 n = 256; left_sum = 0.6686172485
9 n = 512; left_sum = 0.6676425934

10 n = 1024; left_sum = 0.6671547890

Note: The exact value for the area is 2/3.
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Using right-endpoint values & midpoint values

Figure 5.3: Rectangles using right-endpoint values and midpoint values.

• Using right-endpoint values:

area ≈ 1

4
· f
(1
4

)
+

1

4
· f
(2
4

)
+

1

4
· f
(3
4

)
+

1

4
· f(1)

=
1

4

[15
16

+
12

16
+

7

16
+ 0
]
=

17

32
= 0.53125.

(5.2)

• Using midpoint values:

area ≈ 1

4
· f
(1
8

)
+

1

4
· f
(3
8

)
+

1

4
· f
(5
8

)
+

1

4
· f
(7
8

)
=

1

4

[63
64

+
55

64
+

39

64
+

15

64

]
=

43

64
= 0.671875.

(5.3)



5.1. Area and Estimating with Finite Sums 219

A Comparison
area_approx_left_right_mid.m

1 f = @(x) 1-x.^2;
2 a = 0; b = 1;
3

4 for i = 1:10
5 n = 2^i; dx = (b-a)/n;
6 X = (0:n)*dx; Y = f(X);
7 left_sum = sum(Y(1:end-1))*dx;
8 right_sum = sum(Y(2:end))*dx;
9 M = X + dx/2; Y = f(M);

10 mid_sum = sum(Y(1:end-1))*dx;
11 fprintf('n = %4d; (left,right,mid)-sum = (%.10f, %.10f, %.10f)\n',...
12 n,left_sum,right_sum,mid_sum)
13 end

Output
1 n = 2; (left,right,mid)-sum = (0.8750000000, 0.3750000000, 0.6875000000)
2 n = 4; (left,right,mid)-sum = (0.7812500000, 0.5312500000, 0.6718750000)
3 n = 8; (left,right,mid)-sum = (0.7265625000, 0.6015625000, 0.6679687500)
4 n = 16; (left,right,mid)-sum = (0.6972656250, 0.6347656250, 0.6669921875)
5 n = 32; (left,right,mid)-sum = (0.6821289062, 0.6508789062, 0.6667480469)
6 n = 64; (left,right,mid)-sum = (0.6744384766, 0.6588134766, 0.6666870117)
7 n = 128; (left,right,mid)-sum = (0.6705627441, 0.6627502441, 0.6666717529)
8 n = 256; (left,right,mid)-sum = (0.6686172485, 0.6647109985, 0.6666679382)
9 n = 512; (left,right,mid)-sum = (0.6676425934, 0.6656894684, 0.6666669846)

10 n = 1024; (left,right,mid)-sum = (0.6671547890, 0.6661782265, 0.6666667461)

Remark 5.2.

• The sum by left-endpoint values is the upper sum approximation.
• The sum by right-endpoint values is the lower sum approximation.
• The sum by midpoint values converges, faster than the others.

• However, they converge to the same limit as n (the number of subin-
tervals) approaches infinity.



220 Chapter 5. Integrals

Algebraic Manipulation, for the Exact Area

Example 5.3. Use rectangles of
right-endpoint values to estimate the
area under the parabola y = x2 from
0 to 1. (See Figure 5.4, where rect-
angles of eight subintervals are de-
picted.)
The exact value of the area is 1/3. Figure 5.4

Solution. Let the interval [0, 1] be partitioned in to n subintervals. Then,
the right-endpoints are

1

n
,
2

n
, · · · , n

n
.

Thus the sum of areas of rectangles reads

right-sum =
1

n

[(1
n

)2
+
(2
n

)2
+ · · ·+

(n
n

)2]
=

1

n3
(12 + 22 + · · ·+ n2)

=
1

n3

n(n+ 1)(2n+ 1)

6
=

2

6
+

3

6n
+

1

6n2
↘ 1

3
,

(5.4)

as n→∞. For the summation formula, see Formula 5.11, p. 226.
area_approx_right_x2.py

1 import numpy as np
2 def area(n): return (1/n) * sum( (np.array(range(1,n+1))/n)**2 )
3 for i in range(1,11): print('%-4d: %.15g' %(2**i,area(2**i)))

Output
1 2 : 0.625
2 4 : 0.46875
3 8 : 0.3984375
4 16 : 0.365234375
5 32 : 0.34912109375
6 64 : 0.3411865234375
7 128 : 0.337249755859375
8 256 : 0.335289001464844
9 512 : 0.334310531616211

10 1024: 0.333821773529053
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5.1.2. The Distance Problem

Note: The distance traveled is the velocity times the time, when
the velocity is constant.

Example 5.4. The following table shows the velocity of a model train en-
gine moving along a track for 10 seconds. Estimate the distance traveled
by the engine using 10 subintervals of length 1 using

(a) left-endpoints

(b) right-endpoints

(c) midpoints (assuming the velocity varies locally linearly)

t (sec) 0 1 2 3 4 5 6 7 8 9 10
v (cm/sec) 0 30 56 25 38 33 28 15 5 15 12

Solution.

distance_traveled.m
1 v = [0 30 56 25 38 33 28 15 5 15 12];
2 dt= 1;
3

4 vL = v(1:end-1);
5 vR = v(2:end);
6 vM = (vL+vR)/2;
7 distL = sum(vL)*dt;
8 distR = sum(vR)*dt;
9 distM = sum(vM)*dt;

10

11 fprintf('(distL,distR,distM) = (%g, %g, %g)\n',distL,distR,distM)

Output
1 (distL,distR,distM) = (245, 257, 251)
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Example 5.5. An object is dropped straight down from a helicopter. The
object falls faster and faster, but its acceleration decreases over time be-
cause of air resistance. The acceleration is measured in ft/sec2 and recorded
every second after the drop for 5 seconds, as shown:

t (sec) 0 1 2 3 4 5
a (ft/sec2) 32.00 19.41 11.77 7.14 4.33 2.63

(a) Find an upper estimate for the speed when t = 5.

(b) Find a lower estimate for the speed when t = 5.

(c) Find an upper estimate for the distance fallen when t = 3.

Solution.

t (sec) 0 1 2 3 4 5
a (ft/sec2) 32.00 19.41 11.77 7.14 4.33 2.63
v-upper (ft/sec) 0 32.00
v-lower (ft/sec) 0 19.41
s-upper (ft) 0 32.00

object_fallen.m
1 a = [32.00 19.41 11.77 7.14 4.33 2.63];
2 n = length(a);
3 vU = zeros(1,n); vL = zeros(1,n); sU = zeros(1,n);
4

5 for i=2:n
6 vU(i) = vU(i-1) +max(a(i-1:i));
7 vL(i) = vL(i-1) +min(a(i-1:i));
8 end
9 for i=2:n

10 sU(i) = sU(i-1) +max(vU(i-1:i));
11 end
12

13 fprintf('\nvU:'); fprintf(' %7.2f',vU)
14 fprintf('\nvL:'); fprintf(' %7.2f',vL)
15 fprintf('\nsU:'); fprintf(' %7.2f',sU)

Output
1 vU: 0.00 32.00 51.41 63.18 70.32 74.65
2 vL: 0.00 19.41 31.18 38.32 42.65 45.28
3 sU: 0.00 32.00 83.41 146.59 216.91 291.56
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5.1.3. Average Value of a Nonnegative Continuous Func-
tion

Note: The average value of a collection of n numbers x1, x2, · · · , xn is
obtained by adding them together and dividing by n.

• But what is the average value of a continuous function f on an in-
terval [a, b]?

• The average value of f on [a, b] can be defined as the average
height of its graph, which reads

av(f) · (b− a) = The area under the graph of f over [a, b]. (5.5)

Figure 5.5

– For f(x) = c: av(f) = c.
– For g(x): av(g) is the area below its graph divided by (b− a).

Example 5.6. Let f(x) = 1/x defined on [1, 9]. Use a finite sum to estimate
the average value of f on the given interval by partitioning the interval
into four subintervals of equal length and evaluating f at the subinterval
midpoints.
Solution.

Ans: av(f) ≈ 1
8
· 25
12

= 0.26041666....

The true average value is
1

8
· ln 9 = 0.274653072167.
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Exercises 5.1
1. Let f(x) = 1/x defined on [1, 5]. Use finite approximations to estimate the area under

the graph of the function, using

(a) a lower sum with two rectangles of equal width.
(b) a lower sum with four rectangles of equal width.
(c) an upper sum with two rectangles of equal width.
(d) an upper sum with four rectangles of equal width.

Ans: (d) 25/12

2. Using rectangles each of whose height is given by the value of the function at the mid-
point of the rectangle’s base (the midpoint rule), estimate the area under the graphs
of the following functions, using first two and then four rectangles.

(a) f(x) = 1/x defined on [1, 5].
(b) f(x) = x2 defined on [0, 1].

Ans: (a) 1.5 & 1.5746031746. (The true area is ln 5 = 1.6094379.)

3. Length of a road. You and a companion are about to drive a twisty stretch of dirt road
in a car whose speedometer works but whose odometer (mileage counter) is broken. To
find out how long this particular stretch of road is, you record the car’s velocity at 10-sec
intervals, with the results shown in the accompanying table. Estimate the length of the
road using

(a) left-endpoint values.
(b) right-endpoint values.

Time (sec) 0 10 20 30 40 50 60 70 80 90 100 110 120
v (ft/sec) 0 44 15 35 30 44 35 15 22 35 44 30 35

Ans: (b) 3840 ft

4. Use a finite sum to estimate the average value of f on the given interval by partitioning
the interval into four subintervals of equal length and evaluating f at the subinterval
midpoints.

(a) f(x) = x3 on [0, 2].
(b) f(t) = 1 + sin2 t on [0, 2π]

Ans: (a) 31/16. (b) 3/2.

5. Challenge Inscribe a regular n-sided polygon inside a circle of radius 1.

(a) Compute the area of the polygon for n = 4, 8, 16.
(b) Compute the limit of the area of the inscribed polygon as n→∞.

Hint : (b) The area of one of the n congruent triangles is
1

2
· 1 · sin

(2π
n

)
=

1

2
sin
(2π
n

)
. Now, you

may try to use (2.25), page 78.
Ans: (b) π.
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5.2. Sigma Notation and Limits of Finite Sums

Finite Sums and Sigma Notation

Example 5.7.

• We can write the squares of the numbers 1 through 10 as

12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 =
10∑
k=1

k2. (5.6)

• The sum of f(i) for integers i from 1 to 100:

f(1) + f(2) + · · ·+ f(100) =
100∑
i=1

f(i). (5.7)

Example 5.8. Express the sum 1+3+5+7+9+11 in sigma notation. You
can express it with various starting k: e.g., k = 0, 1, 2.
Solution.

Starting with k = 0: 1 + 3 + 5 + 7 + 9 + 11 =
5∑

k=0

(2k + 1)

Starting with k = 1:

Starting with k = 2:
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Formula 5.9. Algebra rules for Finite Sums:

Sum Rule :
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk

Difference Rule :
n∑

k=1

(ak − bk) =
n∑

k=1

ak −
n∑

k=1

bk

Constant Multiple Rule :
n∑

k=1

cak = c ·
n∑

k=1

ak

Constant Value Rule :
n∑

k=1

c = n · c

Example 5.10. Show that the sum of the first n positive integers is

1 + 2 + · · ·+ n =
n∑

k=1

k =
n(n+ 1)

2

Solution.

Formula 5.11. Summation Formulas:

1 + 2 + · · ·+ n =
n∑

k=1

k =
n(n+ 1)

2

12 + 22 + · · ·+ n2 =
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

13 + 23 + · · ·+ n3 =
n∑

k=1

k3 =
[n(n+ 1)

2

]2
(5.8)
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Remark 5.12. To estimate an area, in Section 5.1, we have used a
summation of the form

SP =
n∑

k=1

f(ck)∆xk = f(c1)∆x1 + f(c2)∆x2 + · · ·+ f(cn)∆xn, (5.9)

where
P = {x0, x1, · · · , xn−1, xn} with ∆xk = xk − xk−1,

and ck chosen from the k-th subinterval [xk−1, xk]:

ck ∈ [xk−1, xk].

Figure 5.6: A Riemann sum, estimating an area.

Definition 5.13. The sum SP is called a Riemann sum for f on the
interval [a, b] associated with a partition P .
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For convenience, we will use uniform partitions, of which each subin-
terval has an equal-length

∆xk = ∆x =
b− a

n
.

Example 5.14. Find the limiting value of lower sum approximations
to the area of the region R below the graph of y = 1−x2 and above the inter-
val [0, 1] on the x-axis using equal-width rectangles whose widths approach
zero and whose number approaches infinity. (Recall Figure 5.3, page 218.)
Solution.
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Example 5.15. For the function given below, find a formula for the Rie-
mann sum obtained by dividing the interval [0, 4] into n equal subintervals
for each ck (the lower sum and the upper sum). Then take a limit of this
sum as n→∞ to calculate the area under the curve over [0, 4].

f(x) = x2 + 2

Solution.
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Exercises 5.2
1. Write the sums without sigma notation. Then evaluate them.

(a)
3∑

k=1

k − 1

k
(b)

4∑
k=1

cos kπ (c)
3∑

k=1

(−1)k+1 sin
π

k

Ans: (a) 5/6. (c)
√
3/2− 1.

2. Find all that express 1− 2 + 4− 8 + 16− 32 in sigma notation.

(a)
6∑

k=1

(−2)k−1 (b)
5∑

k=0

(−1)k+12k (c)
3∑

k=−2

(−1)k2k+2

3. Express the sums in sigma notation. The form of your answer will depend on your choice
for the starting index.

(a) 1 + 4 + 9 + 16 + 25 (b)
1

2
+

1

4
+

1

8
+

1

16
(c) −1

5
+

2

5
− 3

5
+

4

5
− 5

5

Ans: (b)
4∑

k=1

1

2k
.

4. Evaluate the sums.
10∑
k=1

k3(a)
6∑

k=1

(k2 − 5)(b)

5∑
k=1

k(3k + 5)(c)
10∑
k=6

k(k − 1)(d)

Ans: (d) 290.

5. For the following functions, find a formula for the Riemann sum obtained by dividing
the interval [a, b] into n equal subintervals and using the right-hand endpoint for each
ck. Then take a limit of these sums as n→∞ to calculate the area under the curve over
[a, b].

(a) f(x) = x+ x2, over the interval [0, 1] (b) f(x) = 1− x3, over the interval [0, 1]
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5.3. The Definite Integral

5.3.1. The Limit of Riemann Sums

Definition 5.16. Let f(x) be a function defined on a closed interval
[a, b]. We say that a number J is the definite integral of f over [a, b] and
that J is the limit of the Riemann sums:

J = lim
||P ||→0

n∑
k=1

f(ck)∆xk (5.10)

if the following condition is satisfied:

Given any number ε > 0 there is a corresponding number δ > 0 such
that for every partition P = {x0, x1, · · · , xn} with ∥P∥ < δ and any
choice of ck ∈ [xk−1, xk], we have∣∣∣ n∑

k=1

f(ck)∆xk − J
∣∣∣ < ε. (5.11)

The Definite Integral as the Limit of Riemann Sums
If the definite integral exists, then instead of writing J we write

ˆ b

a

f(x) dx = lim
||P ||→0

n∑
k=1

f(ck)∆xk = lim
n→∞

n∑
k=1

f(ck)∆xk (5.12)
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Definition 5.17. When the definite integral exists, we say that the Rie-

mann sums of f on [a, b] converge to the definite integral J =

ˆ b

a

f(x)dx

and that f is integrable over [a, b].

Theorem 5.18. Integrability of Continuous Functions:
If a function f is continuous over the interval [a, b], or if f has at
most finitely many jump discontinuities there, then the definite integralˆ b

a

f(x)dx exists and f is integrable over [a, b].

Example 5.19. Show that the function

f(x) =

{
1, if x is rational,
0, if x is irrational,

(5.13)

is not integrable over [0, 1].
Proof. Let P be a partition of [0, 1]. Then in each subinterval [xk−1, xk], there
is at least a rational point, say ck. Thus the upper sum approximation
for this choice of ck’s is

U =
n∑

k=1

f(ck)∆xk =
n∑

k=1

(1)∆xk = 1. (5.14)

On the other hand, each subinterval [xk−1, xk] include an irrational point,
say ck again. Thus the lower sum approximation for this choice of ck’s is

L =
n∑

k=1

f(ck)∆xk =
n∑

k=1

(0)∆xk = 0. (5.15)

Thus making different choices for the points ck results in different limits for
the corresponding Riemann sums. We conclude that the definite integral
of f over the interval [0, 1] does not exist, and that f is not integrable over
[0, 1].
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Note: For the integral, you may write
ˆ b

a

f(t) dt or
ˆ b

a

f(u) du instead of
ˆ b

a

f(x) dx.

No matter how we write the integral, it is still the same number, the
limit of the Riemann sums as the norm of the partition approaches zero.
Since it does not matter what letter we use, the variable of integration is
called a dummy variable.

Example 5.20. Express the limit as a definite integral.

lim
||P ||→0

n∑
k=1

(c2k − 3ck)∆xk,

where P is a partition of [−7, 5].
Solution.

Recall: The Definite Integral as the Limit of Riemann Sums (5.12):
ˆ b

a

f(x)dx = lim
||P ||→0

n∑
k=1

f(ck)∆xk = lim
n→∞

n∑
k=1

f(ck)∆xk
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Equal-Width Subintervals

Remark 5.21. In the cases where the subintervals all have equal width
∆x = (b− a)/n, the Riemann sums have the form

Sn =
n∑

k=1

f(ck)∆xk =
n∑

k=1

f(ck)
(b− a

n

)
, ck ∈ [xk−1, xk]. (5.16)

The Definite Integral with Equal-Width Subintervals
If we pick the point ck to be the right endpoint of the k-th subinterval,
then the formula for the definite integral becomes

ˆ b

a

f(x)dx = lim
n→∞

n∑
k=1

f(ck)∆x = lim
n→∞

n∑
k=1

f(a+ k∆x)∆x, (5.17)

where ∆x = (b− a)/n.

Example 5.22. Express the limit as a definite integral.

lim
n→∞

n∑
k=1

[(
3 +

2k

n

)2
+ 4
(
3 +

2k

n

)](2
n

)
Note that the expression is not unique!
Solution.

Ans:
ˆ 2

0

[(3 + x)2 + 4(3 + x)]dx =

ˆ 5

3

(x2 + 4x)dx.
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5.3.2. Properties of Definite Integrals

Proposition 5.23. Suppose f and g are integrable over the interval
[a, b]. Let c ∈ [a, b] and k a constant. Then

1. Order of Integration :

ˆ a

b

f(x) dx = −
ˆ b

a

f(x) dx

2. Zero Width Interval :
ˆ a

a

f(x) dx = 0

3. Constant Multiple :

ˆ b

a

kf(x) dx = k

ˆ b

a

f(x) dx

4. Sum and Difference :

ˆ b

a

[f(x)± g(x)] dx =

ˆ b

a

f(x) dx±
ˆ b

a

g(x) dx

5. Additivity :

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx =

ˆ b

a

f(x) dx

6. Max-Min Inequality : (min f) · (b− a) ≤
ˆ b

a

f(x) dx ≤ (max f) · (b− a)

7. Domination :

ˆ b

a

f(x) dx ≥
ˆ b

a

g(x) dx, when f(x) ≥ g(x) ∀x ∈ [a, b]

(5.18)

Example 5.24. Suppose f and g are integrable and that
ˆ 9

1

f(x) dx = −1,
ˆ 9

7

f(x) dx = 5,

ˆ 9

7

g(x) dx = −4

Find

(a)
ˆ 9

7

[2f(x)− 3g(x)] dx

(b)
ˆ 7

1

f(x) dx

(c)
ˆ 7

9

[g(x)− f(x)] dx
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Area under the Graph of a Nonnegative Function

Definition 5.25. If y = f(x) is nonnegative and integrable over a closed
interval [a, b], then the area under the curve y = f(x) over [a, b] is
the integral of f from a to b,

A =

ˆ b

a

f(x) dx. (5.19)

Example 5.26. Evaluate the integral by interpreting it in terms of areas.
ˆ b

0

x dx(a)
ˆ b

a

c dx(b)

ˆ 3

−1
|2x| dx(c)

ˆ 3

−3
5 +

√
9− x2 dx(d)
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Example 5.27. Compute
ˆ b

0

x2 dx, by finding the limit of Riemann sums.

Solution. For n equal subintervals, the right Riemann sum reads
n∑

k=1

(
k
b

n

)2
· b
n

Average Value of a Continuous Function: Revisited
In Section 5.1.3, we informally introduced the average value of a nonneg-
ative continuous function over an interval [a, b].

Definition 5.28. If f is integrable on [a, b], then its average value on
[a, b], which is also called its mean, is

av(f) =
1

b− a

ˆ b

a

f(x) dx. (5.20)

Example 5.29. Find the average value of f(x) = −
√
4 − x2 on [−2, 2].

Solution. (Note that f ≤ 0.)
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Exercises 5.3
1. Express the limits as definite integrals.

(a) lim
||P ||→0

n∑
k=1

2c3k∆xk, where P is a partition of [−1, 0].

(b) lim
n→∞

n∑
k=1

[
3
(2k
n

)2
+
(
4 +

2k

n

)]( 2
n

)
2. Suppose that f is integrable and that

´ 3

0
f(x) dx = 3 and

´ 4

0
f(x) dx = 7. Find

(a)
ˆ 4

3

f(x) dx (b)
ˆ 3

4

f(t) dt

3. Use the method of Example 5.27 to evaluate the definite integrals.
ˆ 2

0

(2x+ 1) dx(a)
ˆ b

a

x2 dx, a < b(b)
ˆ b

0

x3 dx(c)
ˆ 1

−1

x3 dx(d)

Ans: (b) b3−a3

3 . (c) b4/4.

4. Challenge Let a < b.

(a) What values of a and b maximize the value of
ˆ b

a

(x− x2) dx ?

Hint : Where is the integrand positive?

(b) What values of a and b minimize the value of
ˆ b

a

(x4 − 2x2) dx ?

5. CAS Let f(x) = sinx and g(x) = sin2 x. For each of the functions, use a CAS to perform
the following steps:

(a) Plot the function over the interval [0, π].
(b) Partition the interval into n = 10, 100, and 1000 subintervals of equal length, and

evaluate the function at the midpoint of each subinterval.
(c) Compute the average value of the function values generated in part (b).

(d) Use the result in part (c) to estimate
ˆ π

0

f(x) dx and
ˆ π

0

g(x) dx.

Repeat the above to estimate
ˆ 1

0

x lnx dx.

You may use the following.
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average_value.m
1 %f = @(x) (sin(x)); a=0; b=pi;
2 f = @(x) (sin(x)).^2; a=0; b=pi;
3 %f = @(x) (x.*log(x)); a=0; b=1;
4

5 %% Add plot
6

7 for n =[10 100 1000]
8 P = linspace(a,b,n+1);
9 M = (P(1:end-1)+P(2:end))/2; % mid points

10 fsum = sum(f(M));
11

12 %% Here, add the required
13 end
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5.4. The Fundamental Theorem of Calculus

5.4.1. Fundamental Theorem of Calculus, Part 1

Theorem 5.30. (FTC1) If f is continuous on [a, b], then

F (x) =

ˆ x

a

f(t) dt (5.21)

is continuous on [a, b] and differentiable on (a, b) and its derivative is f(x):

F ′(x) =
d

dx

ˆ x

a

f(t) dt = f(x). (5.22)

That is, F is an antiderivative of f .

Example 5.31. Use FTC1 to find the derivative of the function.

g(x) =

ˆ x

0

sin(1 + t2) dt(a) h(x) =

ˆ x3

2

e−t dt(b)

y =

ˆ 5

x

3t sin t dt(c) y =

ˆ 1

sinx

1√
1− t2

dt(d)

Note:
d

dx

ˆ g(x)

h(x)

f(t) dt =
d

dx

[
F (t)

∣∣∣g(x)
h(x)

]
=

d

dx
[F (g(x))− F (h(x))]

= f(g(x)) · g′(x)− f(h(x)) · h′(x).
(5.23)



5.4. The Fundamental Theorem of Calculus 241

5.4.2. Fundamental Theorem of Calculus, Part 2

Theorem 5.32. (FTC2) If f is continuous over [a, b] and F is any an-
tiderivative of f on [a, b], then:

ˆ b

a

f(x) dx = F (b)− F (a). (5.24)

Remark 5.33. Theorem 5.32 is also called the Evaluation Theorem.
The theorem is important because it says that to calculate the definite
integral of f over an interval [a, b], we need do only two things:

1. Find an antiderivative F of f , and
2. Calculate the number F (b)− F (a).

Note: Theorem 5.32 shows a connection between antiderivatives and
definite integrals. This is the reason that in Definition 4.60, p. 211, the

integral sign
ˆ

is used to denote the collection of all antiderivatives.

Example 5.34. Evaluate the integral.

(a)
ˆ 4

1

(
3x2 − x3

4

)
dx (b)

ˆ 8

1

x2/3 + 1

x1/3
dx (c)

ˆ π
2

0

1 + cos 2t

2
dt

Solution.

Ans: (b) 63/4
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Example 5.35. Evaluate the integral.

(a)
ˆ 3

1

(1
x
+ e−3x

)
dx (b)

ˆ 1
2
√
3

0

1

1 + 4x2
dx

Solution.

Ans: (b) π/12

Mean Value Theorem for Definite Integrals

Theorem 5.36. The Mean Value Theorem for Definite Integrals.
If f is continuous on [a, b], then at some point c ∈ [a, b],

f(c) =
1

b− a

ˆ b

a

f(x) dx. (5.25)

Proof. It follows from the Max-Min Inequal-
ity in (5.18) that

min f ≤ 1

b− a

ˆ b

a

f(x) dx ≤ max f. (5.26)

Since f is continuous, the Intermediate
Value Theorem for Continuous Functions
(Theorem 2.52) says that f must assume ev-
ery value between min f and max f . It must
therefore assume the value 1

b−a

´ b

a
f(x) dx at

some point c ∈ [a, b].
Figure 5.7: The value f(c) in the Mean Value
Theorem is the average height (mean) of f .
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Example 5.37. Find the average value of f(x) = x(1− x) over [1, 3].
Solution.

Example 5.38. Show that if f is continuous on [a, b], a ̸= b, and if
ˆ b

a

f(x) dx = 0,

then f has a zero in [a, b].
Solution.

Theorem 5.39. The Net Change Theorem
The net change in a differentiable function F (x) over an interval [a, b] is
the integral of its rate of change:

F (b)− F (a) =

ˆ b

a

F ′(x) dx. (5.27)

Example 5.40. If c(x) is the cost of producing x units of a certain commod-
ity, then c′(x) is the marginal cost. From the Net Change Theorem,

c(x2) = c(x1) +

ˆ x2

x1

c′(x) dx,

which says that the final cost c(x2) is the same as the initial cost c(x1) plus
the net change for the production increase from x1 units to x2 units.
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5.4.3. The Total Area, between the Graph and the x-axis

Position, Velocity, Displacement, and Distance

The position of an object moving along a line at time t, denoted s(t), is
the location of the object relative to the origin.

(a) The velocity of an object at time t is v(t) = s′(t).
(b) The Net Change Theorem says that

s(b)− s(a) =

ˆ b

a

v(t) dt, (5.28)

so the integral of velocity is the displacement of the object over the
time interval [a, b].

(c) The distance traveled over the time interval [a, b] is

Distance traveled =

ˆ b

a

|v(t)| dt, (5.29)

where |v(t)| is the speed of the object at time t.

Displacement = A1 − A2 =

ˆ b

a

v(t) dt Distance traveled = A1 + A2 =

ˆ b

a

|v(t)| dt

Figure 5.8: Interpretations of the displacement and the distance traveled.
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Example 5.41. The velocity function (in meters per second) is given for a
particle moving along a line, as

v(t) = t2 − 2t− 3, t ∈ [2, 4].

(a) Find the displacement. (b) Find the distance traveled.

Solution.

Total Area

Example 5.42. The figure shows
the graph of the function f(x) = sinx

between x = 0 and x = 2π. Compute

(a) the definite integral of f(x) over
[0, 2π].

(b) the area between y = sin x and
the x-axis over [0, 2π].

Solution.
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Strategy 5.43. To find the area between the graph of y = f(x) and the
x-axis over the interval [a, b]:

(a) Subdivide [a, b] at the zeros of f .
(b) Integrate f over each subinterval.
(c) Add the absolute values of the integrals.

Example 5.44. Find the area of the region between the x-axis and the
graph of f(x) = x3 − x2 − 2x, −1 ≤ x ≤ 2.
Solution.

Ans: Total enclosed area =
37

12
.

Example 5.45. Find the area of the shaded region.
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Exercises 5.4
1. Evaluate the integrals.

ˆ 1

−1

(x999 − 2x+ 1) dx(a)
ˆ π/4

0

tan2 x dx(b)

ˆ 4

−4

|x| dx(c)
ˆ π/2

0

sin2 x dx(d)

ˆ π/3

0

(cosx+ secx)2 dx(e)
ˆ √

2

1

s2 +
√
s

s2
ds(f)

Hint : (b) 1 + tan2 x = sec2 x. (d-e) sin2 x = 1−cos 2x
2 and cos2 x = 1+cos 2x

2 .
Ans: (b) 1− π

4
. (f)
√
2− 4
√
8 + 1.

2. Find the derivatives in two different ways and compare them:

(i) by evaluating the integral and differentiating the result.
(ii) by differentiating the integral directly (as in FTC1).

(a)
d

dx

ˆ sinx

1

3t2 dt (b)
d

dt

ˆ t4

0

√
u du

3. Find dy/dx.

(a) y =

ˆ 0

tanx

dt

1 + t2
(b) y =

( ˆ x

0

(t3 + 1)10 dt
)3

Ans: (a) −1

4. Find the total area between the graph of y = f(x) and the x-axis.

(a) y = x3 − 3x2 + 2x, x ∈ [0, 2]. (b) y = 3x2 − 3, x ∈ [−2, 2].

Ans: (a) 1/2.

5. Challenge Find

(a) lim
x→1

1

x− 1

ˆ x

1

√
t dt. (b) lim

x→a

1

x− a

ˆ x

a

f(t) dt.

Hint : (b) Use FTC2 to generalize what you would learn from (a).
Ans: (a) 1.
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5.5. Indefinite Integrals and the Substitution
Method

Summary 5.46.

• The Fundamental Theorem of Calculus says that a definite inte-
gral

´ b

a f(x) dx of a continuous function f can be computed directly, if
we can find an antiderivative of the function.

• We defined the indefinite integral of the function f with respect to x
as the set of all antiderivatives of f , symbolized by

´
f(x) dx.

• Since any two antiderivatives of f differ by a constant, for any an-
tiderivative F of f , ˆ

f(x) dx = F (x) + C, (5.30)

where C is an arbitrary constant.
• The connection between antiderivatives and the definite inte-

gral (stated in the FTC) now explains the use of notation
´

:

ˆ b

a

f(x) dx = F (b)− F (a) = [F (b) + C]− [F (a) + C]

= [F (x) + C]ba =
[ ˆ

f(x) dx
]b
a

(5.31)

Example 5.47. Find
ˆ π

1

(
3x2 + cosx+

1

x

)
dx.
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The Substitution Rule

Theorem 5.48. If u = g(x) is a differentiable function whose range is
an interval I, and f is continuous on I, thenˆ

f(g(x)) · g′(x) dx =

ˆ
f(u)du. (5.32)

Remark 5.49. As with differentials, when computing integrals we have

du =
du

dx
dx. (5.33)

which leads to the substitution method for computing integrals with

g′(x)dx = du. (5.34)

The idea here is to replace a complicated integral by a much simpler
integral.

Strategy 5.50. Substitution Method to evaluate
´
f(g(x))·g′(x) dx

(a) Substitute u = g(x) and du =
(
du
dx

)
dx = g′(x)dx to obtain

´
f(u) du.

(b) Integrate it with respect to u.
(c) Replace u by g(x).

Example 5.51. Evaluate
ˆ √

2x+ 1 dx, using a smart guess (method of
undetermined coefficients) and the substitution method.
Solution. smart guess substitution method
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Example 5.52. Evaluate the integrals.
ˆ

2x(x2 + 5)−4 dx(a)
ˆ

9x2√
1− x3

dx(b)

ˆ
cos(1/x)

x2
dx(c)

ˆ
tan2 x sec2 x dx(d)
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Example 5.53. Evaluate the integrals.
ˆ

(cosx)esinx dx(a)
ˆ

arcsin2 x√
1− x2

dx(b)

ˆ
x3
√
1 + x2 dx(c)

ˆ
x

(2x− 1)2
dx(d)
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Formula 5.54. Integrals of Some Trigonometric Functions:
Sometimes we can use trigonometric identities to transform integrals we
do not know how to evaluate using the Substitution Rule.

(a)
ˆ

sin2 x dx =

ˆ
1− cos 2x

2
dx =

x

2
− sin 2x

4
+ C

(b)
ˆ

cos2 x dx =

ˆ
1 + cos 2x

2
dx =

x

2
+

sin 2x

4
+ C

(c)
ˆ

tan2 x dx =

ˆ
(sec2 x− 1) dx = tanx− x+ C

(d)
ˆ

tanx dx =

ˆ
sinx

cosx
dx

u=cosx
=====

ˆ
−du
u

= − ln |u|+ C = ln | secx|+ C

(e)

ˆ
secx dx =

ˆ
secx · secx+ tanx

secx+ tanx
dx =

ˆ
sec2 x+ secx tanx

secx+ tanx
dx

= ln | secx+ tanx|+ C

Similarly, we can derive the following

(f)
ˆ

cotx dx = ln | sinx|+ C

(g)
ˆ

cscx dx = − ln | cscx+ cotx|+ C
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Exercises 5.5
1. Evaluate the integrals.

ˆ
4x3

(x4 + 1)2
dx(a)

ˆ
x sin(2x2) dx(b)

ˆ √
sinx cos3 x dx(c)

ˆ
dx

x lnx
(d)

Hint : (c) You may use u = sinx and cos2 x = 1− sin2 x.
Ans: (d) ln | lnx|+ C.

2. Evaluate the integrals, using two different substitutions.

(a)
ˆ

csc2 2θ cot 2θ dθ u = cot 2θ and u = csc 2θ

(b)
ˆ

dx√
5x+ 3

dx u = 5x+ 3 and u =
√
5x+ 3

Note: If you do not know what substitution to make, try to reduce the integral step-
by-step, using a trial substitution to simplify the integral a bit and then another
to simplify it some more. You will see what we mean if you try the sequences of
substitutions.

3. Evaluate the integral
ˆ

18 tan2 x sec2 x

(2 + tan3 x)2
dx, trying different sequences of substitutions.

(a) u = tanx, followed by v = u3, then by w = 2 + v.
(b) u = tan3 x, followed by v = 2 + u.
(c) u = 2 + tan3 x.

4. Solve the initial value problems.

(a)
dx

dt
= 12t(3t2 − 1)3, x(1) = 3

(b)
d2y

dx2
= 2 sec2 x tanx, y′(0) = 4, y(0) = −3.

Ans: (a) x(t) = 1
2(3t

2 − 1)4 − 5. (b) y = tanx+ 3x− 3.
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5.6. Definite Integral Substitutions and the Area
between Curves

5.6.1. Substitution in Definite Integrals

Theorem 5.55. If g′(x) is continuous on the interval [a, b] and f(x) is
continuous on the range of g(x) = u, then

ˆ b

a

f(g(x)) · g′(x) dx =

ˆ g(b)

g(a)

f(u) du. (5.35)

Proof. Let F be any antiderivative of f . Then
ˆ b

a

f(g(x)) · g′(x) dx = F (g(x))
∣∣∣x=b

x=a
= F (g(b))− F (g(a))

= F (u)
∣∣∣u=g(b)

u=g(a)
=

ˆ g(b)

g(a)

f(u) du,

which completes the proof.

Note:

• The new limits g(a) and g(b) are the values of u = g(x) that corre-
spond to x = a and x = b.

• For an antiderivative of f(u), there is no need to replace u by g(x).

Example 5.56. Evaluate definite integrals.

(a)
ˆ 1

0

(5x4 + 2)
√
x5 + 2x dx. (b)

ˆ π

0

3 cos2 x sinx dx.
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Remark 5.57. Substitution in Definite Integrals. Rewrite (5.35):
ˆ b

a

f(g(x)) · g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

• Due to the change in the interval length, it requires a certain scal-
ing. The reciprocal of g′(x) can be viewed as a scaling factor.

• This subject will be detailed in terms of change of variables when
you study multi-variable calculus (Section 15.9).

Example 5.58. Let f(x) = 2x. For the definite integral of f over [0, 1], we
use the substitution u = 2x. Then

ˆ 1

0

(2x) dx
u=2x
====
du=2dx

ˆ 2

0

(u)
1

2
du =

ˆ 2

0

u

2
du =

ˆ 2

0

x

2
dx.

Evaluate the integral by interpreting it in terms of areas.
Solution.

Recall: Definition 1.14, p.10. A function y = f(x) is an

even function of x if f(−x) = f(x)

odd function of x if f(−x) = −f(x)
(5.36)

for every x in the function’s domain.
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Theorem 5.59. Let f be continuous on the symmetric interval [−a, a].

(a) If f is even, then
ˆ a

−a
f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd, then
ˆ a

−a
f(x) dx = 0.

Example 5.60. Evaluate integrals.

(a)
ˆ 2

−2
(x4 − 4x3 + x2 + 12x+ 1) dx

(b)
ˆ π/2

−π/2

2 cos θ

1 + sin2 θ
dθ

(c)
ˆ π/3

−π/3
x4 sinx dx
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5.6.2. Areas between curves

• Suppose we want to find the area of a region that is bounded above by
the curve y = f(x), below by the curve y = g(x), and on the left and
right by the lines x = a and x = b.

• To see what the area should be, we first approximate the region with
n vertical rectangles based on a partition P = {x0, x1, · · · , xn} on [a, b].

• The area of the k-th rectangle reads

∆Ak = height×width = [f(ck)− g(ck)]∆xk. (5.37)

• We then approximate the area of the region by adding the areas of the
n rectangles:

A ≈
n∑

k=1

∆Ak =
n∑

k=1

[f(ck)− g(ck)]∆xk. (5.38)

• As ||P || → 0, the sums on the right approach the limit
´ b

a [f(x)−g(x)]dx,
because f and g are continuous.

Definition 5.61. If f and g are continuous with f(x) ≥ g(x) throughout
[a, b], then the area of the region between the curves y = f(x) and y = g(x)
from over [a, b] is the integral of (f − g) from a to b:

A = lim
||P ||→0

n∑
k=1

[f(ck)− g(ck)]∆xk =

ˆ b

a

[f(x)− g(x)]dx. (5.39)



258 Chapter 5. Integrals

Example 5.62. Find the area of the region enclosed by
the parabola y = 3x− x2 and the line y = x.
Solution.

Example 5.63. Find the total area of the region between the curves y =

4− x2 and y = −x+ 2, between x = −2 and x = 3.
Solution.
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Integration with Respect to y

Example 5.64. Find the area of the region enclosed by
the curves x = y2 − 4y and x = 2y − y2.
Solution.

Example 5.65. Find the area of the region in the first quadrant that is
bounded above by y =

√
x and below by the x-axis and the line y = x− 2.

Solution.

Ans: 10
3

.



260 Chapter 5. Integrals

Exercises 5.6
1. Use the Substitution Formula in Theorem 5.55 to evaluate the integrals.

ˆ π/4

0

tanx sec2 x dx(a)
ˆ 9

1

t
√
4 + 5t dt(b)

ˆ 4

2

dx

x(lnx)2
(c)

ˆ ln
√
3

0

exdx

1 + e2x
(d)

Ans: (a) 1/2. (b) 86744/375 = 231.3173333. (c) 1/ ln 4. (d) π/12.

2. Find the total areas of the shaded regions.

(a) (b)

Ans: (b) 4/3.

3. Find the areas of the regions enclosed by the lines and curves.

(a) y = sec2 x, y = tan2 x, x = −π/4, and x = π/4.
(b) x+ y2 = 0 and x+ 3y2 = 2

Ans: (a) π/2. (b) 8/3.

4. Challenge

(a) Show that if f is continuous, then
ˆ 1

0

f(x) dx =

ˆ 1

0

f(1− x) dx.

(b) By using a substitution, prove that for all positive numbers a and x,
ˆ ax

a

1

t
dt =

ˆ x

1

1

t
dt
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6.1. Volume Using Cross-Sections

Proposition 6.1. Suppose that we want to find the volume of a solid S
like the one pictured in Figure 6.1.

• At each point x ∈ [a, b], we form a cross-section S(x) by intersect-
ing S with a plane perpendicular to the x-axis through the point x,
which gives a planar region whose area is A(x).

Figure 6.1: A cross-section S(x) of the solid S.

• We will show that if A is a continuous function of x, then the volume
of the solid S is the definite integral of A(x). That is,

V =

ˆ b

a

A(x) dx. (6.1)

• This method is known as the method of slicing for computing vol-
umes.
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6.1.1. Slicing by Parallel Planes

• We partition [a, b] into subintervals of width (length) ∆xk.
• Slice the solid, by planes perpendicular to the x-axis at the partition

points a = x0 < x1 < · · · < xn = b.
• These planes slice S into “thin slabs”, as shown in Figure 6.2.

Figure 6.2: A thin slab in the solid S.

• We approximate the slab between the plane at xk−1 and the plane
at xk by a cylindrical solid with base area A(xk) and height ∆xk =
xk − xk−1.

• The volume Vk of this cylindrical solid is approximately the same vol-
ume as that of the slab:

Volume of the k-th slab ≈ Vk = A(xk)∆xk. (6.2)

• The volume V of the entire solid S is therefore approximated by the
sum of these cylindrical volumes: with ck = xk,

V ≈
n∑

k=1

Vk =
n∑

k=1

A(xk)∆xk, (6.3)

which is a Riemann sum for the function A(x) on [a, b].
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Definition 6.2. The volume of a solid of integrable cross-sectional area
A(x) for x ∈ [a, b] is the integral of A over [a, b]

V = lim
n→∞

n∑
k=1

A(xk)∆xk =

ˆ b

a

A(x) dx. (6.4)

Strategy 6.3. Calculating the Volume of a Solid

(a) Sketch the solid to understand.
(b) Find the limits of integration, [a, b].
(c) For each x ∈ [a, b], find a formula for A(x), the area of a typical

cross-section.
(d) Integrate A(x) to find the volume.

Example 6.4. A pyramid 3 m high has a square base that is 3 m on a side.
Find the volume of the pyramid.
Solution.

(a) Sketch.

(b) The limits of integration: x ∈ [0, 3].

(c) Formula for A(x). A(x) = x2.

(d) Integrate to find the volume:
ˆ 3

0

A(x) dx =

ˆ 3

0

x2 dx =
x3

3

]3
0
= 9m3.
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Example 6.5. A curved wedge is cut from a circular cylinder of radius
3 by two planes. One plane is perpendicular to the axis of the cylinder.
The second plane crosses the first plane at a 45◦ angle at the center of the
cylinder. Find the volume of the wedge.
Solution. Note that A(x) = x · 2

√
9− x2.

Ans: 18.
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6.1.2. Solids of Revolution: the Disk Method

A solid of revolution is the solid generated by rotating (or revolving) a
planar region about an axis in its plane.

Example 6.6. The region between the curve y =
√
x, 0 ≤ x ≤ 4, and the

x-axis is revolved about the x-axis to generate a solid. Find its volume.

Ans: 8π.

Volume by Disks for Rotation About the x-Axis

V =

ˆ b

a

A(x) dx =

ˆ b

a

π[R(x)]2 dx, (6.5)

where R(x) is the radius.

Note: This method for calculating the volume of a solid of revolution is
often called the disk method because a cross-section is a circular disk
of radius R(x).
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Example 6.7. Find the volume of the solid obtained by rotating the region
bounded by the given curves about the x-axis.

y =
1

2
x+ 1, y = 0, x = 0, x = 5.

Solution.

Example 6.8. Find the volume of the solid obtained by rotating the region
bounded by the given curves about the y-axis.

xy = 4, x = 0, y = 1, y = 4.

Solution.
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Volume by Washers for Rotation About the x-Axis

V =

ˆ b

a

A(x) dx =

ˆ b

a

π([R(x)]2 − [r(x)]2) dx, (6.6)

where R(x) is the outer radius and r(x) is the inner radius.

Example 6.9. Find the volume of the solid obtained by rotating the region
bounded by the given curves about the x-axis.

y =
1

2
x+ 1, y =

√
x

2
, x = 0, x = 5.

Solution.

Example 6.10. The region bounded by the parabola y = x2 and the line
y = 2x in the first quadrant is revolved about the y-axis to generate a solid.
Find the volume of the solid.
Solution.

Ans: 8
3
π.
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Exercises 6.1
In Problems 1–2, find the volumes of the solids.

1. The base of a solid is the region bounded by the graphs of y = 3x, y = 6, and x = 0. The
cross-sections perpendicular to the x-axis are rectangles of height 10.

Ans: 60

2. The solid lies between planes perpendicular to the y-axis at y = 0 and y = 2. The cross-
sections perpendicular to the y-axis are circular disks with diameters running from the
y-axis to the parabola x =

√
5y2.

Ans: 8π

3. Find the volume of the given right tetrahe-
dron. Hint : Consider slices perpendicular
to one of the labeled edges.

Ans: 10.

4. Volumes by the Disk Method: Find the volumes of the solids generated by revolving
the regions bounded by the lines and curves about the x-axis.

(a) y =
√
9− x2, y = 0

(b) y = e−x, y = 0, x = 0, x = 1

Ans: (b)
π

2
(1− e−2).

5. Volumes by the Washer Method: Find the volumes of the solids generated by revolv-
ing the regions bounded by the lines and curves.

(a) y = secx, y =
√
2, −π/4 ≤ x ≤ π/4; revolving about the x-axis.

(b) The triangle with vertices (0, 1), (1, 0), and (1, 1); revolving about the y-axis.
Ans: (a) π(π − 2).

6. Challenge The Volume of a Torus: The disk x2 + y2 ≤ a2 is revolved about the line
x = b(b > a) to generate a solid shaped like a doughnut and called a torus. Find its
volume.

Hint : (1) Consider slices by planes perpendicular to the y-axis, with which −a ≤ y ≤ a.

(2) You may use
ˆ a

−a

√
a2 − y2 dy = πa2/2, which can be obtained through the observation

that the integral is the area of a semicircle of radius a.
Ans: V = 2a2bπ2.
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6.2. Volumes Using Cylindrical Shells

Note: Some volumes cannot be determined easily using the previous
methods (disk or washer). Here we will explore another method, called
the Method of Cylindrical Shells or the Shell Method.

The Shell Method
• Consider the region bounded by the graph of a function y = f(x) and

the x-axis over the closed interval [a, b]; see Figure 6.3(a).
• We assume L ≤ a. We generate a solid S by rotating the region about

the vertical line x = L.
(a) (b)

Figure 6.3: A region is resolved about the vertical line y = L.

• Partitioning. Let P be a partition of the interval [a, b] by the points

a = x0 < x1 < · · · < xn = b.

• Approximation. We approximate the region in Figure 6.3(a)
with the collection of rectangles based on this partition.

• Rectangles. As usual, choose a point ck ∈ [xk−1, xk], e.g., the midpoint
of the subinterval. A typical approximating rectangle has

height = f(ck) and width = ∆xk = xk − xk−1.

• Rotation: Cylindrical shells. If such a rectangle is rotated about
the vertical line y = L, then a shell is swept out, as in Figure 6.3(b).
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• The volume of the shell (swept out by the rectangle):

∆Vk = π[(xk − L)2 − (xk−1 − L)2] · (shell height)
= π[(xk + xk−1 − 2L)(xk − xk−1)] · (shell height)

= 2π
[(xk + xk−1

2
− L

)
(xk − xk−1)

]
· (shell height)

= 2π · (average shell radius) · (thickness) · (shell height)
= 2π · (ck − L) ·∆xk · f(ck).

(6.7)

• Riemann sum. We approximate the volume of the solid S by sum-
ming the volumes of the shells swept out by the n rectangles:

V ≈
n∑

k=1

∆Vk =
n∑

k=1

2π · (ck − L) · f(ck) ·∆xk. (6.8)

• The limit of this Riemann sum. As each ∆xk → 0 and n → ∞, it
gives the volume of the solid as a definite integral:

V = lim
n→∞

n∑
k=1

∆Vk =

ˆ b

a

2π · (shell radius) · (shell height) dx

=

ˆ b

a

2π(x− L)f(x)︸ ︷︷ ︸
Area of the thin shell

dx.
(6.9)

Formula 6.11. Shell Formula for Revolution About a Vertical
Line. The volume of the solid generated by revolving the region between
the x-axis and the graph of a continuous function y = f(x) ≥ 0, L ≤ a ≤
x ≤ b, about a vertical line x = L is

V =

ˆ b

a

2π(shell-radius) · (shell-height)︸ ︷︷ ︸
Area of the thin shell

dx. (6.10)

Note: § 5.3. The Definite Integral as the Limit of Riemann Sums
The limit of Riemann sums will be explored again and again, to form
definite integrals for various applications.
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Example 6.12. The region bounded by the curve y =
√
x, the x-axis, and

the line x = 4 is revolved about the y-axis to generate a solid. Find the
volume of the solid.

Solution. V =

ˆ 4

0

2π(x) · (
√
x) dx

Ans: 128π
5

.

Example 6.13. For the problem in the previous example, Example 6.12,
find the volume using the washer method.
Solution. R(y) = 4 and r(y) = x = y2.
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Example 6.14. Use the method of cylindrical shells to find the volume
of the solid obtained by rotating the region bounded by the given curves
about the y-axis.

y = −x2 + 5x− 4, y = 0

Solution. Zeros of f are 1, 4.

Example 6.15. Use the shell method to find the volume of the solid
obtained by rotating the region bounded by the given curves about the y-
axis.

y = 2
√
4− x, y = 0, x = 0

Solution.

Ans:
512π

15
.
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Example 6.16. Use the shell method to find the volume of the solid ob-
tained by rotating the region bounded by the given curves about the x-axis.

x = 2y − y2, x = y

Solution. V =

ˆ 1

0

2πy · [(2y − y2)− y] dy

Example 6.17. Use the shell method to find the volume of the solid ob-
tained by rotating the region bounded by the given curves about the line
y = 2.

x = 12(y2 − y3), x = 0Solution.

Ans:
14π

5
.
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Exercises 6.2
1. Use the shell method to find the volumes of the solids generated by revolving the regions

bounded by the curves and lines about the y-axis.

(a) y = 2x− 1, y =
√
x, x = 0

(b) y = x2, y = 2− x, x = 0, for x ≥ 0

Ans: (b) 5π/6.

2. Use the shell method to find the volumes of the solids generated by revolving the regions
bounded by the curves and lines about the x-axis.

(a) x = 2y − y2, x = 0

(b) y =
√
x, y = 0, y = x− 2

Ans: (b) 16π/3.

3. Use the shell method to find the volumes of the solid generated by revolving the regions
bounded by y = x and y = x2 about the following lines.

x = 1(a) x = −1(b)

The x-axis(c) y = 2(d)

Ans: (d) V =
´ 1
0 2π(2− y)(

√
y − y) dy = 8π

15 .

4. The region in the first quadrant that is bounded above by the curve y = 1/
√
x, on the left

by the line x = 1/4, and below by the line y = 1 is revolved about the y-axis to generate
a solid. Find the volume of the solid by

(a) the washer method. (b) the shell method.

5. The region shown in the figure is to be revolved about the x-axis to generate a solid.
Which of the methods (disk, washer, shell) could you use to find the volume of the solid?
How many integrals would be required in each case? Explain.

6. The volume of a right circular cone of height h and radius r is known as
1

3
πr2h. Derive

the formula using an appropriate solid of revolution.
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6.3. Arc Length

Length of a Curve y = f(x)

Suppose we want to find the length of the curve in the graph of y = f(x),
from x = a to x = b.

• Partition the interval [a, b] into n subintervals with

a = x0 < x1 < · · · < xn = b.

• Let yk = f(xk). Then the corresponding point Pk(xk, yk) lies on the
curve.

• Next we connect successive points Pk−1 and Pk with straight-line seg-
ments.

• Then the k-th line segment has length: for ∆yk = yk − yk−1,

Lk =
√
(xk − xk−1)2 + (yk − yk−1)2 =

√
∆x2k +∆y2k. (6.11)

• Since from the Mean Value Theorem, we have

∆yk = f ′(ck)∆xk, xk−1 < ck < xk,

Lk can be rewritten as

Lk =

√
∆x2k +∆y2k =

√
∆x2k + [f ′(ck)∆xk]2

=
√

1 + [f ′(ck)]2∆xk.
(6.12)
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• The Riemann sum which approximates the arc length reads
n∑

k=1

Lk =
n∑

k=1

√
∆x2k +∆y2k =

n∑
k=1

√
1 + [f ′(ck)]2∆xk. (6.13)

Definition 6.18. Arc Length Formula for y = f(x)

If f ′ is continuous on [a, b], then the length (arc length) of the curve
y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the value
of the integral

L =

ˆ b

a

√
1 + [f ′(x)]2 dx =

ˆ b

a

√
1 +

(dy
dx

)2
dx. (6.14)

Definition 6.19. Arc Length Formula for x = g(y)

If g′ is continuous on [c, d], then the length (arc length) of the curve
x = g(y) from the point A = (c, g(c)) to the point B = (d, g(d)) is the value
of the integral

L =

ˆ d

c

√
1 + [g′(y)]2 dy =

ˆ d

c

√
1 +

(dx
dy

)2
dy. (6.15)

Example 6.20. Find the length of the curve y =
2

3
x3/2, 0 ≤ x ≤ 2.

Solution.
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Example 6.21. Find the length of the curve.

(a) y =
x3

3
+

1

4x
, 1 ≤ x ≤ 2

(b) x =
1

3

√
y(y − 3), 1 ≤ y ≤ 9

(c) x =
2

3
(y − 1)3/2, 16 ≤ y ≤ 25
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Arc Length Function

Definition 6.22. Let y = f(x) with f ′ being continuous on [a, b]. Then

s(x) =

ˆ x

a

√
1 + [f ′(t)]2 dt (6.16)

is called the arc length function for y = f(x), which measures the
length along the curve y = f(x) from the initial point P0(a, f(a)) to the
point Q(x, f(x)), x ∈ [a, b].

Remark 6.23. From the Fundamental Theorem of Calculus, the
function s is differentiable on (a, b) and

ds

dx
=
√

1 + [f ′(x)]2 =

√
1 +

(dy
dx

)2
.

• Then the differential of arc length is

ds =
√

1 + [f ′(x)]2 dx =

√
1 +

(dy
dx

)2
dx. (6.17)

• A useful way to remember (6.17) is to write

ds =
√

dx2 + dy2. (6.18)

Example 6.24. Find the arc length function for the curve y =
x3

12
+

1

x
,

taking A = (1, 13/12) as the starting point.
Solution.

Ans: s(x) =
x3

12
− 1

x
+

11

12
.
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Exercises 6.3
1. Find the lengths of the curves.

(a) y =
1

3
(x2 + 2)3/2, 0 ≤ x ≤ 2

(b) x =

ˆ y

0

√
sec4 t− 1 dt, −π

4
≤ y ≤ π

4
Ans: (a) 14/3. (b) 2.

2. CAS Do the following.

(i) Set up an integral for the length of the curve.
(ii) Implement a code to approximate the curve’s length numerically.

(a) y = x2, −1 ≤ x ≤ 2

(b) y = sinx− x cosx, 0 ≤ x ≤ π

(c) x =

ˆ y

0

tan t dt, 0 ≤ y ≤ π/6

Ans: (a) (i)
ˆ 2

−1

√
1 + 4x2 dx. (ii) ≈ 6.1229. (c) (ii) ≈ 0.55.

For (a), for example, you may use the following code, executable in Matlab/Octave.
numerical_integration.m

1 a = -1; b = 2;
2 g = @(x) sqrt(1+4*x.^2);
3

4 n = 1000; dx = (b-a)/n;
5 X = linspace(a,b,n+1); gX = g(X);
6 length = sum(gX(1:n))*dx

3. The length of an astroid. The graph of the equation x2/3+y2/3 = 1 is one of a family of
curves called astroids (not “asteroids”), because of their starlike appearance. Find the
length of this particular astroid by finding the length of half the first-quadrant portion,
y = (1− x2/3)3/2,

√
2/4 ≤ x ≤ 1, and multiplying by 8.
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6.4. Areas of Surfaces of Revolution

Recall: Let’s begin with a formula for curved surface area (CSA) of a
frustum of a cone.

• From the figure, we have

L+ ℓ

ℓ
=

R

r
⇒ 1 L+ ℓ =

Rℓ

r
and 2 ℓ =

Lr

R− r
.

• Thus

The CSA of the frustum
= (the CSA of the full cone) − (the CSA of the cut)

=
(1
2
· (L+ ℓ) · 2πR

)
−
(1
2
· ℓ · 2πr

)
= πR(L+ ℓ)− πrℓ = πR

Rℓ

r
− πrℓ [⇐ 1 ]

= π
R2

r

Lr

R− r
− πr

Lr

R− r
[⇐ 2 ]

= πL
( R2

R− r
− r2

R− r

)
= πL(R + r).

(6.19)

Formula 6.25. Curved Surface Area of a Frustum

Frustum Surface Area = 2π · R + r

2
· L (6.20)
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Surface Area for Revolution about the x-axis

(a) (b) (c)

Figure 6.4: Surface area for revolution about the x-axis.

We will find the area of the surface generated by revolving the graph
of y = f(x), a ≤ x ≤ b, about the x-axis, as in Figure 6.4(a).

• Partitioning: Partition [a, b] in the usual way and use the points in
the partition to subdivide the graph into short arcs. Figure 6.4(a)
shows a typical arc PQ and the band it sweeps out.

• Approximation: The surface area of the band swept out by
the arc PQ can be approximated by the surface area of the frus-
tum of a cone, shown in Figure 6.4(c).

• It follows from (6.20) that the surface area of the frustum reads

2π · f(xk−1) + f(xk)

2
·
√

(∆xk)2 + (∆yk)
2. (6.21)

Recall (6.12), p.276:√
∆x2k +∆y2k =

√
1 + [f ′(ck)]2∆xk,

which is a consequence of the Mean Value Theorem.
• The terms in (6.21) are summed to get a Riemann sum

n∑
k=1

2π
f(xk−1) + f(xk)

2
·
√

1 + [f ′(ck)]2∆xk

≈
n∑

k=1

2πf(ck) ·
√

1 + [f ′(ck)]2∆xk.

(6.22)
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Definition 6.26. Surface Area for Revolution about the x-axis
If the function y = f(x) ≥ 0 is continuously differentiable on [a, b], the
area of the surface generated by revolving the graph of y = f(x) about
the x-axis is

S =

ˆ b

a

2πy

√
1 +

(dy
dx

)2
dx =

ˆ b

a

2πf(x)
√
1 + [f ′(x)]2 dx. (6.23)

Note: In (6.23), y = f(x) plays the role of radius.

Definition 6.27. Surface Area for Revolution about the y-axis
If the function x = g(y) ≥ 0 is continuously differentiable on [c, d], the
area of the surface generated by revolving the graph of x = g(y) about
the y-axis is

S =

ˆ d

c

2πx

√
1 +

(dx
dy

)2
dy =

ˆ d

c

2πg(y)
√

1 + [g′(y)]2 dy. (6.24)

Remark 6.28. Recall the differential of arc length in (6.18), ds =√
dx2 + dy2. Integrals in (6.23) and (6.24) can be expressed respectively

as
S =

ˆ b

a

2πy ds and S =

ˆ d

c

2πx ds. (6.25)

Example 6.29. Find the area of the surface obtained by rotating the curve
about the x-axis.

y = x3, 0 ≤ x ≤ 2

Solution.
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Example 6.30. Find the area of the surface obtained by rotating the curve
about the y-axis.

(a) x =
ey + e−y

2
, 0 ≤ y ≤ ln 2

(b) x =
√
a2 − y2, 0 ≤ y ≤ a

2
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Claim 6.31. Curves, Revolved About the Other Axis

1. Surface: y = f(x), a ≤ x ≤ b, revolved about the y-axis

• radius = x .
• Thus the area of the surface becomes

S =

ˆ
2πx ds︸ ︷︷ ︸

(6.25)

=

ˆ b

a

2πx

√
1 +

(dy
dx

)2
dx. (6.26)

2. Surface: x = g(y), c ≤ y ≤ d, revolved about the x-axis
• radius = y .
• Thus the area of the surface becomes

S =

ˆ
2πy ds︸ ︷︷ ︸

(6.25)

=

ˆ d

c

2πy

√
1 +

(dx
dy

)2
dy. (6.27)

Example 6.32. Find the area of the surface obtained by rotating the curve
about the x-axis.

x =
1

3
(y2 + 2)3/2, 1 ≤ y ≤ 2

Solution.

Ans: 21π/2.
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Claim 6.33. Curves, Revolved About the Other Axis (2)

• Recall the differential of arc length in (6.18):

ds =
√

dx2 + dy2︸ ︷︷ ︸
(6.18)

=

√
1 +

(dy
dx

)2
dx =

√
1 +

(dx
dy

)2
dy. (6.28)

• Let y = f(x) be a monotone function defined on [a, b], a ≥ 0, such that

[a, b]
f−−−→←−−−

g=f−1

[c, d]. (6.29)

Then, for example, the area of the surface obtained by rotating the
curve y = f(x) about the y-axis reads, with (radius = x),

S =

ˆ
2πr ds =

ˆ b

a

2πx
√
1 + [f ′(x)]2 dx =

ˆ d

c

2πg(y)
√

1 + [g′(y)]2 dy

(6.30)

Example 6.34. Find the area of the surface obtained by rotating the curve
x =

√
4− y, 0 ≤ y ≤ 4, about the y-axis.

Solution.
(a) x-integration: (b) y-integration:

Ans:
π

6
(17
√
17− 1)
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Exercises 6.4
1. Find the areas of the surfaces generated by revolving the curves about the indicated

axes.

(a) y =
√
x, 0 ≤ x ≤ 2; x-axis

(b) x =
√

2y − 1, 1/2 ≤ y ≤ 2; y-axis
Ans: (b) 14π/3.

2. CAS Do the following.

(i) Set up an integral for the area of the surface generated by revolving the given curve
about the indicated axis.

(ii) Implement a code to approximate the surface area numerically.

(a) xy = 1, 1 ≤ y ≤ 2; y-axis
(b) x1/1 + y1/2 = 3, 1 ≤ x ≤ 4, y > 0; x-axis
(c) y = tanx, 0 ≤ x ≤ π/4; x-axis

Hint : You may use numerical_integration.m given for Exercise 2, Section 6.3.
Ans: (a) (ii) ≈ 5.02. (b) (ii) ≈ 63.37.

3. Find the area of the surface obtained by rotating the curve about the y-axis.

y =
x4

4
+

1

8x2
, 1 ≤ x ≤ 2

Hint : Use the formula in (6.26).
Ans: 253π/20.

4. The surface of an astroid. Find the area of the surface generated by revolving about
the x-axis an astroid x2/3 + y2/3 = 1, considered in Exercise 3, Section 6.3.

Hint : Revolve the first-quadrant portion y = (1 − x2/3)3/2, 0 ≤ x ≤ 1, about the x-axis
and double your result.
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6.5. Work Done by a Variable Force

Work Done by a Constant Force
When an object moves a distance d along a straight line as a result of
being acted on by a constant force F in the direction of motion, we
define the work W done by the force on the object with the formula

W = F d. (6.31)

Work Done by a Variable Force Along a Line

Suppose that the force acts on an object moving along a straight
line (say, the x-axis). We assume that the force F is a continuous
function of x, the object’s position.

We want to find the work done over the interval x ∈ [a, b].

• Partitioning: Partition the interval [a, b] in the usual way and
choose an arbitrary point ck ∈ [xk−1, xk].

• Approximation: If the subinterval is short enough, the continu-
ous function F will not vary much on each of subintervals
[xk−1, xk]. Thus the amount of work done across the subinterval
[xk−1, xk] will be about F (ck)∆xk.

• The total work done from a to b is therefore approximated by the
Riemann sum

Work ≈
n∑

k=1

F (ck)∆xk. (6.32)

Definition 6.35. The work done by a variable force F (x) in moving an
object along the x-axis from x = a to x = b is

W =

ˆ b

a

F (x) dx. (6.33)
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Example 6.36. The units of the integral are joules (=newton-meters) if
F is in newtons and x is in meters, and foot-pounds if F is in pounds and
x is in feet.

• So the work done by a force of F (x) =
1

x2
newtons in moving an object

along the x-axis from x = 1m to x = 10m is

W =

ˆ 10

1

1

x2
dx = −1

x

]10
1

= 0.9J.

Hooke’s Law for Springs: F = kx

Hooke’s law says that the force required to hold a stretched or com-
pressed spring x units from its natural (unstressed) length is propor-
tional to x.

F = kx. (6.34)

• The constant k, measured in force units per unit length, is a char-
acteristic of the spring, called the force constant (or spring con-
stant) of the spring.

• In reality, Hooke’s Law gives good results as long as the force doesn’t
distort the metal in the spring.

Example 6.37. Find the work required to compress a spring from its nat-
ural length of 1 ft to a length of 0.75 ft if the force constant is k = 16 lb/ft.
Solution. F = 16x and x is from 0 to 0.25.

Ans: 0.5 ft-lb.
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Example 6.38. A spring has a natural length of 1 m. A force of 24 N holds
the spring stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural
length?

(c) How far will a 45-N force stretch the spring?

Solution.

(a) 24N = k · 0.8m⇒ k = 24/0.8 = 30N/m. ⇒ F = 30x

(b)
ˆ 2

0

30x ds = = 60J.

(c)

Lifting objects and Pumping Liquids from Containers

Example 6.39. A 5-kg bucket is lifted from
the ground into the air by pulling in 20 m of
rope at a constant speed. The rope weighs
0.08 kg/m. How much work was spent lifting
the bucket and rope?

Note: “kg” is an SI unit of mass.
(weight) = (mass)·g = (force).

Solution.
(a) Work for the Bucket Wb:

(Weight of the bucket) = (5-kg)·(9.8m/s2) = 49 N

(b) Work for the Rope Wr:
(Weight of the rope) = 0.08(20− x) · 9.8 = 0.784(20− x)N

Total Work: Ans: 1136.8 J.
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Exercises 6.5
1. If a force of 90 N stretches a spring 1 m beyond its natural length, how much work does

it take to stretch the spring 5 m beyond its natural length?
Hint : Consider the arguments used in Example 6.38.

2. A mountain climber is about to haul up a 50-m length of hanging rope. How much work
will it take if the rope weighs 0.624 N/m?

Ans: 780 J.

3. Kinetic energy. If a variable force F (x) moves an object of mass m along the x-axis
from x1 to x2, the object’s velocity y can be written as dx/xt. Use Newton’s second law
of motion F = m(dv/dt) and the Chain Rule

dv

dt
=

dv

dx

dx

dt
=

dv

dx
v = v

dv

dx
. (6.35)

This shows that the net work done by the force in moving the object from x1 to x2 is

W =

ˆ x2

x1

F (x) dx =
1

2
mv22 −

1

2
mv21, (6.36)

where v1 and v2 are the object’s velocities at x1 and x2. In physics, the expression
1

2
mv2

is called the kinetic energy of an object of mass m moving with velocity v.

Claim 6.40. The work done by the force equals the change in the object’s kinetic
energy, and we can find the work by calculating this change.

(a) Baseball. How many foot-pounds of work does it take to throw a baseball 90 mph?
A baseball weighs 5 oz, or 0.3125 lb.

(b) Golf. A 1.6-oz golf ball is driven off the tee at a speed of 280 ft/sec (about 191 mph).
How many foot-pounds of work are done on the ball getting it into the air?

Hint : (a) 90 mph = 132 ft/s. Try to find the mass from mg = 0.3125, where g = 9.8m/s2
= 32.1522 ft/s2.

Ans: (a) 84.68.
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7.1. The Logarithm Defined as an Integral

Definition 7.1. The natural logarithm is the function given by

lnx =

ˆ x

1

1

t
dt, x > 0. (7.1)

Figure 7.1: The natural logarithm defined as an integral.

Note: From the Fundamental Theorem of Calculus, p. 240, lnx is a
continuous and differentiable function. Its derivative is

d

dx
lnx =

d

dx

ˆ x

1

1

t
dt =

1

x
, x > 0. (7.2)

Definition 7.2. The number e is the number in the domain of the nat-
ural logarithm that satisfies

ln(e) =

ˆ e

1

1

t
dt = 1. (7.3)



7.1. The Logarithm Defined as an Integral 295

Recall: (Section 4.8). ˆ
1

x
dx = ln |x|+ C.

• If u is a differentiable function and u ̸= 0, thenˆ
1

u
du = ln |u|+ C. (7.4)

• Whenever u = f(x) is a differentiable function f(x) ̸= 0, we have
that du = f ′(x) dx and

ˆ
f ′(x)

f(x)
dx = ln |f(x)|+ C. (7.5)

Example 7.3. Find the integrals.

(a)
ˆ

y

y2 − 25
dy (b)

ˆ
secx tanx

2 + 3 secx
dx
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Substitution Methods
Example 7.4. Find the integrals.

(a)
ˆ

tanx ln(cosx) dx (b)
ˆ

ln(lnx)

x lnx
dx

Solution.

Example 7.5. Find the integrals.

(a)
ˆ

e−1/x
2

x3
dx (b)

ˆ
e4x

1 + e4x
dx

Solution.
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Recall: (Summary 3.59, Section 3.8)

d

dx
ax = ax ln a =⇒

ˆ
ax dx =

ax

ln a
+ C

loga x =
lnx

ln a
(Eqn (1.41), p. 53) =⇒ d

dx
loga x =

1

x ln a

(7.6)

Example 7.6. Find the integrals.

(a)
ˆ 1

0

2x dx

(b)
ˆ 4

1

3
√
x

√
x
dx

(c)
ˆ 2

1/2

log2(2x)

x
dx

Ans: (c) 2 ln 2



298 Chapter 7. Integrals and Transcendental Functions

Exercises 7.1
1. Find the integrals.

ˆ
3 sec2 t

6 + 3 tan t
dt(a)

ˆ −2

−3

1

x
dx(b)

ˆ 2

0

log2(x+ 2)

x+ 2
dx(c)

ˆ
dx

x log10 x
(d)

Ans: (b) ln(2/3). (c) 3
2 ln 2.

2. Solve the initial value problems.

(a)
dy

dt
= et sin(e2 − 2), y(ln 2) = 1 (b)

d2y

dx2
= sec2 x, y(0) = 0 and y′(0) = 1.

Ans: (a) y = 2− cos(et − 2).

3. The region between the curve y = 1/x2 and the x-axis from x = 1/2 to x = 2 is revolved
about the y-axis to generate a solid. Find the volume of the solid.

Ans: 2π ln 4.

4. In this problem, answer the question without using a calculator.

Which is bigger, eπ or πe?

Hint : You may start with the comparison between π ln e = π and e lnπ. More specifically, con-
sider f(x) = x − e lnx. Then f(e) = e − e ln e = 0. Now what can you say about f ′(x) for x > e?

5. Challenge Prove that

1

2
+

1

3
+ · · ·+ 1

n
< lnn < 1 +

1

2
+ · · ·+ 1

n− 1
. (7.7)

Hint : Recall (7.1): lnx =

ˆ x

1

1

t
dt, x > 0.
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7.2. Exponential Change and Separable Differ-
ential Equations

In many real-world situations, the rate of change of a quantity y is
proportional to its size at a given time t.

dy

dt
∼ y =⇒ dy

dt
= ky. (7.8)

• Examples of such quantities include the size of a population, the
amount of a decaying radioactive material, and the temperature dif-
ference between a hot object and its surrounding medium.

• Such quantities are said to undergo exponential change.

Example 7.7. Solve the differential equation (7.8).
Solution. Divide (7.8) by y to get

1

y
· dy
dt

= k

⇒
ˆ

1

y
· dy
dt

dt =

ˆ
k dt

⇒ ln |y| = kt+ C ⇒ |y| = ekt+C

⇒ y = ±eC · ekt = Aekt

(7.9)

The solution of the initial value problem

dy

dt
= ky, y(0) = y0, (7.10)

is
y = y0 e

kt. (7.11)

Note:
ˆ

1

y
· dy
dt

dt =

ˆ
1

y
dy, the integration of

1

y
with respect to y. That

is, the first line in (7.9) and (7.10) can be written as

1

y
dy = k dt (7.12)
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Separable Differential Equations

• More general differential equations are of the form

dy

dx
= f(x, y) = f(x, y(x)). (7.13)

• The differential equation (7.13) is separable if f can be expressed as
a product of a function of x and a function of y:

dy

dx
= g(x)h(y). (7.14)

• We can solve (7.14), using the same arguments introduced in Exam-
ple 7.7 (separate the variables and integrate):

1

h(y)
dy = g(x) dx ⇒

ˆ
1

h(y)
dy =

ˆ
g(x) dx. (7.15)

Example 7.8. Solve the equation y(x+ 1)
dy

dx
= x(y2 + 1).

Solution.

Ans:
1

2
ln(1 + y2) = x− ln |x+ 1|+ C, in implicit form.
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Population Growth

When the number of individuals becomes large enough, the popula-
tion can be approximated by a continuous function.

• Differentiability of the approximating function is another reason-
able hypothesis in many settings, allowing for the use of calculus to
model and predict population sizes.

• Further assumptions:
(a) If we assume that the proportion of reproducing individuals re-

mains constant and assume a constant fertility, then at any in-
stant t the birth rate is proportional to the number y(t) of
individuals.

(b) Let’s assume, too, that the death rate of the population is stable
and proportional to y(t).

(c) Further, we neglect departures and arrivals.

• Modeling: Then the growth rate dy/dt is the birth rate minus the
death rate:

dy

dt
= (b− d)y = k y. (7.16)

Example 7.9. The biomass of a yeast culture in an experiment is initially
29 grams. After 30 minutes the mass is 37 grams. Assuming that the equa-
tion for unlimited population growth gives a good model for the growth of
the yeast when the mass is below 100 grams, how long will it take for the
mass to double from its initial value?
Solution. Begin with y = y0 e

kt.

Ans: k = 1
30
ln(37

29
) ≈ 0.008118; t = ln 2

k
≈ 85.38.
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Radioactivity

• Some atoms are unstable and can spontaneously emit mass or ra-
diation. This process is called radioactive decay.

• Experiments have shown that at any given time the rate at which a
radioactive element decays is approximately proportional to the num-
ber of radioactive nuclei present: proportional to the number of ra-
dioactive nuclei present.

• Modeling: Thus the decay of a radioactive element is described by the
equation

dy

dt
= −ky, k > 0, (7.17)

of which the solution reads

y = y0 e
−kt. (7.18)

• The half-life of a radioactive element is the time expected to pass until
half of the radioactive nuclei present in a sample decay:

1

2
y0 = y0 e

−kt.

Thus the half-life reads

Half-life =
ln 2

k
. (7.19)

Example 7.10. Plutonium-239. The half-life of the plutonium isotope
is 24,360 years. If 10 g of plutonium is released into the atmosphere by
a nuclear accident, how many years will it take for 80% of the isotope to
decay?
Solution.

Ans: 24360 · ln 5
ln 2
≈ 56562.
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Heat Transfer: Newton’s Law of Cooling

• The rate of heat exchange between an object and its surroundings
is proportional to the difference in temperature between the
object and the surroundings.

• This observation is called Newton’s Law of Cooling, although it ap-
plies to warming as well.

• Modeling: If H is the temperature of the object at time t and Hs is the
constant surrounding temperature, then the differential equation is

dH

dt
= −k(H −Hs), (7.20)

so that
dH

H −Hs
= −k dt ⇒ ln(H −Hs) = −kt+ C

⇒ H −Hs = Ae−kt, for A = H0 −Hs.

where H0 is the temperature at t = 0.
• Thus the solution reads

H = Hs + (H0 −Hs)e
−kt. (7.21)

Example 7.11. A hard-boiled egg at 98◦C is put in a sink of 18◦C water.
After 5 min, the egg’s temperature is 38◦C. Assuming that the water has not
warmed appreciably, how much longer will it take the egg to reach 20◦C?
Solution. H = 18 + (98− 18)e−kt = 18 + 80e−kt.

Ans: t = ln 40
0.2 ln 4

≈ 13min⇒ It will take about 8 min more.
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Exercises 7.2
1. Solve the differential equations.

dy

dx
= ex−y(a)

dy

dx
= 2x

√
1− y2, −1 < y < 1(b)

1

x

dy

dx
= yex

2

+ 2
√
y ex

2

(c)
dy

dx
= xy + 3x− 2y − 6(d)

Ans: (a) ey − ex = C. (b) y = sin(x2 + C).

2. The population of Starkville, Mississippi, was 2,689 in the year 1900 (t = 0) and 25,495
in 2020 (t = 120). Assume that the population in Starkville has grown and will grow
exponentially.

(a) Estimate the population in 1950 and 2000.
(b) Approximately when is the population going to reach 50,000?

Ans: (b) year 2056.

Note: Scientists who do Carbon-14 dating often use a figure of 5730 years for its
half-life.

3. Carbon-14. The oldest known frozen human mummy, discovered in the Schnalstal
glacier of the Italian Alps in 1991 and called Otzi, was found wearing straw shoes and
a leather coat with goat fur, and holding a copper ax and stone dagger. It was estimated
that Otzi died 5000 years before he was discovered in the melting glacier. How much of
the original carbon-14 remained in Otzi at the time of his discovery?

Ans: ≈ 54.62%.

4. Surrounding medium of unknown temperature. A pan of warm water (46◦ C) was
put in a refrigerator. Ten minutes later, the water’s temperature was 39◦ C; 10 min after
that, it was 33◦ C. Use Newton’s Law of Cooling to estimate how cold the refrigerator
was.

Ans: −3◦ C.



7.3. Hyperbolic Functions 305

7.3. Hyperbolic Functions

Definition 7.12. Certain combinations of ex and e−x arise so fre-
quently in mathematics and its applications that they deserve special
names. These are called the hyperbolic functions.

sinhx =
ex − e−x

2
cschx =

1

sinhx

coshx =
ex + e−x

2
sechx =

1

coshx

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
cothx =

1

tanhx

(7.22)

Figure 7.2: The six basic hyperbolic functions.



306 Chapter 7. Integrals and Transcendental Functions

Formula 7.13. Helpful Hyperbolic Identities:

sinh(−x) = − sinhx cosh(−x) = cosh x

cosh2 x− sinh2 x = 1 1− tanh2 x = sech2 x

sinh(2x) = 2 sinhx coshx cosh(2x) = cosh2 x+ sinh2 x

(7.23)

Note: Consider cosh2 x− sinh2 x = 1, in which the point (coshx, sinhx) lies
on the right-hand branch of the hyperbola x21 − x22 = 1. This is where the
hyperbolic functions get their names. The trigonometric functions are
sometimes called the circular functions.

Example 7.14. Prove the following identity: coshx− sinhx = e−x

Solution.

Example 7.15. Find derivatives of the hyperbolic functions.

(a) sinhx (b) cschx =
1

sinhx

Solution.

Ans: (b) d
dx
(cschx) = − cschx cothx.
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7.3.1. Derivatives of Hyperbolic Functions

Formula 7.16. Derivatives of Hyperbolic Functions:

d

dx
(sinhx) = cosh x

d

dx
(cschx) = − cschx cothx

d

dx
(coshx) = sinh x

d

dx
(sechx) = − sechx tanhx

d

dx
(tanhx) = sech2 x

d

dx
(cothx) = − csch2 x

(7.24)

Example 7.17. Find the derivative.

(a) f(x) =
1

2
sinh(2x+ 1)

(b) g(x) = x2 tanh
(1
x

)

(c) y = ln cosh x− 1

2
tanh2 x
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Inverse Hyperbolic Functions

Figure 7.3: The graphs of the inverse hyperbolic functions.

Formula 7.18. Identities for inverse hyperbolic functions:

csch−1 x = sinh−1
1

x
, x ̸= 0

sech−1 x = cosh−1
1

x
, 0 < x ≤ 1

coth−1 x = tanh−1
1

x
, |x| > 1

(7.25)

Example 7.19. Prove that sech−1 x = cosh−1
1

x
.

Solution. For 0 < x ≤ 1,

sech
(
cosh−1

1

x

)
=

1

cosh
(
cosh−1

1

x

) =
1(1
x

) = x,

which completes the proof.
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Formula 7.20. Derivatives of Inverse Hyperbolic Functions:

d

dx
(sinh−1 x) =

1√
1 + x2

d

dx
(csch−1 x) = − 1

|x|
√
1 + x2

, x ̸= 0

d

dx
(cosh−1 x) =

1√
x2 − 1

, x > 1
d

dx
(sech−1 x) = − 1

x
√
1− x2

, 0 < x < 1

d

dx
(tanh−1 x) =

1

1− x2
, |x| < 1

d

dx
(coth−1 x) =

1

1− x2
, |x| > 1

(7.26)

Example 7.21. Show that if x > 1, then
d

dx
(cosh−1 x) =

1√
x2 − 1

.

Solution. y = cosh−1 x⇒ cosh y = x⇒ (sinh y) · dy
dx

= 1. Thus

dy

dx
=

1

sinh y
=

1

sinh(cosh−1 x)

=
1(

cosh2(cosh−1 x)− 1
)1/2 [⇐ cosh2 x− sinh2 x = 1]

=
1

(x2 − 1)1/2
.

Example 7.22. Find the derivative.

(a) f(x) = cosh−1(2
√
x+ 1) (b) g(x) = (x2 + 2x) tanh−1(x+ 1)

Solution.
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7.3.2. Integrals of Hyperbolic Functions

Formula 7.23. Integrals of Hyperbolic Functions:
It follows from Formula 7.16 thatˆ

coshx dx = sinhx+ C

ˆ
cschx cothx dx = − cschx+ Cˆ

sinhx dx = coshx+ C

ˆ
sechx tanhx dx = − sechx+ Cˆ

sech2 x dx = tanhx+ C

ˆ
csch2 x dx = − cothx+ C

(7.27)

Formula 7.24. Integrals of Inverse Hyperbolic Functions:
It follows from the substitution rule (Theorem 5.48) and For-
mula 7.20 that for a > 0,

ˆ
1√

a2 + x2
dx = sinh−1

(x
a

)
+ C

ˆ
1

x
√
a2 + x2

dx = −1

a
csch−1

∣∣∣x
a

∣∣∣+ C

ˆ
1√

x2 − a2
dx = cosh−1

(x
a

)
+ C

ˆ
1

x
√
a2 − x2

dx = −1

a
sech−1

(x
a

)
+ C

ˆ
1

a2 − x2
dx =


1

a
tanh−1

(x
a

)
+ C, if x2 < a2

1

a
coth−1

(x
a

)
+ C, if x2 > a2

(7.28)

Example 7.25. Evaluate the integrals.

(a)
ˆ

sinh 2x dx

(b)
ˆ

sech2(x− 1/2) dx

(c)
ˆ 2

1

cosh(ln t)

t
dt
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Example 7.26. Evaluate the integrals.

(a)
ˆ 2
√
3

0

1√
16 + 4x2

dx

(b)
ˆ 1/2

0

1

1− x2
dx

(c)
ˆ e

1

1

x
√
1 + (ln x)2

dx

Formula 7.27. Inverse Hyperbolic Functions in Logarithms:
Since the hyperbolic functions can be written in terms of exponential
functions, it is possible to express the inverse hyperbolic functions in
terms of logarithms.

sinh−1 x = ln(x+
√
x2 + 1), −∞ < x <∞

cosh−1 x = ln(x+
√
x2 − 1), x ≥ 1

tanh−1 x =
1

2
ln
(1 + x

1− x

)
, |x| < 1

csch−1 x = ln
(1
x
+

√
1 + x2

|x|

)
, x ̸= 0

sech−1 x = ln
(1 +√1− x2

x

)
, 0 < x ≤ 1

coth−1 x =
1

2
ln
(x+ 1

x− 1

)
, |x| > 1

(7.29)



312 Chapter 7. Integrals and Transcendental Functions

Exercises 7.3
1. Rewrite the expressions in terms of exponentials and simplify the results as much as

you can.

(a) 2 cosh(lnx) (b) (sinhx+ coshx)4

Ans: (a) x+
1

x
.

2. Find the derivative of y with respect to the appropriate variable.

(a) y = ln(sinh t) (b) y = (x2 + 1) sech(lnx) (c) y = sinh−1(tanx)

Hint : (b) You may simplify it first.
Ans: (b) 2. (c) | secx|.

3. Evaluate the integrals.
ˆ

6 cosh(x/2− ln 3) dx(a)
ˆ ln 4

ln 2

cothx dx(b)
ˆ 0

− ln 2

cosh2
(x
2

)
dx(c)

ˆ π

0

cosx√
1 + sin2 x

dx(d)

Ans: (b) ln
5

2
. (c)

3

8
+ ln

√
2.

4. Challenge Derive the formula sinh−1 x = ln(x+
√
x2 + 1) for all real x. Explain in your

derivation why the plus sign is used with the square root instead of the minus sign.
Hint : You will use the definition of sinhx and its inverse and the quadratic formula.
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7.4. Relative Rates of Growth and Convergence:
Big-oh and Little-oh

7.4.1. Relative Rates of Growth

You may have noticed that expo-
nential functions like 2x and ex

grow more rapidly (faster) than
polynomials or logarithms, as x
gets large.
Comparisons of exponential, poly-
nomial, and logarithmic functions
can be made precise by defining
what it means for a function f(x) to
grow faster than another function
g(x) as x→∞.

Definition 7.28. Let f(x) and g(x) be positive for x sufficiently large.

(a) f grows faster than g as x→∞ if

lim
x→∞

f(x)

g(x)
=∞,

or, equivalently, if

lim
x→∞

g(x)

f(x)
= 0.

We also say that g grows slower than f as x→∞.
(b) f and g grow at the same rate as x→∞ if

lim
x→∞

f(x)

g(x)
= L,

where L is finite and positive.
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Example 7.29. Compare the growth rates of common functions, as x→∞.
Use the L’Hôpital’s Rule, if necessary.

ex and x2(a) 3x and 2x(b)

lnx and xr(c) loga x and logb x, a, b > 1(d)

Example 7.30. You can show that
√
x2 + 5 and (2

√
x−1)2 grow at the same

rate as x→∞, as follows.

(a) Prove that
√
x2 + 5 and x grow at the same rate as x→∞.

(b) Prove that x and (2
√
x− 1)2 grow at the same rate as x→∞.
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7.4.2. Big-oh and Little-oh

Definition 7.31. A function f is of smaller order than g as x→∞ if

lim
x→∞

f(x)

g(x)
= 0. (7.30)

We indicate this by writing f = o(g) (“f is little-oh of g”).

Definition 7.32. Let f(x) and g(x) be positive for x sufficiently large.
Then f is of at most the order of g as x → ∞ if there is a positive
number M such that

f(x)

g(x)
≤M, for x sufficiently large. (7.31)

We indicate this by writing f = O(g) (“f is big-oh of g”).

Example 7.33. True, or false? As x→∞,

1

x+ 3
= o
(1
x

)
(a)

√
x2 + 1 = O(2x)(b)

x lnx = o(x2)(c) ln(lnx) = O(lnx)(d)
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7.4.3. Relative Rates of Convergence

Definition 7.34. Suppose lim
h→0

G(h) = 0.

(a) A quantity F (h) is said to be in little-oh of G(h) as h→ 0, if

lim
h→0

|F (h)|
|G(h)|

= 0. (7.32)

In this case, we denote F (h) ∈ o(G(h)) or F (h) = o(G(h)).
(b) A quantity F (h) is said to be in big-oh of G(h) as h→ 0, if there is a

positive number K such that

|F (h)|
|G(h)|

≤ K, for h sufficiently small. (7.33)

In this case, we denote F (h) ∈ O(G(h)) or F (h) = O(G(h)) .

Example 7.35. Show that these assertions are not true.

(a) ex − 1 = O(x2), as x→ 0

(b) x = o(tan−1 x), as x→ 0

(c) sinx cosx = o(x), as x→ 0

Solution.
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Example 7.36. Prove that

arctan(x) = x+O(x3), as x→ 0.

Solution. Consider arctan(x)− x = O(x3).
Or, you may begin with

d

dx
arctan(x) =

1

1 + x2
= 1− x2+ x4− x6+ · · · , |x| < 1.

Example 7.37. Let f(h) = 1 + h − eh. What are the limit and the rate of
convergence of f(h) as h→ 0?
Clue: This problem asks you to find the largest k such that f(h) = O(hk).

Solution.

Ans: f(h) = O(h2).
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Exercises 7.4
1. Which of the following functions grow faster than ex as x→∞ ? Which grow at the same

rate as ex ? Which grow slower?

10x4 + 30x+ 1(a) x lnx(b)
√
1 + x4(c)

2x(d) 3x(e) e−x(f)

xex(g) ex+1(h) e2x(i)

2. Which of the following functions grow faster than lnx as x → ∞ ? Which grow at the
same rate as lnx ? Which grow slower?

log3 x(a) ln 2x(b) ln
√
x(c)

√
x(d) 1/x(e) ex(f)

Ans: Faster: (d) and (f).

3. (Big-oh and Little-oh) True, or false? As x→∞,

x− 3x2 = O(x)(a) ln(x2 + 1) = o(ln(x+ 1))(b)

x+ lnx = O(x)(c) ex = O(e2x)(d)

Ans: (b) False. (d) True.

4. (Big-oh and Little-oh) True, or false? As x→ 0,

x− 3x2 = O(x)(a) ln(x2 + 1) = o(ln(x+ 1))(b)

5. Prove the following.

(a) As x→∞, ex grows faster than xn for any positive integer n, even x1,000,000,000.
(b) As x→∞, lnx grows slower than x1/n for any positive integer n, even x1/1,000,000,000.
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8.1. Using Basic Integration Formulas

Formula 8.1. Basic Integration Formulas:
Here we summarize the indefinite integrals of many of the functions we
have studied so far.

1.
ˆ

k dx = kx+ C

2.
ˆ

xn dx =
1

n+ 1
xn+1 + C (n ̸= −1)

3.
ˆ

1

x
dx = ln |x|+ C

4.
ˆ

ex dx = ex + C

5.
ˆ

ax dx =
ax

ln a
+ C (a > 0, a ̸= 1)

6.
ˆ

sinx dx = − cosx+ C

7.
ˆ

cosx dx = sinx+ C

8.
ˆ

sec2 x dx = tanx+ C

9.
ˆ

csc2 x dx = − cotx+ C

10.
ˆ

secx tanx dx = secx+ C

11.
ˆ

cscx cotx dx = − cscx+ C

12.
ˆ

tanx dx = ln | secx|+ C

13.
ˆ

cotx dx = ln | sinx|+ C

14.
ˆ

secx dx = ln | secx+ tanx|+ C

15.
ˆ

cscx dx = − ln | cscx+ cotx|+ C

16.
ˆ

sinhx dx = coshx+ C

17.
ˆ

coshx dx = sinhx+ C

18.
ˆ

dx√
a2 − x2

= sin−1
(x
a

)
+ C

19.
ˆ

dx

a2 + x2
=

1

a
tan−1

(x
a

)
+ C

20.
ˆ

dx

x
√
x2 − a2

=
1

a
sec−1

∣∣∣x
a

∣∣∣+ C

21.
ˆ

dx√
a2 + x2

= sinh−1
(x
a

)
+ C (a > 0)

22.
ˆ

dx√
x2 − a2

= cosh−1
(x
a

)
+ C

(x > a > 0)

Example 8.2. Evaluate the integrals.

(a)
ˆ 1

0

16x

8x2 + 1
dx (b)

ˆ
1− x√
1− x2

dx
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Key Idea 8.3. To transform the integrand into a sum of elementary
derivatives, use algebraic manipulation, identities, and substitution.
We will see very typical techniques.

Example 8.4. Evaluate the integrals.

(a)
ˆ

2

x
√

1− 4(lnx)2
dx (b)

ˆ π/4

0

1

1− sin θ
dθ

Hint : (b) Multiply 1+sin θ
1+sin θ and then use 1− sin2 θ = cos2 θ.

Example 8.5. Evaluate the integrals.

(a)
ˆ

2x2 − 5x

2x+ 1
dx (b)

ˆ
1√

4x− x2
dx

Hint : (a) Perform long division first. (b) Complete the square: 4x−x2 = 4−(x−2)2 and let u = x−2.
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Example 8.6. Evaluate the integrals.

(a)
ˆ

x11
√
x6 + 2 dx (b)

ˆ √
x

1 + x3
dx

Hint : (a) Use the substitution u = x6 + 2. (b) Let u = x3/2.

Example 8.7. Evaluate the integrals.

(a)
ˆ

1

1 + ex
dx (b)

ˆ π/2

−π/2
x3 cosx dx
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Exercises 8.1
1. Evaluate each integral using any algebraic method, trigonometric identities, or a sub-

stitution.ˆ
x2

x2 + 1
dx(a)

ˆ
1

x+
√
x
dx(b)

ˆ
1

ez + e−z
dz(c)

ˆ
lnx

x+ 4x ln2 x
dx(d)

ˆ π/2

0

√
1− cos θ dθ(e)

ˆ
et+et dt(f)

Hint : (b) Rewrite x+
√
x =
√
x(
√
x+1) and let u =

√
x+1. (c) Multiply both the numerator and

the denominator by ez and let u = ez. (e) See the trigonometric formulas in (1.22), p. 33.
Ans: (e) 2(

√
2− 1). (f) eet + C.

2. Area. Find the area of the region bounded above by y = 2 cosx and below by y = secx,
−π/4 ≤ x ≤ π/4.

Ans: 2
√
2− ln(3 + 2

√
2).

3. Volume. Find the volume of the solid generated by revolving the region in the above
problem (Exercise 2) about the x-axis.

4. Arc length. Find the length of the curve y = ln(secx), 0 ≤ x ≤ π/4.
Ans: ln(

√
2 + 1).
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8.2. Integration by Parts

8.2.1. Integration by Parts: Indefinite Integrals

Note: If we wished to evaluate integrals like
´
x cosx dx or

´
x2ex dx,

the techniques we have studied would not work. (∵ It is not a sum of
elementary derivatives.)

• Integration by parts is a technique for simplifying integrals of the
form ˆ

u(x)v′(x) dx.

• Strategy:

– For differentiable functions u and v the Product Rule says that

d

dx
[u(x)v(x)] = u′(x)v(x) + u(x)v′(x). (8.1)

– Integrating both sides makes

u(x)v(x) =

ˆ
u′(x)v(x) dx+

ˆ
u(x)v′(x) dx. (8.2)

Formula 8.8. Integration by Parts: It follows from (8.2) that
ˆ

u(x)v′(x) dx = u(x)v(x)−
ˆ

u′(x)v(x) dx, (8.3)

whose differential version readsˆ
u dv = uv −

ˆ
v du. (8.4)

Remark 8.9. Integration by Parts: Alternative Form
Let v1 is the antiderivative of v with C = 0. Thenˆ

u(x)v(x) dx = u(x)v1(x)−
ˆ

u′(x)v1(x) dx. (8.5)
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Example 8.10. Evaluate the integrals.

(a)
ˆ

x cos 2x dx (b)
ˆ

tan−1 x dx

Note: If a function is raised to a power, we might go through the process
a few times.

Example 8.11. Evaluate the integrals.

(a)
ˆ

(lnx)2 dx (b)
ˆ

x2e4x dx
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Example 8.12. Evaluate the integrals.

(a)
ˆ

x2 sinx dx (b)
ˆ

y sinh(2y) dy

Example 8.13. Evaluate the integrals.

(a)
ˆ

t4 ln t dt (b)
ˆ

ex cosx dx

Solution.

Ans: (b)
ˆ

ex cosx dx =
ex sinx+ ex cosx

2
+ C.
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Remark 8.14. Tabular Integration by Parts:
While the aforementioned recursive definition is correct, it is often
tedious to remember and implement. A much easier visual representa-
tion of this process is often taught to students and is called the tabular
method or the tic-tac-toe method.
• Let vk+1 be the antiderivative of vk with C = 0, where v = v0.

Then ˆ
uv = uv1 −

ˆ
u′v1 = uv1 −

(
u′v2 −

ˆ
u′′v2

)
= uv1 − u′v2 +

ˆ
u′′v2

= uv1 − u′v2 + u′′v3 −
ˆ

u′′′v3

= uv1 − u′v2 + u′′v3 − u′′′v4 +

ˆ
u′′′′v4 = · · ·

(8.6)

Note: u is involved in the form of (−1)ku(k).
• This method works best when one of the two functions in the product

is a polynomial, so that its repeated derivatives go to a constant.
• It is also applicable for functions that repeat themselves.

Example 8.15. Use the tic-tac-toe method to evaluate the integrals.

(a)
ˆ

x3e2x dx (b)
ˆ

ex sinx dx

Ans: (b)
ex sinx− ex cosx

2
+ C.
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8.2.2. Integration by Parts: Definite Integrals

The Integration by Parts Formula in (8.3) can be combined with Part 2
of the Fundamental Theorem in order to evaluate definite integrals by
parts.

Formula 8.16. Integration by Parts for Definite Integrals:
ˆ b

a

u(x)v′(x) dx = u(x)v(x)
]b
a
−
ˆ b

a

u′(x)v(x) dx. (8.7)

Example 8.17. Find the area of the region bounded by the curve y = xe−x

and the x-axis from x = 0 to x = 4.
Solution.

Ans: 1− 5e−4 ≈ 0.9084
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8.2.3. Integration by Parts: Special Functions

Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually
gives good results:ˆ

f−1(x) dx =

ˆ
yf ′(y) dy y = f−1(x), x = f(y),

dx = f ′(y)dy

= yf(y)−
ˆ

f(y) dy

= xf−1(x)−
ˆ

f(y) dy

(8.8)

Note that y = f−1(x) (on the first line) can be viewed as a substitution.

Formula 8.18. Integrating Inverses of Functions:
ˆ

f−1(x) dx = xf−1(x)−
ˆ

f(y) dy. y = f−1(x) (8.9)

Example 8.19. Evaluate the integrals, using the formula in (8.9).

(a)
ˆ

arccosx dx (b)
ˆ e

1

log2 x dx

Solution.

Ans: (a) x arccosx− sin(arccosx) + C. (b) 1/ ln 2.
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Recursive Formulas

Example 8.20. Obtain a formula that expresses the integral
ˆ

cosn x dx

in terms of an integral of a lower power of cos x.

Solution. Let u = cosn−1 x and v′ = cosx.
⇒ u′ = −(n− 1) cosn−2 x sinx and v = sinx. Thus
ˆ

cosn x dx = cosn−1 x sinx+ (n− 1)

ˆ
cosn−2 x · sin2 x dx

= cosn−1 x sinx+ (n− 1)

ˆ
cosn−2 x · (1− cos2 x) dx

= cosn−1 x sinx+ (n− 1)

ˆ
cosn−2 x dx− (n− 1)

ˆ
cosn x dx.

Moving the last term to the left, we obtain

n

ˆ
cosn x dx = cosn−1 x sinx+ (n− 1)

ˆ
cosn−2 x dx.

Formula 8.21. For n ≥ 2,
ˆ

cosn x dx =
cosn−1 x sinx

n
+

n− 1

n

ˆ
cosn−2 x dx+ C. (8.10)

For example,
ˆ

cos3 x dx =
cos2 x sinx

3
+

2

3

ˆ
cosx dx+ C =

1

3
cos2 x sinx+

2

3
sinx+ C.

Note: Similarly you may develop a formula for
ˆ

sinn x dx. However, it

is not easy to memorize. We will deal with details of trigonometric
integrals in the next section, Section 8.3.
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Exercises 8.2
1. Evaluate the integrals.

ˆ
x2e−x dx(a)

ˆ
sin−1 x dx(b)

ˆ
eθ sin θ dθ(c)

ˆ e

1

x3 lnx dx(d)

Ans: (b) x arcsinx+
√
1− x2 + C. (d) (3e4 + 1)/16.

2. Evaluate the integrals by using a substitution or algebraic manipulation prior to inte-
gration by parts.

(a)
ˆ

e
√
x dx (b)

ˆ
ln(x2 + x) dx

Ans: (a) 2(
√
x− 1)e

√
x + C.

3. Evaluate the integrals. Some integrals do not require integration by parts.
ˆ

x3ex
4

dx(a)
ˆ √

x lnx dx(b)
ˆ

cos
√
x dx(c)

ˆ
xex

(x+ 1)2
dx(d)

Hint : (d) Let u = xex and v′ = 1/((x+ 1)2.
Ans: (c) 2

√
x sin

√
x+ 2 cos

√
x+ C.

4. Evaluate the integrals, using the formula in (8.9).

(a)
ˆ

arctanx dx

(b)
ˆ

arcsecx dx

(c)
ˆ

sinh−1 x dx

Hint : (b)
ˆ

sec y dy = ln | sec y + tan y|+ C; see Formula 5.54, p. 252.

Ans: (b) x sec−1 x− ln |x+
√
x2 − 1|+ C. (c) x sinh−1 x− cosh(sinh−1 x) + C.

5. Finding volume. Find the volume of the solid generated by revolving the region in the
first quadrant bounded by the coordinate axes and the curve y = cos x, 0 ≤ x ≤ π/2,
about

(a) the y-axis. (b) the line x = π/2.

Ans: (b) 2π.
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8.3. Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six ba-
sic trigonometric functions.

Formula 8.22. Integrals of Powers of sinx and cosx :

Integrals of the Form
ˆ

sinm x cosn x dx

• Case 1: m is odd.

(a) Write m = 2k + 1 and use sin2 x = 1 − cos2 x to obtain

sinm x = sin2k+1 x = (1− cos2 x)k sinx.

(b) Substitute u = cosx ⇒ du = − sinxdx

• Case 2: n is odd.

(a) Write n = 2k + 1 and use cos2 x = 1 − sin2 x to obtain

cosn x = cos2k+1 x = (1− sin2 x)k cosx.

(b) Substitute u = sinx ⇒ du = cosxdx

• Case 3: Otherwise (Both m and n are even). Use the Half-Angle
Formulas

sin2 x =
1− cos 2x

2
cos2 x =

1 + cos 2x

2
(8.11)

to reduce the integrand to one in lower powers.

Example 8.23. Evaluate the integrals.

(a)
ˆ

sin5 x cos3 x dx (b)
ˆ π/6

0

3 sin5(3x) dx
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Example 8.24. Evaluate the integrals.

(a)
ˆ

cos2 x dx

(b)
ˆ

sin2 x cos4 x dx

(c)
ˆ π/4

0

√
1 + cos 4x dx

Ans: (c) 1/
√
2.
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Formula 8.25. Integrals of Powers of tanx and secx :

Integrals of the Form
ˆ

secm x tann x dx

• Case 1: m is even.

(a) Write m = 2k + 2 and use sec2 x = 1 + tan2 x to obtain

secm x = (sec2x)k sec2 x = (1 + tan2 x)k sec2 x.

(b) Substitute u = tanx ⇒ du = sec2 xdx

• Case 2: n is odd.

(a) Write n = 2k + 1, pull off one secx, and use tan2 x = sec2 x − 1 to
obtain

secm x tann x = secm−1 x(tan2 x)k secx tanx

= secm−1 x(sec2 x− 1)k secx tanx.

(b) Substitute u = secx ⇒ du = secx tanxdx

• Case 3: Otherwise (Neither m is even nor n is odd). Use the
identities

sec2 x = 1 + tan2 x tan2 x = sec2 x− 1 (8.12)

and use integration by parts.

Example 8.26. Evaluate the integrals.

(a)
ˆ

tan2 x sec4 x dx (b)
ˆ

tan5 x sec3 x dx
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Example 8.27. Evaluate the integrals.

(a)
ˆ

sec3 x dx (b)
ˆ

tan2 x secx dx

Formula:
ˆ

secx dx = ln | secx+ tanx|+ C.

Solution. (a) Integration by parts:
u = secx, v′ = sec2 x

Example 8.28. Evaluate the integral
ˆ

sin 3x cos 5x dx.

Formula: sinA cosB =
1

2
[sin(A−B) + sin(A+B)]; see (1.22), p.33, for details.

Solution.
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Exercises 8.3
1. Evaluate the integrals.

ˆ
cos3 x sin3 x dx(a)

ˆ π

0

8 sin4 θ dθ(b)

Ans: (b) 3π.

2. Evaluate the integrals.
ˆ 2π

0

√
1− cosx

2
dx(a)

ˆ π/6

0

√
1 + sin x dx(b)

Hint : (b) Multiply by
√
1− sinx√
1− sinx

.
Ans: (a) 4.

3. Evaluate the integrals.

(a)
ˆ

sec4 x dx (b)
ˆ π/4

−π/4

6 tan4 x dx

Hint : (b) tan4 x = tan2 x(sec2 x− 1) = tan2 x sec2 x− sec2 x+ 1.
Ans: (b) 8 + 3π.

4. Arc length. Find the length of the curve

y = ln(sinx),
π

6
≤ x ≤ π

2
.

Formula: Arc length: L =

ˆ b

a

√
1 + (f ′)2 dx; see (6.14) for details.

5. Volume. Find the volume of the solid formed by revolving the region bounded by the
graphs of y = arctanx, x = 0, and y = π/4 about the y-axis.

Ans: π(1− π/4).
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8.4. Trigonometric Substitutions

In some circumstances, the u-substitution can be in the form of a trig
equation. This is particularly true with square roots.

Table 8.1: Trigonometric substitutions.

Expression Substitution Identity√
a2 + x2 x = a tan θ, −π

2
< θ <

π

2
1 + tan2 θ = sec2 θ√

a2 − x2 x = a sin θ, −π
2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ√

x2 − a2 x = a sec θ, 0 ≤ θ <
π

2
or

π

2
< θ ≤ π sec2 θ − 1 = tan2 θ

Figure 8.1: Reference triangles for the three basic trigonometric substitutions.

Remark 8.29. With the substitution x = a sec θ,

x2 − a2 = a2 sec2 θ − a2 = a2(sec2 θ − 1) = a2 tan2 θ. (8.13)

The substitution requires

θ = sec−1
(x
a

)
with

 0 ≤ θ <
π

2
, if

x

a
≥ 1,

π

2
< θ ≤ π, if

x

a
≤ −1.

(8.14)

For sec−1, see Figure 1.25, p. 54.
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Example 8.30. Evaluate the integrals.

(a)
ˆ √

x2 − 49

x
dx, x ≥ 7

Solution. x = 7 sec θ, 0 ≤ θ < π/2

Ans: 7[tan θ − θ] + C = 7
[√

x2−49
7 − sec(x/7)

]
+ C

(b)
ˆ √

25− y2 dy

Solution. y = 5 sin θ

Ans: 25
2 (θ + sin θ cos θ) + C = 25

2 sin−1(y/5) +
y
√

25−y2

2 + C

Note: For trigonometric substitutions, you may first consider the fact
that the radicand must be nonnegative; (a) |x| ≥ 7, (b) |y| ≤ 5.
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Example 8.31. Evaluate the integrals.

(a)
ˆ

x3√
x2 + 4

dx

Ans: 8
[
1
3 sec

3 θ − sec θ
]
+ C = 1

3(x
2 + 4)3/2 − 4

√
x2 + 4 + C

(b)
ˆ √3/2
0

x2

(1− x2)3/2
dx

Ans:
√
3− π/3



340 Chapter 8. Techniques of Integration

Summary 8.32. Procedure for a Trigonometric Substitution

1. Write down the substitution for x, calculate the differential dx, and
specify the selected values of θ for the substitution.

2. Substitute the trigonometric expression and the calculated differen-
tial into the integrand, and then simplify the results algebraically.

3. Integrate the trigonometric integral, keeping in mind the restric-
tions on the angle θ for reversibility.

4. Draw an appropriate reference triangle to reverse the substitution
in the integration result and convert it back to the original variable x.

Example 8.33. Evaluate the integrals. You may have to use the formula´
sec θ dθ = ln | sec θ + tan θ|+ C.

(a)
ˆ

dx√
4 + x2

(b)
ˆ

dx√
25x2 − 4

, x >
2

5

Ans: 1
5

∣∣5x
2 +

√
25x2−4

2

∣∣+ C
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Exercises 8.4
1. Evaluate the integrals.

ˆ
dx

x2
√
x2 − 1

, x > 1(a)
ˆ

(1− x2)3/2

x6
dx(b)

ˆ
x3 dx

x2 − 1
(c)

ˆ 1

0

dx

(4− x2)3/2
(d)

Ans: (b) −1
5

(√
1−x2

x

)5
+ C. (c) 1

2x
2 + 1

2 ln |x
2 − 1|+ C.

2. Use an appropriate substitution and then a trigonometric substitution to evaluate the
integrals.

(a)
ˆ ln 4

0

ey√
e2y + 9

dy (b)
ˆ √

x

1− x3
dx (Hint: Let u = x3/2.)

Ans: (a) ln 9− ln(1 +
√
10).

3. Complete the square before using an appropriate trigonometric substitution.

(a)
ˆ √

8− 2x− x2 dx (b)
ˆ √

x2 + 4x+ 3

x+ 2
dx

Ans: (b)
√
x2 + 4x+ 3− arcsec(x+ 2) + C.

4. Challenge Find the average value of f(x) =
√
x+ 1√
x

on the interval [1, 3].

Ans:
√
3−

√
2
2 + 1

2 ln
(
2+

√
3

1+
√
2

)
.
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8.5. Integration of Rational Functions by Par-
tial Fractions

This section shows how to express a rational function as a sum of sim-
pler fractions (called partial fractions) which are easily integrated.

Example 8.34. To illustrate the method of partial fractions, consider

2

x− 1
− 1

x+ 2
=

2(x+ 2)− (x− 1)

(x− 1)(x+ 2)
=

x+ 5

x2 + x− 2
.

If we now reverse this process, we see how to integrate the function on the
right side of this equation:ˆ

x+ 5

x2 + x− 2
dx =

ˆ ( 2

x− 1
− 1

x+ 2

)
dx =

General Description of the Method
Success in writing a rational function f(x)/g(x) as a sum of partial frac-
tions depends on two things:

• The degree of f(x) must be less than the degree of g(x).
– That is, the fraction must be proper.
– If it isn’t, divide f(x) by g(x) and work with the remainder term.

f(x)

g(x)
= Q(x) +

r(x)

g(x)
. (8.15)

• We must know the factors of g(x).
– In theory, any polynomial with real coefficients can be

written as a product of real linear factors and real
quadratic factors.
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Method of Undetermined Coefficients
Example 8.35. Verify the following.

(a)
5x− 3

(x+ 1)(x− 3)
=

A

x+ 1
+

B

x− 3
=

2

x+ 1
+

3

x− 3

(b)
−2x+ 4

(x2 + 1)(x− 1)2
=

Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2
=

2x+ 1

x2 + 1
+
−2

x− 1
+

1

(x− 1)2

(c)
1

x(x2 + 1)2
=

A

x
+

Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
=

1

x
+
−x

x2 + 1
+

−x
(x2 + 1)2
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Strategy 8.36. Method of Partial Fractions
When f(x)/g(x) is Proper

1. Linear factors of g:
Let (x − r) be a factor of g(x) with (x − r)m being its highest power.
Then, to this factor, assign the sum of the m partial fractions:

A1

x− r
+

A2

(x− r)2
+ · · ·+ Am

(x− r)m
. (8.16)

2. Quadratic factors of g:
Let (x2 + px+ q) be a factor of g(x) with (x2 + px+ q)n being its highest
power. Then, to this factor, assign the sum of the n partial fractions:

B1x+ C1

x2 + px+ q
+

B2x+ C2

(x2 + px+ q)2
+ · · ·+ Bnx+ Cn

(x2 + px+ q)n
. (8.17)

3. Combine all the partial fractions:
Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions.

4. Determine the coefficients:
Equate the coefficients of corresponding powers of x and solve the re-
sulting equations for the undetermined coefficients.

Example 8.37. Evaluate the integrals.

(a)
ˆ

x3 + x

x− 1
dx (b)

ˆ
2x3 − 2x2 + 1

x2 − x
dx
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Example 8.38. Evaluate the integrals.

(a)
ˆ

x− 1

(x+ 1)3
dx (b)

ˆ
10

(x− 1)(x2 + 9)
dx

Example 8.39. Evaluate the integrals.

(a)
ˆ

x2 + 2x+ 1

(x2 + 1)2
dx (b)

ˆ √
x+ 1

x
dx (Hint: Let u =

√
x+ 1)

Ans: (a) ln(x2 + 1)− 1
x2+1

+ C. (b) 2[
√
x+ 1− 1

2
ln(
√
x+ 1 + 1) + 1

2
ln |
√
x+ 1− 1|+ C.
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Exercises 8.5
1. Evaluate the integrals.

ˆ 8

4

y dy

y2 − 2y − 3
(a)

ˆ 0

−1

x3 dx

x2 − 2x+ 1
(b)

Ans: (a) (ln 15)/2.

2. Evaluate the integrals.

(a)
ˆ

2s+ 2

(s2 + 1)(s− 1)3
ds (b)

ˆ
1

(x1/3 − 1)
√
x
dx

Hint : (b) Let u = x1/6, equivalently, x = u6.
Ans: (a) −(s− 1)−2 + (s− 1)−1 + tan−1 s+ C.

3. Evaluate the integrals.

(a)
ˆ

1

x(x4 + 1)
dx (b)

ˆ √
1 +
√
x

x
dx (c)

ˆ
cos y dy

sin2 y + sin y − 6

Hint : (a) Multiply
x3

x3
.

Ans: (b) 4
√

1 +
√
x+ 2 ln

∣∣∣√1+
√
x−1√

1+
√
x+1

∣∣∣+ C.

4. Find the length of the curve y = ln(1− x2), 0 ≤ x ≤ 1

2
.

Ans: ln 3− 1
2 .
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8.6. Integral Tables and Computer Algebra Sys-
tems

Note: One can find integrals by using Integral Tables or a Computer
Algebra System (CAS). For example,

• Integral Tables: You can google various tables of integrals. Here is
an example: CRC_integrals.pdf

• Computer Algebra Systems: Maple, Mathematica, Python

We will skip this section.

http://www.math.stonybrook.edu/~bishop/classes/math126.F20/CRC_integrals.pdf
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8.7. Numerical Integration

You may watch the project:
Numerical Integration: Trapezoid Rule and Simpson’s Rule

click https://www.youtube.com/watch?v=5DsALI8s8g8

Approximation of Definite Integrals

• The antiderivatives of many functions have no elementary formulas.
Examples: sin(x2), 1/ lnx,

√
1 + x4, · · · .

• When we cannot find a workable antiderivative for a function f , we
can partition the interval of integration, replace f by a closely fitting
polynomial on each subinterval, integrate the polynomials, and add
the results to approximate the definite integral of f .

• This procedure is an example of numerical integration.
• Here we study two such methods, the Trapezoid Rule and Simp-

son’s Rule.
• A key goal in our analysis is to control the possible error that is

introduced when computing an approximation to an integral.

Approximating Integrals with the Midpoint Rule

Recall: In Section 5.1, we introduced the Midpoint Rule to approxi-
mate a definite integral over an interval [a, b].

• Let the interval [a, b] be partitioned into n equal subintervals:

a = x0 < x1 < x2 < · · · < xn = b, xk = a+ k ·∆x, ∆x =
b− a

n
.

• We then approximate the integral using n rectangles:
ˆ b

a

f(x) dx ≈
n∑

k=1

f(ck)∆x, (8.18)

where ck = (xk−1 + xk)/2.

https://www.youtube.com/watch?v=5DsALI8s8g8
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8.7.1. Trapezoid Rule

• The Trapezoid Rule is based on approximating the region between a
curve and the x-axis with trapezoids instead of rectangles, as in Fig-
ure 8.2.

Figure 8.2: The Trapezoid Rule.

• It is not necessary for the subdivision points x0, x1, x2, · · · , xn in the
figure to be evenly spaced, but the resulting formula is simpler if they
are.

• We therefore assume that the length of each subinterval is

∆x =
b− a

n
,

which is called the step size or mesh size.
• The area of the trapezoid that lies above the k-th subinterval is

∆x · yk−1 + yk
2

=
∆x

2
(yk−1 + yk), (8.19)

where yk−1 = f(xk−1) and yk = f(xk).
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Algorithm 8.40. The Trapezoid Rule
To approximate

´ b

a f(x) dx, use

T =
n∑

k=1

∆x

2
(yk−1 + yk)

=
∆x

2

[
(y0 + y1) + (y1 + y2) + (y2 + y3) + · · ·+ (yn−1 + yn)

]
=

∆x

2

[
y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn

]
= ∆x

(y0
2
+ y1 + y2 + · · ·+ yn−1 +

yn
2

)
.

(8.20)

Example 8.41. Use the Trapezoid Rule with n = 4, 8, 16 to estimateˆ π/2

0

(sinx+ x3) dx. Compare the estimates with the exact value.

Solution.
trapezoid.m

1 f = @(x) sin(x)+x.^3;
2

3 a=0; b=pi/2; exact=1+(1/4)*b^4;
4 n=4;
5

6 Dx = (b-a)/n;
7 X = linspace(a,b,n+1);
8 Y = f(X);
9

10 T = Dx * ( sum(Y(2:n)) + (Y(1)+Y(n+1))/2 );
11 fprintf('T_%d = %g; Rel-Error = %g\n',n,T, abs(T-exact)/exact)

Output
1 T_4 = 2.60426; Rel-Error = 0.0326096
2 T_8 = 2.54258; Rel-Error = 0.00815486
3 T_16 = 2.52716; Rel-Error = 0.00203887

The Error = O(∆x2)
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8.7.2. The Simpson’s Rule

Another rule for approximating the definite integral of a continuous
function results from using parabolas, instead of the straight-line seg-
ments that produced trapezoids.

• In the Simpson’s Rule, on each consecutive pair of intervals,
we approximate the curve y = f(x) by a parabola.

Figure 8.3: Simpson’s Rule.

• The parabola which passes (x0, y0), (x1, y1), and (x2, y2) can be con-
structed in the form of Lagrange polynomial

P[x0,x2](x) = y0L2,0(x) + y1L2,1(x) + y2L2,2(x), (8.21)

where
L2,0(x) =

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

L2,1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2,2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

• Then ˆ x2

x0

f(x) dx ≈
ˆ x2

x0

P[x0,x2](x) dx =
2h

6
(y0 + 4y1 + y2). (8.22)
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Algorithm 8.42. The Simpson’s Rule
To approximate

´ b

a f(x) dx, use

S =

n/2∑
k=1

2∆x

6
(y2k−2 + 4y2k−1 + y2k)

=
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + · · ·+ 2yn−2 + 4yn−1 + yn).

(8.23)

Example 8.43. Use the Simpson’s Rule with n = 4, 8, 16 to estimateˆ π/2

0

(sinx+ x3) dx. Compare the estimates with the exact value.

Solution.
simpsons.m

1 f = @(x) sin(x)+x.^3;
2

3 a=0; b=pi/2; exact=1+(1/4)*b^4;
4 n=4;
5

6 Dx = (b-a)/n;
7 X = linspace(a,b,n+1);
8 Y = f(X);
9

10 S = 0;
11 for k=2:2:n
12 S = S + (Y(k-1)+4*Y(k)+Y(k+1));
13 end
14 S = S* (Dx/3);
15

16 fprintf('S_%d = %g; Rel-Error = %g\n',n,S, abs(S-exact)/exact)

Output
1 S_4 = 2.52215; Rel-Error = 5.3364e-05
2 S_8 = 2.52203; Rel-Error = 3.2892e-06
3 S_16 = 2.52202; Rel-Error = 2.0487e-07

The Error = O(∆x4)
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8.7.3. Gauss quadrature

Example 8.44. Find points {t1, t2} ⊂ [−1, 1] and weights {w1, w2} such that

ˆ 1

−1
f(t) dt ≈ w1f(t1) + w2f(t2) =

2∑
i=1

wif(ti) (8.24)

is as accurate as possible.
Solution.

Ans: t1 = −1/
√
3, t2 = 1/

√
3, w1 = w2 = 1.

Example 8.45. Use the Gauss quadrature to estimate
´ 1

−1 cos t dt.

• 1 · cos(−1/
√
3) + 1 · cos(1/

√
3) = 1.67582366.

• The exact value
´ 1

−1 cos t dt = sin(1)− sin(−1) = 2 · sin(1) = 1.68294197.

Remark 8.46. Integration over General Intervals.
Over an arbitrary interval [a, b], we may introduce a transformation:

x =
b− a

2
t+

a+ b

2
: [−1, 1]→ [a, b]. (8.25)

Then, since dx = b−a
2 dt, we have

ˆ b

a

f(x) dx =

ˆ 1

−1
f
(b− a

2
t+

a+ b

2

) b− a

2
dt

≈ ŵ1f(x̂1) + ŵ2f(x̂2),

(8.26)

where

ŵi =
b − a

2
wi, x̂i =

b− a

2
ti +

a+ b

2
= (ti + 1)

b − a

2
+ a. (8.27)
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Definition 8.47. The Gauss quadrature for q nodal points is defined
in such a way that the approximation

ˆ 1

−1
f(t) dt ≈

q∑
i=1

wif(ti) (8.28)

shows an optimal accuracy over the choices of nodal points {t1, t2, · · · , tq}
and weights {w1, w2, · · · , wq}.

Example 8.48. The Gauss quadrature can be applied for each subinterval
of a partition of interval [a, b]. Consider

ˆ π/2

0

(sinx+ x3) dx.

Use the Gauss quadrature to estimate the integral, with n = 4, 8, 16 and
q = 1, 2, 3.

• Compare the estimates with the exact value.

• Compare accuracy with that of the Simpson’s Rule.

Note: When q = 1, the Gauss quadrature becomes the midpoint rule.

Solution.
call_gauss_quadrature.m

1 f = @(x) sin(x)+x.^3;
2

3 a=0; b=pi/2; exact=1+(1/4)*b^4;
4 n=4;
5

6 for q=1:3
7 GQ(q) = gauss_quadrature(f,a,b,n,q);
8 end
9

10 format shorte
11 REL_ERROR =abs((GQ-exact)/exact)
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gauss_quadrature.m
1 function v = gauss_quadrature(f,a,b,n,q)
2 % n = the number of subintervals
3 % q = the number of quadrature points in each subinterval
4

5 %--- Initial setting -------------------------
6 h = (b-a)/n; partition = linspace(a,b,n+1);
7

8 %--- Standard T and W, on [-1,1] -------------
9 T = zeros(1,q); W = zeros(1,q);

10 if q==1, T = [0]; W = [2];
11 elseif q==2, T = [-1/sqrt(3),1/sqrt(3)]; W = [1,1];
12 elseif q==3, T = [-sqrt(3/5),0,sqrt(3/5)]; W = [5/9,8/9,5/9];
13 end
14

15 %--- Transform P to X & Scale W --------------
16 X = (T+1)*(h/2); W = W*(h/2);
17

18 %--- Now, Gauss Quadrature -------------------
19 v=0;
20 for i=1:n
21 fX = f( partition(i)+X );
22 v = v + sum(fX.*W);
23 end

Output
1 Output: q=1 q=2 q=3
2 --------------------------------------------------------
3 n=4: REL_ERROR = 1.6300e-02 2.1935e-06 7.2511e-10
4 n=8: REL_ERROR = 4.0771e-03 1.3659e-07 1.1285e-11
5 n=16: REL_ERROR = 1.0194e-03 8.5291e-09 1.7644e-13

Simpson’s Output
1 S_4 = 2.52215; Rel-Error = 5.3364e-05
2 S_8 = 2.52203; Rel-Error = 3.2892e-06
3 S_16 = 2.52202; Rel-Error = 2.0487e-07
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Exercises 8.7
1. CAS Use the Trapezoid Rule and the Simpson’s Rule with n = 4, 8, 16 to approximateˆ 1

0

√
1 + x4 dx. How accurate is the Simpson’s Rule with n = 16?

2. CAS A car laps a race track in 60 seconds. The speed of the car at each 5 second
interval is determined by using a radar gun and is given from the beginning of the lap,
in feet/second, by the entries in the following table:

Time 0 5 10 15 20 25 30 35 40 25 50 55 60

Speed 0 90 124 142 156 147 133 121 109 99 95 78 89

How long is the track?

(a) Use the Trapezoid Rule
(b) Use the Simpson’s Rule

3. CAS The length of one arch of the curve y = sinx is given by L =

ˆ π

0

√
1 + cos2 x dx.

Estimate L by Simpson’s Rule with n = 8.

4. CAS Estimate the value of

π =

ˆ 1

0

4

1 + x2
dx, (8.29)

to 12 decimal places.

(a) Use the Simpson’s Rule to find the number of subintervals.
(b) Use the Gauss quadrature with q = 2 to find the number of subintervals.
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8.8. Improper Integrals

Expansion 8.49. Definite Integrals

• Up to now, we have required definite integrals to satisfy two proper-
ties:

1. The domain of integration [a, b] must be finite.
2. The range of the integrand must be finite on this domain.

• In practice, we may encounter problems that fail to meet one or both
of these conditions.

• In either case, the integrals are said to be improper and are calcu-
lated as limits.

– We will see in Section 8.9 that improper integrals play an impor-
tant role in probability.

8.8.1. Type I: Infinite Intervals

Example 8.50. Evaluate
ˆ ∞
0

e−x/2 dx.

Solution.
ˆ ∞
0

e−x/2 dx = lim
b→∞

ˆ b

0

e−x/2 dx.
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Definition 8.51. Integrals with infinite intervals are improper inte-
grals of Type I.

1. If f(x) is continuous on [a,∞), then
ˆ ∞
a

f(x) dx = lim
b→∞

ˆ b

a

f(x) dx. (8.30)

2. If f(x) is continuous on (−∞, b], then
ˆ b

−∞
f(x) dx = lim

a→−∞

ˆ b

a

f(x) dx. (8.31)

3. If f(x) is continuous on (−∞,∞), then
ˆ ∞
−∞

f(x) dx =

ˆ c

−∞
f(x) dx+

ˆ ∞
c

f(x) dx, (8.32)

where c is any real number.

In each case, if the limit exists and is finite, we say that the improper
integral converges and that the limit is the value of the improper inte-
gral. If the limit fails to exist, the improper integral diverges.

Example 8.52. Determine whether the integral
ˆ ∞
1

1

x
dx is convergent or

divergent.
Solution.
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Example 8.53. Is the area under the curve y = (lnx)/x2 from x = 1 to
x =∞ finite? If so, what is its value?
Solution.

The Integral
ˆ ∞

1

dx

xp

Example 8.54. For what values of p does the integral
´∞
1

dx
xp converge?

When the integral does converge, what is its value?
Solution. Consider cases: 1 p = 1, 2 p ̸= 1

Ans: When p > 1, the improper integral converges to 1/(p − 1).
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Example 8.55. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ ∞
1

10e−5x dx

Solution.

Example 8.56. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ ∞
1

1

x2 + 3x
dx

Solution.
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Example 8.57. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ 2

−∞

2

x2 + 4
dx

Solution.

Example 8.58. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ ∞
−∞

2x

(x2 + 1)2
dx

Solution.
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8.8.2. Type II: Discontinuous Integrands

Definition 8.59. Integrals of functions that become infinite at a
point within the interval of integration are improper integrals of
Type II.

1. If f(x) is continuous on (a, b] and discontinuous at a, then
ˆ b

a

f(x) dx = lim
c→a+

ˆ b

c

f(x) dx. (8.33)

2. If f(x) is continuous on [a, b) and discontinuous at b, then
ˆ b

a

f(x) dx = lim
c→b−

ˆ c

a

f(x) dx. (8.34)

3. If f(x) is continuous on [a, b] except at c, a < c < b, then
ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx. (8.35)

In each case, if the limit exists and is finite, we say the improper integral
converges and that the limit is the value of the improper integral. If
the limit does not exist, the integral diverges.

Example 8.60. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ 32

0

1
5
√
x
dx

Solution.
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Example 8.61. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ π/2

0

tanx dx

Solution.

Example 8.62. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ 2

1/2

1

x lnx
dx

Solution.
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8.8.3. Tests for Convergence and Divergence

Remark 8.63. When we cannot evaluate an improper integral directly,
we try to determine whether it converges or diverges.

• If the integral diverges, that’s the end of the story.
• If it converges, we can use numerical methods to approximate its

value.
• The principal tests for convergence or divergence are the Direct

Comparison Test and the Limit Comparison Test.

Theorem 8.64. Direct Comparison Test
Let f and g be continuous on [a,∞) with 0 ≤ f(x) ≤ g(x) for all x ≥ a.
Then

1. If
ˆ ∞
a

g(x) dx converges, then
ˆ ∞
a

f(x) dx converges.

2. If
ˆ ∞
a

f(x) dx diverges, then
ˆ ∞
a

g(x) dx diverges.

Example 8.65. These examples illustrate how we use Theorem 8.64.

(a)
ˆ ∞
1

sin2 x

x2
dx converges, because 0 ≤ sin2 x

x2
≤ 1

x2
and

ˆ ∞
1

1

x2
dx converges.

(b)
ˆ ∞
1

1√
x2 − 0.1

dx diverges, because
1√

x2 − 0.1
≥ 1

x
and

ˆ ∞
1

1

x
dx diverges.

(c)
ˆ π/2

0

cosx√
x

dx converges, because 0 ≤ cosx√
x
≤ 1√

x
and

ˆ π/2

0

1√
x
dx = lim

a→0+
2
√
x
∣∣∣π/2
a

= lim
a→0+

2(
√

π/2−
√
a) =

√
2π converges.
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Theorem 8.66. Limit Comparison Test
If the positive functions f and g are continuous on [a,∞), and if

lim
x→∞

f(x)

g(x)
= L, 0 < L <∞, (8.36)

then ˆ ∞
a

f(x) dx and
ˆ ∞
a

g(x) dx

either both converge or both diverge.

Example 8.67. Consider
ˆ ∞
1

dx

1 + x2
.

(a) Show that the integral converges by comparison with
´∞
1 1/x2 dx.

(b) Find and compare the two integral values.

Solution.
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Example 8.68. Investigate the convergence of
ˆ ∞
1

1− e−x

x
dx.

Solution.

Example 8.69. Investigate the convergence of
ˆ ∞
1

√
x+ 1

x2
dx.

Solution.
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Exercises 8.8
1. Evaluate the integrals.

ˆ −2

−∞

2

x2 − 1
dx(a)

ˆ ∞

−∞

2x

(x2 + 1)2
dx(b)

ˆ 1

0

x lnx dx(c)
ˆ 2

0

ds√
4− s2

(d)

Ans: (b) 0. (c) −1/4. (d) π/2.

2. Use integration, the Direct Comparison Test, or the Limit Comparison Test to test the
integrals for convergence. (If more than one method applies, use whatever method you
prefer.)

ˆ 1

0

lnx

x2
dx(a)

ˆ 1

−1

ln |x| dx(b)
ˆ ∞

1

1

x3 + 1
dx(c)

ˆ ∞

1

1√
ex − x

dx(d)

Ans: (a) Diverges.

3. Find the values of p for which each integral converges.

(a)
ˆ 2

1

dx

x(lnx)p
(b)

ˆ ∞

2

dx

x(lnx)p

Ans: (a) Converges when p < 1.

4. Evaluate the integrals.

(a)
ˆ 1

0

dt√
t(1 + t)

(b)
ˆ ∞

0

dt√
t(1 + t)

Ans: (b) π.

5.
ˆ ∞

−∞
f(x) dx may not equal lim

b→∞

ˆ b

−b

f(x) dx.

(a) Show that
ˆ ∞

0

2x

x2 + 1
dx diverges.

(b) What can you say about the convergence of
ˆ ∞

−∞

2x

x2 + 1
dx?

(c) Show that lim
b→∞

ˆ b

−b

2x

x2 + 1
dx = 0.
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8.9. Probability

8.9.1. Probability Density Functions

Definition 8.70. A random variable is a function X that assigns a
numerical value to each outcome in a sample space.

• Random variables that have only finitely many values are called
discrete random variables.

• A continuous random variable can take on values in an entire
interval, and it is associated with a distribution function.

Definition 8.71. A probability density function (PDF) for a contin-
uous random variable is a function f defined over (−∞,∞) and having
the following properties:

1. f is continuous, except possibly at a finite number of points.
2. f is nonnegative, so f ≥ 0.

3.
ˆ ∞
−∞

f(x) dx = 1.

If X is a continuous random variable with the PDF f , the probability
that X assumes a value in the interval between X = c and X = d is given
by the integral

P (c ≤ X ≤ d) =

ˆ d

c

f(x) dx. (8.37)
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Example 8.72. Let f(t) =

{
0, if t < 0,

2e−2t, if t ≥ 0.

(a) Verify that f is a PDF.

(b) The time T in hours until a car passes a spot on a remote road is de-
scribed by the PDF f . Find the probability P (T ≤ 1) that a hitchhiker
at that spot will see a car within one hour.

Solution.

Exponentially Decreasing Distributions

Definition 8.73. An exponentially decreasing probability density
function is a PDF of the form

f(x) =

{
0, if x < 0,

ce−cx, if x ≥ 0,
(8.38)

for arbitrary c > 0.

Expected Values, Means, and Medians

Definition 8.74. The expected value or mean of a continuous random
variable X with PDF f is the number

µ = E(X) =

ˆ ∞
−∞

xf(x) dx. (8.39)
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Example 8.75. Find the mean of the random variable X with the expo-
nential PDF

f(x) =

{
0, if x < 0,

ce−cx, if x ≥ 0.

Solution.

Ans: µ = 1/c.

Exponential Density Function for a Random Variable X with
Mean µ

f(x) =

{
0, if x < 0,

µ−1e−x/µ, if x ≥ 0.
(8.40)

There are other ways to measure the centrality of a random variable with
a given PDF.

Definition 8.76. The median of a continuous random variable X with
PDF f is the number m for which

ˆ m

−∞
f(x) dx =

1

2
and

ˆ ∞
m

f(x) dx =
1

2
. (8.41)
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Example 8.77. Find the median of a random variable X with the expo-
nential PDF

f(x) =

{
0, if x < 0,

ce−cx, if x ≥ 0.

Solution.
1

2
=

ˆ m

0

ce−cx dx = −e−cx
∣∣∣m
0
= 1− e−cm.

1

2
=

ˆ ∞
m

ce−cx dx =

Ans: m = 1
c
ln 2 = µ ln 2.

Example 8.78. A manufacturer of light bulbs finds that the mean life-
time of a bulb is 1200 hours. Assume the life of a bulb is exponentially
distributed.

(a) Find the probability that a bulb will last less than its guaranteed life-
time of 1000 hours.

(b) In a batch of light bulbs, what is the expected time until half the light
bulbs in the batch fail?

Solution.

Ans: (a) 1− e−5/6 ≈ 0.5654. (b) median = µ ln 2 = 1200 ∗ ln 2 ≈ 831.7766 hours.
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Example 8.79. The mean waiting time to get served after walking into
a bakery is 30 seconds. Assume that an exponential density function de-
scribes the waiting times.

(a) What is the probability a customer waits 15 seconds or less?

Ans: 1− e−1/2 ≈ 0.393

(b) What is the probability a customer waits longer than one minute?

Ans: 1− (1− e−2) ≈ 0.135

(c) What is the probability a customer waits exactly 5 minutes?

Ans: 0

(d) If 200 customers come to the bakery in a day, how many are likely to be
served within three minutes?

Solution.
The probability that each customer is served within three minutes:

P (T ≤ 180) =

ˆ 180

0

1

30
e−x/30 dx = 1− e−6 ≈ 0.997521.

The probability that a single customer waits longer than three minutes:

1− (1− e−6)200 ≈ 0.3912.

⇒Most likely, all 200 would be served within three minutes.
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8.9.2. Variance and Standard Deviation

Definition 8.80. The variance of a random variable X with probabil-
ity density function f is the expected value of (X − µ)2:

Var(X) =

ˆ ∞
−∞

(x− µ)2f(x) dx. (8.42)

The standard deviation of X is

σX =
√

Var(X). (8.43)

Example 8.81. Consider the PDF

f(t) =

{
0, if t < 0,

0.1e−0.1t, if t ≥ 0.

(a) Find the standard deviation of the random variable T .

(b) Find the probability that T lies within one standard deviation of the
mean, P (µ− σ < T < µ+ σ).

Solution. µ = 10.

Ans: (a) σ = 10. (b) 1− e−2 ≈ 0.865.
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Remark 8.82. Other Common Distributions

1. The uniform distribution is very simple, but it occurs commonly in
applications:

f(x) =
1

b− a
, a ≤ x ≤ b. (8.44)

2. Numerous applications use the normal distribution, which is de-
fined by the PDF

f(x) =
1

σ
√
2π

e−(x−µ)
2/2σ2

, x ∈ R. (8.45)

In applications the values of the mean µ and the standard deviation σ

are often estimated using large sets of data.

Example 8.83. Nearly 1.5 million high school students took the ACT
test in 2009, and the composite mean score across the academic areas was
µ = 21.1 with standard deviation σ = 5.1.

(a) What percentage of the population had an ACT score between 18 and
24?

(b) What is the ranking of a student who scored 27 on the test?
(c) What is the minimal integer score a student needed to get in order to

be in the top 8% of the scoring population?
act_test_2009.m

1 mu = 21.1; sigma=5.1;
2 f = @(x) (1/(sigma*sqrt(2*pi))) * exp(-(x-mu).^2/(2*sigma^2));
3

4 %% (a)
5 integral(f,18,24) %output= 0.44355 ---> Ans: about 44%
6

7 %% (b)
8 ACT27 = integral(f,27,36) %output= 0.12192 ---> Ans: 12%
9

10 %% (c)
11 % We look at how many students had a mark >=28
12 ACT28 = integral(f,28,36) %output= 0.086296
13 % We look at the next higher integer score
14 ACT29 = integral(f,29,36) %output= 0.058947 ---> Ans: 29
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Exercises 8.9
1. Verify that the functions are PDF for a continuous random variable X over the given

interval. Determine the specified probability.

(a) f(x) = xe−x over [0,∞), P (1 ≤ X ≤ 3) (b) f(x) =
3

2
x(2−x) over [0, 1], P (X < 0.5)

Ans: (a) ≈ 0.537.

2. Find the value of the constant c so that the given function is a PDF for a random variable
over the specified interval.

(a) f(x) = 4e−2x over [0, c] (b) f(x) = cx
√
25− x2 over [0, 5]

Ans: (a) ln 2
2 .

3. Suppose f is a PDF for the random variable X with mean µ. Show that the variance
defined in (8.42) satisfies

Var(X) =

ˆ ∞

−∞
x2f(x) dx− µ2. (8.46)

4. Airport Waiting Time. According to the U.S. Customs and Border Protection Agency,
the average airport wait time at Chicago’s O’Hare International Airport is 16 minutes
for a traveler arriving during the hours 7-8 a.m., and 32 minutes for arrival during the
hours 4-5 p.m. The wait time is defined as the total processing time from arrival at the
airport until the completion of a passenger’s security screening. Assume the wait time
is exponentially distributed.

(a) What is the probability of waiting between 10 and 30 minutes for a traveler arriving
during the 7-8 a.m. hour?

(b) What is the probability of waiting less than 20 minutes for a traveler arriving dur-
ing the 4-5 p.m. hour?

Formula: For 4-5 p.m arrivals, for example, the PDF is f(t) =

 0, if t < 0,
1

32
e−t/32, if t ≥ 0.

5. CAS Germination of Sunflower Seeds. The germination rate of a particular seed
is the percentage of seeds in the batch which successfully emerge as plants. Assume
that the germination rate for a batch of sunflower seeds is 80%, and that among a large
population of n seeds the number of successful germinations is normally distributed
with mean µ = 0.8n and standard deviation σ = 0.4

√
n.

(a) In a batch of n = 2500 seeds, what is the probability that at least 1960 will success-
fully germinate?

(b) In a batch of n = 2500 seeds, what is the probability that at most 1980 will success-
fully germinate?

(c) In a batch of n = 2500 seeds, what is the probability that between 1940 and 2020
will successfully germinate? Ans: 0.83999.
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What is Vector Calculus?

• A type of advanced mathematics, which has practical applications in
physics and engineering (and other sciences)

• Concerned with differentiation and integration of vector fields.

Covers
Lecture Note: https://skim.math.msstate.edu/LectureNotes/Calculus-Lectures.pdf

• Appendix A. Vectors and the Geometry of Space: Preliminaries

– A brief review of Chapter 12.

• Chapter 14. Partial Derivatives

– Expansion of Differentiation (Calculus I)

• Chapter 15. Multiple Integrals

– Expansion of Integration (Calculus II)

• Chapter 16. Integrals and Vector Fields

– Applications to real-world problems in 2D/3D
– Focusing on problems in physics and engineering
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Appendix A

Vectors and the Geometry of Space: Pre-
liminaries

In vector calculus, you will be frequently required to deal with

• vectors and various geometric objects
• in 2-dimensional (2D) and 3-dimensional (3D) spaces.

This appendix reviews vectors and equations of 3D geometric objects.
In particular, you will learn

• vectors
• dot product
• cross product
• equations of lines and planes, and
• cylinders and quadric surfaces
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A.1. Vector Operations

There exists a lot to cover in the class of vector calculus; however, it is
important to have a good foundation before we trudge forward. In that
vein, let’s review vectors and their geometry in space (R3) briefly.

A.1.1. 3D coordinate systems

Recall: Let P = (x1, y1) and Q = (x2, y2) be points in R2. Then the
distance from P to Q is

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2. (A.1)

Definition A.1. Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in R3.
Then the distance from P to Q is

|PQ| =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (A.2)

Self-study A.2. Find the distance between P (−3, 2, 7) and Q(−1, 0, 6).
Solution.

Ans: 3
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Recall: A circle in R2 is defined to be all of the points in the plane (R2)
that are equidistant from a central point C(a, b).

(x− a)2 + (y − b)2 = r2. (A.3)

A natural generalization of this to 3-D space would be to say that a sphere
is defined to be all of the points in R3 that are equidistant from a central
point C. This is exactly what the following definition does!

Definition A.3. Let C(h, k, l) be a point in R3. Then the sphere cen-
tered at C with radius r is defined by the equation

(x− h)2 + (y − k)2 + (z − l)2 = r2. (A.4)

That is to say that this defines all points (x, y, z) ∈ R3 that are at the
same distance r from the center C(h, k, l).

Problem A.4. Show that x2+ y2+ z2− 4x+2y− 6z+10 = 0 is the equation
of a sphere, and find its center and radius.
Solution.

Ans: C(2,−1, 3) and r = 2
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A.1.2. Vectors and vector operations

Definition A.5. A vector is a mathematical object that stores both
length (magnitude) and direction.

Let P = (x1, y1, z1) and Q = (x2, y2, z2). Then the vector with initial point P

and terminal point Q (denoted ⇀PQ) is defined by

⇀
PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ =⇀OQ−⇀OP,

where O is the origin, O = (0, 0, 0). The vector ⇀OP is called the position
vector of the point P . For convenience, we use bold-faced lower-case letters
to denote vectors. For example, v =< v1, v2, v3 > is a (position) vector in R3

associated with the point (v1, v2, v3).

Definition A.6. Two vectors are said to be equal if and only if they
have the same length and direction, regardless of their position in R3.
That is to say that a vector can be moved (with no change) anywhere in
space as long as the magnitude and direction are preserved.

Definition A.7. Let v =< v1, v2, v3 >. Then the magnitude (a.k.a.
length or norm) of v (denoted |v| or sometimes ||v||) is defined by

|v| =
√

v21 + v22 + v23. (A.5)

Definition A.8. (Vector addition) Let u =< u1, u2, u3 > and v =<
v1, v2, v3 >. Then

u+ v =< u1 + v1, u2 + v2, u3 + v3 > .
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Definition A.9. (Scalar multiplication) Let v =< v1, v2, v3 > and k ∈ R.
Then

k v =< kv1, kv2, kv3 > .

Problem A.10. If a =< 0, 3, 4 > and b =< 1, 5, 2 >, find |a|, 2a − 3b, and
|2a− 3b|.
Solution.

Ans: |a| = 5; 2a− 3b =< −3,−9, 2 >; |2a− 3b| =
√
94

Definition A.11. A unit vector is a vector whose magnitude is 1. Note
that given a vector v, we can form a unit vector (of the same direction)
by dividing by its magnitude. That is, let v =< v1, v2, v3 >. Then

u =
v

|v|
(A.6)

is a unit vector in the direction of v.

Definition A.12. Any vector can be denoted as the linear combination
of the standard unit vectors

i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 > .

So given a vector v =< v1, v2, v3 >, one can express it with respect to the
standard unit vectors as

v =< v1, v2, v3 >= v1 i+ v2 j+ v3 k. (A.7)

This text, however, will more often than not use the angle brace notation.
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Definition A.13. Let u =< u1, u2, u3 > and v =< v1, v2, v3 >. Then the
dot product is

u · v = u1 v1 + u2 v2 + u3 v3, (A.8)

which is sometimes referred as the Euclidean inner product. Note
that v · v = |v|2.

Theorem A.14. Let θ be the angle between u and v (so 0 ≤ θ ≤ π).
Then

u · v = |u| |v| cos(θ). (A.9)

Corollary A.15. Two vectors u and v are orthogonal if and only if
u · v = 0.

Problem A.16. Find the angle between the vectors a =< 2, 2, 1 > and
b =< 3, 0, 3 >.
Solution.

Ans: π/4 (= 45◦)
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Definition A.17. Let u =< u1, u2, u3 > and v =< v1, v2, v3 >. Then the
cross product is the determinant of the following matrix:

u× v = det

 i j k

u1 u2 u3
v1 v2 v3


= det

[
u2 u3
v2 v3

]
i− det

[
u1 u3
v1 v3

]
j+ det

[
u1 u2
v1 v2

]
k

= < u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1 > .

(A.10)

Problem A.18. Find the cross product a × b, when a =< 1, 3, 4 > and
b =< 3,−1,−2 >.
Solution.

Ans: < −2, 14,−10 >

Theorem A.19. The vector a× b is orthogonal to both a and b.

Theorem A.20. Let θ be the angle between a and b (so 0 ≤ θ ≤ π). Then

|a× b| = |a| |b| sin θ. (A.11)
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Claim A.21. The length of the cross product a × b is equal to the area
of the parallelogram determined by a and b.

Figure A.1

Problem A.22. Prove that two nonzero vectors a and b are parallel if and
only if a× b = 0.
Solution.

Figure A.2: Finding the direction of the
cross product by the right-hand rule.

The cross product a×b is defined
as a vector that is perpendicular
(orthogonal) to both a and b, with a
direction given by the right-hand
rule and a magnitude equal to the
area of the parallelogram that the
vectors span.
If the fingers of your right hand
curl in the direction of a rotation
(through an angle less than 180◦)
from a to b, then the thumb points
in the direction of a× b.
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Exercises A.1
1. Find the cross product a× b and verify that it is orthogonal to both a and b.

(a) a =< 1, 2,−1 >, b =< 2, 0,−3 >
(b) a =< 1, t, 1/t >, b =< t2, t, 1 >

2. Find |u× v| and determine whether u× v is directed into the page or out of the page.

Figure A.3

3. (i) Find a nonzero vector orthogonal to the plane through the points P , Q, and R, and
(ii) find the area of the triangle PQR.

(a) P (1, 0, 1), Q(2, 1, 3), R(−3, 2, 5)
Ans: < 0,−12, 6 >, 3

√
5

(b) P (1,−1, 0), Q(−3, 1, 2), R(0, 3,−1)
Ans: < −10,−6,−14 >,

√
83

4. Find the angle between a and b, when a · b = −
√
3 and a× b =< 2, 2, 1 >.

Ans: 120◦

Note: Exercise problems are added for your homework; answers would be provided for some of
them. However, you have to verify them, by showing solutions in detail.
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A.2. Equations in the 3D Space

Objective: To build equations of lines, line segments, and planes.

Parametrization of a Line. Let P0 = (x0, y0, z0) be a point in R3, and
v = ⟨a, b, c⟩ be a vector in R3. Then the line through P0 parallel to v is

r = P0 + tv, t ∈ R. (A.12)

Since r = [x, y, z]T , this can also be written as (parametric equation)

x = x0 + at, y = y0 + bt, z = z0 + ct; t ∈ R. (A.13)

or as the symmetric equation
x− x0

a
=

y − y0
b

=
z − z0

c
. (A.14)

P

Q

Figure A.4: Parametrization: (left) line and (right) line segment.

Parametrization of a Line Segment. Let P and Q be respectively the
initial and terminal points of a line segment. Then the line segment PQ
can be parametrized as

r(t) = (1− t)⇀OP + t⇀OQ, 0 ≤ t ≤ 1. (A.15)
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Problem A.23. Find a vector equation and parametric equation for the
line that passes through the point (5, 1, 3) and is parallel to ⟨1, 4,−2⟩.
Solution.

Ans: x = 5 + t, y = 1 + 4t, z = 3− 2t

Problem A.24. Find the parametric equation of the line segment from
(2, 4,−3) to (3,−1, 1).
Solution.

Ans: r(t) = ⟨2 + t, 4− 5t,−3 + 4t⟩, 0 ≤ t ≤ 1.



404 Appendix A. Vectors and the Geometry of Space: Preliminaries

Planes. Let x0 = (x0, y0, z0) be a point in the plane and n = ⟨a, b, c⟩ be a
vector normal to the plane. Then the equation of the plane is

n · (x− x0) = a (x− x0) + b (y − y0) + c (z − z0) = 0. (A.16)

Problem A.25. Find an equation of the plane that passes through the
points P (1, 2, 3), Q(3, 2, 4), and R(1, 5, 2).
Solution.

Ans: −3(x− 1) + 2(y − 2) + 6(z − 3) = 0.
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Exercises A.2
1. Find an equation of the line which passes through (1, 0, 3) and perpendicular to the plane

x− 3y + 2z = 4.

2. Find the line of the intersection of planes x + 2y + 3z = 6 and x − y + z = 1. (Hint : The
intersection is a line; consider how the direction of the line is related to the normal vectors of
the planes.)

Ans: r = P0 + tv =< 1, 1, 1 > +t < 5, 2,−3 >

3. Find the vector equation for the line segment from P (1, 2,−4) to Q(5, 6, 0).

4. Find an equation of the plane.

(a) The plane through the point (0, 1, 2) and parallel to the plane x− y + 2z = 4.
(b) The plane through the points P (1,−2, 2), Q(3,−4, 0), and R(−3,−2,−1).

Ans: 3(x− 1) + 7(y + 2)− 4(z − 2) = 0.

5. Use intercepts to help sketch the plane 2x+ y + 5z = 10.
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A.3. Cylinders and Quadric Surfaces

Objective: To sketch and visualize surfaces, given their equations.

Definition A.26. A cylinder is a surface that consists of all lines that
are parallel to a given line and pass through a given plane curve.

Problem A.27. Sketch z = x2 in R3.

Problem A.28. Sketch x2 + y2 = 1 in R3.

Problem A.29. Sketch y2 + z2 = 1 in R3.
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Definition A.30. A quadric surface is the graph of a second-degree
equation in three variables x, y, and z. By translation and rotation, we
can write the standard form of a quadric surface as

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0. (A.17)

Definition A.31. The trace of a surface in R3 is the graph in R2 ob-
tained by allowing one of the variables to be a specific real number. For
example, x = a.

Problem A.32. Use the traces to sketch x2 +
y2

9
+

z2

4
= 1.
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Problem A.33. Use the traces to sketch z = 4x2 + y2.

Exercises A.3
1. Sketch the surface.

(a) x2 + y2 = 1
(b) x2 + y2 − 2y = 0
(c) z = sinx

2. Use traces to sketch and identify the surface.

(a) z = y2 − x2

(b) 4y2 + 9z2 = x2 + 36

3. Sketch the region bounded by the surfaces z =
√

x2 + y2 and z = 2− x2 − y2.

4. Sketch the surface obtained by rotating the line r(t) = ⟨0, 1, 3⟩t about the z-axis; find an
equation of it. (Hint : The line can be expressed as {z = 3y, x = 0}.)

Ans: |z| = 3
√

x2 + y2 or z2 = 9(x2 + y2)



CHAPTER 14
Partial Derivatives
In mathematics, a partial derivative of a function of several variables is
its derivative with respect to one of those variables, with the others held
constant. In this chapter, you will learn about the partial derivatives and
their applications.

Subjects Applications

Limits and continuity
Partial derivatives

Tangent planes & linear approximations
Chain rule
Directional derivatives

and the Gradient Vector
Maximum and minimum values
Method of Lagrange multipliers

Contents of Chapter 14
14.1.Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
14.2.Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
14.3.Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
14.4.Tangent Planes & Linear Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 432
14.5.The Chain Rule and Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 437
14.6.Directional Derivatives and the Gradient Vector . . . . . . . . . . . . . . . . . . . . . . 443
14.7.Maximum and Minimum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
14.8.Method of Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

409



410 Chapter 14. Partial Derivatives

14.1. Functions of Several Variables

14.1.1. Domain and range

Definition 14.1. A function of two variables, f , is a rule that assigns
each ordered pair of real numbers (x, y) in a set D ⊂ R2 a unique real
number denoted by f(x, y). The set D is called the domain of f and its
range is the set of values that f takes on, that is, {f(x, y) : (x, y) ∈ D}.

Definition 14.2. Let f be a function of two variables, and z = f(x, y).
Then x and y are called independent variables and z is called a de-
pendent variable.

Problem 14.3. Let f(x, y) =

√
x+ y + 1

x− 1
. Evaluate f(3, 2) and give its

domain.

Ans: f(3, 2) =
√
6/2; D = {(x, y) : x+ y + 1 ≥ 0, x ̸= 1}

Problem 14.4. Find the domain of f(x, y) = x ln
(
y2 − x

)
.
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Problem 14.5. Find the domain and the range of f(x, y) =
√
9− x2 − y2.

14.1.2. Graphs

Definition 14.6. If f is a function of two variables with domain D, then
the graph of f is the set of all points (x, y, z) ∈ R3 such that z = f(x, y)
for all (x, y) ∈ D.

Problem 14.7. Sketch the graph of f(x, y) = 6− 3x− 2y.

Solution. The graph of f has the equation z = 6−3x−2y, or 3x+2y+z = 6,
which is a plane. Now, we can find intercepts to graph the plane.

Problem 14.8. Sketch the graph of g(x, y) =
√

9− x2 − y2.

Solution. The graph of g has the equation z =
√

9− x2 − y2, or x2+y2+z2 =

9, z ≥ 0, which is a upper hemi-sphere.
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14.1.3. Level curves

Definition 14.9. The level curves of a function of two variables, f , are
the curves with equations f(x, y) = k, for k ∈ K ⊂ Range(f).

Figure 14.1: Level curves: (left) the graph of a function vs. level curves and (right) a
topographic map of a mountainous region. Level curves are often considered for an effective
visualization.

Problem 14.10. Sketch the level curves of f(x, y) = 6 − 3x − 2y for k ∈
{−6, 0, 6, 12} .



14.1. Functions of Several Variables 413

Problem 14.11. Sketch the level curves of g(x, y) =
√

9− x2 − y2 for k ∈
{0, 1, 2, 3}

Problem 14.12. Sketch the level curves of h(x, y) = 4x2 + y2 + 1.

Figure 14.2
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Figure 14.3: Computer-generated level curves.

Function visualization is now easy with e.g., Mathematica, Maple, and Mat-
lab, as shown in Figure 14.3.1

1For plotting with Maple, you may exploit plot, plot3d, contourplot3d, and contourplot, which are
available from the plots package. Maple can include packages with the with command, as in Figure 14.3.
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14.1.4. Functions of three or more variables

Definition 14.13. A function of three variables, f , is a rule that
assigns each ordered pair of real numbers (x, y, z) in a set D ⊂ R3 a
unique real number denoted by f(x, y, z).

Problem 14.14. Find the domain of f if f(x, y, z) = ln(z − y) + xy sin z.

Level Surfaces
Problem 14.15. Find the level surfaces (:=f(x, y, z) = k) of

f(x, y, z) = x2 + y2 + z2.
Solution.

A level surface is the surface where the function values are all the same.
Thus the outer normal is the fastest increasing direction of f .
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Exercises 14.1
1. Find and sketch the domain of the function

(a) f(x, y) = ln(9− 9x2 − y2)

(b) g(x, y) =

√
x− y2

1− y2

2. Let f(x, y) =
√

4− x2 − 4y2.

(a) Find the domain of f .
(b) Find the range of f .
(c) Sketch the graph of the function.

3. Match the function with its contour plot (labeled I–VI). Give reasons for your choices.

(a) f(x, y) = x2 − y2

(b) f(x, y) = x2 + y2

(c) f(x, y) = 3− |x| − |y|
(d) f(x, y) = |xy|

(e) f(x, y) = 1
1+x2+y2

(f) f(x, y) = 1
1+x2y2

I II III

IV V VI

4. Describe the level surfaces of the function f(x, y, z) = x2 + y2 − z2.
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14.2. Limits and Continuity

Limits
Recall: For y = f(x), we say that the limit of f(x), as x→ a, is L, if

lim
x→a−

f(x) = L = lim
x→a+

f(x),

or, equivalently, if ∀ ε > 0, there exists δ = δ(ε) > 0 such that

if 0 < |x − a| < δ then |f(x) − L| < ε. (14.1)

In this case, we write
lim
x→a

f(x) = L. (14.2)

The above argument involving ε and δ is called the ε-δ argument.

Definition 14.16. Let f be a function of two variables whose domain D

includes points arbitrarily close to (a, b). Then we say that the limit of
f(x, y), as (x, y) approaches (a, b), is L:

lim
(x,y)→(a,b)

f(x, y) = L, (14.3)

if ∀ε > 0, there exists δ = δ(ε) > 0 such that

if (x, y) ∈ D and 0 <
√
(x− a)2 + (y − b)2 < δ then |f(x, y)− L| < ε.

Figure 14.4: Plots of z = sinx+ sin y (left) and z =
xy

x2 + y2
(right).
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When the Limit Does Not Exist

Figure 14.5

Claim 14.17. If f(x, y) → L1

as (x, y) → (a, b) along a path C1

and f(x, y) → L2 as (x, y) → (a, b)
along a path C2, where L1 ̸= L2,
then lim(x,y)→(a,b) f(x, y) does not
exist.

Problem 14.18. Show that lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.

Solution. Consider two paths: e.g., C1 : {y = 0} and C2 : {x = 0}.

Ans: no

Problem 14.19. Does lim
(x,y)→(0,0)

2xy

x2 + y2
exist?

Solution. Consider a path C : {x = y} with another.

Ans: no
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Problem 14.20. Does lim
(x,y)→(1,1)

2xy

x2 + y2
exist?

Solution.

Ans: yes: L = 1

Problem 14.21. Does lim
(x,y)→(0,0)

xy2

x2 + y4
exist?

Solution. Consider a path C : {x = y2} with another.

Ans: no. See Figure 14.6 on p. 422 below.
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The Existence of a Limit

Problem 14.22. Use the squeeze theorem to show lim
(x,y)→(0,0)

3x2y

x2 + y2
= 0.

Solution.

Problem 14.23. Find the limit: lim
(x,y)→(0,0)

(x2 + y2) ln(x2 + y2).

Solution. Consider limx→0 x lnx and introduce a new variable s = x2 + y2.

Ans: L = 0

Continuity

Recall: A function (of a single variable) f is continuous at x = a if

lim
x→a

f(x) = f(a).

The above means that
1. the limit on the left side exists,
2. f(a) is defined, and
3. they are the same.
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Definition 14.24. A function of two variables f is called continuous
at point (a, b) ∈ R2 if

lim
(x,y)→(a,b)

f(x, y) = f(a, b). (14.4)

If f is continuous at every point (x, y) in a region D ⊂ R2, then we say
that f is continuous on D.

Problem 14.25. Is f(x, y) =
2xy

x2 + y2
continuous at (0, 0)? What about at

(1, 1)? Why?
Solution. See Problems 14.19 and 14.20.

Ans: no; yes

Problem 14.26. Is the following function continuous at (0, 0)? What about
at elsewhere?

g(x, y) =

{
3x2y
x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)
(14.5)

Solution. See Problem 14.22.

Ans: It is continuous everywhere.
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Computer algebra

Figure 14.6: Matlab plot: using ezsurf for
Problem 14.21, p. 419.

In computational mathematics,
computer algebra (a.k.a. sym-
bolic computation) refers to the
study and development of algo-
rithms and software for manip-
ulating mathematical expres-
sions. It emphasizes exact com-
putation with expressions con-
taining variables that are manip-
ulated as symbols.
There have been more than 40 com-
puter algebra systems available;
popular ones are Maple, Mathe-
matica, Matlab, and Python.

Matlab script
1 syms x y
2

3 f = x*y^2/(x^2+y^4);
4 ezsurf(f,[-1,1,-1,1])
5 view(-45,45)
6 print('-r100','-dpng','matlab_ezsurf.png');

The above Matlab script results in Figure 14.6. Line 1 declares symbolic
variables x y; line 3 defines the function f ; line 4 plots a figure over the rect-
angular domain [−1, 1]× [−1, 1]; line 5 changes the view angle to (−45◦, 45◦)
in the horizontal and vertical directions, respectively; and the final line
saves the figure to matlab_ezsurf.png with the resolution level of 100.
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Exercises 14.2
1. Find the limit, if it exists, or show that the limit does not exist.

(a) lim
(x,y)→(π,π/2)

x cos(x− y)

Ans: 0
(b) lim

(x,y)→(0,0)

x√
x2 + y2

(c) lim
(x,y)→(0,0)

xy√
x2 + y2

Ans: 0

2. Use polar coordinates to find the limit.

(a) lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
(b) lim

(x,y)→(0,0)

x2 + y2√
4 + x2 + y2 − 2

Ans: (a) 1; (b) 4

3. CAS Use a computer graph of the function to explain why the limit does not exist.2

lim
(x,y)→(0,0)

x2 + 2xy + 4y2

3x2 + y2

4. Determine and verify whether the following functions are continuous at (0, 0) or not.

(a) f(x, y) =


x4 sin y

x4 + y4
, if (x, y) ̸= (0, 0),

0, if (x, y) = (0, 0).
Ans: continuous

(b) g(x, y) =


xy

x2 + xy + y2
, if (x, y) ̸= (0, 0),

0, if (x, y) = (0, 0).
Ans: discontinuous

2You have to perform a computer implementation for problems indicated by the Computer Algebra System

sign CAS . Of course, you must copy-and-paste your implementation and results to the report.
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14.3. Partial Derivatives

14.3.1. First-order partial derivatives

Recall: A function y = f(x) is differentiable at a if

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
exists.

Figure 14.7: Ordinary derivative f ′(a) and partial derivatives fx(a, b) and fy(a, b).

Let f be a function of two variables (x, y). Suppose we let only x vary while
keeping y fixed, say y = b . Then g(x) := f(x, b) is a function of a single
variable. If g is differentiable at a, then we call it the partial derivative
of f with respect to x at (a, b) and denoted by fx(a, b).

g′(a) = lim
h→0

g(a+ h)− g(a)

h

= lim
h→0

f(a+ h, b)− f(a, b)

h
=: fx(a, b).

(14.6)
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Similarly, the partial derivative of f with respect to y at (a, b), denoted
by fy(a, b), is obtained keeping x fixed, say x = a , and finding the ordinary
derivative at b of G(y) := f(a, y) :

G′(b) = lim
h→0

G(b+ h)−G(b)

h

= lim
h→0

f(a, b+ h)− f(a, b)

h
=: fy(a, b).

(14.7)

Problem 14.27. Find fx(0, 0), when f(x, y) = 3
√

x3 + y3.
Solution. Using the definition,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h

Ans: 1

Definition 14.28. If f is a function of two variables, its partial deriva-
tives are the functions fx =

∂f
∂x and fy =

∂f
∂y defined by:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
and

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

(14.8)
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Observation 14.29. The partial derivative with respect to x rep-
resents the slope of the tangent line to the curve that are parallel
to the xz-plane (i.e. in the direction of ⟨1, 0, ·⟩).
Similarly, the partial derivative with respect to y represents the slope of
the tangent line to the curve that are parallel to the yz-plane (i.e. in the
direction of ⟨0, 1, ·⟩).

Rule for finding Partial Derivatives of z = f(x,y)

• To find fx, regard y as a constant and differentiate f w.r.t. x.
• To find fy, regard x as a constant and differentiate f w.r.t. y.

Problem 14.30. If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Solution.

Ans: fx(2, 1) = 16; fy(2, 1) = 8

Problem 14.31. Let f(x, y) = sin
( x

1 + y

)
. Find the first partial derivatives

of f(x, y).
Solution.
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Problem 14.32. Find the first partial derivatives of f(x, y) = xy.
Solution. Use d

dxa
x = ax ln a.

Recall: (Implicit differentiation). When y = y(x) and x2 + y3 = 3, you
have 2x+ 3y2y′ = 0 so that y′ = −2x/(3y2).

Problem 14.33. Find ∂z/∂x and ∂z/∂y if z is defined implicitly as a func-
tion of x and y by

x3 + y3 + z3 + 6xyz = 1.

Figure 14.8: implicitplot3d in Maple: a
plot of surface defined in Problem 14.33.
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Problem 14.34. (Revisit of Problem 14.27). Find fx(x, y), when f(x, y) =
3
√
x3 + y3. Can you evaluate fx(0, 0) easily?

Solution.

Functions of more than two variables
Problem 14.35. Let f(x, y, z) = exy ln z. Find fx, fy, and fz.
Solution.
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14.3.2. Higher-order partial derivatives

Second partial derivatives of z = f(x, y)

(fx)x = fxx =
∂

∂x

(∂f
∂x

)
=

∂2f

∂x2
= f11

(fx)y = fxy =
∂

∂y

(∂f
∂x

)
=

∂2f

∂y∂x
= f12

(fy)x = fyx =
∂

∂x

(∂f
∂y

)
=

∂2f

∂x∂y
= f21

(fy)y = fyy =
∂

∂y

(∂f
∂y

)
=

∂2f

∂y2
= f22

Problem 14.36. Find the second partial derivatives of f(x, y) = x3+x2y3−
2y2.

Solution.

Theorem 14.37. (Clairaut’s theorem) Suppose f is defined on a disk
D ⊂ R2 that contains the point (a, b). If both fxy and fyx are continu-
ous on D, then

fxy(a, b) = fyx(a, b). (14.9)

Claim 14.38. It can be shown that fxyy = fyxy = fyyx, when these partial
derivatives are continuous.
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Problem 14.39. Verify Clairaut’s theorem for f(x, y) = xyey.

Problem 14.40. Calculate fxyzx(x, y, z), given f(x, y, z) = sin (3x+ yz).
Solution.
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Exercises 14.3
1. The temperature T (in ◦F) at a location in the Northern Hemi-sphere depends on the

longitude x, latitude y, and time t; so we can write T = f(x, y, t). Let’s measure time in
hours from the beginning of January.

(a) What do the partial derivatives ∂T/∂x, ∂T/∂y, and ∂T/∂t mean?
(b) Mississippi State University (MSU)3 has longitude 88.8◦ W and latitude 33.5◦ N.

Suppose that at noon on January first, the wind is blowing warm air to northeast,
so the air to the west and south is warmer than that in the north and east. Would
you expect fx(88.8, 33.5, 12), fy(88.8, 33.5, 12), and ft(88.8, 33.5, 12) to be positive or
negative? Explain.

2. The following surfaces, labeled a, b, and c, are graphs of a function f and its partial
derivatives fx and fy. Identify each surface and give reasons for your choices.

a b c

Hint : Assume one of them is the graph of f ; try to figure out its partial derivatives.

3. Find the partial derivatives of the function.

(a) z = y cos(xy)
(b) f(u, v) = (uv − v3)2

(c) w = ln(x+ 2y + 3z)
(d) u = sin(x2

1 + x2
2 + · · ·+ x2

n)

Ans: (d) ∂u/∂xi = 2xi · cos(x21 + x22 + · · ·+ x2n)

4. Let f(x, y, z) = xy2z3 + arccos(x
√
y) +

√
1 + xz. Find fxyz, by using a different order of

differentiation for each term.
Ans: 6yz2

5. Show that each of the following functions is a solution of the wave equation utt = a2uxx.

(a) u = sin(kx) sin(akt)
(b) u = (x+ at)3 + (x− at)6

(c) u = sin(x+ at) + ln(x− at)
(d) u = f(x+ at) + g(x− at)

where f and g are twice differentiable functions.

3MSU, the land-grant research university, has an elevation of 118 meters, or 387 feet.
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14.4. Tangent Planes & Linear Approximations

Recall: As one zooms into a curve y = f(x), the more the curve resembles
a line. More specifically, the curve looks more and more like the tangent
line. It is the same for surface: the surface looks more and more like the
tangent plane
Some functions are difficult to evaluate at a point; the equation of the
tangent plane (which is much simpler) can be used to approximate
the value of the function at a given point.

Figure 14.9: A tangent line and a tangent plane.

Tangent plane for z = f(x, y) at (x0, y0, z0): Any tangent plane passing
through P (x0, y0, z0), z0 = f(x0, y0), has an equation of the form

A(x− x0) +B(y − y0) + C(z − z0) = 0, n =< A,B,C > .

By dividing the equation by C (̸= 0) and letting a = −A/C and b = −B/C,
we can write it in the form

z − z0 = a(x − x0) + b(y − y0). (14.10)

Then, the intersection of the plane with y = y0 must be the x-directional
tangent line at (x0, y0, z0), having the slope of fx(x0, y0):

z − z0 = a(x − x0), where y = y0.

Therefore a = fx(x0, y0) . Similarly, we can conclude b = fy(x0, y0) .
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Summary 14.41. Suppose that f(x, y) has continuous partial deriva-
tives. An equation of the tangent plane (equivalently, the linear ap-
proximation) to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0), (14.11)

where z0 = f(x0, y0).

Problem 14.42. Find an equation for the tangent plane to the elliptic
paraboloid z = 2x2 + y2 at the point (1, 1, 3).
Solution.

Ans: z = 4x+ 2y − 3

Linear approximation (linearization) of f at (a, b):
f(x, y) ≈ L(x, y) := f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (14.12)

Problem 14.43. Give the linear approximation of f(x, y) = xexy at (1, 0).

Then use this to approximate f(1.1,−0.1).
Solution.

Ans: L(x, y) = x+ y; L(1.1,−0.1) = 1, while f(1.1,−0.1) = 0.9854 · · · .
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Differentiability for Functions of Multiple Variables

Recall: A function y = f(x) is differentiable at a if

lim
∆x→0

f(a+∆x)− f(a)

∆x
exists. (=: f ′(a))

Thus, if f is differentiable at a, then
f(a+∆x)− f(a)

∆x
= f ′(a) + ε and

∆y ≡ f(a+∆x)− f(a) = f ′(a)∆x+ ε∆x, (14.13)

where ε→ 0 as ∆x→ 0.
(
∵ f(a+∆x)−f(a)

∆x = f ′(a) + ε
)

Now, for z = f(x, y), suppose that (x, y) changes from (a, b) to (a+∆x, b+∆y).
Then the corresponding change of z is

∆z = f(a+∆x, b+∆y)− f(a, b).

Definition 14.44. A function z = f(x, y) is differentiable at (a, b) if ∆z
can be expressed in the form

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y, (14.14)

where ε1, ε2 → 0 as (∆x,∆y)→ (0, 0).

It is sometimes hard to use Definition 14.44 directly to check the differen-
tiability of a function.

Theorem 14.45. If fx and fy exist near (a, b) and are continuous at
(a, b), then z = f(x, y) is differentiable at (a, b).

Note: The above theorem implies that if partial derivatives of f are
continuous, then the slope of f exists for all directions.

Problem 14.46. Let f(x, y) = y + sin(x/y). Explain why the function is
differentiable at (0, 3).
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Differentials
Recall: For y = f(x), let dx be the differential of x (an independent
variable). The differential of y is then defined as

dy = f ′(x) dx. (14.15)

Note: ∆y represents the change in height of the curve y = f(x), while dy
represents the change in height of the tangent line; when x changes
by ∆x = dx.

Definition 14.47. For z = f(x, y), we define differentials dx and dy to
be independent variables. Then the differential dz is defined by

dz = fx(x, y) dx+ fy(x, y) dy, (14.16)

which is also called the total differential.

Problem 14.48. Let z = f(x, y) = x2 + 3xy − y2.

(a) Find the differential dz.

(b) If (x, y) changes from (2, 3) to (2.1, 2.9), compare the values of ∆z and
dz.

Solution.

Ans: (a) dz = (2x+ 3y)dx+ (3x− 2y)dy; (b) dz = 1.3, ∆z = 1.27
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Problem 14.49. Use differentials to estimate the amount of metal in a
closed cylindrical can that is 10 cm high and 4 cm in diameter, if the metal
in the top and bottom is 0.1 cm thick and the metal in the side is 0.05 cm
thick.
Solution. V (r, z) = πr2z. Therefore

dV = Vr dr + Vz dz = 2πrz dr + πr2 dz,

where dr = 0.05 and dz = 2 · 0.1 = 0.2.

Ans: dV = 2.8π = 8.796459431 · · · (∆V = 9.0022337 · · · )

Exercises 14.4
1. Find an equation of the tangent plane to the given surface at the specified point.

(a) z = sin(2x+ 3y), (−3, 2, 0)
(b) z = x2 + 2y2 − 3y, (1,−1, 6)

2. Explain why the function is differentiable at the given point. Then, find the lineariza-
tion L(x, y) of the function at that point.

(a) f(x, y) = 5 + x ln(xy − 1), (1, 2)
(b) f(x, y) = xy + sin(y/x), (2, 0)

3. Given that f is a differentiable function with f(5, 2) = 4, fx(5, 2) = 1, and fy(5, 2) = −1,
use a linear approximation to estimate f(4.9, 2.2).

Ans: 3.7

4. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm
and height 16 cm if the tin is 0.05 cm thick.

Ans: 8π
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14.5. The Chain Rule and Implicit Differentia-
tion

14.5.1. Chain rule

Recall: Chain Rule for Functions of a Single Variable
If y = f(x) and x = g(t), where f and g are differentiable, then y is a
function of t, differentiable, and

dy

dt
=

dy

dx

dx

dt
. (14.17)

Theorem 14.50. The Chain Rule (Case 1). Suppose that z = f(x, y)
is a differentiable function, where x = g(t) and y = h(t) are both differ-
entiable functions of t. Then z is a differentiable function of t and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
. (14.18)

Observation: Let z = f(x, y) = x y and x and y be functions of t:

z = f(x, y) = x y = x(t) y(t).

Then

dz

dt
= x′(t) y(t) + x(t) y′(t), (product rule)

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= y x′(t) + x y′(t).

Problem 14.51. If z = x2y+ xy3, where x = cos t and y = sin t, find dz/dt at
t = 0.
Solution.

Ans: 1
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Now, we will solve the above problem using the following script in Maple.
Maple script and answers

1 z := x*y^3+x^2*y:
2 x := cos(t): y := sin(t):
3 zt := diff(z, t)
4 zt := -2 cos(t) sin(t) + cos(t) - sin(t) + 3 cos(t) sin(t)
5 simplify(%)
6 -4 cos(t) + 3 cos(t) + 5 cos(t) - 2 cos(t) - 1
7 eval(zt, t = 0)
8 1

Lines 4, 6, and 8 are answers from Maple.

Theorem 14.52. The Chain Rule (Case 2). Suppose that z = f(x, y)
is a differentiable function, where x = g(s, t) and y = h(s, t) are both
differentiable functions of s and t. Then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
,

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
. (14.19)

Problem 14.53. If z = ex sin(y), where x = st2 and y = s2t, find
∂z

∂s
and

∂z

∂t
.

Solution.

Ans:
zs = t2est

2
sin (s2t) + 2 est

2
st cos (s2t)

zt = 2 stest
2
sin (s2t) + est

2
s2 cos (s2t)



14.5. The Chain Rule and Implicit Differentiation 439

Functions of Three and More Variables :

Theorem 14.54. The Chain Rule (General Version). Suppose that
u is a differentiable function of n variables, x1, x2, . . . , xn, each of which
has m variables, t1, t2, . . . , tm. Then for each i ∈ {1, 2, . . . ,m},

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ · · ·+ ∂u

∂xn

∂xn
∂ti

.

Problem 14.55. Write the chain rule for w = f(x, y, z, t), where x =

x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v). That is, find ∂w
∂u and ∂w

∂v .

Problem 14.56. If g(s, t) = f
(
s2 − t2, t2 − s2

)
and f is differentiable, show

that g satisfies the equation

t
∂g

∂s
+ s

∂g

∂t
= 0.

Solution. Let x = s2 − t2 and y = t2 − s2.
Then gs = fx xs + fy ys and gt = fx xt + fy yt.
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Problem 14.57. If z = x3 + x2y, where x = s + 2t− u and y = stu, find the
values of zs, zt, and zu, when s = 2, t = 0, u = 1.
Solution.

Ans: zs = 3, zt = 8, and zu = −3

14.5.2. Implicit differentiation

Consider F (x, y) = 0, where y is a function of x, i.e., y = f(x). Then,

Fx
dx

dx
+ Fy

dy

dx
= 0.

Thus,we have

y′ = −Fx

Fy
. (14.20)

Problem 14.58. Find y′ if x3 + y3 = 6xy.

Solution. Let F = x3 + y3 − 6xy. Then, use (14.20).

Ans: y′ = −(x2 − 2y)/(y2 − 2x)
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Note: You can solve the above problem using the technique you learned
earlier in Calculus I. That is, applying x-derivative to x3 + y3 = 6xy reads

3x2 + 3y2 y′ = 6y + 6xy′.

Thus
3y2 y′ − 6xy′ = −3x2 + 6y ⇒ y′ = −3x

2 − 6y

3y2 − 6x
.

Claim 14.59. Let z = f(x, y) and F (x, y, z) = 0.

Then Fx
∂x

∂x
+ Fy

∂y

∂x
+ Fz

∂z

∂x
= 0 and Fx

∂x

∂y
+ Fy

∂y

∂y
+ Fz

∂z

∂y
= 0. Thus

∂z

∂x
= −Fx

Fz
and

∂z

∂y
= −Fy

Fz
. (14.21)

Problem 14.60. Find
∂z

∂x
and

∂z

∂y
, if

x3 + y3 + z3 + 6xyz = 1. (14.22)

Solution.

Ans: zx = −3x2+6yz
3z2+6xy

= −x2+2yz
z2+2xy

. See Figure 14.8, p. 427, for a figure of (14.22).



442 Chapter 14. Partial Derivatives

Exercises 14.5
1. Use the Chain Rule to find dz/dt or dw/dt.

(a) z = cosx sin y; x = t3, y = 1/t
(b) w = (x+ y2 + z3)2; x = 1 + 2t, y = −2t, z = t2

2. Suppose f is a differentiable function of x and y, and g(u, v) = f(u+ cos v, u2 + 1+ sin v).
Use the table of values to find gu(0, 0) and gv(0, 0).

f g fx fy

(0, 0) 1 2 -1 10
(0, 1) 3 5 10 5
(1, 1) 2 7 20 2

Ans: gu(0, 0) = 20 & gv(0, 0) = 2

3. Use the Chain Rule to find the indicated partial derivatives.

(a) z = x2 + y4; x = s+ 2t− 3u, y = stu;
∂z

∂s
,

∂z

∂t
,

∂z

∂u
when s = 3, t = 1, and u = 1

Ans: zs(3, 1, 1) = 112 & zu(3, 1, 1) = 312

(b) w = xy + yz + zx; x = r cos θ, y = r sin θ;
∂w

∂r
,

∂w

∂θ
,

∂w

∂z
when r = 2, θ = π/2, and z = 1

Ans: wz = 2

4. Use the formulas in (14.21) to find ∂z/∂x and ∂z/∂y, where z is function of (x, y).

(a) x2 + 2y2 + 3z2 − 4 = 0
(b) ez = xy + z

Ans: (b) zx = y/(ez − 1)
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14.6. Directional Derivatives and the Gradient
Vector

14.6.1. Directional Derivatives

Figure 14.10

Recall: If z = f(x, y), then the
partial derivatives fx and fy rep-
resent the rates of change of z in
the x- and y-directions, that is, in
the directions of the unit vectors i
and j.

Note: It would be nice to be able to
find the slope of the tangent line to a
surface S in the direction of an arbi-
trary unit vector u = ⟨a, b⟩.

Definition 14.61. The directional derivative of f at (x0, y0) in the
direction of a unit vector u = ⟨a, b⟩ is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
, (14.23)

if the limit exists.

Note that (x0 + ha, y0 + hb) = (x0, y0) + h⟨a, b⟩ = (x0, y0) + hu and

f(x0 + ha, y0 + hb)− f(x0, y0) = f(x0 + ha, y0 + hb)− f(x0, y0 + hb)

+ f(x0, y0 + hb)− f(x0, y0)

Thus
f(x0 + ha, y0 + hb)− f(x0, y0)

h
= a

f(x0 + ha, y0 + hb)− f(x0, y0 + hb)

ha

+ b
f(x0, y0 + hb)− f(x0, y0)

hb
,

which converges to “a fx(x0, y0) + b fy(x0, y0)" as h→ 0.
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Theorem 14.62. If f is a differentiable function of x and y, then f has
a directional derivative in the direction of any unit vector u = ⟨a, b⟩
and

Duf(x, y) = fx(x, y) a+ fy(x, y) b

= ⟨fx(x, y), fy(x, y)⟩ · ⟨a, b⟩
= ⟨fx(x, y), fy(x, y)⟩ · u.

(14.24)

Problem 14.63. Find the directional derivative Duf(x, y), if f(x, y) = x3 +

2xy+y4 and u is the unit vector given by the angle θ = π
4 . What is Duf(2, 3)?

Solution. u = ⟨cos(π/4), sin(π/4)⟩ =
〈
1/
√
2, 1/
√
2
〉
.

Figure 14.11

Ans: 65
√
2
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Note: 1. The only reason we are restricting the directional derivative to
the unit vector is because we care about the rate of change in f per unit
distance. Otherwise, the magnitude is irrelevant.
2. If the unit vector u makes an angle θ with the positive x-axis, then
u = ⟨cos θ, sin θ⟩. Thus

Duf(x, y) = fx(x, y) cos θ + fy(x, y) sin θ. (14.25)

Self-study 14.64. Find the directional derivative of f(x, y) = x+sin(xy) at
the point (1, 0) in the direction given by the angle θ = π/3.
Solution.

Ans: (1 +
√
3)/2

Problem 14.65. If f(x, y, z) = x2 − 2y2 + z4, find the directional derivative
of f at (1, 3, 1) in the direction of v = ⟨2,−2,−1⟩ .
Solution.

Ans: 8
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Gradient Vector
Definition 14.66. Let f be a differentiable function of two variables x
and y. Then the gradient of f is the vector function

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ =
∂f

∂x
i+

∂f

∂y
j. (14.26)

Problem 14.67. If f(x, y) = sin(x) + exy, find ∇f(x, y) and ∇f(0, 1).
Solution.

Ans: ⟨2, 0⟩

Note: With this notation of the gradient vector, we can rewrite
Duf(x, y) = ∇f(x, y) ·u = fx(x, y)a+fy(x, y)b, where u = ⟨a, b⟩ . (14.27)

Problem 14.68. Find the directional derivative of f(x, y) = x2y3−4y at the
point (2,−1) and in the direction of the vector v = ⟨3, 4⟩ .
Solution.

Ans: 4
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14.6.2. Maximizing the Directional Derivative

Note that

Duf = ∇f · u = |∇f | |u| cos θ = |∇f | cos θ ≤ |∇f |, (14.28)

where θ is the angle between ∇f and u; the maximum occurs when θ = 0.

Theorem 14.69. Let f be a differentiable function of two or three vari-
ables. Then

max
u

Duf(x) = |∇f(x)| (14.29)

and it occurs when u has the same direction as ∇f(x).

Problem 14.70. Let f(x, y) = xey.

(a) Find the rate of change of f at P (1, 0) in the direction from P to Q(−1, 2).
(b) In what direction does f have the maximum rate of change? What is

the maximum rate of change?
Solution.

Ans: (a) 0; (b)
√
2

Remark 14.71. Let u =
∇f(x)
|∇f(x)|

, the unit vector in the gradient direc-

tion. Then

Duf(x) = ∇f(x) · u = ∇f(x) · ∇f(x)
|∇f(x)|

= |∇f(x)|. (14.30)

This implies that the directional derivative is maximized in the gradient
direction.

Claim 14.72. The gradient direction is the direction where the
function changes fastest, more precisely, increases fastest!
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The Gradient Vector of Level Surfaces

Figure 14.12: Level surfaces x2+y2+z2 = k2,
where k = 1, 1.5, 2, and the gradient vector at
P (−1, 1,

√
2), when k = 2.

Suppose S is a surface with equation

F (x, y, z) = k

and P (x0, y0, z0) ∈ S. Let C be
any curve that lies on the surface S,
passes through P , and is described
by a continuous vector function

r(t) = ⟨x(t), y(t), z(t)⟩ . (14.31)

Then, any point ⟨x(t), y(t), z(t)⟩ must
satisfy

F (x(t), y(t), z(t)) = k. (14.32)

Apply the Chain Rule to have

d

dt
F = Fx

dx

dt
+ Fy

dy

dt
+ Fz

dz

dt
= ∇F · r′(t) = 0.

In particular, letting t = t0 be such that r(t0) = ⟨x0, y0, z0⟩,

∇F (x0, y0, z0) · r′(t0) = 0, (14.33)

where r′(t0) is the tangent vector at P (x0, y0, z0).

Summary 14.73. (Gradient Vector)
Given a level surface F (x, y, z) = k, the gradient vector ∇F (x, y, z) is
normal to the surface and pointing the fastest increasing direction.

• It is similarly true for level curves.
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Tangent Plane to a Level Surface

Suppose S is a surface given as F (x, y, z) = k and x0 = (x0, y0, z0) is on S.
Then the tangent plane to S at x0 is

∇F (x0)·(x−x0) = Fx(x0)(x−x0)+Fy(x0)(y−y0)+Fz(x0)(z−z0) = 0. (14.34)

The normal line to S at x0 is

x− x0
Fx(x0)

=
y − y0
Fy(x0)

=
z − z0
Fz(x0)

. (14.35)

Problem 14.74. Find the equations of the tangent plane and the normal
line at P (−1, 1, 2) to the ellipsoid

x2 + y2 +
z2

4
= 3.

Solution.

Figure 14.13

Ans: −2x− 6 + 2y + z = 0; x+1
−2

= y−1
2

= z−2
1
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Exercises 14.6
1. Find the directional derivative of f at the point P in the direction indicated by either

the angle θ or a vector v.

(a) f(x, y) = x sin(xy), P (0, 1), θ = π/4
(b) f(x, y, z) = y2exyz, P (0, 1,−1), v =< −1, 2, 2 >

Ans: (b) 5/3

2. Find the maximum rate of change of f at the given point and the direction in which it
occurs.

(a) f(x, y) = sin(xy), (0, 1)

(b) f(x, y, z) =
z

x+ y
, (1, 1, 4)

Ans: (b) |∇f(1, 1, 4)| = 3/2, ∇f(1, 1, 4) =< −1,−1, 1/2 >

Note: We know that a differentiable function f increases most rapidly in the direc-
tion of ∇f . Thus, it is natural to claim that the function decreases most rapidly in
the direction opposite to the gradient vector, that is, −∇f .

3. Find the direction in which the function f(x, y, z) = x2 + y2 + z2 decreases fastest at the
point (1, 1, 1).

4. Find directions (unit vectors) in which the directional derivative of f(x, y) = x2 + xy2 at
the point (1, 2) has value 0.

Ans: u = ±<2,−3>√
13

5. Find the equations of (i) the tangent plane and (ii) the normal line to the given surface
at the specified point.

(a) (x− 1)2 + (y − 2)2 + (z − 3)2 = 3, (2, 1, 4)
(b) xy + yz + zx− 5 = 0, (1, 1, 2)

Ans: (b) 3(x− 1) + 3(y − 1) + 2(z − 2) = 0 & x−1
3 = y−1

3 = z−2
2
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14.7. Maximum and Minimum Values

Recall: To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

1. Find values of f at the critical points of f in (a, b).
2. Find values of f at the end points of the interval.
3. The largest is the absolute maximum value;

the smallest is the absolute minimum value.

Recall: (Second Derivative Test for y = f(x))
Suppose f ′′ is continuous near c.
(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

14.7.1. Local extrema

Definition 14.75. Let f be a function of two variables x and y.
• It has a local minimum at (a, b) if f(x, y) ≥ f(a, b) when (x, y) is

near (a, b).

• It has a local maximum at (a, b) if f(x, y) ≤ f(a, b) when (x, y) is
near (a, b).

Theorem 14.76. First Derivative Test
If f has a local extremum at (a, b) and the first order partial derivatives
exist, then fx(a, b) = 0 and fy(a, b) = 0, that is, ∇f(a, b) = 0.

Self-study 14.77. Find the critical points of

f(x, y) = 2x3 − 3x2 + y2 + 4y + 1.

Ans: (0,−2), (1,−2)
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Theorem 14.78. Second Derivative Test
Suppose that the second order partial derivatives of f are continuous
near (a, b) and suppose that ∇f(a, b) = 0. Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy (a, b)]
2 .

• If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
• If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
• If D < 0, then f(a, b) is a saddle point.

Note:
1. If D = 0, then no conclusion can be drawn from this test.

2. D = det

[
fxx fxy
fyx fyy

]
= fxxfyy − fxyfyx = fxxfyy − (fxy)

2

The matrix is called the Hessian matrix of f , whose determinant is
the Gaussian curvature, the product of the principal curvatures.

3. Let D > 0. Then, fxx(a, b) >
< 0 is equivalent to fyy(a, b)

>
< 0.

Problem 14.79. Find all local extrema of f(x, y) = x4 + y4 − 4xy + 1.

Solution.

Figure 14.14

Ans: local min: (±1,±1); saddle point: (0, 0)
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Problem 14.80. Find the shortest distance from the point (6, 3, 2) to the
plane 2x+ 2y − z + 2 = 0.

Solution. Hint : (a) You may use the formula D = |ax0 + by0 + cz0 + d|/
√
a2 + b2 + c2,

where D be the distance. (b) Optimization: Define to minimize

f(x, y) = D2 = (x− 6)2 + (y − 3)2 + (z − 2)2 = (x− 6)2 + (y − 3)2 + (2x+ 2y)2

Ans: minD = 6, when (x, y, z) = (2,−1, 4) ∈ P
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Problem 14.81. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one vertex on the plane
3x+ 2y + z = 6.
Solution. Hint : Maximize V = xyz, subject to 3x+2y+ z = 6. Thus V = xy(6− 3x− 2y).

Try to find the maximum by setting ∇V = 0.

Ans: (x, y, z) = (2/3, 1, 2); V = xyz = 4/3
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14.7.2. Absolute extrema

Theorem 14.82. (Existence).
If f is continuous on a closed and bounded set D ⊂ R2, then f attains an
absolute minimum value f(x0, y0) and an absolute maximum value
f(x1, y1) at some points (xi, yi) ∈ D, i = 0, 1.

Strategy 14.83. To find absolute extrema,

1. Find critical points and values of f at those critical points.
2. Find the extreme values that occur on the boundary.
3. Compare all of those values for the largest and smallest values.

Problem 14.84. Find the absolute extrema of f(x, y) = x2−2xy+2y on the
rectangle R = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2} .
Solution.

Figure 14.15: R = [0, 3]× [0, 2]

Ans: abs.min=0; abs.max=9
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Exercises 14.7
1. (i) Find the local maxima and minima and saddle points of the function.

(ii) CAS Use Maple’s plot3d and contourplot functions to verify them.

(a) f(x, y) = x3 − 3xy2

(b) f(x, y) = (2x2 + y2)e−x2−y2

(Note: You may use Mathematica, if you want.)

2. Find the absolute maximum and minimum values of f on D.

(a) f(x, y) = x2 + y2 − 2x; D is the closed triangular region with vertices (2, 0), (0, 2),
and (0,−2).

Ans: max: f(0,±2) = 4; min: f(1, 0) = −1
(b) f(x, y) = 4x2 + y4; D = {(x, y)|x2 + y2 ≤ 1}.

Ans: max: f(±1, 0) = 4; min: f(0, 0) = 0

3. Find three positive numbers whose sum is 60 and whose product is maximum.
Hint : The problem can read: max

(x,y,z)
xyz, subject to x + y + z = 60. Thus for example it can be

reformulated as: max
(x,y)

xy(60 − x − y), with each component being positive. From this, you may

conclude x = y.

4. Find the volume of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex in the plane 2x + 5y + z = 30. Clue: Try to use the hint
given for Problem 14.81.
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14.8. Method of Lagrange Multipliers

Recall: (Section 14.6)

• Given a level curve f(x, y) = k, the gradient vector ∇f(x, y) is
– normal to the curve and
– pointing the fastest increasing direction.

• It is similarly true for level surfaces.

Eqauality-Constrained Optimization

In this section, we consider Lagrange’s method to solve the problem of
the form

max
x

f(x) subj.to g(x) = c. (14.36)

Figure 14.16: The method of Lagrange multipliers in R2: ∇f // ∇g, at maximum .

Strategy 14.85. (Method of Lagrange multipliers)

For the maximum and minimum values of f(x,y) subject to g(x,y) = c,

(a) Find all values of (x, y) and λ such that

∇f(x, y) = λ∇g(x, y) and g(x, y) = c . (14.37)

(b) Evaluate f at all these points, to find the maximum and minimum.
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Problem 14.86. (Revisit of Problem 14.81, p. 454). Find the volume
of the largest rectangular box in the first octant with three faces in the
coordinate planes and one vertex on the plane 3x + 2y + z = 6, using the
method of Lagrange multipliers.
Solution.

Ans: 4/3

Problem 14.87. A topless rectangular box is made from 12m2 of cardboard.
Find the dimensions of the box that maximizes the volume of the box.
Solution. Maximize V = xyz subj.to 2xz + 2yz + xy = 12.

Ans: 4 (x = y = 2z = 2)
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Problem 14.88. Find the extreme values of f(x, y) = x2 + 2y2 on the circle
x2 + y2 = 1.

Solution. ∇f = λ∇g =⇒

[
2x

4y

]
= λ

[
2x

2y

]
. Therefore,


2x = 2xλ 1

4y = 2y λ 2

x2 + y2 = 1 3

From 1 , x = 0 or λ = 1.

Ans: min: f(±1, 0) = 1; max: f(0,±1) = 2

Problem 14.89. Find the extreme values of f(x, y) = x2 + 2y2 on the disk
x2 + y2 ≤ 1.

Solution. Hint : You may use Lagrange multipliers when x2 + y2 = 1.

Ans: min: f(0, 0) = 0; f(0,±1) = 2
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Two Constraints
Consider the problem of the form

max
x

f(x) subj.to g(x) = c and h(x) = d. (14.38)

Then, at extrema we must have
∇f ∈ Plane(∇g,∇h) := {c1∇g + c2∇h}. (14.39)

Thus (14.38) can be solved by finding all values of (x, y, z) and (λ, µ) such
that

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
g(x, y, z) = c

h(x, y, z) = d

(14.40)

Problem 14.90. Find the maximum value of the function f(x, y, z) = z

on the curve of the intersection of the cone 2x2 + 2y2 = z2 and the plane
x+ y + z = 4.
Solution. Letting g = 2x2+2y2− z2 = 0 4 and h = x+ y+ z = 4 5 , we have00

1

 = λ

 4x

4y

−2z

+ µ

11
1

 =⇒


0 = 4λx+ µ 1

0 = 4λy + µ 2

1 = −2λz + µ 3

From 1 and 2 , we conclude x = y; using 4 , we have z = ±2x.

Ans: 2
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Exercises 14.8
1. Use Lagrange multipliers to find extreme values of the function subject to the given

constraint.

(a) f(x, y) = xy; x2 + 4y2 = 2
(b) f(x, y) = x+ y + 2z; x2 + y2 + z2 = 6

Ans: max: f(1, 1, 2) = 6; min: f(−1,−1,−2) = −6

2. Find extreme values of f subject to both constraint.

f(x, y, z) = x2 + y2 + z2; x− y = 3, x2 − z2 = 1.

Ans: f(1,−2, 0) = 5

Note: The value just found for Problem 2 is the minimum. Why? See the figure below.

Figure 14.17: implicitplot3d. red: x− y = 3; green: x2 − z2 = 1; blue: f(x, y, z) = 5.

3. Use Lagrange multipliers to solve Problem 3 in Exercise 14.7. (See p. 456.)

4. Use Lagrange multipliers to solve Problem 4 in Exercise 14.7.
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CHAPTER 15
Multiple Integrals

The multiple integral is a definite integral of a function of more than one
real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two
variables over a region in R2 are called double integrals, and integrals of
a function of three variables over a region of R3 are called triple integrals.
In this chapter, you will learn double integrals and triple integrals in rect-
angular coordinates, polar coordinates, cylindrical coordinates, and spheri-
cal coordinates. Also, you will learn how to perform integration by changing
variables between or inside coordinates.
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15.1. Double Integrals over Rectangles

Figure 15.1: Riemann Sum.

Recall: (Review on Definite Integrals).
• We defined the integral in terms of Riemann Sum.

– We first find the area underneath the curve y = f(x) by divid-
ing the area into rectangles.

– Then the exact area can be found by evaluatingˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x, ∆x =
b− a

n
.

• We also can get the definite integral, using the Fundamental
Theorem of Calculus (Part 2):ˆ b

a

f(x) dx = F (b)− F (a), (15.1)

where F is a function such that F ′ = f (antiderivative).
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15.1.1. Volumes as Double Integrals

Figure 15.2

Let R = [a, b] × [c, d] be a rectan-
gle. Define

∆x = (b− a)/m, ∆y = (d− c)/n,

for some m,n > 0. Let

xi = a+ i∆x, i = 0, 1, · · · ,m,

yj = c+ j∆y, j = 0, 1, · · · , n,

and

Rij = [xi−1, xi]× [yj−1, yj].

Let SR = {(x, y, z) | 0 ≤ z ≤ f(x, y), (x, y) ∈ R} define the solid that lies above
R. Let ∆A = ∆x∆y denote the area of each Rij. Then we can express this
volume of SR as

V ≈
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A, (15.2)

where (x∗ij, y
∗
ij) is a sample point in each division Rij.

Definition 15.1. The double integral of f over the rectangle R is

x

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A. (15.3)

The double integral is the limit of Riemann sums.

We can simplify this if we choose each sample point to be the point in the
upper right corner of each sub-rectangle, (x∗ij, y∗ij) = (xi, yj):

x

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(xi, yj)∆A. (15.4)
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Problem 15.2. Estimate the volume of the solid that lies above the square
R = [0, 2]× [0, 2] and below the elliptic paraboloid z = 16− x2− 2y2. Divide R

into four equal squares and choose the sample point to be the upper right
corner of each square Rij. Approximate the Volume.
Solution.

Ans: 34

Problem 15.3. (Midpoint rule). Estimate the volume of the solid that
lies above the square R = [0, 2] × [1, 2] and below the function f(x, y) =

5x2− 4y. Divide R into four equal rectangles and choose the sample point to
be the midpoint of each rectangle Rij. Approximate the volume.
Solution. We will find the exact volume in Problem 15.9 below.

Ans: 1
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15.1.2. Iterated Integrals

Note: We defined the double integral as the limit of Riemann sums.

• However, taking these Riemann sums is a bit of a pain.
• We will overcome the difficulty, using two partial integrals.

Suppose that f is a function of two variables that is integrable on the rect-
angle R = [a, b]× [c, d].

Figure 15.3: A(x).

Definition 15.4. We define

A(x) =

ˆ d

c

f(x, y) dy (15.5)

as the partial integral with re-
spect to y. We evaluate this in-
tegral by treating x as a constant,
and integrate f(x, y) with respect
to y.

Definition 15.5. We define

B(y) =

ˆ b

a

f(x, y) dx (15.6)

as the partial integral with respect to x. We evaluate this integral
by treating y as a constant, and integrate f(x, y) with respect to x.

Note: The Fundamental Theorem of Calculus, Part 2, Equation (15.1) on
p. 464, can be used to evaluate the partial integrals.
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Definition 15.6. The iterated integral is defined as follows:
ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ b

a

[ˆ d

c

f(x, y) dy
]
dx =

ˆ b

a

A(x) dx. (15.7)

In other words, we work this integral from the inside out.

Problem 15.7. Evaluate the integrals

(a)
ˆ 3

0

ˆ 2

1

x2y dy dx and (b)
ˆ 2

1

ˆ 3

0

x2y dx dy.

Solution. R = [0, 3]× [1, 2].

Ans: 27/2

Theorem 15.8. (Fubini’s Theorem). If f is continuous on the rectan-
gle R = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}, then

x

R

f(x, y) dA =

ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ d

c

ˆ b

a

f(x, y) dx dy. (15.8)

Note: The double integral and the iterated integral were defined
separately and differently.
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Problem 15.9. (Revisit of Problem 15.3). Evaluate the double integralx

R

(5x2 − 4y) dA,, where R = {(x, y) ∈ R2 | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Solution.

Ans: 4/3

Problem 15.10. Evaluate
x

R

y sin(xy) dA, where R = [1, 2]× [0, π].

Solution. Let’s try the iterated integrals with x-first and y-first.

Ans: 0



470 Chapter 15. Multiple Integrals

Separable functions f(x, y) = g(x)h(y) :
Let R = [a, b]× [c, d]. Then

x

R

f(x, y) dA =

ˆ d

c

ˆ b

a

f(x, y) dx dy =

ˆ d

c

( ˆ b

a

g(x)h(y) dx
)
dy

=

ˆ d

c

h(y)
( ˆ b

a

g(x) dx
)
dy

=
( ˆ b

a

g(x) dx
) ˆ d

c

h(y) dy,

where the underlined (in maroon) are treated as constants.

x

R

g(x)h(y) dA =

ˆ b

a

g(x) dx ·
ˆ d

c

h(y) dy, R = [a, b]× [c, d]. (15.9)

Problem 15.11. Evaluate
s

R ex+3y dA, where R = [0, 3]× [0, 1].
Solution.

Ans: (e3 − 1)2/3
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Average Value

Recall: The average value of a function f of one variable defined on an
interval [a, b] is

fave =
1

b− a

ˆ b

a

f(x) dx,

where b− a is the length of the interval.

Definition 15.12. In a similar fashion, we define the average value
of f of two variables defined on R to be

fave =
1

A(R)

x

R

f(x, y) dA, (15.10)

where A(R) is the area of R.

Problem 15.13. Find the average value of f(x, y) = x2 + sin(2y) over R =

[0, 3]× [0, π].
Solution. Use symmetry, for a simpler calculation!

Ans: 3
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Exercises 15.1
1. Estimate the volume of the solid that lies below the surface z = x2 + y and above the

rectangle
R = {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 6}.

Use a Riemann sum with m = 2, n = 3, and the Midpoint Rule.
Ans: 48 · 4 = 192

2. Let V be the volume of the solid that lies under the surface z = 30 − 4x − y2 and above
the rectangle R = {(x, y) | 2 ≤ x ≤ 6, 0 ≤ y ≤ 2}. Use the lines x = 4 and y = 1 to divide
R into four subrectangles. Let L and U be the Riemann sums computed respectively
using lower left corners and upper right corners. Without using the actual numbers V ,
L, and U , arrange them in increasing order and describe your reasoning.

3. Evaluate the double integral by first identifying it as the volume of a solid.

(a)
x

R

(x+ 1) dA, R = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}

(b)
x

R

(4− 2y) dA, R = [0, 1]× [0, 1]

4. Calculate the iterated integral.

(a)
ˆ 3

1

ˆ 2

0

(6xy2 − 12x2) dx dy

(b)
ˆ 2

0

ˆ 3

1

(6xy2 − 12x2) dy dx

(c)
ˆ 1

0

ˆ 2

0

2πxy sin(πxy2) dy dx

(d)
ˆ 2

0

ˆ 1

0

2πxy sin(πxy2) dx dy

Ans: (a) 40, (c) 1

5. Calculate the double integral.

(a)
x

R

y sec2(x) dA, R = [0, π/4]× [0, 4] (b)
x

R

xe−xy dA, R = [0, 2]× [0, 1]

Ans: (a) 8; (b) 1− e−2

6. Find the volume of the solid in the first octant bounded by the cylinder z = 9 − y2 and
the plane x = 2.

Ans: 36
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15.2. Double Integrals over General Regions

15.2.1. Iterated Integrals over General Regions

We know how to find the volume of the solid under a surface, when
the projection of the solid down to the xy-plane is a rectangular region.

Figure 15.4: A general region D and its surrounding rectangle R.

Let D ⊂ R2 be a bounded region of general shape as in Figure 15.4.

• For a bounded function f defined over D, what we want to find is
x

D

f(x, y) dA.

• Expand the domain to a surrounding rectangle R and define

F (x, y) =

{
f(x, y) if (x, y) ∈ D

0 if (x, y) ∈ R\D.
(15.11)

• Then, x

D

f(x, y) dA =
x

R

F (x, y) dA, (15.12)

which implies the following.

• The integral
x

D

f(x, y) dA exists, for a general bounded region D.

• The iterated integral can be applied to get the double integral.
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Quesiton. What if the region D is not rectangular but defined as the
boundary between two functions?

Figure 15.5: General regions D: Type 1 (left) and Type 2 (right).

Let the region D be given as

D1 = {(x, y) ∈ R2 | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
D2 = {(x, y) ∈ R2 | h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d},

Then
x

D1

f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy dx

x

D2

f(x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)

f(x, y) dx dy

(15.13)

Strategy 15.14. Double integral over general regions D:
1. Visualize to recognize the region.
2. Decide the order of integration.
3. If the calculation becomes complicated, try the other order.
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Problem 15.15. Evaluate
x

D

2xy dA, where D is the region bounded by

the line y = x− 2 and the parabola x = y2.
Solution. First, visualize the region.

Ans: 45/4
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Problem 15.16. Find the volume of the solid that lies under the plane
z = 1 + 2y and above the region D in the xy-plane bounded by the line
y = 2x and the parabola y = x2.
Solution. Try for both orders.

Ans: 28/5

Note: Here, the main concern is how to access the domain D; the
iterated integration must access points in D, once–and–only–once.
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15.2.2. Properties of Double Integrals

Double integrals share properties with definite integrals of functions
of one variable.

Proposition 15.17. (Properties of Double Integrals)
Let f and g be continuous functions defined in D and c ∈ R. Then

1
x

D

[
f(x, y) + g(x, y)

]
dA =

x

D

f(x, y) dA+
x

D

g(x, y) dA

2
x

D

c f(x, y) dA = c
x

D

f(x, y) dA

3
x

D

f(x, y) dA ≥
x

D

g(x, y) dA, if f(x, y) ≥ g(x, y), ∀ (x, y) ∈ D

4
x

D

f(x, y) dA =
x

D1

f(x, y) dA+
x

D2

f(x, y) dA, when D = D1

⋃̇
D2

5
x

D

1 dA = A(D)

6 m · A(D) ≤
x

D

f(x, y) dA ≤M · A(D), if m ≤ f(x, y) ≤M, ∀ (x, y) ∈ D

Problem 15.18. Show that 5
s

D

1 dA = A(D), where A(D) denotes the

area of the region D.
Hint : Consider a solid cylinder whose base is D and whose height is 1.
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Problem 15.19. Use Property 6 in Proposition 15.17 to estimate the in-
tegral I =

s
D esinx cos ydA, where D is the disk with center the origin and

radius 2.
Solution.

Ans: 4π/e ≤ I ≤ 4πe

Let’s solve some exra problems.

Problem 15.20. Evaluate
x

D

(x + 2y) dA, where D is the region bounded

by the parabolas y = 2x2 and y = 1 + x2.
Solution.

Ans: 32
15
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Problem 15.21. Evaluate
ˆ 1

0

ˆ 1

x

sin(y2) dy dx.

Solution. Visualize the region and try to change the order of integration.

Ans: (1− cos 1)/2

Problem 15.22. Evaluate the integral
ˆ 2

0

ˆ 1

y/2

2 ey/x dx dy by reverting the

order of integration.
Solution.

Ans: e2 − 1
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Exercises 15.2
1. Evaluate the double integral, by setting up an iterated integral in the easier order.

(a)
x

D

2e−x2

dA, D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ x}

(b)
x

D

x dA, D is bounded by y = x+ 2 and y = x2

(c)
x

D

y sin πx dA, D is bounded by x = 0, x = y2, and y = 2

Ans: (a) 1− e−4; (c) 2/π

2. Evaluate the volume of the solid that lies under the surface z = x(y + 2) and above the
triangle with vertices P (1, 1), Q(3, 1), and R(1, 3).

Ans: 12

3. Sketch the region of the integral and change the order of integration.

(a)
ˆ 1

0

ˆ y2

0

f(x, y) dx dy (b)
ˆ e

1

ˆ lnx

0

f(x, y) dy dx

Ans: (b)
´ 1
0

´ e
ey f(x, y) dx dy

4. Evaluate the integral by reversing the order of integration:

(a)
ˆ 1

0

ˆ 1

x2

√
y cos(y2) dy dx (b)

ˆ 4

0

ˆ √
4−y

0

e12x−x3

dx dy

Ans: (a) sin 1
2

5. In evaluating a double integral over a region D, a sum of iterated integrals was obtained
as follows: x

D

f(x, y) dA =

ˆ 1

0

ˆ y

0

f(x, y) dx dy +

ˆ 2

1

ˆ 2−y

0

f(x, y) dx dy.

(a) Sketch the region D.
(b) Express the double integral as a single iterated integral with reversed order of

integration.
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15.3. Double Integrals in Polar Coordinates
We have spent most of our lives in the Cartesian/Rectangular coordinate system, which
was invented by none other than René Descartes, who was because he thought. Some-
times, however, functions (and consequently integrals) become simpler when expressed in
different coordinate systems. There are many different coordinate systems. Here, we will
focus on one that was invented by Sir Isaac Newton – the polar coordinate system.

Polar Coordinates
Definition 15.23. (Polar point). Points in polar coordinate system
are defined by two parameters (r, θ), where r is the distance the point is
from the origin and θ is the angle between the polar axis (positive x-axis)
and the line that connects the point to the origin.

Since a picture is worth a thousand words, here is a picture describing what
was just described:

Figure 15.6: Point in Rectangular/Cartesian and Polar coordinates.

Naturally, there is a conversion from the Polar Coordinates to the Rectan-
gular Coordinate system and vice versa. That conversion looks like:

(x, y)R ← (r, θ)P (r, θ)P ← (x, y)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x

(15.14)
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Frequently Used Trigonometric Formulas

Figure 15.7: A definition of the angle and trigonometric functions.

sin2 x+ cos2 x = 1 1 + tan2 x = sec2 x

sin 2x = 2 sin x cosx cos 2x = cos2 x− sin2 x

sin2 x =
1− cos 2x

2
cos2 x =

1 + cos 2x

2

(15.15)

Figure 15.8

Sectors: arc length and area

Arc length: ℓ = rθ

Area: A =
1

2
rℓ =

1

2
r2θ

(15.16)
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15.3.1. Polar Rectangles and Iterated Integrals

Consider a polar rectangle:

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}.

Let ∆r = (b− a)/m and ∆θ = (β − α)/n, for some m,n, and

ri = a+ i∆r, i = 0, 1, · · · ,m,

θj = α + j∆θ, j = 0, 1, · · · , n.

Figure 15.9: Dividing the polar rectangle R = ([a, b] × [α, β])P : (left) polar subrectangles
and (right) zoom-in of Rij = ([ri−1, ri]× [θj−1, θj])P .

The area of Rij is

∆Aij =
1

2
r2i∆θ − 1

2
r2i−1∆θ =

1

2
(ri + ri−1)(ri − ri−1)∆θ = r∗i∆r∆θ, (15.17)

where r∗i = (ri + ri−1)/2.

Theorem 15.24. (Polar version of iterated integral). If f is contin-
uous on the polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β, where
0 ≤ β − α ≤ 2π, then

x

R

f(x, y)dA =

ˆ β

α

ˆ b

a

f(r cos(θ), r sin(θ)) rdrdθ. (15.18)

Note: 1 Do not forget the “r" before the drdθ!
2 It follows from Figure 15.9 that ∆Aij ≈ ∆r · ri∆θ = ri∆r∆θ.
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Problem 15.25. Evaluate
x

R

(3x + 4y2)dA, where R is the region in the

upper half-plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

Solution.

Ans: 15π/2

Problem 15.26. Find the volume of the solid bounded by the plane z = 0

and the paraboloid z = 1− x2 − y2.
Solution. Volume V =

x

D

(1− x2 − y2)dA, where D = {(x, y) | x2 + y2 ≤ 1}.

Ans: π/2



15.3. Double Integrals in Polar Coordinates 485

15.3.2. General Polar Regions

Theorem 15.27. (Polar version of (15.13), p. 474)
If f is continuous on a polar region of the form

D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)},

then
x

D

f(x, y)dA =

ˆ β

α

ˆ h2(θ)

h1(θ)

f(r cos(θ), r sin(θ))rdrdθ. (15.19)

Figure 15.10: A general polar region and the four-leaved rose.

Problem 15.28. Plot the four-leaved rose r = cos(2θ).
Solution. Hint : First draw a plot in the θr-coordinates and convert it to the xy-coordinates.
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Problem 15.29. Use a double integral to find the area enclosed by one
loop of the four-leaved rose r = cos(2θ).

Solution. A(D) =
x

D

dA =

ˆ π/4

−π/4

ˆ cos 2θ

0

rdrdθ.

Ans: π/8

Problem 15.30. Find the volume of the solid that lies under the paraboloid
z = x2 + y2, above the xy-plane, and inside the cylinder x2 + y2 = 2x.

• First, find what the polar region looks like.

– That is to say, translate x2+ y2 = 2x into polar coordinates and see
what that region looks like. (Also, you may refer to (x−1)2+y2 = 1.)

• Then, look at z = x2 + y2 as a polar function; use it as your integrand.
• Don’t forget the r in “rdrdθ”!

Solution.

Ans: 3
2
π
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Problem 15.31. (A variant of Problem 15.30)

Evaluate the double integral
ˆ 2

0

ˆ √2x−x2

0

√
x2 + y2dydx, by recognizing the

region and converting it to polar coordinates.
Solution. Hint : D = {θ = 0..π/2, r = 0..2 cos θ}

Ans: 16/9



488 Chapter 15. Multiple Integrals

Volume of n-Ball : The unit interval [−1, 1] can be rewritten as

B1
def
== {x | x2 ≤ 1} ⊂ R. (15.20)

Similarly, the unit circle and the unit sphere (of radius 1) read

B2
def
== {(x, y) | x2+y2 ≤ 1} ⊂ R2 and B3

def
== {(x, y, z) | x2+y2+z2 ≤ 1} ⊂ R3.

(15.21)
In general, an n-dimensional ball (or n-Ball) of radius r is defined as

Bn,r = {(x1, x2, · · · , xn) | x21 + x22 + · · ·+ x2n ≤ r2} ⊂ Rn. (15.22)

It is possible to define volume of n-Ball of radius r, Vn,r; in R it is length,
in R2 it is area, in R3 it is ordinary volume, and in Rn, n ≥ 4, it is called a
hypervolume. For example,

V1,r = V (B1,r) = 2r, V2,r = V (B2,r) = πr2, V3,r = V (B3,r) =
4

3
πr3. (15.23)

Note that Vn,r = Vn,1 · rn, n ≥ 1.

Challenge 15.32. Let Bn = Bn,1 and Vn = V (Bn,1). Use polar coordi-
nates to find Vn, the volume of the unit n-Ball Bn, n ≥ 4.

Solution. See the figure.

Figure 15.11: The unit n-Ball, Bn,1.

Vn =

ˆ 2π

0

ˆ 1

0

[
Vn−2

(√
1− r2

)n−2]
rdrdθ

= Vn−2

ˆ 2π

0

ˆ 1

0

(1− r2)(n−2)/2 rdrdθ

= Vn−2 · 2π ·
ˆ 1

0

(1− r2)(n−2)/2 r dr

Ans: Vn = 2π
n

Vn−2 . (You will solve this problem differently in P.6, p. 722.)

V1 = 2, V2 = π, V3 =
2π

3
V1 =

4π

3
, V4 =

2π

4
V2 =

π2

2
, · · ·
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Exercises 15.3
1. Use polar coordinates to evaluate the double integral, or the volume of the solid.

(a)
x

D

ex
2+y2 dA, where D is the region bounded by the semi-circle x =

√
1− y2 and the

y-axis.
(b) The solid that lies above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 8.

Ans: (a) (e− 1)π/2; (b) 32(
√
2−1)π
3

2. A swimming pool is circular with 60–ft diameter. The depth is constant along east-
west lines and increases linearly from 2 ft at the east end to 8 ft at the west end. Find
the volume of water in the pool, using a double integral in polar coordinates. Hint :
V =

s
D(5 +

x
10)dA, where D is the circle of radius 30 and centered at the origin.

3. Use polar coordinates to evaluate
x

Da

e−x2−y2 dA, (15.24)

where Da is the disk of radius a centered at the origin.
Ans: π(1− e−a2)

4. We may define the improper integral (over the entire plane R2)

I :=
x

R2

e−x2−y2 dA =

ˆ ∞

−∞

ˆ ∞

−∞
e−x2−y2 dxdy = lim

a→∞

x

Da

e−x2−y2 dA. (15.25)

(a) Use the result from the previous problem (Problem 3, Exercises 15.3) to conclude
ˆ ∞

−∞
e−x2

dx =
√
π. (15.26)

(b) Let σ > 0. Use the change of variable x = σt to evaluate
ˆ ∞

−∞
e−x2/σ2

dx. (15.27)
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15.4. Applications of Double Integrals

Objectives. Find the mass and center of mass of a planar lamina
and moments of inertia, using double integrals. Then, apply them for
probability and mean values.

Density and Mass

Figure 15.12

Let a lamina occupy a region D in xy-plane. Then its density is defined as

ρ(x, y) = lim
∆A→0

∆m

∆A
, (15.28)

where ∆m and ∆A the mass and the area of a small rectangle that contains
(x, y). Thus, the mass of the lamina over D approximates

m ≈
m∑
i=1

n∑
j=1

ρ(x∗ij, y
∗
ij)∆A.

By increasing the number of subrectangles, we obtain the total mass of the
lamina

m = lim
m,n→∞

m∑
i=1

n∑
j=1

ρ(x∗ij, y
∗
ij)∆A =

x

D

ρ(x, y) dA. (15.29)
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Problem 15.33. Find the mass of the triangular lamina with vertices
(0, 0), (2, 2), and (0, 4), given that the density at (x, y) is ρ(x, y) = 2x+ y.
Solution.

Ans: 40/3

Definition 15.34. The moment of a particle about an axis is the prod-
uct of its mass and its directed distance from the axis. Say, Mx = m · y,
My = m · x.

Theorem 15.35. The moments (first moments) of the entire lamina
about x- and y-axes:

Mx =
x

D

y ρ(x, y) dA, My =
x

D

x ρ(x, y) dA. (15.30)

When we define the center of mass (x, y) so that mx = My and my =
Mx, then

x =
My

m
=

1

m

s
D x ρ(x, y) dA, y =

Mx

m
=

1

m

s
D y ρ(x, y) dA. (15.31)
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Problem 15.36. (Revisit of Problem 15.33). Find the center of mass
for the triangular lamina with vertices (0, 0), (2, 2), and (0, 4), given that the
density at (x, y) is ρ(x, y) = 2x+ y.
Solution. We know m = 40/3.

Ans: (x, y) = (4/5, 11/5)
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Probability
Recall: The probability density function f of a continuous random
variable X is a function such that

f(x) ≥ 0, ∀x ∈ R, and
ˆ ∞
−∞

f(x) dx = 1.

The probability that X lies between a and b is

P (a ≤ X ≤ b) =

ˆ b

a

f(x) dx.

Definition 15.37. The joint density function of a pair of random
variables X and Y is a function f such that

f(x, y) ≥ 0, ∀ (x, y) ∈ R2, and
x

R2

f(x, y) dA = 1.

The probability that (X, Y ) lies in a region D is

P ((X, Y ) ∈ D) =
x

D

f(x, y) dA.

Problem 15.38. If the joint density function for X and Y is given by

f(x, y) =

{
k(3x− x2) (2y − y2), if (x, y) ∈ [0, 3]× [0, 2],

0, otherwise.

find the constant k. Then, find P (X ≤ 2, Y ≥ 1).
Solution.

Ans: k = 1/6; P (X ≤ 2, Y ≥ 1) = 10/27
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Expected Values of X and Y

Recall: If f is a probability density function of a random variable X,
then its mean is

µ =

ˆ ∞
−∞

x f(x) dx.

Definition 15.39. Let f(x, y) be a joint density function of random vari-
ables X and Y . We define the X-mean and Y -mean, also called the
expected values, of X and Y , to be

µ1 =
x

R2

x f(x, y) dA, µ2 =
x

R2

y f(x, y) dA.

Problem 15.40. Let f(x, y) =

{
4−2x2−2y2

3π , if x2 + y2 ≤ 1,

0, otherwise.

(a) Verify f is a joint density function.
(b) Find P (X ≤ 0, Y ≥ 0).
(c) Find the expected values of X and Y .

Solution.

Ans: (b) 1/4; (c) µ1 = µ2 = 0
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Exercises 15.4
1. Find the mass and center of mass of the lamina that occupies the region D and has the

given density function ρ.

(a) D is the triangle with vertices (0, 0), (4, 0), and (2, 2); ρ(x, y) = y

(b) D is the part of the disk x2 + y2 ≤ 4 in the first quadrant; ρ is proportional to its
distance from the origin Hint : Set ρ(x, y) = k

√
x2 + y2 and use polar coordinates for the

integrals.
Ans: (a) m = 8/3, (x, y) = (2, 1); (b) m = 4kπ/3, (x, y) = (3/π, 3/π)

2. CAS Use a computer algebra system (Maple, Mathematica, etc.) to find the mass and
center of mass of the lamina that occupies the region D and has the given density func-
tion.

(a) D = {(x, y) | 0 ≤ x ≤ ye−y, 0 ≤ y ≤ 1}; ρ(x, y) = (1 + x2) cos y
Ans: m ≈ 0.2167, (x, y) ≈ (0.1507, 0.5697)

(b) D is the region closed by the right loop of the four-leaved rose r = cos 2θ (as shown
in Figure 15.10 on page 485); ρ(x, y) =

√
x2 + y2

3. Suppose X and Y are random variable with joint density function

f(x, y) =

{
k(x+ 1)y, if 0 ≤ x ≤ 2, 0 ≤ y ≤ 1,

0, otherwise.

(a) Find the value of the constant k.
(b) Find P (x ≤ 1, y ≤ 1)

(c) Find P (x− y ≥ 1)

(d) Find X-mean and Y -mean.
Ans: (a) k = 1/2; (c) 11/48
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15.5. Surface Area

Figure 15.13

We may define the surface area of
S to be

A(S) = lim
m,n→∞

m∑
i=1

n∑
j=1

∆Tij, (15.32)

where
∆Tij = |a× b|.

Here,

a = ⟨∆x, 0, fx(xij)∆x⟩ ,

b = ⟨0,∆y, fy(xij)∆y⟩ .

Since

a× b = det

 i j k

∆x 0 fx∆x

0 ∆y fy∆y

 = ⟨−fx,−fy, 1⟩ ∆x∆y, (15.33)

we have (∆A = ∆x∆y)

∆Tij = |a× b| =
√

f 2
x + f 2

y + 1∆A. (15.34)

Definition 15.41. The surface area of S with z = f(x, y), (x, y) ∈ D,
where ∇f is continuous, is

A(S) =
x

D

√
fx(x, y)2 + fy(x, y)2 + 1 dA. (15.35)

Recall: For y = f(x), x ∈ [a, b], the arc length is obtained as

L =

ˆ b

a

√
1 + [f ′(x)]2 dx. (15.36)

Note: The surface area will be considered again when we learn Para-
metric Surfaces and Their Areas; see §16.6.2.
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Problem 15.42. Find the area of the part of the paraboloid z = x2+y2 that
lies under the plane z = 9.
Solution. (See Problem 16.89 on p. 588.)

Ans: π
6
(37
√
37− 1)

Problem 15.43. Find the area of the part of the surface z = xy that lies
within the cylinder x2 + y2 = 1.
Solution.

Ans: 2π
3
(2
√
2− 1)
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Exercises 15.5
1. Find the area of the surface.

(a) The part of the plane 2x+ y + 5z = 10 that lies in the first octant
(b) The part of the sphere x2 + y2 + z2 = 2 that lies above the plane z = 1

Ans: (b) 2
√
2π (
√
2− 1)

2. Find the area of the finite part of the paraboloid z = x2 + y2 cut of by the plane z = 9.

3. CAS Use your calculator (or, a computer algebra system) to estimate the area of the
surface correct to four decimal places.

The part of the surface z = sin(x2 + y2) that lines in the cylinder x2 + y2 = 4.

Hint : If you use Maple for numeric integration for
´ b
a f(x) dx, the command looks:

int(f(x),x=a..b,numeric)
Ans: 27.7291
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15.6. Triple Integrals

The Limit of Riemann Sums

Figure 15.14: A rectangular box.

• Let’s begin with a function of three variables defined on a rectangu-
lar box:

w = f(x, y, z), (x, y, z) ∈ B := [a, b]× [c, d]× [r, s].

• In defining a triple integral, the first step is to divide B into sub-boxes.

• For some positive integers ℓ,m, n > 0,

∆x =
b− a

ℓ
, ∆y =

d− c

m
, ∆z =

s− r

n
.

Let Bijk be the (ijk)-th sub-box:

Bijk = [xi−1, xi]× [yj−1, yj]× [zℓ−1, zℓ];

each sub-box has volume ∆V = ∆x∆y∆z.

Definition 15.44. The triple integral of f over the box B is

y

B

f(x, y, z) dV = lim
ℓ,m,n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(x∗ijk)∆V. (15.37)

where x∗ijk = (x∗i , y
∗
j , z
∗
k) ∈ Bijk.
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Theorem 15.45. (Fubini’s Theorem for Triple Integrals). If f is
continuous on B = [a, b]× [c, d]× [r, s], then

y

B

f(x, y, z) dV =

ˆ b

a

ˆ d

c

ˆ s

r

f(x, y, z) dz dy dx; (15.38)

the integration order can be changed for five other choices.

Problem 15.46. Evaluate the triple integral
t

B xyz2 dV , where B =

[0, 1]× [−1, 2]× [0, 3].
Solution.

Ans: 27/4

Triple Integral over a General Bounded Region E :

Strategy 15.47. To evaluate a given triple integral over E:
1. Recognize (visualize in your brain) the domain E.
2. Separate the domain, e.g., E = D × [u1(x, y), u2(x, y)], D ⊂ R2.

Then,
t

E f(x, y, z) dV =
s

D

´ u2(x,y)

u1(x,y)
f(x, y, z) dz dA.

The principle: You must find a scheme to cover the whole domain
E (without missing, without duplicating).

Let’s go on a journey!!
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Problem 15.48. Evaluate
t

E z dV , where E is the solid tetrahedron bounded
by the four planes x = 0, y = 0, z = 0, and x+ y + z = 1.
Solution. E = D × [0, 1 − x − y], where D is the unit right triangle in the
xy-plane.

Ans: 1/24
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Problem 15.49. Evaluate
t

E

√
x2 + y2 dV , where E is the region bounded

by the paraboloid z = x2 + y2 and the plane z = 4.
Solution. E = D × [x2 + y2, 4], where D is the disk of center the origin and
radius 2.

Ans: 128π/15
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Applications of Triple Integrals

Claim 15.50. Let f(x, y, z) = 1 for all points in E. Then triple integral
of f over E represents the volume of E:

V (E) =
y

E

1 dV. (15.39)

Problem 15.51. Use the triple integral to find the volume of the tetrahe-
dron T bounded by the four planes x = 0, y = x, z = 0, and x+ y + z = 2.
Solution.

Ans: 2/3
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Changing the Order of Integration
Problem 15.52. Write a couple of other iterated integrals that are equiv-
alent to ˆ 1

0

ˆ 1

y

ˆ y

0

f(x, y, z) dx dz dy

Hint : Change the order for adjacent two variables in the integral, keep-
ing the other the same. For example, start with x↔ z or z ↔ y.

Solution.
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Exercises 15.6
1. Evaluate the iterated integral.

(a)
ˆ 2

0

ˆ 1

0

ˆ lnx

0

xe−y dy dx dz (b)
ˆ π

0

ˆ 2

0

ˆ √
4−z2

0

z cosx dy dz dx

Ans: (a) −1; (b) 0

2. Evaluate the triple integral.

(a)
y

E

ez/x dV , E = {(x, y, z) | 0 ≤ x ≤ 1, x ≤ y ≤ 1, 0 ≤ z ≤ x}

(b)
y

E

y dV , E is determined by the paraboloid y = x2 + z2 and the plane y = 4

Ans: (a) (e− 1)/6; (b) 64π/3

3. Fill the lower and upper bounds appropriately for the triple integral.

ˆ 1

0

ˆ 1

z

ˆ 1

y

f(x, y, z) dx dy dz =

ˆ 2

1

ˆ 4

3

ˆ 6

5
f(x, y, z) dx dz dy

=

ˆ 8

7

ˆ 10

9

ˆ 12

11
f(x, y, z) dz dx dy

Ans: 5 : y; 6 : 1; 7 : 0; 8 : 1 11 : 0; 12 : y
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15.7. Triple Integrals in Cylindrical Coordinates

Recall: (Equation (15.14)). The conversion between the Polar Coor-
dinates and the Rectangular Coordinate system reads

(x, y)R ← (r, θ)P (r, θ)P ← (x, y)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x

(15.40)

Definition 15.53. In the cylindrical coordinate system, a point P
in the 3D space is represented as an ordered triple (r, θ, z), where r and
θ are polar coordinates of the projection of P onto the xy-plane and z is
the directed distance from the xy-plane to P .

Definition 15.54. The conversion between the Cylindrical Coordi-
nates and the Rectangular Coordinate system gives

(x, y, z)R ← (r, θ, z)C (r, θ, z)C ← (x, y, z)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x
z = z z = z

(15.41)

Note: The triple integral with a Cylindrical Domain E can be carried
out by first separating the domain like

E = D × [u1(x, y), u2(x, y)], where D is a polar region.
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Problem 15.55. (a) Plot the point with the cylindrical coordinates (2, 2π3 , 1)C
and find its rectangular coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,−3, 7)R.
Solution.

Ans: (a) (−1,
√
3, 1)R; (b) (3

√
2,−π/4, 7)C .

Problem 15.56. Evaluate
ˆ 2

−2

ˆ √4−x2

−
√
4−x2

ˆ 2

√
x2+y2

(x2 + y2) dz dy dx.

Hint. Change the triple integral into cylindrical coordinates.
Solution.

Ans: 16π/5
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Problem 15.57. Find the volume of the solid that lies within both the
cylinder x2 + y2 = 1 and the sphere x2 + y2 + z2 = 4.
Solution.

Ans: 4π
3
(8− 3

√
3)
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Exercises 15.7
1. Identify the surface whose equation is given.

(a) r2 + 4z2 = 4 (b) r = 2 cos θ

Hint : (b) It can be rewritten as r2 = 2r cos θ, which in turn reads x2 + y2 = 2x.

2. Evaluate
ˆ 2

0

ˆ √
4−x2

−
√
4−x2

ˆ 2

√
x2+y2

x dz dy dx, by changing the triple integral into cylindrical

coordinates.
Ans: 8/3

3. Use cylindrical coordinates to find the volume of the solid E that is enclosed by the cone
z =

√
x2 + y2 and the sphere x2 + y2 + z2 = 2.

Ans: 4
3π(
√
2− 1)

4. Use cylindrical coordinates to evaluate
y

E

y dV , where E is the solid that lies between

the cylinders x2+y2 = 1 and x2+y2 = 9, above the xy-plane, and below the plane z = y+3.
Ans: 20π
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15.8. Triple Integrals in Spherical Coordinates

Figure 15.15: Spherical coordinates of P .

Definition 15.58. The spher-
ical coordinates (ρ, θ, ϕ) of a
point P is shown in Figure 15.15,
where ρ = |OP | =

√
x2 + y2 + z2,

θ is the angle from the x-axis to
the line segment OP ′, and ϕ is the
angle between the positive z-axis
and the line segment OP .

Note: By observing the definition, we can see the following inequalities:

ρ ≥ 0 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

For a convenient conversion formula, consider first
z = ρ cosϕ, r = ρ sinϕ, (15.42)

then use
x = r cos θ, y = r sin θ.

Definition 15.59. The conversion between the Spherical Coordi-
nates and the Rectangular Coordinate system gives

(x, y, z)R ← (ρ, θ, ϕ)S (ρ, θ, ϕ)S ← (x, y, z)R

x = r cos θ = ρ sinϕ cos θ ρ2 = x2 + y2 + z2

y = r sin θ = ρ sinϕ sin θ cosϕ =
z

ρ

z = ρ cosϕ cos θ =
x

ρ sinϕ

(15.43)
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Problem 15.60. (a) Plot the point with the spherical coordinates (2, π/4, π/3)S
and find its rectangular coordinates.
(b) Find spherical coordinates of the point with rectangular coordinates
(0, 2
√
3,−2)R.

Solution.

Ans: (a) (
√
3/2,

√
3/2, 1)R; (b) (4, π/2, 2π/3)S

Figure 15.16: A small spherical wedge Eijk,
of volume ∆Vijk ≈ r ρ∆ρ∆θ∆ϕ.

Triple Integral with Spherical Coordinates
In the spherical coordinate system, the counter part of a rectangular box is
a spherical wedge

E = {(ρ, θ, ϕ) ∈ R3 | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d},

where a ≥ 0, β − α ≤ 2π, and d− c ≤ π. We divide smaller spherical wedges
{Eijk} by means of equally spaced ρi, θj, ϕk. Figure 15.16 shows that Eijk is
approximately a rectangular box, of which the volume approximates

∆Vijk ≈ ∆ρ · r∆θ · ρ∆ϕ = rρ∆ρ∆θ∆ϕ = ρ2 sinϕ∆ρ∆θ∆ϕ. (15.44)
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Theorem 15.61. (Triple Integral on Spherical Wedges).
y

E

f(x, y, z) dV =

ˆ d

c

ˆ β

α

ˆ b

a

f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)

× ρ2 sinϕ dρ dθ dϕ,
(15.45)

where E is a spherical wedge given by

E = {(ρ, θ, ϕ) ∈ R3 | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d}.

Note: The scaling factor ρ2 sinϕ = rρ

Problem 15.62. Evaluate
y

B

e(x
2+y2+z2)

3/2

dV , where B is the unit ball

B =
{
(x, y, z) | x2 + y2 + z2 ≤ 1

}
.

Solution.

Ans: 4
3
π(e− 1)
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Theorem 15.63. (Spherical Fubini’s Theorem). We can extend The-
orem 15.61 to regions defined by

E = {(ρ, θ, ϕ) ∈ R3 | g1(θ, ϕ) ≤ ρ ≤ g2(θ, ϕ), α ≤ θ ≤ β, c ≤ ϕ ≤ d},

in such a way:
y

E

f(x, y, z) dV =

ˆ d

c

ˆ β

α

ˆ g2(θ,ϕ)

g1(θ,ϕ)
f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕdρ dθ dϕ. (15.46)

Problem 15.64. Use spherical coordinates to find the volume of the solid
that lies above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z.

Solution. Sphere: ρ2 = ρ cosϕ⇒ ρ = cosϕ.
Cone: ρ cosϕ = r = ρ sinϕ⇒ cosϕ = sinϕ. So, ϕ = π/4. Therefore,

V =

ˆ π/4

0

ˆ 2π

0

ˆ cosϕ

0

ρ2 sinϕ dρ dθ dϕ

Figure 15.17

Ans: π/8
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Exercises 15.8
1. Write the equation in spherical coordinates.

(a) x2 + y2 + z2 = 1

(b) z = x2 + y2
(c) 2x2 + 2y2 + z2 = 4

(d) z = x2 − y2

Hint : (c) 2x2 + 2y2 + z2 = (x2 + y2 + z2) + (x2 + y2)

2. Sketch the solid whose volume is given by the integral; evaluate the integral.

(a)
ˆ π/4

0

ˆ π

0

ˆ 2

0

ρ2 sinϕ dρ dθ dϕ (b)
ˆ π/2

0

ˆ 2π

0

ˆ cosϕ

0

ρ2 sinϕ dρ dθ dϕ

Ans: (b) π/6

3. Use spherical coordinates to to find the volume of the solid that lies above the cone
z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 1.

4. Use spherical coordinates to evaluate
y

B

x e(x
2+y2+z2)

2

dV , where B is the portion of the

unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant.
Ans: (e− 1)π/16
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15.9. Change of Variables in Multiple Integrals

15.9.1. The Key Idea

We have done changes of variables several times in the past. Dating
as far back when we learned integration with the “u-substitution", we
started using changes of variables (we made u = g(x).) Indeed,ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du, g : [a, b]→ [g(a), g(b)]. (15.47)

Another way of the change of variables isˆ b

a

f(x) dx =

ˆ d

c

f(x(u))
dx

du
du, (15.48)

where x = x(u) : [c, d]→ [a, b].

Example 15.65. Evaluate
´ 2

0 xex
2

dx.

Solution. 1 u = x2 ⇒ du = 2 x dx ⇒ x dx =
du

2
; u(0) = 0, u(2) = 4.

Thereforeˆ 2

0

xex
2

dx =

ˆ 4

0

eu
du

2
=

1

2

ˆ 4

0

eu du =
1

2
eu
∣∣∣4
0
=

1

2
(e4 − 1).

2 Another way: x = x(u) =
√
u ⇒ dx

du
=

1

2
√
u

. Therefore

ˆ 2

0

xex
2

dx =

ˆ 4

0

√
u eu

1

2
√
u
du =

1

2

ˆ 4

0

eu du =
1

2
(e4 − 1).

Example 15.66. A change of variable is also useful in multiple integrals,
as in double integrals in polar coordinates. For a polar region R, we have
used the conversion:

x = r cos θ, y = r sin θ,

which is a transformation from the rθ-plane to the xy-plane. Then,
x

R

f(x, y) dA =
x

Q

f(r cos θ, r sin θ) r dr dθ, (15.49)

where Q is the region in the rθ-plane.
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Goal: The goal of this section is to write a general form for a change of
variables, which turns the integral easier.

Definition 15.67. A change of variables is a transformation T : Q →
R (from the uv-plane to the xy-plane), T (u, v) = (x, y), where x and y are
related to u and v by the equations

x = g(u, v), y = h(u, v). [or, r(u, v) = ⟨g(u, v), h(u, v)⟩]

We usually take these transformations to be C1-Transformation,
meaning g and h have continuous first-order partial derivatives, and
one-to-one.

Figure 15.18: Transformation: R = T (Q), the image of T .

Problem 15.68. A transformation is defined by r(u, v) = ⟨2u− v, u+ v⟩ .
Find the image of the unit square Q = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.
Solution.

Ans: A rectangle of vertices (0, 0), (2, 1), (1, 2), (−1, 1).
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Figure 15.19: A small rectangle in the uv-plane and its image of T in the xy-plane.

Now, let’s see how a change of variables affects a double integral.

• See Figure 15.19, where T : Q→ R given by

r(u, v) = ⟨x, y⟩ = ⟨g(u, v), h(u, v)⟩ . (15.50)

• The tangent vectors at r(u0, v0) w.r.t the u- and v-directions are

ru(u0, v0) = ⟨gu, hu⟩ (u0, v0), rv(u0, v0) = ⟨gv, hv⟩ (u0, v0).

• We can approximate the image region R = T (Q) by a parallelogram
determined by the scaled tangent vectors. Therefore,

∆A = A(R) ≈ |(ru∆u)× (rv∆v)| = |ru × rv|∆u∆v. (15.51)

• Computing the cross product, we obtain

ru × rv = det

 i j k

xu yu 0

xv yv 0

 = det

[
xu yu
xv yv

]
k (15.52)

Definition 15.69. The Jacobian of T : x = g(u, v), y = h(u, v) is

∂(x, y)

∂(u, v)
def
== det

[
xu xv
yu yv

]
= xu yv − xv yu. (15.53)
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Summary 15.70. For a differentiable transformation T : Q → R given
by r(u, v) = ⟨x(u, v), y(u, v)⟩,

∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣∆u∆v. (15.54)

Theorem 15.71. Suppose that T is a C1-transformation whose Jaco-
bian is nonzero, and suppose that T maps a region Q in the uv-plane onto
a region R in the xy-plane. Let f be a continuous function on R. Suppose
also that T is an one-to-one transformation except perhaps along the
boundary of the regions. Then

x

R

f(x, y) dA =
x

Q

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv. (15.55)

Example 15.72. (Transformation to polar coordinates). The transforma-
tion from Q = [a, b] × [α, β] in the rθ-plane to R in the xy-plane is given
by

T : x = g(r, θ) = r cos θ, y = h(r, θ) = r sin θ.

The Jacobian of T is

∂(x, y)

∂(r, θ)
= det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r.

Thus Theorem 15.24 (p. 483) gives
x

R

f(x, y) dA =
x

Q

f(r cos(θ), r sin(θ))

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣ dr dθ
=

ˆ β

α

ˆ b

a

f(r cos(θ), r sin(θ)) r dr dθ.

(15.56)
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15.9.2. Multiple Integrals by Change of Variables

Summary 15.73. In order to evaluate the double integral
s

R f(x, y)dA
by change of variables, you should first find a region Q and an one-to-
one transformation T such that

T (Q) = R. (15.57)

We will call the region Q a predomain of R. The scaling factor from
the predomain Q to the domain R is the absolute value of the deter-
minant of the Jacobian matrix.∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ .
Problem 15.74. Evaluate

s

R

(x+y) dA, where R is the quadrilateral region

with vertices given by (0, 0), (3,−3), (6, 0), and (3, 3), using the transforma-
tion x = u+ 3v and y = u− 3v.

Solution.

Ans: 54
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Problem 15.75. Evaluate the integral
s

R

e(x+y)/(x−y) dA, where R is the

trapezoidal region with vertices (1, 0), (2, 0), (0,−2), and (0,−1).
Solution.

Ans: 3
4
(e− e−1)
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Problem 15.76. Evaluate
s

R sin(x2 + 4y2) dA, where R is the region in the
first quadrant bounded by x2 + 4y2 = 4.
Solution. Consider the transformation: x = 2u, y = v.

Ans: π
8
(1− cos 4)
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Triple Integrals

Definition 15.77. (Higher order Jacobian). The Jacobian of T ,
given by

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w),

is the following determinant:

∂(x, y, z)

∂(u, v, w)
= det

 xu xv xw
yu yv yw
zu zv zw

 . (15.58)

Theorem 15.78. Under hypotheses similar to those in Theorem 15.71,
we have the following formula for triple integrals:

y

R

f(x, y, z) dV =
y

Q

f (x (u, v, w) , y (u, v, w) , z (u, v, w))

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw. (15.59)

Self-study 15.79. Show that when dealing with spherical coordinates,

dV = ρ2 sinϕ dρ dθ dϕ. (15.60)

Recall. x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, and z = ρ cosϕ.
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Exercises 15.9
1. Use the given transformation to evaluate the integral.

(a)
x

R

y2 dA, where R is the region bounded by 4x2 + 9y2 = 36; (x, y) = (3u, 2v)

(b)
x

R

(3x− y) dA, where R is the triangular region with the three vertices (0, 0), (2, 1),

and (1, 3); (x, y) = (2u+ v, u+ 3v)

Hint : (a)
s

R y2 dA =
s

Q 4v2 · 6 du dv, where Q = {(u, v) | u2 + v2 ≤ 1}
Hint : (b)

s
R(3x− y) dA =

s
Q 5u · 5 du dv; figure out Q by yourself

Ans: (a) 6π; (b) 25/6

2. Make an appropriate change of variables to evaluate the integral
x

R

sin(x2 + 4y2) dA,

where R is the region in the first quadrant bounded by the ellipse x2 + 4y2 = 1.

3. Make an appropriate change of variables to evaluate
x

R

2(x− y)ex
2−y2dA, where R is the

rectangle enclosed by the lines: x− y = 0, x− y = 1, x+ y = 0, x+ y = 2.

4. Make an appropriate change of variables to evaluate the integral
x

R

ex+y dA, where R is

given by the inequality |x|+ |y| ≤ 1.
Ans: e− e−1
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CHAPTER 16
Integrals and Vector Fields

In this chapter, we study the calculus of vector fields. In particular, you will
learn

Subjects Applications

Line integral Work done by a force vector field
in moving an object along a curve

Surface integral The rate of fluid flow across a surface

Fundamental theorem Green’s theorem, Stokes’s theorem,
of calculus, in 2/3-D and Divergence theorem
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16.1. Vector Fields

16.1.1. Definitions

Definition 16.1. If D is a region in R2 , a (2D) vector field on D is
a function F that assigns to each point (x, y) ∈ D a two-dimensional
vector F (x, y). If D is a solid region in R3, a (3D) vector field on D is
a function F that assigns to each point (x, y, z) ∈ D a three-dimensional
vector F (x, y, z).

Expressions for vector fields:

F (x, y) = ⟨P (x, y), Q(x, y)⟩
= P (x, y) i+Q(x, y) j,

F (x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩
= P (x, y, z) i+Q(x, y, z) j+R(x, y, z)k.

Example 16.2. F (x, y) = ⟨x, x − y⟩ is a vector field in R2. G(x, y, z) =

x2 i+ y2 j+ z2 k is a vector field in R3. Let’s sketch F .
(x, y) F (x, y) = ⟨x, x− y⟩

(0, 0)

(1, 0)

(1, 1)

(0, 1)
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Problem 16.3. Let F (x, y) = ⟨−y, x⟩. Describe F by sketching some of the
vectors F (x, y).
Solution.
(x, y) F (x, y) = ⟨−y, x⟩

(1, 0)

(0, 1)

(−1, 0)

(0,−1)

Note:

• x · F (x) = ⟨x, y⟩ · ⟨−y, x⟩ = −xy + xy = 0.
Thus, F (x) = ⟨−y, x⟩ is perpendicular to the position vector x.

• |F (x)| =
√
y2 + x2 = |x|.

Therefore, F (x) has the same magnitude as x.

Figure 16.1: The vector field F = ⟨−y, x⟩, showing directions only.
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Vector fields in R3

Problem 16.4. Sketch the vector field on R3 given by F (x, y, z) = z k =

⟨0, 0, z⟩.

Example 16.5.

Figure 16.2: Airfoil simulation, showing the velocity field.
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16.1.2. Conservative Vector Fields and Potential Func-
tions

• Suppose that f(x, y) is a differentiable function on D. Earlier we de-
fined the gradient ∇f of f :

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ = fx i+ fy j.

We now see that ∇f is a two-dimensional vector field on D.
• Similarly, if f(x, y, z) is a differentiable function on a solid D ⊂ R3,

then ∇f(x, y, z) is a three-dimensional vector field on D.

From now on, we will refer to the gradient of a function f as the gradient
vector field of f .

Problem 16.6. Find the gradient vector field of

f(x, y) = x2y − y3.

Solution.

Ans: ⟨2xy, x2 − 3y2⟩

Definition 16.7. A vector field F is conservative if there is a differ-
entiable function f such that

∇f = F .

The function f is called a potential function of F , or simply potential.

Claim 16.8. Gradient fields are, always, conservative.
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Problem 16.9. (Continuation of Problem 16.6). Let F (x, y) = ⟨2xy, x2−
3y2⟩. Then F is conservative.
Solution. Let’s try to find f such that ∇f = F .

Ans: f(x, y) = x2y − y3 +K

Note: Not every vector field is conservative, and it is not difficult to give an
example of a vector field that is nonconservative.

Example 16.10. Show that the vector field F (x, y) = (x2 + y) i + y3 j is not
conservative.
Proof. Assume that F is conservative. Then, there exists f such that
∇f = ⟨fx, fy⟩ = F :

fx = x2 + y, fy = y3.

Then
fxy = 1 and fyx = 0. (16.1)

Since both mixed partials are constants, they are continuous everywhere.
Thus, by the Clairaut’s theorem, we must have

fxy = fyx.

However, in (16.1), they are not equal. Contradiction!

We will study properties of conservative vector fields in Section 16.3
below, in detail.
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Problem 16.11. At time t = 1, a particle is located at (1, 3). When it moves
in a velocity field v(x, y) = ⟨xy − 2, y2 − 10⟩, find its approximate location at
t = 1.05.
Solution. Clue: r(t) ≈ r(t0) + r′(t0) · (t− t0), where r′ is the velocity vector.

Ans: ⟨1.05, 2.95⟩
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Exercises 16.1
1. Match the vector fields F with the plots labeled (I)–(IV). Give reasons for your choices.

(a) F = ⟨ex, 5y⟩
(b) F = ⟨sin(x+ y), x⟩

(c) F = ⟨x+ y, y⟩
(d) F = ⟨x,−y⟩

(I) (II)

(III) (IV)

Figure 16.3: Maple fieldplot.

Hint : Let’s see Figure (III), for example; arrows are directing up for x > 0 and down for x < 0,
which implies that the second component of F is closely related to x. Now, what can you say
about Figure (IV)? Arrows never look the west direction, which implies that the first component
of F is nonnegative.

2. CAS Use a CAS (fieldplot in Maple and PlotVectorField in Mathematica) to plot

F (x, y) = (y3 − xy2) i+ (2xy − 2x2) j.

Explain the appearance by finding the set of points (x, y) such that F (x, y) = 0. (Attach
the figure.)
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3. Find the gradient vector field ∇f and sketch it.

(a) f(x, y) =
(x− y)2

2
(b) f(x, y) =

x3 − y3

3

4. Match the functions f with their gradient vector fields plotted with labels (I)–(IV). Give
reasons for your choices.

f(x, y) = xey(a) f(x, y) = x2 + y2(b)

f(x, y) = x(x− 2y)(c) f(x, y) = cos(x2 + y2)(d)

(I) (II)

(III) (IV)

Figure 16.4: Maple fieldplot for ∇f .

Ans: (a) II
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16.2. Line Integrals

Recall: In single-variable calculus, if a force f(x) is applied to an object
to move it along a straight line from x = a to x = b, then the amount
of work done is given by the integral

W =

ˆ b

a

f(x) dx
(
= lim

n→∞

n∑
i=1

f(x∗i )∆x
)
. (16.2)

Up to this point, our intervals of integration were always either bijective
function or a closed interval [a, b]. In this section, we will be integrating
over a parametrized curve instead of a nice interval as before.

Goal: To integrate functions along a curve, as opposed to along an inter-
val.

Definition 16.12. A plane curve C is given by the vector equation

r(t) = ⟨x(t), y(t)⟩, a ≤ t ≤ b, (16.3)

or equivalently, by the parametric equations

x = g(t), y = h(t), a ≤ t ≤ b. (16.4)

Recall: You have learned

∆si =

√
∆x2i +∆y2i =

√(∆xi
∆t

)2
+
(∆yi
∆t

)2
∆t

and therefore

ds = lim
n→∞

∆si =

√(dx
dt

)2
+
(dy
dt

)2
dt

=
√

(x′(t))2 + (y′(t))2 dt = |r′(t)| dt.

Thus the arc length of C can be computed as

L =

ˆ
C

ds =

ˆ b

a

√
(x′(t))2 + (y′(t))2 dt.
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16.2.1. Line Integrals for Scalar Functions in the Plane

Now, suppose that a force is applied to move an object along a path
traced by a curve C. If the amount of force is given by f(x, y), then the
amount of work done must be given by the integral

W =

ˆ
C

f(x, y) ds, (16.5)

where s is the arc length element, i.e., ds =
√
dx2 + dy2.

Figure 16.5: A function defined on a curve C.

Assumption. The curve C is smooth, i.e., r′(t) is continuous and r′(t) ̸= 0.

Definition 16.13. If f is defined on a smooth curve C given by (16.3),
then line integral of f along C is

ˆ
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆si, (16.6)

if this limit exists. Here ∆si =
√
∆x2i +∆y2i .
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The line integral defined in (16.6) can be rewritten as

´
C f(x, y) ds =

ˆ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

=

ˆ b

a

f(x(t), y(t)) |r′(t)| dt.
(16.7)

Problem 16.14. Evaluate
ˆ
C

(2 + x2y)ds, where C is upper half of the unit

circle x2 + y2 = 1.
Solution. Clue: Find the parametric equation for C and then follow the formula (16.7).

Ans: 2π + 2
3
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Definition 16.15. C is a piecewise smooth curve if it is a union of a
finite number of smooth curves C1, C2, · · · , Cn. That is,

C = C1 ∪ C2 ∪ · · · ∪ Cn.

In the case, we define the integral of f along C as the sum of the inte-
grals of f along each of the smooth pieces of C:ˆ

C

f(x, y) ds =

ˆ
C1

f(x, y) ds+

ˆ
C2

f(x, y) ds+ · · ·+
ˆ
Cn

f(x, y) ds. (16.8)

Problem 16.16. Evaluate
ˆ
C

2x ds, where C consists of the arc C1 of the

parabola y = x2 from (0, 0) to (1, 1) followed by the vertical line segment C2

from (1, 1) to (1, 2).

Solution. Clue: Begin with parametric representation of C1 and C2. For example,

C1 : x = t, y = t2, 0 ≤ t ≤ 1 and C2 : x = 1, y = t, 1 ≤ t ≤ 2.

Ans: 1
6
(5
√
5− 1) + 2
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Application to Physics: To compute the mass of a wire that is shaped
like a plane curve C, where the density of the wire is given by a function
ρ(x, y) defined at each point (x, y) on C, we can evaluate the line integral

m =

ˆ
C

ρ(x, y) ds. (16.9)

Thus the center of mass of the wire is the point (x, y), where

x =
1

m

ˆ
C

xρ(x, y) ds, y =
1

m

ˆ
C

yρ(x, y) ds. (16.10)

Problem 16.17. A wire takes the shape of the semicircle, x2+y2 = 1, y ≥ 0,
and its density is proportional to the distance from the line y = 1. Find the
center of mass of the wire.
Solution. Clue: First parametrize the wire and use ρ(x, y) = k(1− y).

Ans: (x, y) =
(
0, 4−π

2(π−2)
≈ 0.38

)
, where m = k(π − 2)
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16.2.2. Line Integrals with Respect to Coordinate Vari-
ables

Definition 16.18. Line integrals of f along C with respect to x
and y are defined as

ˆ
C

f(x, y) dx = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆xi,

ˆ
C

f(x, y) dy = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆yi.

(16.11)

Note that

x = x(t), y = y(t), ⇒ dx = x′(t)dt, dy = y′(t)dt.

Thus ˆ
C

f(x, y) dx =

ˆ b

a

f(x(t), y(t))x′(t) dt,
ˆ
C

f(x, y) dy =

ˆ b

a

f(x(t), y(t))y′(t) dt.

(16.12)

Remark 16.19. It frequently happens that line integral with respect x
and y occur together. When this happens, it is customary to abbreviate
by writingˆ

C

P (x, y) dx+

ˆ
C

Q(x, y) dy =

ˆ
C

P (x, y) dx+Q(x, y) dy.

Let F (x, y) = ⟨P (x, y), Q(x, y)⟩ and r = ⟨x, y⟩ = ⟨x(t), y(t)⟩ represent the
curve C. Then, since dr = ⟨dx, dy⟩, we can rewrite the above as

ˆ
C

P (x, y) dx+Q(x, y) dy =

ˆ
C

F · dr, (16.13)

which is a line integral of vector fields. We will consider it in detail in
§ 16.2.3 below (p. 544).
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Problem 16.20. Evaluate
ˆ
C

y2 dx+ x dy, where{
(a) C = C1 : the line segment from (−5,−3) to (0, 2)

(b) C = C2 : the arc of x = 4− y2 from (−5,−3) to (0, 2)

Solution. Clue: C1 : r(t) = (1− t)r0 + tr1, 0 ≤ t ≤ 1 and C2 : x = 4− t2, y = t, −3 ≤ t ≤ 2.

Ans: (a) −5
6

(b) 405
6
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Orientation of curves: It is important to note that the value of line inte-
grals with respect to x or y (or z, in 3-D) depends on the orientation of C,
unlike line integrals with respect to the arc length s. If the curve is traced
in reverse (that is, from the terminal point to the initial point), then the
sign of the line integral is reversed as well. We denote by −C the curve
with its orientation reversed. We then haveˆ

−C
P dx = −

ˆ
C

P dx,

ˆ
−C

Qdy = −
ˆ
C

Qdy. (16.14)

Figure 16.6: Curve C and its reversed curve −C.

Note: For line integrals with respect to the arc length s,ˆ
−C

f ds =

ˆ
C

f ds. (16.15)

Problem 16.21. (Variant of Problem 16.20(a)): The reversed curve −C1

is the line segment from (0, 2) to (−5,−3):

r(t) = (1− t)⟨0, 2⟩+ t⟨−5,−3⟩ = ⟨−5t,−5t+ 2⟩, 0 ≤ t ≤ 1.

Thus we must have
ˆ
−C1

y2 dx+ x dy =
5

6
.

Solution.
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Line Integrals in Space
First, the definition for the line integral (with respect to arc length) can be
generalized as follows.

Definition 16.22. Suppose that C is a smooth space curve given by

r(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b.

Then the line integral of f along C is defined in a similar manner as
in Definition 16.13:

ˆ
C

f(x, y, z) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i , z
∗
i )∆si. (16.16)

It can be evaluated using a formula similar to (16.7):

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt

=

ˆ b

a

f(x(t), y(t), z(t))
√

(x′)2 + (y′)2 + (z′)2 dt.

(16.17)

Note:

• When f(x, y, z) ≡ 1,ˆ
C

ds =

ˆ b

a

|r′(t)| dt = L : arc length

• When F = ⟨P,Q,R⟩,ˆ
C

F · dr =
ˆ
C

P dx+Qdy +Rdz.
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Problem 16.23. Evaluate
ˆ
C

y sin z ds, where C is the circular helix given

by r(t) = ⟨cos t, sin t, t⟩, 0 ≤ t ≤ 2π.
Solution. Hint : You may use one of formulas: sin2 t = (1−cos 2t)/2, cos2 t = (1+cos 2t)/2.

Ans:
√
2π

Problem 16.24. Evaluate
ˆ
C

z dx + x dy + y dz, where C is given by x =

t2, y = t3, z = t2, 0 ≤ t ≤ 1.

Solution.

Ans: 3
2
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16.2.3. Line Integrals of Vector Fields

Recall: Earlier we have found that the work done by a constant force
F , in moving an object from a point P to another point Q in the space, is

W = F ·D, (16.18)

where D =
⇀
PQ, the displacement vector.

In general: Let C be a smooth space curve given by

r(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b.

Then the work done by a force F in moving an object along the curve
C is

W = lim
n→∞

n∑
i=1

F (x∗i , y
∗
i , z
∗
i ) · [T (x∗i , y

∗
i , z
∗
i )∆si] =

ˆ
C

F · T ds, (16.19)

where r(ti) = (xi, yi, zi), ∆si = |r(ti) − r(ti−1)|, and T is the unit tangen-
tial vector

T (t) =
r′(t)

|r′(t)|
. (16.20)

Since ds = |r′(t)| dt, we have

W =

ˆ
C

F ·T ds =

ˆ b

a

F · r
′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F ·r′(t) dt =
ˆ
C

F ·dr. (16.21)

Figure 16.7
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Definition 16.25. Let F be a continuous vector field defined on a
smooth curve C given by r(t), a ≤ t ≤ b. Then the line integral of F
along C isˆ

C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (16.22)

We say that work is the line integral with respect to arc length of the
tangential component of force.

Note:

• The last term in (16.22) gives a calculation formula.

• Although 1

ˆ
C

F · dr =

ˆ
C

F · T ds and 2 integrals with respect

to arc length are unchanged when orientation is reversed, it is still
true that ˆ

−C
F · dr = −

ˆ
C

F · dr.

Why?

Problem 16.26. Evaluate
ˆ
C

F · dr, where F (x, y, z) = xy i+ yz j+ zxk and

C is given by r(t) =
〈
t, t2, t3

〉
, 0 ≤ t ≤ 1.

Solution.

Ans: 27
28
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Remark 16.27. (Equivalent to Definition 16.25, p. 545).
Let F = ⟨P,Q,R⟩. Then

ˆ
C

F · dr =
ˆ
C

P dx+Qdy +Rdz. (16.23)

Problem 16.28. Let F (x, y) =
〈 x√

x2 + y2
,

y√
x2 + y2

〉
and C the parabola

y = 1 + x2 from (−1, 2) to (1, 2).

(a) Use a graph of F and C to guess whether
´
cF · dr is positive, negative,

or zero.

(b) Evaluate the integral.

Solution. Hint : (b) C : r(t) = ⟨t, 1 + t2⟩ , −1 ≤ t ≤ 1; use Eqn. (16.22).

Ans: 0
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Exercises 16.2
1. Evaluate the line integral, using the formula

´
C f(x, y) ds =

´ b
a f(r(t)) |r′(t)| dt.

(a)
ˆ
C

x2y ds, where C is given by r(t) =< cos 2t, sin 2t >, 0 ≤ t ≤ π/4

(b)
ˆ
C

2xyexyz ds, where C is the line segment from (0, 0, 0) to (2, 1, 2)

Ans: (a) 1/3; (b) e4 − 1

2. Let F be the vector field shown in the Fig-
ure 16.8.

(a) If C1 is the horizontal line segment
from P (3, 2) to Q(−3, 2), determine

whether
ˆ
C1

F ·dr is positive, negative,
or zero.

(b) Let C2 be the clockwise-oriented circle
of radius 3 centered at the origin. De-

termine whether
ˆ
C2

F · dr is positive,

negative, or zero. Figure 16.8

3. Use (16.22) to evaluate the line integral
ˆ
C

F · dr, where C is parameterized by r(t).

(a) F (x, y) = x2y3 i+ x3y2 j,
r(t) = (t3 − 2t) i+ (t3 + 2t) j, 0 ≤ t ≤ 1

(b) F (x, y, z) = ⟨−y, x, xy⟩,
r(t) = ⟨cos t, sin t, t⟩, 0 ≤ t ≤ π

Ans: (a) −9; (b) π

4. A thin wire is bent into the shape of a semicircle x2 + y2 = 4, y ≥ 0. If the linear
density of the wire is ρ(x, y) = ky, find the mass and center of mass of the wire. Hint :
C : r(t) = ⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ π

Ans: 8k, (0, π/2)
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16.3. The Fundamental Theorem for Line Inte-
grals

Recall: Part 2 of Fundamental Theorem of Calculus (FTC2) is
ˆ b

a

f ′(x) dx = f(b)− f(a). (16.24)

Goal: It would be nice to get a generalization of the FTC2 (16.24) to line
integrals.

16.3.1. Conservative Vector Fields

Theorem 16.29. Suppose that F is continuous, and is a conservative
vector field; that is, F = ∇f for some f . Thenˆ

C

F · dr =
ˆ
C

∇f · dr = f(r(b))− f(r(a)). (16.25)

Proof. By the Chain rule and the FTC2,
ˆ
C

F · dr =
ˆ b

a

∇f(r(t)) · r′(t) dt =
ˆ b

a

d

dt
[(f ◦ r)(t)] dt

= (f ◦ r)(t)|ba = f(r(b))− f(r(a)).

Theorem 16.29 is the Fundamental Theorem for Line Integrals,
which is a generalization of the FTC2. The function f is called a po-
tential function of F , or simply potential.
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Problem 16.30. Let F (x, y) =
〈
3 + 2xy2, 2x2y − 4

〉
.

(a) Find a function f such that ∇f = F .

(b) Evaluate
´
C F · dr, where C : r(t) = ⟨cos t, 2 sin t⟩ , 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = 3x+ x2y2 − 4y +K (b) −6

Problem 16.31. (Revisit of Problem 16.28). Let F (x, y) =
x√

x2 + y2
i +

y√
x2 + y2

j and C the parabola y = 1+ x2 from (−1, 2) to (1, 2). Find a poten-

tial of F and evaluate
´
C F · dr.

Solution.

Ans: f(x, y) =
√

x2 + y2 and
´
C
F · dr = 0.
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Independence of Path

Definition 16.32. We say the line integral
ˆ
C

F · dr is independent of
path if ˆ

C1

F · dr =
ˆ
C2

F · dr,

for any two paths C1 and C2 that have the same initial and terminal
points.

Observation 16.33. In general,
´
C1

F · dr ̸=
´
C2

F · dr. (See Prob-
lem 16.20, p. 540.) However, Theorem 16.29 says that when F = ∇f ,ˆ

C1

F · dr =

ˆ
C1

∇f · dr = f(r(b))− f(r(a)) =

ˆ
C2

∇f · dr =

ˆ
C2

F · dr.

Thus line integrals of conservative fields are independent of path.

Conservativeness ⇒ Independence of path

Definition 16.34. A curve C is closed if its terminal point coincides
with its initial point, that is, r(b) = r(a). A simple curve is a curve that
does not intersect itself.

Figure 16.9
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Theorem 16.35.
ˆ
C

F · dr is independent of path in D if and only ifˆ
C

F · dr = 0 for every closed path C in D.

Proof. (⇒) For a closed curve C, choose two points A and B to decompose
C into two parts: C = C1 ∪ C2. Thenˆ

C

F · dr =
ˆ
C1

F · dr+
ˆ
C2

F · dr =
ˆ
C1

F · dr−
ˆ
−C2

F · dr = 0,

because C1 and −C2 have the same initial and terminal points.
(⇐) Let C1 and C2 have the same initial and terminal points. Then

0 =

ˆ
C1∪(−C2)

F · dr =
ˆ
C1

F · dr+
ˆ
−C2

F · dr =
ˆ
C1

F · dr−
ˆ
C2

F · dr,

where the first equality comes from the assumption.

Independence of path ⇐⇒ Zero Line Integral on closed paths

Pictorial Definitions

Figure 16.10: Pictorial definitions for D.
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Definition 16.36. A set D is said to be open if every point P in D has
a disk with center P that is contained wholly and solely in D.
Note. D cannot contain any boundary points.

Definition 16.37. A set D is said to be connected if for every two
points P and Q in D, there exists a path which connects P to Q.

Theorem 16.38. Suppose that the line integral of a vector field F is
independent of path within an open connected region D, then F is
a conservative vector field on D.

Proof. (sketch). Choose an arbitrary point (a, b) ∈ D and define

f(x, y) =

ˆ (x,y)

(a,b)

F · dr.

Since this line integral is independent of path, we can define f(x, y) using
any path between (a, b) and (x, y). By choosing a path that ends with a
horizontal line segment from (x1, y) to (x, y) contained entirely in D, x1 < x,
we can show that

∂f/∂x(x, y) = ∂/∂x
[ ˆ (x1,y)

(a,b)

F · dr+
ˆ (x,y)

(x1,y)

F · dr
]
= 0+ ∂/∂x

ˆ x

x1

F · ⟨dx, 0⟩ = P.

Similarly, we can prove that ∂f/∂y(x, y) = Q.

It follows from Observation 16.33 and Theorem 16.38:

Corollary 16.39. In an open connected region, F is conservative if
and only if its line integral is independent of path.

Conservativeness ⇐⇒ Independence of path
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16.3.2. Clairaut’s Theorem for Conservative Vector Fields

Section 16.3.1:
Conservativeness ⇐⇒ Zero Line Integral on closed paths

⇐⇒ Independence of path (D: open connected)

Theorem 16.40. (Clairaut’s Theorem for conservative vector
fields). If F (x, y) = ⟨P (x, y), Q(x, y)⟩ is a conservative vector field, where
P and Q have continuous first-order partial derivatives on D, then

∂P

∂y
=

∂Q

∂x
, (16.26)

throughout the domain D.

Quesiton. Does (16.26) imply conservativeness of F ?
Ans: No, in general. But, almost!

Figure 16.11: Simply-connectedness of D.

Definition 16.41. D is a simply-connected region if it is connected
and every simple closed curve contains only points in D.

Theorem 16.42. Let F = ⟨P, Q⟩ be a vector field on an open simply-
connected region D. If P and Q have continuous first-order partial
derivatives throughout D,

∂P

∂y
=

∂Q

∂x
, (16.27)

then F is conservative.



554 Chapter 16. Integrals and Vector Fields

When the vector field F = ⟨P, Q⟩ is differentiable over D

Conservativeness ⇐⇒
∂P

∂y
=

∂Q

∂x

Self-study 16.43. Determine whether or not the vector field F (x, y) =

⟨3 + 2xy, x2 + x− 3y2⟩ is conservative.
Solution. Hint : Check if Py = Qx is satisfied.

Ans: no

Problem 16.44. Determine whether or not the vector field F (x, y) = ⟨ey +
y cosx, xey + sinx⟩ is conservative.
Solution.

Ans: yes



16.3. The Fundamental Theorem for Line Integrals 555

Potential Functions
Recall: When F is conservative, we know from (16.25) on p.548 thatˆ

C

F · dr =
ˆ
C

∇f · dr = f(r(b))− f(r(a)), (16.28)

which is easy to evaluate when the potential f is known.

Problem 16.45. Given F (x, y) = ⟨ey + y cosx, xey + sinx⟩,

(a) Find a potential.

(b) Evaluate
´
C F · dr, where C is parameterized as

r(t) = ⟨et cos t, et sin t⟩, 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = xey + y sinx+K (b) −eπ − 1
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Problem 16.46. Let F (x, y, z) = ⟨y2, 2xy + e3z, 3ye3z⟩. Find f such that
∇f = F .
Solution.

Ans: f = xy2 + ye3z +K

Recall: The Fundamental Theorem for Line Integrals
(Theorem 16.29, p. 548) Suppose that F is continuous, and is a con-
servative vector field; that is, F = ∇f for some f . Thenˆ

C

F · dr =
ˆ
C

∇f · dr = f(r(b))− f(r(a)). (16.29)
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Problem 16.47. Let F = ⟨P,Q,R⟩ be a conservative vector field, where
P, Q, R have continuous first-order partial derivatives. Then,

Py = Qx, Pz = Rx, Qz = Ry. (16.30)

Solution. Hint : Use Clairout’s theorem.

Problem 16.48. Show that
´
C y dx+x dy+yz dz is not independent of path.

Solution. Hint : Use (16.30) to check if it is conservative.
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Exercises 16.3
1. The figure shows a curve C and a contour map of a function f whose gradient is contin-

uous. Find
ˆ
C

∇f · dr.

Figure 16.12

2. Determine whether the vector field F is conservative or not. If it is, find its potential.

(a) F (x, y) = ⟨x+ y, x− y⟩
(b) F (x, y) = ⟨2xy, x2 + 2xy⟩

(c) F (x, y) = ⟨2xy4, x2y3⟩
(d) F (x, y) = ⟨yex, ex − 2y⟩

3. (i) Find the potential of F and (ii) use part (i) to evaluate
´
C
F · dr along the given curve

C.

(a) F (x, y) = ⟨ey, xey + sin y⟩, C : r(t) = ⟨− cos t, et sin t⟩, 0 ≤ t ≤ π

(b) F (x, y, z) = ⟨2y + z, 2x+ z, x+ y⟩, C is the line segment from (1, 0, 0) to (2, 2, 2)

(c) F (x, y, z) = ⟨sin z, − sin y, x cos z⟩, C : r(t) = ⟨cos t, sin t, t⟩, 0 ≤ t ≤ π/2

Ans: (a) 2; (b) 16; (c) cos(1)− 1

4. Show that the line integral is independent of path and evaluate the integral.

(a)
ˆ
C

x dx− y dy, C is any path from (0, 1) to (3, 0)

(b)
ˆ
C

(sin y − ye−x) dx+ (e−x + x cos y) dy, C is any path from (1, 0) to (0, π)

Ans: (a) 5; (b) π



16.3. The Fundamental Theorem for Line Integrals 559

5. The figure below depicts two vector fields, one of which is conservative. Which one is it?
Why is the other one not conservative?

(a) (b)

Figure 16.13: Two vector fields, one of which is conservative.
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16.4. Green’s Theorem

Green’s Theorem gives the relationship between a line integral
around a simple closed curve C and a double integral over the plane
region D bounded by C.

Definition 16.49. The positive orientation of a simple closed curve
C refers to a single counterclockwise traversal of C (with keeping the
domain on the left). The other directional orientation is called the neg-
ative orientation.

⊕ ⊖

Figure 16.14: ⊕-orientation and ⊖-orientation of a simple closed curve C.

Theorem 16.50. (Green’s Theorem). Let C be a positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = ⟨P,Q⟩ has continuous partial derivatives on
an open region including D, then

‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (16.31)
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Note: The proof of Green’s Theorem on simple regions is based on the
following identities

˛
C

Pdx = −
x

D

∂P

∂y
dA,

˛
C

Qdy =
x

D

∂Q

∂x
dA. (16.32)

Notation 16.51. We denote the line integral calculated by using the
positive orientation of the closed curve C by

˛
C

P dx+Qdy,

‰
C

P dx+Qdy, or
ffi
C

P dx+Qdy.

We denote line integrals calculated by using the negative orientation
of the closed curve C by ȷ

C

P dx+Qdy.

Problem 16.52. Evaluate
˛
C

x4dx+ xydy, where C is the triangular curve

consisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and
from (0, 1) to (0, 0).
Solution. Although the given line integral could be evaluated by the meth-
ods of Section 6.2, we would use Green’s Theorem.

Ans: 1
6
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Problem 16.53. Evaluate
¸
C F · dr, where F = ⟨y − cos y, x sin y⟩ and C is

the circle (x− 3)2 + (y + 4)2 = 4 oriented clockwise.
Solution. Hint : Check the orientation of the curve.

Ans: 4π

16.4.1. Application to Area Computation

Recall
A(D) =

x

D

1 dA.

If we choose P and Q such that

∂Q/∂x− ∂P/∂y = 1, (16.33)

then the area of D can be computed as

A(D) =
x

D

1 dA =

‰
C

Pdx+Qdy. (16.34)

The following choices are common:{
P (x, y) = 0

Q(x, y) = x

{
P (x, y) = −y
Q(x, y) = 0

{
P (x, y) = −y

2

Q(x, y) = x
2

(16.35)

Then, Green’s Theorem give the following formulas for the area of D:

A(D) =

‰
C

x dy = −
‰
C

y dx =
1

2

‰
C

x dy − y dx (16.36)
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Problem 16.54. Find the area enclosed by
x2

a2
+

y2

b2
= 1, an ellipse.

Solution. Clue: The ellipse has parametric equations x = a cos t and y = b sin t, 0 ≤ t ≤
2π. Hint : You may use sin2 x = 1−cos 2x

2 or cos2 x = 1+cos 2x
2 .

Ans: abπ

Problem 16.55. Use a formula in (16.36) to find the area of the shaded
region in Figure 16.15.
Solution. Hint : For the slanted edge (C3) : x = t, y = 3− t, 1 ≤ t ≤ 3.

Figure 16.15

Ans: 14
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Problem 16.56. Using the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

‰
∂D

x dy,

we will try to show that the area of D (the shaded region) is 6.

• First, observe that the line integrals on
vertical and horizontal line segments
of the figure are all zero.

• Thus the area must be the same as the
line integral on the slant side, the line
segment from P (4, 0) to Q(2, 2), which
we denote by C2. Figure 16.16

(a) Evaluate
ˆ
C2

x dy, where C2 is parametrized by

r(t) = (1− t)P + tQ, 0 ≤ t ≤ 1.

(b) Evaluate
ˆ
C2

x dy, where C2 is parametrized by

r(t) = ⟨t, 4− t⟩, with t moving 4↘ 2.

(c) Find “the mid value of x” and “the change in y”, on C2. Multiply the
results to see if it is the same as the output in (a) and (b).1

Solution.

1The method introduces an effective algorithm for the computation of area. See P.4.5,
p.713.
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16.4.2. Generalization of Green’s Theorem

Green’s Theorem is proved for vector fields F = ⟨P,Q⟩ defined in simple
regions D; we can extend it to the cases where D is either a finite union
of simple regions or of holes.

Figure 16.17: Regions having holes.

For example: For the right figure above,
x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

x

D1

(∂Q
∂x
− ∂P

∂y

)
dA+

x

D2

(∂Q
∂x
− ∂P

∂y

)
dA

=

‰
∂D1

P dx+Qdy +

‰
∂D2

P dx+Qdy.

(16.37)

Along the common boundary, the opposite directional line integral will be
canceled. Thus

x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

‰
∂D

P dx+Qdy, (16.38)

where ∂D is the collection of all boundaries of D.
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Theorem 16.57. (Generalized Green’s Theorem). Let D be either a
finite union of simply-connected regions or of holes, of which the bound-
ary is finite and oriented. If F = ⟨P,Q⟩ has continuous partial
derivatives on an open region including D, then

‰
∂D

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA, (16.39)

where ∂D is the boundary of D positively oriented.

Problem 16.58. Evaluate
˛
C

(1−y3)dx+(x3+ey
2

)dy, where C is the bound-

ary of the region between the circles x2 + y2 = 4 and x2 + y2 = 9, having the
positive orientation.
Solution.

Ans: 195π
2
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Problem 16.59. Let F (x, y) = ⟨P,Q⟩ = ⟨ −y
x2 + y2

,
x

x2 + y2
⟩. Then

∂Q

∂x
− ∂P

∂y
=

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0, for (x,y) ̸= (0,0). (16.40)

Show that
˛
C

F · dr = 0 for any simple closed path C that does not pass

through or enclose the origin.
Solution. You may use Green’s Theorem.

Example 16.60. Let F (x, y) = ⟨ −y
x2 + y2

,
x

x2 + y2
⟩, the same as in the above

example. Show that
‰
C

F · dr = 2π for any positively oriented simple closed

curve C that encloses the origin.

Warning : You CANNOT use Green’s Theorem for this problem. Why?

Solution. Clue: Choose C ′ : x2 + y2 = a2, for small a. Then,‰
∂D

F · dr =

˛
C

F · dr+
˛
−C ′

F · dr =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA = 0,

where D is the region bounded by C and −C ′. Thus we have˛
C

F · dr =
˛
C ′
F · dr (16.41)

By introducing parametric representation of C ′ : r(t) = ⟨a cos t, a sin t⟩, 0 ≤
t ≤ 2π, we can conclude

˛
C ′
F · dr =

ˆ 2π

0

F (r(t)) · r′(t) dt =
ˆ 2π

0

a2 sin2 t+ a2 cos2 t

a2
dt = 2π.
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Let’s try to solve another problem before closing the section.

Problem 16.61. Evaluate
˛
c

y2 dx+3xy dy, where C is the boundary of the

semiannual region D in the upper half-plane between the circles x2+ y2 = 1

and x2 + y2 = 4.
Solution.

Ans: 14/3

Summary 16.62. Green’s Theorem can be summarized as follows.
‰
∂D

P dx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA (16.42)

is applicable when

1. The boundary of D is finite and oriented.
2. The vector field F = ⟨P,Q⟩ has continuous partial derivatives

over the whole region D. (It is about quality of the vector field.)
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Exercises 16.4

1. Evaluate the line integral
‰
C

y2 dx + 3xy dy, where C is the triangle with vertices (0, 0),

(2, 0), and (2, 2):

(a) directly (b) using Green’s theorem

Hint : For (a), you should parametrize each of three line segments.
For example: C3 : r(t) = ⟨t, t⟩, t = 2↘ 0.

Ans: 4/3

2. Use Green’s Theorem to evaluate the line integral along the given positively oriented
curve.

(a)
ˆ
C

(2y+ ln(1+ x2))dx+ (6x+ y2)dy, where C is the triangle with vertices (0, 0), (3, 0),

and (1, 1)

(b)
ˆ
C

(x2 − y3 + y)dx+ (x3 + x− y2)dy, where C is the circle x2 + y2 = 4

Ans: (b) 24π

3. Use Green’s Theorem to evaluate
ˆ
C

F · dr. (Check the orientation of the curve before

applying the theorem.)

(a) F (x, y) =< y3 cosx, x + 3y2 sinx >, C is the triangle from (0, 0) to (8, 0) to (4, 4) to
(0, 0)

(b) F (x, y) =< 5y − 2030x2 + sin y, y2 + x cos y >, C consists of the three line segments:
from the origin to (0, 2), then to (2, 0), and then back down to the origin

(c) F (x, y) =< y + y2 − cos y, x sin y >, C is the circle x2 + y2 = 4 oriented clockwise
Ans: (a) 16; (c) 4π

4. Use the identity (an application of Green’s Theorem)

A(D) =
x

D

dA =

ˆ
∂D

x dy

to show that the area of D (the shaded region) is 6. You should compute the line integral
for each line segment of the boundary, first introducing an appropriate parametrization.
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16.5. Curl and Divergence

16.5.1. Curl

We now define the curl of a vector field, which helps us represent rotations
of different sorts in physics and such fields. It can be used, for instance, to
represent the velocity field in fluid flow.

Definition 16.63. Let F = ⟨P,Q,R⟩ be a vector field on R3 and the
partial derivatives of P, Q, and R all exist. Then the curl of F is the
vector field on R3 defined by

curl F =
〈∂R
∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
. (16.43)

Definition 16.64. Define the vector differential operator ∇ (“del")
as

∇ =
〈 ∂

∂x
,

∂

∂y
,

∂

∂z

〉
= ⟨∂x, ∂y, ∂z⟩.

Then

∇× F = det


 i j k

∂x ∂y ∂z
P Q R




= ⟨Ry −Qz, Pz −Rx, Qx − Py⟩
= curl F

(16.44)

So, the easiest way to remember Definition 16.63 is

curl F = ∇× F . (16.45)

Note: If F represents the velocity field in fluid flow, then the particles in
the fluid tend to rotate about the axis that points in the direction of ∇× F ;
the magnitude |∇ × F | measures how quickly the fluid rotates.

Quesiton. Why do tornado evolve? What is the change in the air
after a tornado? Answer: Energy consumption
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Remark 16.65. If F is conservative and has continuous partial
derivatives, then

curl F = 0. (16.46)

(See also Problem 16.47 on p.557.)

Theorem 16.66. If f is a function of three variables that has continu-
ous second-order partial derivatives, then

curl (∇f) = ∇× (∇f) = 0. (16.47)

Proof. Use Clairout’s Theorem.

Problem 16.67. Show that the vector field F = ⟨xz, xyz,−y2⟩ is not con-
servative.
Solution. Clue: Check if curlF ̸= 0.
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Theorem 16.68. If F is a vector field whose component functions have
continuous partial derivatives on a simply-connected domain and
curlF = 0, then F is conservative.

Note: The above theorem is a 3D version of Theorem 16.42, p. 553.

Problem 16.69. Let F = ⟨y2z3, 2xyz3, 3xy2z2⟩.

(a) Show that F is conservative.

(b) Find f such that F = ∇f .

Solution.

Ans: (a) curlF = 0, (b) f(x, y) = xy2z3 +K
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16.5.2. Divergence

Definition 16.70. Let F = ⟨P, Q, R⟩ be a vector field on R3 and its
partial derivatives exist. Then the divergence of F is defined as

divF ≡ ∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= ∇ · F .

Theorem 16.71. Let F = ⟨P, Q, R⟩ whose components have continuous
second-order partial derivatives. Then

∇ · (∇× F ) = 0. (16.48)

Note: The above theorem is analogous to a · (a× b) = 0 for all a, b ∈ R3.

Problem 16.72. Show that F = ⟨xz, xyz,−y2⟩ cannot be the curl of another
vector field.
Solution. Clue: Check if ∇ · F = 0
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Remark 16.73. The reason for the name divergence can be under-
stood in the context of fluid flow. If F is the velocity of a fluid, the divF
represents the net change rate of the mass per unit volume. Thus,
if divF = 0, then F is said to be incompressible. Another differential
operator occurs when we compute the divergence of a gradient vector
field ∇f :

div (∇f) = ∇ · (∇f) = ∇2f = ∆f.

The operator ∇2 = ∇ · ∇ = ∆ is called the Laplace operator, which is
also applicable to vector fields like

∆F = ∆⟨P, Q, R⟩ = ⟨∆P, ∆Q, ∆R⟩.

Vector Forms of Green’s Theorem
Recall: Green’s Theorem (p. 560): Let F = ⟨P, Q⟩. Then

‰
C

F · dr ≡
‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (16.49)

Now, regard F as a vector field in R3 with the 3rd component 0. Then

∇× F = det




i j k

∂/∂x ∂/∂y ∂/∂z

P Q 0


 = ⟨0, 0, Qx − Py⟩.

So we can rewrite the equation in Green’s Theorem as
‰
C

F · dr ≡
‰
C

F · T ds =
x

D

(∇× F ) · k dA, (16.50)

which expresses the line integral of the tangential component of F along
C as the double integral of the vertical component of curlF over the
region D enclosed by C.
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Line integral of the normal component of F

Example 16.74. Let F = ⟨P, Q⟩. What is
‰
C

F · n ds ?

Solution. Let r = ⟨x(t), y(t)⟩ define the curve C. Then

T =
r′

|r′|
=
⟨x′, y′⟩
|r′|

and n =
⟨y′,−x′⟩
|r′|

, (16.51)

where n is the outward unit normal vector, 90◦ clockwise rotation of T .
Thus we have

F · n ds = ⟨P, Q⟩ · ⟨y
′,−x′⟩
|r′|

|r′| dt

= (P y′ −Qx′) dt

= −Qdx+ P dy.

Figure 16.18

It follows from Green’s Theorem that
‰
C

F · n ds =

‰
C

−Qdx+ P dy =
x

D

(
Px − (−Q)y

)
dA

=
x

D

(
Px +Qy

)
dA =

x

D

∇ · F dA.
(16.52)

when P and Q have continuous partial derivatives over D.
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Exercises 16.5
1. Find (i) the curl and (ii) the divergence of the vector field.

(a) F (x, y, z) = x2yz j+ y2z2 k (b) F (x, y, z) = ⟨x sin y, y sin z, z sinx⟩

Ans: (b) ∇× F = −⟨y cos z, z cosx, x cos y⟩, ∇ · F = sinx+ sin y + sin z

2. The vector field F is shown in the xy-plane and looks the same in all other horizontal
planes. (That is, F is independent of z and its third component is 0.)

(a) Is divF positive, negative, or zero? Explain.
(b) Determine whether curlF = 0. If not, in which direction does it point?
(c) Use Theorem 16.68 to conclude if F is conservative.

Hint : The vector field in (I): You may express it as F = ⟨P (x), 0, 0⟩, where P is a decreasing
function of x only. Thus divF < 0. The vector field in (II): Let F = ⟨P (x, y), Q(x, y), 0⟩. Then
divF = Px +Qy and curlF = ⟨0, 0, Qx − Py⟩. For example, Py < 0 in (II), because the horizontal
components of the arrows (P ) become smaller as y increases. What can you say about Px, Qy,
and Qx?

(I) (II)

Figure 16.19

3. Determine whether or not F is conservative. If it is conservative, find its potential.

(a) F = ⟨yz4, xz4 + 2y, 4xyz3⟩
(b) F = ⟨sin z, 1, x cos z⟩

Ans: (b) f = y + x sin z +K
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16.6. Parametric Surfaces and Their Areas

16.6.1. Parametric Surfaces

Goal: This section will aim to describe surfaces by a function r(u, v) =
⟨x(u, v), y(u, v), z(u, v)⟩ , in a similar fashion that we described vector
functions by r(t) earlier.

Definition 16.75. A parametric surface is the set of points {(x, y, z)}
in R3 such that the components are expressed by a vector function of the
form

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D ⊂ R2.

Figure 16.20: Examples of parametric surfaces.

Maple Script
1 with(plots): with(plottools):
2

3 plot3d([(4+2*cos(p))*cos(t), (4+2*cos(p))*sin(t), 2*sin(p)], p = 0..2*Pi, t = 0..2*Pi,
4 axes = none, lightmodel = light1, scaling = constrained, orientation = [30,55]);
5

6 r := z/2+sin(z):
7 plot3d([r, t, z], t = 0..2*Pi, z =0..10, coords = cylindrical,
8 axes = none, lightmodel = light1, scaling = constrained, orientation = [30,55]);
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Problem 16.76. Identify and sketch r(u, v) = ⟨2 cosu, v, 2 sinu⟩, when
(u, v) ∈ D ≡ [0, 2π]× [0, 5].
Solution. Clue: x2 + z2 = 4.

Figure 16.21

Self-study 16.77. Sketch r(s, t) = ⟨s cos 3t, s sin 3t, s2⟩, when (s, t) ∈ [0, 2]×
[0, 2π]. Discuss what the effect of the “3" is.
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Quesiton. Given a surface, what is a parametric representation of it?

Problem 16.78. Find a parametric representation of the plane which
passes P0(1, 1, 1) and contains a = ⟨1, 2, 0⟩ and b = ⟨2, 0,−3⟩.
Solution. Clue: r(u, v) = P0 + u a+ v b.

Problem 16.79. Find a parametric representation of x2 + y2 + z2 = a2.
Solution. Clue: Use the spherical coordinates; the parameters are (θ, ϕ).

Ans: r(θ, ϕ) = ⟨a sinϕ cos θ, a sinϕ sin θ, a cosϕ⟩, D ?
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Problem 16.80. Find a parametric representation of the cylinder x2+y2 =

4, 0 ≤ z ≤ 1.
Solution. Hint : Use cylindrical coordinates (r = 2, θ, z).

Problem 16.81. Find a vector representation of the elliptic paraboloid
z = x2 + 2y2.
Solution. Hint : Let x, y be parameters.

Ans: r(x, y) = ⟨x, y, x2 + 2y2⟩
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In general, for z = f(x, y),

r(x, y) = ⟨x, y, f(x, y)⟩ (16.53)

is considered as a parametric representation of the surface.

Note: Parametric representations are not unique.

Problem 16.82. Find a parametric representation of z = 2
√

x2 + y2.
Clue: A representation is as in (16.53), while another one can be formulated using (r, θ) as with

polar coordinates. Also, recall that when polar coordinates are considered, x = r cos θ, y = r sin θ.

Solution. 1

Figure 16.22
2



582 Chapter 16. Integrals and Vector Fields

Surfaces of Revolution

Figure 16.23: Surface of revolution

Let S be the surface obtained by rotating

y = f(x), a ≤ x ≤ b,

about the x-axis (where f(x) ≥ 0). Then, S can be represented as

r(x, θ) = ⟨x, f(x) cos θ, f(x) sin θ⟩,
(x, θ) ∈ [a, b]× [0, 2π].

(16.54)

Problem 16.83. Find parametric equations for the surface generated by
rotating the curve y = sin(x), 0 ≤ x ≤ 2π, about the x-axis.
Solution.
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16.6.2. Tangent Planes and Surface Area

Recall: The plane passing x0 = (x0, y0, z0) and having a normal vector
v = ⟨a, b, c⟩ can be formulated as

v · (x− x0) = 0,

or equivalently
a(x− x0) + b(y − y0) + c(z − z0) = 0. (16.55)

Now, we will find the tangent plane to a parametric surface S traced out by

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩

at a point P0 with position vector r(u0, v0).

Figure 16.24

What we need: a normal vector, which can be determined by

ru × rv.

Definition 16.84.

1. A surface S represented by r is smooth if ru × rv ̸= 0 over the whole
domain.

2. A tangent plane is the plane containing ru and rv and having a nor-
mal vector ru × rv.
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Problem 16.85. Find the tangent plane to

S : x = u2, y = v2, z = u+ 2v; at (1, 1, 3)

Solution.

Ans: −2(x− 1)− 4(y − 1) + 4(z − 3) = 0
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Surface Area
Let r : D ⊂ R2 → S ⊂ R3. Then the surface area of S is

A(S) =
x

S

dS. (16.56)

Figure 16.25: r : Rij 7→ Sij.

Figure 16.26: Approximating a patch by a parallelogram.

The area of the patch Sij can be approximated by

∆Sij ≈ A(parallelogram)

= |(∆u ru)× (∆v rv)| = |ru × rv|∆u∆v
(16.57)
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Definition 16.86. If a smooth surface S is represented by

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D,

and S is covered just once as (u, v) ranges throughout the parameter
domain D, then the surface area of S is

A(S) =
x

S

dS =
x

D

|ru × rv| dA. (16.58)

That is, dS = |ru × rv| dA.

Problem 16.87. Find the area of the surface given by parametric equa-
tions x = u2, y = uv, z = 1

2v
2, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Solution.

Ans: 1
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Change of Variables vs. ∆S ≈ |ru × rv|∆u∆v

Recall: (Summary 15.70 in § 15.9, p. 518). For a differentiable trans-
formation T : Q ⊂ R2 → R ⊂ R2 given by r(u, v) = ⟨x(u, v), y(u, v)⟩,

∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣∆u∆v, (16.59)

where ∂(x, y)/∂(u, v) is the Jacobian of T defined as

∂(x, y)

∂(u, v)
= det

[
xu xv
yu yv

]
= xu yv − xv yu. (16.60)

Now, consider R as a flat region embedded in R3. Define

R̃ = R× {0} ⊂ R3.

Then, T̃ : Q→ R̃ is represented by r̃(u, v) = ⟨x(u, v), y(u, v), 0⟩;

r̃u × r̃v = det


 i j k

xu yu 0

xv yv 0


 = ⟨0, 0, xu yv − xv yu⟩ . (16.61)

Therefore
|̃ru × r̃v| =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ . (16.62)

Eqn. (16.59) is a special case of ∆S ≈ |ru × rv|∆u∆v .

Summary 16.88. Let r : D ⊂ R2 → S ⊂ R3 be a parametric repre-
sentation of the surface S. Then

1. The map r can be viewed as a change of variables.
2. The quantity |ru × rv| is simply the scaling factor for r.
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Surface Area of the Graph of a Function
As a special case, consider the surface S made by the graph of

z = g(x, y), (x, y) ∈ D.

Then the surface S can be represented by

r(x, y) = ⟨x, y, g(x, y)⟩.

Since
rx = ⟨1, 0, gx⟩ and ry = ⟨0, 1, gy⟩,

we obtain

rx × ry = det


i j k

1 0 gx
0 1 gy


 = ⟨−gx, −gy, 1⟩ (16.63)

Thus we conclude the following.

Let S be made by the graph of z = g(x, y), (x, y) ∈ D. Then the surface
area of S is

A(S) =
x

D

√
g2x + g2y + 1 dA. (16.64)

Problem 16.89. Find the area of the part of paraboloid z = x2 + y2 that
lies under the plane z = 9.
Solution. (See Problem 15.42 on p. 497.)

Ans: π
6
(37
√
37− 1)
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Exercises 16.6
1. Identify the surface with the vector equation.

(a) r(u, v) = ⟨u− 3, u+ v, 4u+ 3v − 2⟩ (b) r(s, t) = ⟨2 cos t, s, 2 sin t⟩, 0 ≤ t ≤ π

2. Match the parametric equations with the graphs labeled (I)–(III) and give reasons for
your choices. Determine which families of grid curves on the surface have u constant
and which have v constant.

(a) r(u, v) = ⟨u cos v, u sin v, v⟩
(b) r(u, v) = ⟨v, 2 cosu, 2 sinu⟩
(c) r(u, v) = ⟨v sinu, v cosu, cos v sin v⟩

(I) (II) (III)

Figure 16.27

3. Find the parametric representation for the surface.

(a) The part of the sphere x2 + y2 + z2 = 4 that lies above the plane z = 1.
(b) The part of the plane y + z = 1 that lies inside the cylinder x2 + z2 = 1. (See

Figure 16.28.)

Figure 16.28

Hint : For (a), use the spherical coordinates
(with ρ = 2) to specify the values of ϕ appro-
priately. Of course, 0 ≤ θ ≤ 2π. For (b), use the
polar coordinates for the region in the xz-plane;
that is, x = r cos θ, z = r sin θ. Then, you may
set y = 1 − z. You have to specify the domain,
values of r and θ, appropriately.
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4. Find an equation of the tangent plane to the given surface at the specific point.

(a) r(x, y) = ⟨x, y, x2 − y2⟩, (2, 1, 3)

(b) r(u, v) = ⟨u cos v, u sin v, v⟩, (u, v) = (1, π/2)

Ans: (b) ru × rv(1, π/2) = ⟨1, 0, 1⟩ ⇒ 1 · (x− 0) + 0 · (y − 1) + 1 · (z − π/2) = x+ z − π/2 = 0

5. Find the area of the surface.

(a) The part of the paraboloid y = x2 + z2 cut off by the plane y = 6

(b) The surface parametrized by r(u, v) = ⟨u2, uv,
v2

2
⟩, defined on {(u, v) | u2 + v2 ≤ 1}

Ans: (a) 62π
3 ; (b) 3π/4
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16.7. Surface Integrals

This section deals with surface integrals of the form
x

S

f(x, y, z) dS or
x

S

F · dS

16.7.1. Surface Integrals of Scalar Functions

Suppose that the surface S has a parametric representation

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D.

Then, from the previous section, we have

dS = |ru × rv| dA

Thus we can reach at the formula
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (16.65)

Remark 16.90.

• When z = g(x, y), rx × ry = ⟨−gx,−gy, 1⟩ . Thus the formula (16.65)
reads

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2x + g2y + 1 dA. (16.66)

• Similarity: For line integrals,
ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt.
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Problem 16.91. Compute the surface integral
x

S

xy dS, where S is the

triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2).
Solution. Clue: The surface S (triangular region) can be expressed by

x

1
+

y

2
+

z

2
= 1.

Thus z = 2− 2x− y. Now, what is D?

Ans: 1√
6
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Problem 16.92. Evaluate
x

S

z dS, where S is the surface whose side S1 is

given by the cylinder x2 + y2 = 1, whose bottom S2 is the disk x2 + y2 ≤ 1 in
the plane z = 0, and whose top S3 is the disk x2 + y2 ≤ 1 in the plane z = 1.
Solution. Clue: S1 : x = cos θ, y = sin θ, z = z; (θ, z) ∈ D ≡ [0, 2π] × [0, 1]. Then

|rθ × rz| = 1.

Ans: π + 0 + π = 2π
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16.7.2. Surface Integrals of Vector Fields

Oriented Surfaces

Figure 16.29: Oriented surface and Möbius strip.

Definition 16.93. Let the surface S have a vector representation r.

• A unit normal vector n is defined as

n =
ru × rv
|ru × rv|

. (16.67)

• The surface S is called an oriented surface if the (chosen) unit
normal vector n varies continuously over S.
(A counter example: Möbius strip.)

• For closed surfaces, the positive orientation is the one outward.

Is it confusing? Then, consider this:

Definition 16.94. A surface S is called orientable if it has two sepa-
rate sides.
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A Historic View, for Surface Integrals of Vector Fields

Figure 16.30: A vector field on a surface.

Suppose that S is an oriented sur-
face. Imagine we have a fluid flow-
ing through S, such that v(x) deter-
mines the velocity of the fluid at x.
The flux is defined as the quantity
of fluid flowing through S per unit
time.

The illustration implies that if the
vector field is tangent to S at each
point, then the flux is zero because
the fluid just flows in parallel to S,
and neither in nor out.
Thus, if v has both a tangen-
tial and a normal component, then
only the normal component
contributes to the flux. Based on
this reasoning, to find the flux, we
need to take the dot product of v
with the unit surface normal n to S,
which will give us a scalar field to
be integrated over S appropriately.

Definition 16.95. Let F be a continuous vector field defined on an
oriented surface S with unit normal vector n. The surface integral of
F over S is x

S

F · dS def
==

x

S

F · n dS. (16.68)

This integral is also called the flux of F across S.

For the computation of the flux, the right side of (16.68), you may utilize

n =
ru × rv
|ru × rv|

and dS = |ru × rv| dA, (16.69)

when S is parametrized by r : D → S.
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Surface Integrals of Vector Fields . Let r be a parametric represen-
tation of S, from D ⊂ R2. The flux across the surface S can be mea-
sured by

x

S

F · dS def
==

x

S

F · n dS

=
x

D

F (r) ·
( ru × rv
|ru × rv|

)
|ru × rv| dA

=
x

D

F (r) · (ru × rv) dA.

(16.70)

Note that F · n and F (r) · (ru × rv) are scalar functions.

Remark 16.96. Line integrals of vector fields is defined to measure
quantities along the curve. That is,ˆ

C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r
′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt,
(16.71)

where C is parametrized by r : [a, b]→ C.

Problem 16.97. Find the flux of F = ⟨x, y, 1⟩ across a upward helicoid:
r(u, v) = ⟨u cos v, u sin v, v⟩, 0 ≤ u ≤ 2, 0 ≤ v ≤ π.
Solution. Hint : ru × rv = ⟨sin v,− cos v, u⟩.

Figure 16.31
Ans: 2π
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Example 16.98. Find the flux of F = ⟨z, y, x⟩ across the unit sphere
x2 + y2 + z2 = 1.
Solution. First, consider a vector representation of the surface:

r(ϕ, θ) = ⟨sinϕ cos θ, sinϕ sin θ, cosϕ⟩, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

Then,
F (r) = ⟨cosϕ, sinϕ sin θ, sinϕ cos θ⟩,

rϕ × rθ = ⟨sin2 ϕ cos θ, sin2 ϕ sin θ, sinϕ cos θ⟩,
from which we have

F (r) · (rϕ × rθ) = 2 sin2 ϕ cosϕ cos θ + sin3 ϕ sin2 θ.

Thus
Flux =

x

S

F · dS =
x

D

F (r) · (rϕ × rθ) dA

=

ˆ 2π

0

ˆ π

0

(2 sin2 ϕ cosϕ cos θ + sin3 ϕ sin2 θ) dϕdθ

=

ˆ 2π

0

ˆ π

0

(sin3 ϕ sin2 θ) dϕdθ

=

ˆ 2π

0

sin2 θdθ

ˆ π

0

sin3 ϕ dϕ = π · 4
3
.

Note: The answer of the previous example is actually the volume of the
unit sphere. In Section 16.9, we will study the so-called Divergence
Theorem (formulated for closed surfaces)

x

∂E

F · dS =
y

E

∇ · F dV

The above example can be solved easily using the Divergence Theorem;
see Problem 16.106, p. 605.
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Surfaces defined by z = g(x, y):

• A vector representation: r(x, y) = ⟨x, y, g(x, y)⟩.
• Normal vector: rx × ry = ⟨−gx,−gy, 1⟩.
• Thus, when F = ⟨P, Q, R⟩,

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA. (16.72)

Problem 16.99. Evaluate
x

S

F · dS, where F = ⟨y, x, z⟩ and S is the

boundary of the solid region E enclosed by the paraboloid z = 1−x2−y2 and
the plane z = 0.
Solution. Hint : For S1 (the upper part), use the formula in (16.72). For S2 (the bottom: z = 0),

you may try to get F · n, where n = −k.

Ans: π
2
+ 0 = π

2
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Formula 16.100. Let F =< P,Q,R >.

•
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2x + g2y + 1 dA, when S is given by z = g(x, y)

•
x

S

F · dS =
x

S

F · n dS =
x

D

F · (ru × rv) dA

x

S

F · dS =
x

D

(−Pgx −Qgy +R) dA, when S is given by z = g(x, y)

• Note: When S is given by z = g(x, y), rx × ry = ⟨−gx,−gy, 1⟩

Exercises 16.7
1. Evaluate the surface integral

x

S

f(x, y, z) dS.

(a) f(x, y, z) = x, S is the helicoid given by the vector equation r(u, v) = ⟨u cos v, u sin v, v⟩,
0 ≤ u ≤ 1, 0 ≤ v ≤ π/2 (Hint : ru × rv = ⟨sin v,− cos v, u⟩.)

(b) f(x, y, z) = (x2 + y2)z, S is the hemisphere x2 + y2 + z2 = 1, z ≥ 0

Ans: (a) (2
√
2− 1)/3; (b) π/2

2. Evaluate the surface integral
x

S

F · dS.

(a) F (x, y, z) = xi+ yj+ 2zk, S is the part of the paraboloid z = x2 + y2, z ≤ 1

(b) F (x, y, z) = ⟨z, x − z, y⟩, S is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1),
oriented downward

(c) F = ⟨y,−x, z⟩, S is the upward helicoid parametrized by r(u, v) = ⟨u cos v, u sin v, v⟩,
0 ≤ u ≤ 2, 0 ≤ v ≤ π (Hint : ru × rv = ⟨sin v,− cos v, u⟩.)

Ans: (a) 0; (b) −1/3; (c) 2π + π2

3. CAS Use a CAS to find the integral, either
s

S
f(x, y, z) dS or

s
S
F · dS. First try to

find the exact value; if the CAS does not work properly for the exact value, then try to
estimate the integral correct four decimal places.

(a) f(x, y, z) = 2x2 + 2y2 + z2, S is the surface z = x cos y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(b) F (x, y, z) = ⟨x2+y2, y2+z2, x2⟩, S is the part of the cylinder x2+z2 = 1 that lies above
the xy-plane and between the planes y = 0 and y = 1, with upward orientation
Hint : You may use r(θ, y) = ⟨cos θ, y, sin θ⟩, for a representation of S.

Ans: (b) 2/3
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16.8. Stokes’s Theorem

Stokes’ Theorem is a high-dimensional version of Green’s Theorem studied
in § 16.4.

Recall: (Green’s Theorem, p. 560). Let C be a positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = ⟨P,Q⟩ have continuous partial derivatives on
an open region including D, then
‰
C

F · dr def
==

‰
C

P dx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

x

D

(curlF ) · k dA.

(16.73)
(For the last equality, see (16.50) on p.574.)

Theorem 16.101. (Stokes’s Theorem) Let S be an oriented piecewise-
smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C with positive orientation. Let F = ⟨P, Q, R⟩ be a vector field
whose components have continuous partial derivatives on an open
region in R3 that contains S. Then‰

C

F · dr =
x

S

(curlF ) · dS (16.74)

Remark 16.102.

• See Figure 16.29(left) on p. 594, for an oriented surface of which the
boundary has positive orientation.

• Computation of the surface integral: for r : D → S,
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA.

(16.75)
• Green’s Theorem is a special case in which S is flat and lies on the

xy-plane (n = k). Compare the last terms in (16.73) and (16.75).
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Problem 16.103. Evaluate
´
C F · dr, where F = ⟨−y2, x, z2⟩ and C is the

curve of intersection of the plane y + z = 2 and the cylinder x2 + y2 = 1.
Solution. Clue: You may start with the computation of ∇× F and consider a vector represen-

tation for S: z = g(x, y) = 2− y. Then use the formula (16.75).

Ans: π
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Problem 16.104. Use Stokes’s Theorem to compute the surface integrals
S(∇×F )·dS, where F = ⟨xz, yz, xy⟩ and S is the part of sphere x2+y2+z2 =

4 that lies inside the cylinder x2 + y2 = 1 and above the xy-plane.

Solution. Hint :
x

S

(∇× F ) · dS =

‰
C
F · dr =

ˆ b

a
F · r′(t) dt. A vector representation

of C is r(t) = ⟨cos t, sin t,
√
3⟩, 0 ≤ t ≤ 2π.

Ans: 0
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Exercises 16.8
1. A hemisphere H and a part P of a paraboloid are shown in the figure below. Let F be ba

vector field on R3 whose components have continuous partial derivatives. Which of the
following is true? Give reasons for your choice.

A.
x

H

(curlF ) · dS <
x

P

(curlF ) · dS

B.
x

H

(curlF ) · dS =
x

P

(curlF ) · dS

C.
x

H

(curlF ) · dS >
x

P

(curlF ) · dS

D. cannot compare

Figure 16.32

2. Use Stokes’s Theorem to evaluate
x

S

curlF · dS, where F (x, y) =< −y, x, x2 + y2 > and

S is the part of the sphere x2+y2+z2 = 8 that lies inside the cone z =
√
x2 + y2, oriented

upward. (Clue: The boundary of S can be parametrized as r(t) = ⟨2 cos t, 2 sin t, 2⟩, 0 ≤ t ≤ 2π.)
Hint : Use the formula given in the hint of Problem 16.104.

Ans: 16π

3. Use Stokes’s Theorem to evaluate
ˆ
C

F · dr. For each case, let C be oriented counter-

clockwise when viewed from above.

(a) F (x, y, z) =< z2 + x, x2 + y, y2 + z >, C is the triangle with vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1)

(b) F (x, y, z) =< x, y, z − x >, C is the curve of intersection of the plane 2y + z = 2 and
the cylinder x2 + y2 = 1

Hint :
´
C F · dr =

s
S curlF · dS =

s
D curlF · (rx × ry)dS . (a) curlF = ⟨2y, 2z, 2x⟩ and rx ×

ry = ⟨1, 1, 1⟩. Figure out yourself what S, D, and r are.
Ans: (a) 1; (b) 2π
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16.9. The Divergence Theorem

Recall: Let F = ⟨P, Q⟩. In § 16.5.2, we considered vector forms of
Green’s Theorem including‰

C

F · n ds =
x

D

∇ · F dA. (16.76)

(See (16.52), p. 575.)

The Divergence Theorem is a generalization of the above.

Theorem 16.105. (Divergence Theorem) Let E be a simple solid
region and S be the boundary surface of E, given with positive (outward)
orientation. Let F = ⟨P, Q, R⟩ have continuous partial derivatives
on an open region that contains E. Then"

S

F · dS =
y

E

∇ · F dV. (16.77)

Note: Let a surface S is parametrized by r. Then, from § 16.7.2 (p. 594),
we know

x

S

F · dS def
==

x

S

F · n dS =
x

D

F · (ru × rv) dA, (16.78)

whether or not S is closed.

Note: The Divergence Theorem is developed mainly for closed surfaces;
however, it can be applied for unclosed surfaces. We will consider prob-
lems in Chapter Review.
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Problem 16.106. (Revisit of Example 16.98, p. 597) Find the flux of
F = ⟨z, y, x⟩ over the unit sphere x2 + y2 + z2 = 1.
Solution.

Ans: 4
3
π, the volume of the unit sphere

Problem 16.107. Find the flux of F across S, where

F (x, y, z) = (cos z + xy2) i+ xe−z j+ (sin y + x2z)k

and S is the surface of the solid bounded by the paraboloid z = x2 + y2 and
the plane z = 4.
Solution.

Ans: 32
3
π
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Problem 16.108. Use the Divergence Theorem to evaluatex

S

(x2 + 2y2 + z ex) dS, where S is the unit sphere x2 + y2 + z2 = 1.

Solution. Hint : Find n and express the integrand as F · n; then try to use the Divergence

Theorem.

Ans: 4π

Problem 16.109. Assume that S and E satisfy the conditions of the Diver-
gence Theorem and functions have all required continuous partial deriva-
tives, first or second-order. Prove the following.

1.
x

S

a · n dS = 0, where a is a constant vector.

2. V (E) =
1

3

x

S

F · dS, where F (x, y, z) = ⟨x, y, z⟩.

3.
x

S

curlF · dS = 0.
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Exercises 16.9
1. Verify the Divergence Theorem is true for the vector field F defined on the region E.

F (x, y, z) = ⟨2x, yz, xy⟩, E = [0, 1]× [0, 1]× [0, 1], the unit cube
Clue: For the computation of

s
S F · dS, you should evaluate it on each of the six sides.

2. Use the Divergence Theorem to evaluate the total flux
x

S

F · dS.

(a) F (x, y, z) = y i + x j + 2z k, S is the boundary of of the solid region E enclosed by
the paraboloid z = 1− x2 − y2 and the plane z = 0

(b) F (x, y, z) = (x + y2 + cos z) i + [sin(πz) + xe−z] j + z k, S is a part of the cylinder
x2 + y2 = 1 that lies between z = 0 and z = 1

(c) F (x, y, z) = ⟨x2y2, xyez, xy2z − xez⟩, S is the boundary of the box bounded by the
coordinate planes and the planes x = 1, y = 3, and z = 4

Ans: (b) 2π; (c) 54

3. As a variant of Problem 16.108, let’s consider the following problem:
Evaluate

x

S

(x2 + 2y2 + 3z2 + z ex) dS, where S is the unit sphere x2 + y2 + z2 = 4.

Ans: 128π



608 Chapter 16. Integrals and Vector Fields

F.1. Formulas for Chapter 16

Line Integrals
Formula 16.110. (16.17) If f is defined on a smooth curve C given by a vector
equation r(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b, then line integral of f along C isˆ

C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt =
ˆ b

a

f(x(t), y(t), z(t))
√

(x′)2 + (y′)2 + (z′)2 dt. (16.79)

Formula 16.111. (16.22) Let F is a continuous vector field defined on a smooth
curve C given by r(t), a ≤ t ≤ b. Then the line integral of F along C isˆ

C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (16.80)

The Fundamental Theorem for Line Integrals
Formula 16.112. (16.25) Suppose that F is continuous, and is a conservative
vector field; that is, F = ∇f for some scalar-valued function f . Thenˆ

C

F · dr =
ˆ
C

∇f · dr = f(r(b))− f(r(a)). (16.81)

Note: If F = ⟨P, Q⟩ satisfies Py = Qx over an open simply-connected domain, then F is
conservative.
Green’s Theorem
Formula 16.113. (16.31) Let C be a positively oriented, piecewise-smooth, simple
closed curve in the plane and D be the region bounded by C. If F = ⟨P,Q⟩ have
continuous partial derivatives on an open region including D, then‰

C

F · dr def
==

‰
C

Pdx+Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dA. (16.82)

Surface Integrals
Formula 16.114. (16.65) Suppose the surface S is defined by a vector function
r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D. Then

x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (16.83)

Formula 16.115. (16.66) When z = g(x, y), rx × ry = ⟨−gx,−gy, 1⟩. Thus the
formula (16.83) reads

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√

g2x + g2y + 1 dA. (16.84)
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Surface Integrals of Vector Fields
Formula 16.116. (16.71) Let F be a continuous vector field defined on an oriented
surface S with unit normal vector n. The surface integral of F = ⟨P, Q, R⟩ over S
is ˆ

C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt,
(16.85)

Formula 16.117. (16.72) When the surface S is defined by z = g(x, y), rx × ry =
⟨−gx,−gy, 1⟩ and

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA. (16.86)

Stokes’ Theorem
Formula 16.118. (16.75) Let S be an oriented piecewise-smooth surface that is
bounded by a simple, closed, piecewise-smooth curve C with positive orientation.
Let F = ⟨P, Q, R⟩ be a vector field whose components have continuous partial
derivatives. Then‰

C

F · dr =
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA. (16.87)

The Divergence Theorem
Formula 16.119. (16.77) Let E be a simple solid region and S be the boundary
surface of E, given with positive (outward) orientation. Let F = ⟨P, Q, R⟩ have con-
tinuous partial derivatives on an open region that contains E. Then

"
S

F · dS =
y

E

∇ · F dV. (16.88)
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C.1. Functions

§1.3. Trigonometric Functions

Definition1.26: An angle is the figure formed by two rays sharing a
common endpoint, called the vertex of the angle.

The angle can be defined with the unit circle, the circle of radius 1.

“The angle is θ (radian), when the corresponding arc length is θ.”

• The angle of the whole circle is
2π (radian).

• 2π = 360◦

• π = 180◦ ⇒ ◦ =
π

180

Figure C.1: Geometric definition of the an-
gle.

Geometric interpretation of trigonometric functions

Figure C.2: Geometric interpretation of trigonometric functions.

Formula 1.35. Frequently Used Trigonometric Formulas:
For all angle x,

sin2 x+ cos2 x = 1 tanx =
sinx

cosx
= slope
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Example C.1. Identify the amplitude and the period for the function
and sketch its graph.

y = −2 cos
(x
2
+ π
)
+ 1

Solution.

Example C.2. Find all possible values of a for the following equation to
admit a unique solution θ in [0, π].

sin2 θ = a cos θ.

Solution.

Ans: a ̸= 0
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§1.6. Inverse Functions and Logarithms

Definition 1.52. Let f be a one-to-one function with domain X and
range Y . Then its inverse function f−1 has domain Y and range X and
is defined by

f−1(y) = x ⇐⇒ f(x) = y, (C.1.1)

for any y ∈ Y .

Strategy 1.57. How to Find the Inverse Function of a One-to-One
Function f : Write y = f(x).

Step 1: Solve this equation for x in terms of y (if possible).
Step 2: Interchange x and y; the resulting equation is y = f−1(x).

Example 1.59. Find the inverse of the function f(x) = x3 + 2, expressed as
a function of x.

Solution. Write y = x3 + 2.

Step 1: Solve it for x:

x3 = y − 2 ⇒ x = 3
√
y − 2.

Step 2: Exchange x and y:

y = 3
√
x − 2.

Therefore the inverse function is
f−1(x) = 3

√
x− 2.

Observation 1.60. The graph of f−1 is obtained by reflecting the graph
of f about the line y = x.

Definition 1.62. The logarithmic function with base a, written y =
loga x, is the inverse of y = ax (a > 0, a ̸= 1). That is,

loga x = y ⇐⇒ ay = x. (C.1.2)
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Algebraic Properties of Logarithms : for (a > 0, a ̸= 1)

Product Rule: loga xy = loga x+ loga y

Quotient Rule: loga
x

y
= loga x− loga y

Power Rule: loga x
α = α loga x

Reciprocal Rule: loga
1

x
= − loga x

(C.1.3)

Claim 1.69.

(a) Every exponential function is a power of the natural exponential
function.

ax = ex ln a. (C.1.4)

(b) Every logarithmic function is a constant multiple of the natural log-
arithm.

loga x =
lnx

ln a
, (a > 0, a ̸= 1) (C.1.5)

which is called the Change-of-Base Formula.

Example 1.68. Solve for x.

(a) e5−3x = 3.
(b) log3 x+ log3(x− 2) = 1

(c) ln(lnx) = 0

Solution.
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Example 1.72. Is it correct? If not, why?

(a) arcsin
(
sin

9π

4

)
=

9π

4
(b) cos(arccos 2) = 2

Solution.

Self-study 1.76. Use a geometric manipulation to simplify the expres-
sion sin(tan−1 x).
Solution.
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C.2. Limits and Continuity

§2.3. The Precise Definition of a Limit
Definition 2.22. Let f(x) be defined on an open interval about a, except
possibly at a itself. We say that

the limit of f(x) is L as x approaches a,

and write
lim
x→a

f(x) = L, (C.2.1)

if, for every number ε > 0, there exists a corresponding number δ > 0
such that

|f(x)− L| < ε whenever 0 < |x− a| < δ. (C.2.2)

Strategy 2.26. The process of finding a δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ

can be accomplished in two steps.

1. Solve the inequality |f(x) − L| < ε to find an open interval (c, d)
containing a.

2. Find a value of a δ > 0 that places the open interval (a − δ, a + δ)
inside the interval (c, d).

Example C.3. For the limit limx→4

√
2x+ 1 = 3, find a δ that works for

ε = 1. That is, find a δ such that

|
√
2x+ 1− 3| < 1 whenever 0 < |x− 4| < δ.Solution.

Ans: δ = 2.5.
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§2.5. Continuity

Definition 2.36. A function f is continuous at a if

lim
x→a

f(x) = f(a). (C.2.3)

Definition 2.40. One-Sided Continuity

• A function f is right-continuous at a (or continuous from the
right) if

lim
x→a+

f(x) = f(a). (C.2.4)

• A function f is left-continuous at a (or continuous from the left)
if

lim
x→a−

f(x) = f(a). (C.2.5)

Example 2.47. For what value of the constant c is the function f continuous
everywhere?

f(x) =

{
cx2 + 2x, if x < 2

x3 − cx if x ≥ 2

Solution.
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Theorem 2.50. If lim
x→a

f(x) = b and g is continuous at b, then

lim
x→a

g(f(x)) = g
(
lim
x→a

f(x)
)
= g(b) (C.2.6)

Note: Continuity and limit are commutative, when the limit exists.

Theorem 2.52. Intermediate Value Theorem (IVT)
Suppose that f is continuous on a closed interval [a, b] and let N be
any number between f(a) and f(b), where f(a) ̸= f(b). Then there exists
a number c ∈ (a, b) such that f(c) = N .

Figure C.3: There is at least one such c that f(c) = N .

Remark 2.53. Consequences of the IVT

• Connectedness of the Graph: The IVT implies that the graph of
a continuous function cannot have any breaks over the interval. It
will be connected – a single, unbroken curve.

• Root Finding: We call a solution of the equation f(x) = 0 a root of
the equation or a zero of the function f . The IVT tells us that if
f is continuous, then any interval on which f changes sign contains
a zero of the function.
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Example C.4. Use the Intermediate Value Theorem to show that there is
a root of the given equation in the specified interval.

x3 + 3x2 = x+ 2, [0, 1].

Solution.

Continuous Extension to a Point

Example C.5. Define f(3) in a way that extends f(x) =
x2 − 9

x2 + x− 12
to be

continuous at x = 3.
Solution.
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§2.6. Limits Involving Infinity; Asymptotes

Definition 2.59. The line y = L is called a horizontal asymptote of
the curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L. (C.2.7)

Definition 2.73 A line x = a is a vertical asymptote of the graph of a
function y = f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞. (C.2.8)

Example C.6. Find the vertical, horizontal, and oblique asymptotes
of each curve, if any.

(a) f(x) =
x− 1

x2 − 2x
(b) g(x) =

x2 − 2x

x− 1
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C.3. Derivatives

§3.2. The Derivative as a Function
Definition 3.13. The derivative of the function f(x) with respect to the
variable x is the function f ′ whose value at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(C.3.1)

provided the limit exists.

Remark 3.14. The domain of f ′ may be either the same as or smaller
than the domain of f .

Theorem 3.21. Differentiability Implies Continuity:
If f has a derivative at x = c, then f is continuous at x = c.

Example C.7. Let f(x) = 1/x.

(a) Use the definition of derivative to find f ′.
(b) Find the tangent line to the curve y = f(x) at x = 1.

Solution.
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§3.6. The Chain Rule
Theorem 3.45. The Chain Rule: If f(u) is differentiable at the point
u = g(x) and g(x) is differentiable at x, then the composite function
(f ◦ g)(x) = f(g(x)) is differentiable at x, and

(f ◦ g)′(x) = f ′(g(x)) · g′(x) =
d f(g(x))

d g(x)
· dg(x)

dx
. (C.3.2)

Letting y = f(u) and u = g(x), a simpler form of Leibniz’s notation
reads

dy

dx
=

dy

du
· du
dx

, (C.3.3)

where dy/du is evaluated at u = g(x).

Example 3.50. Find the value of (f ◦ g)′ at the given value of x. Use this to
find an equation of the tangent line to the curve at the given point.

f(u) = u5 + 1, u = g(x) =
√
x, x = 1

Solution.
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§3.8. Derivatives of Inverse Functions and Logarithms

Let f be differentiable and have inverse f−1.

• Then
f(f−1(x)) = x.

• Applying Chain Rule results in

f ′(f−1(x)) · [f−1]′(x) = 1 (C.3.4)

and therefore

[f−1]′(x) =
1

f ′(f−1(x))
, (C.3.5)

which can be interpreted geomet-
rically as in the figure.

Figure C.4: The derivative of the inverse
function.

Example C.8. Let f(x) = x2 − 2x− 1, x < 1. Find
df−1

dx
(7).

Solution.
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Derivatives of Logarithmic Functions

Let f(x) = loga x.

• It follows from the definition of log that

y = loga x ⇐⇒ x = ay = eln a
y

= ey ln a. (C.3.6)

• Apply implicit differentiation to the right side of (3.36) to get

1 = ey ln a · y′ ln a =⇒ y′ =
1

ey ln a · ln a
=

1

x ln a
. (C.3.7)

Summary 3.59. We may apply above arguments and Chain Rule to get
the following formulas.

d

dx
loga x =

1

x ln a

d

dx
lnx =

1

x
d

dx
ax = ax ln a

d

dx
ex = ex

d

dx
ln f(x) =

f ′(x)

f(x)

d

dx
ln |x| =

1

x

(C.3.8)

Logarithmic Differentiation

Algorithm 3.63. Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and
use the Laws of Logarithms to conveniently reform the right side.

2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y′.
4. Replace y with f(x).
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Example C.9. Use logarithmic differentiation to find dy/dx.

(a) y = xlnx (b) yx = xy

Solution.

Example C.10. (Exercise 3, §3.8).
Suppose that the function f ans its derivative have the following values at
x = 0, 1, 2, 3, 4.

x 0 1 2 3 4

f(x) −4 3 −1 2 1

f ′(x) 3 2 5/4 2/3 1/5

Assuming the inverse function f−1 is differentiable, find [f−1]′(x) at

(a) x = 1 (b) x = 2 (c) x = 3

Solution.

Ans: (c) 1/2
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§3.11. Linearization and Differentials
Definition 3.78. If f is differentiable at x = a, then the approximating
function

L(x) := f(a) + f ′(a)(x− a) (C.3.9)

is the linearization of f at a. The approximation

f(x) ≈ L(x) (C.3.10)

of f by L is the linear approximation (or, tangent line approxima-
tion) of f at a. The point x = a is the center of the approximation.

Definition 3.83. Let y = f(x) be a differentiable function. The differen-
tial dx is an independent variable. The differential dy is a dependent
variable, defined as

dy = f ′(x)dx. (C.3.11)

Remark 3.84. What is dy?
Often the variable dx is chosen to be ∆x, the change in x. Then the
differential dy is the change in the linearization of f at x = a, ∆L.

Example C.11. Let f(x) = 2x4 + x.

(a) Find the linearization L(x) of f(x) at x = 1.
(b) Use L(x) to approximate f(1.1). (The exact value is 4.0282.)

(c) Find the value of dy when x = 1 and dx = 0.1.
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C.4. Applications of Derivatives

§4.4. Concavity and Curve Sketching

Definition 4.22. The graph of a differentiable function y = f(x) is

(a) concave up (convex) on an open interval I if f ′ is increasing on I;
(b) concave down on an open interval I if f ′ is decreasing on I.

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval I.

(a) If f ′′ > 0 on I, the graph of f over I is concave up.
(b) If f ′′ < 0 on I, the graph of f over I is concave down.

Definition 4.23. A point (c, f(c)) where the graph of a function has a
tangent line and where the concavity changes is a point of inflection.

Theorem 4.27. Second Derivative Test for Local Extrema
Suppose f ′′ is continuous on an open interval that contains x = c.

(a) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at x = c.
(b) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at x = c.
(c) If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function f may

have a local maximum, a local minimum, or neither.
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Strategy 4.29. Procedure for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.
2. Find the derivatives f ′ and f ′′.
3. Find the critical points of f , if any, and identify the function’s be-

havior at each one.
4. Find where the curve is increasing and where it is decreasing.
5. Find the points of inflection, if any occur, and determine the con-

cavity of the curve.
6. Plot key points, such as the intercepts and the points found in

Steps 3–5, and sketch the curve together with any asymptotes
that exist.

Example 4.28. Sketch a graph of the function f(x) = x4− 4x3+10. Identify
the coordinates of any local extreme points, inflection points, and concavity.
Solution.

x 0 2 3

f ′(x) 0 0

f ′′(x) 0 0

f(x)

Behavior of f
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§4.5. Indeterminate Forms and L’Hôpital’s Rule

Theorem 4.33. L’Hôpital’s Rule (Bernoulli’s Rule)
Assume that f and g are differentiable and g′(x) ̸= 0 on an open interval
I containing a (except possibly at a). Suppose that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0 (C.4.1)

or that
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞. (C.4.2)

(In other words, we have an indeterminate form of type
0

0
or
∞
∞

.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. (C.4.3)

Example C.12. Use L’Hôpital’s Rule to evaluate the limit.

(a) lim
x→0

(x5 + 1)(ex − 1)

2x − 1
(b) lim

θ→0

cos2 θ − 1

eθ − θ − 1
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Other Indeterminate Forms
Example C.13. Use L’Hôpital’s Rule to find the limit.

lim
x→0+

x lnx2 (0 · ∞)(a) lim
x→∞

[ln 2x− ln(x+ 1)] (∞−∞)(b)

lim
x→0+

(1 + x)3/x (1∞)(c) lim
x→∞

x1/
√
x (∞0)(d)
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§4.6. Applied Optimization
Strategy 4.41. Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it.
What is given? What is the unknown quantity to be optimized?

2. Introduce variables. List every relevant relation in the problem as
an equation. In most problem it is helpful to draw a picture.

3. Write an equation for the unknown quantity.
Express the quantity to be optimized as a function of a single
variable. This may require considerable manipulation.

4. Test the critical points and endpoints in the domain of the function
found in the previous step. Use what you know about the shape of
the function’s graph. Use the first and second derivatives to identify
and classify the function’s critical points.

Note: Mostly, the optimization problem will be formulated with two
quantities and two variables; the quantity to be optimized can be
expressed as a function of a single variable.

Example C.14. The U.S. Postal
Service will accept a box for domes-
tic shipment only if the sum of its
length and girth (distance around)
does not exceed 108 in. What dimen-
sions will give a box with a square
end the largest possible volume?

Solution.

Ans: Length = 36 in, Side = 18 in (182 · 36 = 11664 in3)
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§4.7. Newton’s Method
• Given an initial approxima-

tion x0, the point-slope equation
for the tangent to the curve at
(x0, (x0)) is

y = f ′(x0)(x− x0) + f(x0).
(C.4.4)

• We can find where it crosses the
x-axis by setting y = 0:

f ′(x0)(x− x0) = −f(x0),

which implies

x = x0 −
f(x0)

f ′(x0)
, (C.4.5)

when f ′(x0) ̸= 0.

• This value of x is the next ap-
proximation x1.

• Repeat the steps to find new ap-
proximations.

Algorithm 4.48. Newton’s Method

1. Guess a first approximation to a solution of the equation f(x) = 0.
A graph of y = f(x) may help.

2. Use the first approximation to get a second, the second to get a third,
and so on, using the formula

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0. (C.4.6)
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Example C.15. Let us try to find 51/3 applying the Newton’s method.
( 3
√
5 ≈ 1.7099759466766968.)

(a) Use the Intermediate Value Theorem to show that there is a zero of
f(x) = x3 − 5 in [1, 2].

(b) Run two iterations of the Newton’s method to find x2 when x0 = 1.5.

Solution.

Ans: x1 =
47

27
≈ 1.7407407407, x2 = 1.7105164618
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C.5. Integrals

§5.3. The Definite Integral

Definition 5.16. Let f(x) be a function defined on a closed interval [a, b].
We say that a number J is the definite integral of f over [a, b] and that
J is the limit of the Riemann sums:

J = lim
||P ||→0

n∑
k=1

f(ck)∆xk (C.5.1)

if the following condition is satisfied:

Given any number ε > 0 there is a corresponding number δ > 0 such
that for every partition P = {x0, x1, · · · , xn} with ∥P∥ < δ and any
choice of ck ∈ [xk−1, xk], we have∣∣∣ n∑

k=1

f(ck)∆xk − J
∣∣∣ < ε. (C.5.2)

The Definite Integral as the Limit of Riemann Sums
If the definite integral exists, then instead of writing J we write

ˆ b

a

f(x) dx = lim
||P ||→0

n∑
k=1

f(ck)∆xk = lim
n→∞

n∑
k=1

f(ck)∆xk (C.5.3)
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Definition 5.17. When the definite integral exists, we say that the Rie-

mann sums of f on [a, b] converge to the definite integral J =

ˆ b

a

f(x)dx

and that f is integrable over [a, b].

Theorem 5.18. Integrability of Continuous Functions:
If a function f is continuous over the interval [a, b], or if f has at
most finitely many jump discontinuities there, then the definite integralˆ b

a

f(x)dx exists and f is integrable over [a, b].

Example 5.20. Express the limit as a definite integral.

lim
||P ||→0

n∑
k=1

(c2k − 3ck)∆xk,

where P is a partition of [−7, 5].
Solution.

Recall: Definite Integral as the Limit of Riemann Sums (C.5.3):
ˆ b

a

f(x)dx = lim
||P ||→0

n∑
k=1

f(ck)∆xk = lim
n→∞

n∑
k=1

f(ck)∆xk
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Equal-Width Subintervals
Example 5.22. Express the limit as a definite integral.

lim
n→∞

n∑
k=1

[(
3 +

2k

n

)2
+ 4
(
3 +

2k

n

)](2
n

)
Note that the expression is not unique!
Solution.

Ans:
ˆ 2

0

[(3 + x)2 + 4(3 + x)]dx =

ˆ 5

3

(x2 + 4x)dx.

Properties of Definite Integrals
Example 5.24. Suppose f and g are integrable and that

ˆ 9

1

f(x) dx = −1,
ˆ 9

7

f(x) dx = 5,

ˆ 9

7

g(x) dx = −4

Find

(a)
ˆ 9

7

[2f(x)− 3g(x)] dx

(b)
ˆ 7

1

f(x) dx

(c)
ˆ 7

9

[g(x)− f(x)] dx
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Area under the Graph of a Nonnegative Function
Example C.16. Evaluate the integral by interpreting it in terms of areas.

ˆ 3

−1
(|2x|+ 1) dx(a)

ˆ 3

−3

√
9− x2 dx(b)

Average Value of a Continuous Function: Revisited

Definition 5.28. If f is integrable on [a, b], then its average value on
[a, b], which is also called its mean, is

av(f) =
1

b− a

ˆ b

a

f(x) dx. (C.5.4)

Example C.17. Find the average value of f(x) = 1+
√
4 − x2 on [−2, 2].

Solution.
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§5.4. The Fundamental Theorem of Calculus
Theorem 5.30. (FTC1) If f is continuous on [a, b], then

F (x) =

ˆ x

a

f(t) dt (C.5.5)

is continuous on [a, b] and differentiable on (a, b) and its derivative is f(x):

F ′(x) =
d

dx

ˆ x

a

f(t) dt = f(x). (C.5.6)

That is, F is an antiderivative of f .

Theorem 5.32. (FTC2) If f is continuous over [a, b] and F is any an-
tiderivative of f on [a, b], then:

ˆ b

a

f(x) dx = F (b)− F (a). (C.5.7)

Note:
d

dx

ˆ g(x)

h(x)

f(t) dt =
d

dx

[
F (t)

∣∣∣g(x)
h(x)

]
=

d

dx
[F (g(x))− F (h(x))]

= f(g(x)) · g′(x)− f(h(x)) · h′(x).
(C.5.8)

Example C.18. Find the derivative of the function.

f(x) =

ˆ x

0

cos(1 + t4) dt(a)

g(x) =

ˆ x3

2

e−t
2

dt(b)

y =

ˆ 1

sinx

t2√
1 + t2

dt(c)
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Mean Value Theorem for Definite Integrals

Theorem 5.36. The Mean Value Theorem for Definite Integrals.
If f is continuous on [a, b], then at some point c ∈ [a, b],

f(c) =
1

b− a

ˆ b

a

f(x) dx. (C.5.9)

Position, Velocity, Displacement, and Distance

The position of an object moving along a line at time t, denoted s(t), is
the location of the object relative to the origin.

(a) The velocity of an object at time t is v(t) = s′(t).
(b) The Net Change Theorem says that

s(b)− s(a) =

ˆ b

a

v(t) dt, (C.5.10)

so the integral of velocity is the displacement of the object over the
time interval [a, b].

(c) The distance traveled over the time interval [a, b] is

Distance traveled =

ˆ b

a

|v(t)| dt, (C.5.11)

where |v(t)| is the speed of the object at time t.

Example C.19. The velocity function (in meters per second) is given for a
particle moving along a line, as

v(t) = t2 − 4t+ 3, t ∈ [2, 5].

(a) Find the displacement. (b) Find the distance traveled.

Solution.
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§5.6. Definite Integral Substitutions and the Area be-
tween Curves
The Substitution Rule (§5.5)

Theorem 5.48. If u = g(x) is a differentiable function whose range is
an interval I, and f is continuous on I, thenˆ

f(g(x)) · g′(x) dx =

ˆ
f(u)du, (C.5.12)

where du = g′(x) dx.

Substitution in Definite Integrals

Theorem 5.55. If g′(x) is continuous on the interval [a, b] and f(x) is
continuous on the range of g(x) = u, then

ˆ b

a

f(g(x)) · g′(x) dx =

ˆ g(b)

g(a)

f(u) du. (C.5.13)

Example C.20. Evaluate definite integrals.

(a)
ˆ 1

0

(6x2 + 4x)
√

x3 + x2 dx. (b)
ˆ π/2

0

sin2 x cosx dx.

Solution.

Ans: (a) 8
√
2/3. (b) 1/3.
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Areas between Curves

Definition 5.61. If f and g are continuous with f(x) ≥ g(x) throughout
[a, b], then the area of the region between the curves y = f(x) and y = g(x)
from over [a, b] is the integral of (f − g) from a to b:

A = lim
||P ||→0

n∑
k=1

[f(ck)− g(ck)]∆xk =

ˆ b

a

[f(x)− g(x)]dx. (C.5.14)

Example C.21. Find the total area of the region between the curves y =

x2 − 4 and y = x− 2, between x = 0 and x = 3.
Solution.
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C.6. Applications of Definite Integrals

§6.1. Volume Using Cross-Sections

Proposition 6.1. Suppose that we want to find the volume of a solid S
like the one pictured in Figure C.5 (a).

• At each point x ∈ [a, b], we form a cross-section S(x) by intersect-
ing S with a plane perpendicular to the x-axis through the point x,
which gives a planar region whose area is A(x).

(a) (b)

Figure C.5: (a) A cross-section S(x) of the solid S. (b) A thin slab in the solid S.

• Riemann sum:

– Partition [a, b] into subintervals
– Approximate the thin slab by a cylindrical solid.
– Then a Riemann sum for the function A(x) on [a, b] reads

V ≈
n∑

k=1

Vk =
n∑

k=1

A(xk)∆xk, (C.6.1)

where ck = xk.

This method is known as the method of slicing for computing volumes.
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The Method of Slicing

Definition 6.2. The volume of a solid of integrable cross-sectional area
A(x) for x ∈ [a, b] is the integral of A over [a, b]

V = lim
n→∞

n∑
k=1

A(xk)∆xk =

ˆ b

a

A(x) dx. (C.6.2)

Strategy 6.3. Calculating the Volume of a Solid

(a) Sketch the solid to understand.
(b) Find the limits of integration, [a, b].
(c) For each x ∈ [a, b], find a formula for A(x),

the area of a typical cross-section.
(d) Integrate A(x) to find the volume.

Example 6.5. A curved wedge is cut from a circular cylinder of radius
3 by two planes. One plane is perpendicular to the axis of the cylinder.
The second plane crosses the first plane at a 45◦ angle at the center of the
cylinder. Find the volume of the wedge.
Solution. Note that A(x) = x · 2

√
9− x2.

Ans: 18.
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The Disk Method
Volume by Disks for Rotation About the x-Axis

V =

ˆ b

a

A(x) dx =

ˆ b

a

π[R(x)]2 dx, (C.6.3)

where R(x) is the radius.

Example C.22. Find the volume of the solid obtained by rotating the
region between x = y2 + 1 and x = 5 about the line x = 5.
Solution.

Ans: 32
3
π.

The Washer Method
Volume by Washers for Rotation About the x-Axis

V =

ˆ b

a

A(x) dx =

ˆ b

a

π([R(x)]2 − [r(x)]2) dx, (C.6.4)

where R(x) is the outer radius and r(x) is the inner radius.

Example C.23. The region bounded by the parabola y = x2 + 1 and the
line y = −x + 3 is revolved about the x-axis to generate a solid. Find the
volume of the solid.
Solution.

Ans: 117
5
π.
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§6.2. Volumes Using Cylindrical Shells
The Shell Method
• Consider the region bounded by the graph of a function y = f(x) and

the x-axis over the closed interval [a, b]; see Figure 6.3(a).
• We assume L ≤ a. We generate a solid S by rotating the region about

the vertical line x = L.
(a) (b)

Figure C.6: A region is resolved about the vertical line y = L.

• Partitioning. Let P be a partition of the interval [a, b] by the points

a = x0 < x1 < · · · < xn = b.

• Approximation. We approximate the region in Figure 6.3(a)
with the collection of rectangles based on this partition.

• Rectangles. As usual, choose a point ck ∈ [xk−1, xk], e.g., the midpoint
of the subinterval. A typical approximating rectangle has

height = f(ck) and width = ∆xk = xk − xk−1.

• Rotation: Cylindrical shells. If such a rectangle is rotated about
the vertical line y = L, then a shell is swept out, as in Figure 6.3(b).

• Riemann sum. We approximate the volume of the solid S by sum-
ming the volumes of the shells swept out by the n rectangles:

V ≈
n∑

k=1

∆Vk =
n∑

k=1

2π · (ck − L) · f(ck) ·∆xk. (C.6.5)
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Formula 6.11. Shell Formula for Revolution About a Vertical
Line. The volume of the solid generated by revolving the region between
the x-axis and the graph of a continuous function y = f(x) ≥ 0, L ≤ a ≤
x ≤ b, about a vertical line x = L is

V =

ˆ b

a

2π(shell-radius) · (shell-height)︸ ︷︷ ︸
Area of the thin shell

dx. (C.6.6)

Example C.24. The region bounded by the curve y =
√
x, the x-axis, and

the line x = 4 is revolved about the x-axis to generate a solid. Use the shell
method to find the volume of the solid.
Solution.

Ans: 128
5
π.
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§6.4. Areas of Surfaces of Revolution
Note: From Section 6.3, the differential of arc length reads

ds =
√

dx2 + dy2 =

√
1 +

(dy
dx

)2
dx =

√
1 +

(dx
dy

)2
dy. (C.6.7)

Formula 6.25. Curved Surface Area of a Frustum

Frustum Surface Area = 2π · R + r

2
· L (C.6.8)

Surface Area for Revolution about the x-axis

(a) (b) (c)

Figure C.7: Surface area for revolution about the x-axis.

We will find the area of the surface generated by revolving the graph
of y = f(x), a ≤ x ≤ b, about the x-axis, as in Figure C.7(a).

• Partitioning ⇒ Approximation ⇒ Riemann sum

S ≈
n∑

k=1

2π
f(xk−1) + f(xk)

2
·
√

1 + [f ′(ck)]2∆xk

≈
n∑

k=1

2πf(ck) ·
√

1 + [f ′(ck)]2∆xk.

(C.6.9)

• See details on page 282.
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Definition 6.26. Surface Area for Revolution about the x-axis
If the function y = f(x) ≥ 0 is continuously differentiable on [a, b], the
area of the surface generated by revolving the graph of y = f(x) about
the x-axis is

S =

ˆ b

a

2πy

√
1 +

(dy
dx

)2
dx =

ˆ b

a

2πf(x)
√

1 + [f ′(x)]2 dx. (C.6.10)

Definition 6.27. Surface Area for Revolution about the y-axis
If the function x = g(y) ≥ 0 is continuously differentiable on [c, d], the
area of the surface generated by revolving the graph of x = g(y) about
the y-axis is

S =

ˆ d

c

2πx

√
1 +

(dx
dy

)2
dy =

ˆ d

c

2πg(y)
√
1 + [g′(y)]2 dy. (C.6.11)

Claims 6.31 and 6.33 . Curves, Revolved About the Other Axis

• Let y = f(x) be a monotone function defined on [a, b], a ≥ 0, such that

[a, b]
f−−−→←−−−

g=f−1

[c, d]. (C.6.12)

• Then, for example, the area of the surface obtained by rotating the
curve y = f(x) about the y-axis reads, with (radius = x),

S =

ˆ
2πr ds =

ˆ b

a

2πx
√

1 + [f ′(x)]2 dx =

ˆ d

c

2πg(y)
√
1 + [g′(y)]2 dy

(C.6.13)
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Example C.25. Find the area of the surface obtained by rotating the curve
y = x2, 0 ≤ x ≤ 2, about the y-axis.
Solution.
(a) x-integration: (b) y-integration:

Ans:
π

6
(17
√
17− 1)

Example C.26. (Exercise 3, § 6.4) Find the area of the surface obtained by
rotating the curve about the y-axis.

y =
x4

4
+

1

8x2
, 1 ≤ x ≤ 2

Hint : Use the formula in (6.26).

Solution.

Ans: 253π/20.
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C.7. Integrals and Transcendental Functions

§7.2. Exponential Change and Separable Differential
Equations

In many real-world situations, the rate of change of a quantity y is
proportional to its size at a given time t.

dy

dt
∼ y =⇒ dy

dt
= ky. (C.7.1)

• Examples of such quantities include the size of a population, the
amount of a decaying radioactive material, and the temperature dif-
ference between a hot object and its surrounding medium.

• Such quantities are said to undergo exponential change.

Example C.27. Solve the differential equation (C.7.1).
Solution. Divide (C.7.1) by y to get

1

y
· dy
dt

= k ⇒
ˆ

1

y
· dy
dt

dt =

ˆ
k dt

⇒ ln |y| = kt+ C ⇒ |y| = ekt+C

⇒ y = ±eC · ekt = Aekt

(C.7.2)

The solution of the initial value problem

dy

dt
= ky, y(0) = y0, (C.7.3)

is
y = y0 e

kt. (C.7.4)

Note:
ˆ

1

y
· dy
dt

dt =

ˆ
1

y
dy, the integration of

1

y
with respect to y. That

is, the first line in (C.7.2) and (C.7.3) can be written as

1

y
dy = k dt (C.7.5)



652 Appendix C. Chapter Reviews

Separable Differential Equations

• More general differential equations are of the form

dy

dx
= f(x, y) = f(x, y(x)). (C.7.6)

• The differential equation (C.7.6) is separable if f can be expressed as
a product of a function of x and a function of y:

dy

dx
= g(x)h(y). (C.7.7)

• We can solve (C.7.7), using the same arguments introduced in Exam-
ple C.27 (separate the variables and integrate):

1

h(y)
dy = g(x) dx ⇒

ˆ
1

h(y)
dy =

ˆ
g(x) dx. (C.7.8)

Population Growth
Example C.28. The biomass of a yeast culture in an experiment is ini-
tially 20 grams. After 30 minutes the mass is 40 grams. Assuming that the
equation for unlimited population growth gives a good model for the growth
of the yeast (y′ = ky) when the mass is below 100 grams, how long will it
take for the mass to triple from its initial value?
Solution. Begin with y = y0 e

kt.

Ans: k = 1
30
ln(40

20
) ≈ 0.0231, t = ln 3

k
≈ 47.55.
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Radioactivity

• Some atoms are unstable and can spontaneously emit mass or ra-
diation. This process is called radioactive decay.

• Experiments have shown that at any given time the rate at which a
radioactive element decays is approximately proportional to the num-
ber of radioactive nuclei present: proportional to the number of ra-
dioactive nuclei present.

• Modeling: Thus the decay of a radioactive element is described by the
equation

dy

dt
= −ky, k > 0, (C.7.9)

of which the solution reads

y = y0 e
−kt. (C.7.10)

• The half-life of a radioactive element is the time expected to pass until
half of the radioactive nuclei present in a sample decay:

1

2
y0 = y0 e

−kt.

Thus the half-life reads

Half-life =
ln 2

k
. (C.7.11)

Example 7.10. (Plutonium-239) The half-life of the plutonium isotope is
24,360 years. If 10 g of plutonium is released into the atmosphere by a nu-
clear accident, how many years will it take for 80% of the isotope to decay?
Solution.

Ans: 24360 · ln 5
ln 2
≈ 56562.
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§7.4. Relative Rates of Growth and Convergence: Big-oh
and Little-oh
Relative Rates of Growth
Definition 7.28. Let f(x) and g(x) be positive for x sufficiently large.

(a) f grows faster than g as x→∞ if

lim
x→∞

f(x)

g(x)
=∞,

or, equivalently, if

lim
x→∞

g(x)

f(x)
= 0.

We also say that g grows slower than f as x→∞.
(b) f and g grow at the same rate as x→∞ if

lim
x→∞

f(x)

g(x)
= L,

where L is finite and positive.

Big-oh and Little-oh

Definition 7.31. A function f is of smaller order than g as x→∞ if

lim
x→∞

f(x)

g(x)
= 0. (C.7.12)

We indicate this by writing f = o(g) (“f is little-oh of g”).

Definition 7.32. Let f(x) and g(x) be positive for x sufficiently large.
Then f is of at most the order of g as x → ∞ if there is a positive
number M such that

f(x)

g(x)
≤M, for x sufficiently large. (C.7.13)

We indicate this by writing f = O(g) (“f is big-oh of g”).
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Relative Rates of Convergence

Definition 7.34. Suppose lim
h→0

G(h) = 0.

(a) A quantity F (h) is said to be in little-oh of G(h) as h→ 0, if

lim
h→0

|F (h)|
|G(h)|

= 0. (C.7.14)

In this case, we denote F (h) ∈ o(G(h)) or F (h) = o(G(h)).
(b) A quantity F (h) is said to be in big-oh of G(h) as h→ 0, if there is a

positive number K such that

|F (h)|
|G(h)|

≤ K, for h sufficiently small. (C.7.15)

In this case, we denote F (h) ∈ O(G(h)) or F (h) = O(G(h)) .

Example C.29. Answer the assertions by “Yes" or “No" for each of {f, g}-
pairs under the given conditions

{f, g} f = o(g) f = O(g){
f(x) = tan−1 x, g(x) = x2 − 2x

}
, as x→ 0{

f(x) = x3 − sin3 x, g(x) = x3
}
, as x→∞{

f(h) = 1− eh, g(h) = h
}
, as h→ 0{

f(n) = n2 − n, g(n) = n3
}
, as n→∞
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C.8. Techniques of Integration

§8.2. Integration by Parts
Formula 8.8. Integration by Parts:

ˆ
u(x)v′(x) dx = u(x)v(x)−

ˆ
u′(x)v(x) dx, (C.8.1)

whose differential version readsˆ
u dv = uv −

ˆ
v du. (C.8.2)

Remark 8.9. Integration by Parts: Alternative Form
Let v1 is the antiderivative of v with C = 0. Thenˆ

u(x)v(x) dx = u(x)v1(x)−
ˆ

u′(x)v1(x) dx. (C.8.3)

Remark 8.14. Tabular Integration by Parts:
While the aforementioned recursive definition is correct, it is often
tedious to remember and implement. A much easier visual representa-
tion of this process is often taught to students and is called the tabular
method or the tic-tac-toe method.
• Let vk+1 be the antiderivative of vk with C = 0, where v = v0.

Then ˆ
uv = uv1 −

ˆ
u′v1 = uv1 −

(
u′v2 −

ˆ
u′′v2

)
= uv1 − u′v2 +

ˆ
u′′v2

= uv1 − u′v2 + u′′v3 −
ˆ

u′′′v3

= uv1 − u′v2 + u′′v3 − u′′′v4 +

ˆ
u′′′′v4 = · · ·

(C.8.4)

Note: u is involved in the form of (−1)ku(k).
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Example C.30. Evaluate the integrals.

(a)
ˆ

x(lnx)2 dx (b)
ˆ

cos
√
x dx

Solution.

Example C.31. Find the area of the region bounded by the curve y =√
x lnx and the x-axis from x = 1 to x = 4.

Solution.

Ans:
1

3
u3 lnu− 1

9
u3
∣∣∣2
1
.
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Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually
gives good results:ˆ

f−1(x) dx =

ˆ
yf ′(y) dy y = f−1(x), x = f(y),

dx = f ′(y)dy

= yf(y)−
ˆ

f(y) dy

= xf−1(x)−
ˆ

f(y) dy

(C.8.5)

Note that y = f−1(x) (on the first line) can be viewed as a substitution.

Formula 8.18. Integrating Inverses of Functions:
ˆ

f−1(x) dx = xf−1(x)−
ˆ

f(y) dy. y = f−1(x) (C.8.6)

Example C.32. Evaluate the integrals, using the formula in (C.8.6).

(a)
ˆ

arcsinx dx (b)
ˆ e

1

lnx dx

Solution.

Ans: (a) x arcsinx+ cos(arcsinx) + C. (b) 1.
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§8.4. Trigonometric Substitutions

Table C.1: Trigonometric substitutions.

Expression Substitution Identity√
a2 + x2 x = a tan θ, −π

2
< θ <

π

2
1 + tan2 θ = sec2 θ√

a2 − x2 x = a sin θ, −π
2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ√

x2 − a2 x = a sec θ, 0 ≤ θ <
π

2
or

π

2
< θ ≤ π sec2 θ − 1 = tan2 θ

Figure C.8: Reference triangles for the three basic trigonometric substitutions.

Remark 8.29. With the substitution x = a sec θ,

x2 − a2 = a2 sec2 θ − a2 = a2(sec2 θ − 1) = a2 tan2 θ. (C.8.7)

The substitution requires

θ = sec−1
(x
a

)
with

 0 ≤ θ <
π

2
, if

x

a
≥ 1,

π

2
< θ ≤ π, if

x

a
≤ −1.

(C.8.8)

For sec−1, see Figure 1.25, p. 54.
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Example C.33. Evaluate the integrals.
You may have to use the formula

´
sec θ dθ = ln | sec θ + tan θ|+ C.

(a)
ˆ 2

0

x2

(x2 + 4)3/2
dx

Ans: ln | sec θ + tan θ| − sin θ
∣∣∣π/4
0

(b)
ˆ √3/2
0

x3

(1− x2)5/2
dx

Ans: 4/3.
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§8.5. Integration of Rational Functions by Partial Frac-
tions

Strategy 8.36. Method of Partial Fractions
When f(x)/g(x) is Proper

1. Linear factors of g:
Let (x − r) be a factor of g(x) with (x − r)m being its highest power.
Then, to this factor, assign the sum of the m partial fractions:

A1

x− r
+

A2

(x− r)2
+ · · ·+ Am

(x− r)m
. (C.8.9)

2. Quadratic factors of g:
Let (x2 + px+ q) be a factor of g(x) with (x2 + px+ q)n being its highest
power. Then, to this factor, assign the sum of the n partial fractions:

B1x+ C1

x2 + px+ q
+

B2x+ C2

(x2 + px+ q)2
+ · · ·+ Bnx+ Cn

(x2 + px+ q)n
. (C.8.10)

3. Combine all the partial fractions:
Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions.

4. Determine the coefficients:
Equate the coefficients of corresponding powers of x and solve the re-
sulting equations for the undetermined coefficients.

General Description of the Method
Success in writing a rational function f(x)/g(x) as a sum of partial frac-
tions depends on two things:

• The degree of f(x) must be less than the degree of g(x).
– That is, the fraction must be proper.
– If it isn’t, divide f(x) by g(x) and work with the remainder term.

f(x)

g(x)
= Q(x) +

r(x)

g(x)
. (C.8.11)

• We must know the factors of g(x).
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Example 8.38. Evaluate the integrals.

(a)
ˆ

x− 1

(x+ 1)3
dx (b)

ˆ
10

(x− 1)(x2 + 9)
dx

Example 8.39. Evaluate the integrals.

(a)
ˆ

x2 + 2x+ 1

(x2 + 1)2
dx (b)

ˆ √
x+ 1

x
dx (Hint: Let u =

√
x+ 1)

Ans: (a) ln(x2 + 1)− 1
x2+1

+ C. (b) 2[
√
x+ 1− 1

2
ln(
√
x+ 1 + 1) + 1

2
ln |
√
x+ 1− 1|+ C.
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§8.8. Improper Integrals
Expansion 8.49. Definite Integrals

• Up to now, we have required definite integrals to satisfy two proper-
ties:

1. The domain of integration [a, b] must be finite.
2. The range of the integrand must be finite on this domain.

• In practice, we may encounter problems that fail to meet one or both
of these conditions.

• In either case, the integrals are said to be improper and are calcu-
lated as limits.

Definition 8.51. Integrals with infinite intervals are improper inte-
grals of Type I.

1. If f(x) is continuous on [a,∞), then
ˆ ∞
a

f(x) dx = lim
b→∞

ˆ b

a

f(x) dx. (C.8.12)

2. If f(x) is continuous on (−∞, b], then
ˆ b

−∞
f(x) dx = lim

a→−∞

ˆ b

a

f(x) dx. (C.8.13)

3. If f(x) is continuous on (−∞,∞), then
ˆ ∞
−∞

f(x) dx =

ˆ c

−∞
f(x) dx+

ˆ ∞
c

f(x) dx, (C.8.14)

where c is any real number.

In each case, if the limit exists and is finite, we say that the improper
integral converges and that the limit is the value of the improper inte-
gral. If the limit fails to exist, the improper integral diverges.
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The Integral
ˆ ∞

1

dx

xp

Example 8.54. For what values of p does the integral
ˆ ∞
1

dx

xp
converge?

When the integral does converge, what is its value?
Solution. Consider cases: 1 p = 1, 2 p ̸= 1

Ans: When p > 1, the improper integral converges to 1/(p − 1).
Example C.34. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ ∞
1

2

x2 + 2x
dx

Solution.



C.8. Techniques of Integration 665

Type II: Discontinuous Integrands

Definition 8.59. Integrals of functions that become infinite at a point
within the interval of integration are improper integrals of Type II.

1. If f(x) is continuous on (a, b] and discontinuous at a, then
ˆ b

a

f(x) dx = lim
c→a+

ˆ b

c

f(x) dx. (C.8.15)

2. If f(x) is continuous on [a, b) and discontinuous at b, then
ˆ b

a

f(x) dx = lim
c→b−

ˆ c

a

f(x) dx. (C.8.16)

3. If f(x) is continuous on [a, b] except at c, a < c < b, then
ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx. (C.8.17)

In each case, if the limit exists and is finite, we say the improper integral
converges and that the limit is the value of the improper integral. If
the limit does not exist, the integral diverges.

The Integral
ˆ 1

0

dx

xp

Example C.35. For what values of p does the integral
ˆ 1

0

dx

xp
converge?

When the integral does converge, what is its value?
Solution.

Ans: When p < 1, the improper integral converges to 1/(1 − p).
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Example C.36. Determine whether the integral converges or diverges.
Evaluate if it converges.

(a)
ˆ 1

0

1 + x√
x2 + 2x

dx (b)
ˆ ∞
0

1

(x+ 1)
√
x
dx

Solution.

Ans: (a)
√
3. (b) π.

Example C.37. Determine whether the integral converges or diverges.
Evaluate if it converges.ˆ 4

0

1

(x− 2)2/3
dx

Solution.
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Tests for Convergence and Divergence

Remark 8.63. When we cannot evaluate an improper integral directly,
we try to determine whether it converges or diverges.

• If the integral diverges, that’s the end of the story.
• If it converges, we can use numerical methods to approximate its

value.
• The principal tests for convergence or divergence are the Direct

Comparison Test and the Limit Comparison Test.

Theorem 8.64. Direct Comparison Test
Let f and g be continuous on [a,∞) with 0 ≤ f(x) ≤ g(x) for all x ≥ a.
Then

1. If
ˆ ∞
a

g(x) dx converges, then
ˆ ∞
a

f(x) dx converges.

2. If
ˆ ∞
a

f(x) dx diverges, then
ˆ ∞
a

g(x) dx diverges.

Theorem 8.66. Limit Comparison Test
If the positive functions f and g are continuous on [a,∞), and if

lim
x→∞

f(x)

g(x)
= L, 0 < L <∞, (C.8.18)

then ˆ ∞
a

f(x) dx and
ˆ ∞
a

g(x) dx

either both converge or both diverge.
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Example C.38. Show that
ˆ ∞
0

1√
x+ x3

dx converges.

Solution.

Example C.39. Use integration, the Direct Comparison Test, or the Limit
Comparison Test to investigate the convergence of

(a)
ˆ 2

1

1

x lnx
dx (b)

ˆ ∞
e

1

lnx
dx (c)

ˆ ∞
4

1

x3/2 − x
dx

Solution.

Ans: (b) diverge. (c) converge.
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C.14. Partial Derivatives
§14.4. Tangent Planes & Linear Approximations
Definition C.40. Given z = f(x, y), the linear (tangent plane) ap-
proximation of f near (a, b) is

L(x, y) ≡ z0 + fx(a, b) (x− a) + fy(a, b) (y − b), (C.14.1)

where z0 = f(a, b).

Note: The equation of the tangent plane is
z − z0 = fx(a, b) (x− a) + fy(a, b) (y − b),

or equivalently
−fx(a, b) (x− a)− fy(a, b) (y − b) + (z − z0) = 0. (C.14.2)

A level surface form of z = f(x, y) can be rewritten as
F (x, y, z) = z − f(x, y) = 0;

its gradient becomes
∇F = ⟨−fx, −fy, 1⟩. (C.14.3)

Preveal C.41. (§ 16.6. Parametric Surfaces and Their Areas): Let a
surface S be formed by the graph of z = f(x, y) and parametrized by
r(x, y) = ⟨x, y, f(x, y)⟩. Then, as in (16.63) on p. 588,

rx × ry = ⟨−fx, −fy, 1⟩. (C.14.4)

Theorem C.42. If fx and fy exist near (a, b) and continuous at (a, b),
then f is differentiable at (a, b).

Definition C.43. For a differentiable function z = f(x, y), the (total)
differential is

dz = fx(x, y) dx+ fy(x, y) dy, (C.14.5)

where dx and dy represent the change in the x and y directions, respec-
tively.
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Example C.44. Find an equation for the tangent plane to the elliptic
paraboloid z = x2 + 4y2 at the point (1, 1, 5).
Solution.

Ans: z − 5 = 2 · (x− 1) + 8 · (y − 1)⇔ z = 2x+ 8y − 5.

Example C.45. Let f(x, y) = ln(x+1)+cos(x/y). Explain why the function
is differentiable at (0, 2).

Example C.46. Use a linear approximation to estimate f(2.2, 4.9), pro-
vided that f(2, 5) = 6, fx(2, 5) = 1, and fy(2, 5) = −1.
Solution.

Ans: 6.3
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§14.6. Directional Derivatives and the Gradient Vector

Claim C.47. For a unit vector u, the directional derivative for a
differential function f is

Duf(x, y) = ∇f(x, y) · u.

Theorem C.48. Let f be differentiable. Then,

max
u

Duf = |∇f | (C.14.6)

Note: The gradient vector ∇f is directing the fastest increasing direc-
tion.

Tangent Plane and Normal Line to a Level Surface

Suppose S is a surface given as F (x, y, z) = k and x0 = (x0, y0, z0) is on S.
Then the tangent plane to S at x0 is

∇F (x0) · (x− x0) = Fx(x0)(x− x0) + Fy(x0)(y − y0) + Fz(x0)(z − z0) = 0.
(C.14.7)

The normal line to S at x0 is

x− x0
Fx(x0)

=
y − y0
Fy(x0)

=
z − z0
Fz(x0)

. (C.14.8)
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Example C.49. Let f(x, y) = x+ sin(xy).

1. Find the directional derivative of f at the point (1, 0) in the direction
given by the angle θ = π/3.

2. In what direction does f have the maximum rate of change? What is
the maximum rate of change?

Solution.

Ans: (a) (1 +
√
3)/2 (b)

√
2

Example C.50. Find the equations of the tangent plane and the normal
line at P (0, 0, 1) to x+ y + z = exyz.

Solution.

Ans: (a) x+ y + z = 1 (b) x = y = z − 1
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§14.8. Method of Lagrange Multipliers

Consider the optimization problem[
max /min f(x)

subject to g(x) = c

Strategy C.51. (Method of Lagrange multipliers). For the max/min
values of the optimization problem,
(a) Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c.

(b) Evaluate f at all these points, to find the maximum and minimum.

Example C.52. Use Lagrange Multipliers to prove that the rectangle with
maximum area that has a give perimeter p is a square.
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Example C.53. Find the maximum and minimum values of f(x, y) = 2x2+

(y − 1)2 on the circle x2 + y2 = 4.

Solution. ∇f = λ∇g =⇒

[
4x

2(y − 1)

]
= λ

[
2x

2y

]
. Therefore,


2x = λx 1

y − 1 = λ y 2

x2 + y2 = 4 3

From 1 , x = 0 or λ = 2.

Ans: min: f(0, 2) = 1; max: f(±
√
3,−1) = 10

Example C.54. Find the maximum and minimum values of f(x, y) = 2x2+

(y − 1)2 on the disk x2 + y2 ≤ 4.

Solution. Hint : You should check values at critical points as well.

Ans: min: f(0, 1) = 0; f(±
√
3,−1) = 10



C.15. Multiple Integrals 675

C.15. Multiple Integrals

§15.2. Double Integrals over General Regions

Multiple integrals can be computed with iterated integral where the
given domain must be covered once-and-only-once, without missing
and without overlap. Furthermore, you should be able to change the
order of integration properly.

Example C.55. (Problem 15.16). Find the volume of the solid that lies
under the plane z = 1 + 2y and above the region D in the xy-plane bounded
by the line y = 2x and the parabola y = x2.
Solution. Try for both orders.

Ans: 28/5
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Example C.56. Evaluate the integral by reversing the order of integra-
tion: ˆ 4

0

ˆ 2

√
y

ex
3

dx dy

Solution.

Ans: 1
3
(e8 − 1)

Self-study C.57. Sketch the region of integration and change the order of
integration.

ˆ 2

−2

ˆ √4−y2

0

f(x, y) dx dy

ˆ ln 2

0

ˆ 2

ey
f(x, y) dx dy

Solution.
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§15.7. Triple Integrals in Cylindrical Coordinates
Definition C.58. (Definition 15.54). The conversion between the
Cylindrical Coordinates and the Rectangular Coordinate system
gives

(x, y, z)R ← (r, θ, z)C (r, θ, z)C ← (x, y, z)R

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x
z = z z = z

(C.15.1)

Note: The triple integral with a Cylindrical Domain E can be carried
out by first separating the domain like

E = D × [u1(x, y), u2(x, y)], where D is a polar region.

Example C.59. Evaluate
y

E

y dV , where E is the solid that lies between

the cylinders x2 + y2 = 1 and x2 + y2 = 9, above the xy-plane, and below the
plane z = y + 3.
Solution.

Ans: 20π
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Self-study C.60. Use the cylindrical coordinates to find the volume of the
solid E that is enclosed by the cone z =

√
x2 + y2 and the sphere x2+y2+z2 =

8.
Solution.

Ans: 32
3
π(
√
2− 1)



C.15. Multiple Integrals 679

§15.9. Change of Variables in Multiple Integrals
Definition C.61. A change of variables is a transformation T : Q→ R
(from the uv-plane to the xy-plane), T (u, v) = (x, y), where x and y are
related to u and v by the equations

x = g(u, v), y = h(u, v). [or, r(u, v) = ⟨g(u, v), h(u, v)⟩]

We usually take these transformations to be C1-Transformation,
meaning g and h have continuous first-order partial derivatives, and
one-to-one.

Figure C.9: Transformation: R = T (Q), the image of T .

Definition C.62. The Jacobian of T : x = g(u, v), y = h(u, v) is

∂(x, y)

∂(u, v)
def
== det

[
xu xv
yu yv

]
= xu yv − xv yu. (C.15.2)

Claim C.63. Suppose T : Q → R is an one-to-one C1 transformation
whose Jacobian is nonzero. Then

x

R

f(x, y) dA =
x

Q

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv (C.15.3)

Note: In linear algebra, an n × n matrix A is considered as a transformation from
Rn to Rn. Furthermore its determinant can be viewed as a volume scaling factor. For
details, see Section 3.1 of Introduction to Linear Algebra:
https://skim.math.msstate.edu/LectureNotes/Linear_Algebra_LectureNote.pdf.

https://skim.math.msstate.edu/LectureNotes/Linear_Algebra_LectureNote.pdf
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Example C.64. Make an appropriate change of variables to evaluate the
integral x

R

sin(9x2 + 4y2) dA,

where R is the region in the first quadrant bounded by the ellipse 9x2 +
4y2 = 1.
Solution.

Ans: π(1−cos 1)
24
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C.16. Integrals and Vector Fields

§16.2. Line Integrals
Definition C.65. If f is defined on a smooth curve C given by

r(t) = ⟨x(t), y(t)⟩, a ≤ t ≤ b, (C.16.1)

then line integral of f along C is
ˆ
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆si, (C.16.2)

if this limit exists. Here ∆si =
√
∆x2i +∆y2i .

The line integral defined in (C.16.2) can be evaluated as

´
C f(x, y) ds =

ˆ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

=

ˆ b

a

f(x(t), y(t)) |r′(t)| dt.
(C.16.3)

Definition C.66. Let F be a continuous vector field defined on a smooth
curve C given by r(t), a ≤ t ≤ b. Then the line integral of F along C is

ˆ
C

F · dr def
==

ˆ
C

F · T ds =

ˆ b

a

F (r(t)) · r′(t) dt. (C.16.4)

We say that work is the line integral with respect to arc length of the
tangential component of force.
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Example C.67. Evaluate the line integral
ˆ
C

x ey
2−z2 ds, where C is the

line segment from (0, 0, 0) to (2,−2, 1).
Solution.

Ans: e3 − 1

Example C.68. Find the work done by the vector field F (x, y) = ⟨x, yex⟩ on
the particle that moves along the parabola x = y2 + 1 from (1, 0) to (2, 1).
Solution.

Ans: 3
2
+ e2−e

2
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§16.3. The Fundamental Theorem for Line Integrals
Let C be a curve represented by

r(t) = ⟨x(t), y(t)⟩ or r(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b.

Theorem C.69.

1. Suppose that F is continuous, and is a conservative vector field;
that is, F = ∇f for some f . Thenˆ

C

F · dr =
ˆ
C

∇f · dr = f(r(b))− f(r(a)). (C.16.5)

2.
´
C F · dr is independent of path in D ⇐⇒

´
C F · dr = 0 for every

closed path in D.
3. Suppose F is a vector field that is continuous on an open con-

nected domain D. If
´
C F · dr is independent of path in D, then

F is conservative (i.e., there is f such that F = ∇f ).
4. If F = ⟨P, Q⟩ is conservative, where P and Q have continuous partial

derivatives, then
∂Q

∂x
=

∂P

∂y
. (C.16.6)

5. When D is a simply-connected domain, the equality (C.16.6) implies
conservativeness of F .

Roughly speaking: When F = ⟨P, Q⟩ is smooth enough,

conservativeness ⇔ independence of path ⇔ Qx = Py
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Example C.70. Find the work done by

F = 2y3/2i+ 3x
√
y j

in moving an object from A(1, 1) to B(2, 4).
Solution. First, check if F is conservative: Qx = 3

√
y, Py = 2 · 32y

1/2 = 3
√
y.

Ans: 30

Example C.71. Given F (x, y) = ⟨ey + y cosx, xey + sinx⟩,

(a) Find a potential.
(b) Evaluate

´
C F · dr, where C is parameterized as

r(t) = ⟨et cos t, et sin t⟩, 0 ≤ t ≤ π.

Solution.

Ans: (a) f(x, y) = xey + y sinx+K (b) −eπ − 1
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§16.4. Green’s Theorem

Theorem C.72. (Green’s Theorem). Let C be a positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = ⟨P,Q⟩ has continuous partial derivatives on
an open region including D, then

‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (C.16.7)

The theorem gives the following formulas for the area of D:

A(D) =

‰
C

x dy = −
‰
C

y dx =
1

2

‰
C

x dy − y dx (C.16.8)

Example C.73. Evaluate
¸
C F · dr, where F = ⟨e−x+ y2, e−y +x2+2xy⟩ and

C is the circle x2 + (y − 1)2 = 1 oriented clockwise.
Solution. Hint : Check the orientation of the curve.

Ans: 0
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Example C.74. Use the identity (an example of Green’s Theorem)

A(D) =
x

D

dA =

‰
∂D

x dy

to show that the area of D (the shaded region) is 6. You have to compute
the line integral for each of four line segments of the boundary. For
the slant line segment, in particular, you should introduce an appropriate
parameterization for the line integral.

Figure C.10
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§16.7. Surface Integrals
Suppose that the surface S has a parametric representation

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D.

Then, surface integrals of scalar functions give
x

S

f(x, y, z) dS =
x

D

f(r(u, v))|ru × rv| dA. (C.16.9)

Remark C.75.

• dS = |ru × rv| dA.

• For line integrals,
ˆ
C

f(x, y, z) ds =

ˆ b

a

f(r(t)) |r′(t)| dt.

• When z = g(x, y), rx × ry = ⟨−gx,−gy, 1⟩. Thus the formula (16.65)
reads

x

S

f(x, y, z) dS =
x

D

f(x, y, g(x, y))
√
g2x + g2y + 1 dA. (C.16.10)

Surface Integrals of Vector Fields . Let r be a parametric represen-
tation of S, from D ⊂ R2. The flux across the surface S can be mea-
sured by

x

S

F · dS def
==

x

S

F · n dS

=
x

D

F (r) ·
( ru × rv
|ru × rv|

)
|ru × rv| dA

=
x

D

F (r) · (ru × rv) dA.

(C.16.11)

Note that F · n and F (r) · (ru × rv) are scalar functions.
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Remark C.76. Line integrals of vector fields is defined to measure
quantities along the curve. That is, for C parametrized by r : [a, b]→ C,

ˆ
C

F · dr def
==

ˆ
C

F · T ds

=

ˆ b

a

F (r(t)) · r
′(t)

|r′(t)|
|r′(t)| dt =

ˆ b

a

F (r(t)) · r′(t) dt.

(C.16.12)

Surfaces defined by z = g(x, y):

• A vector representation: r(x, y) = ⟨x, y, g(x, y)⟩.
• Normal vector: rx × ry = ⟨−gx,−gy, 1⟩.
• Thus, when F = ⟨P, Q, R⟩,

x

S

F · dS =
x

D

F · (rx × ry) dA =
x

D

(−P gx −Qgy +R) dA.

(C.16.13)

Example C.77. Evaluate
x

S

(x2 + y2 + z) dS, where S is the surface whose

side S1 is given by the cylinder x2 + y2 = 1, whose bottom S2 is the disk
x2 + y2 ≤ 1 in the plane z = 0, and whose top S3 is the disk x2 + y2 ≤ 1 in the
plane z = 1.
Solution. Hint : Use (C.58). Clue: S1 : x = cos θ, y = sin θ, z = z; (θ, z) ∈ D ≡
[0, 2π]× [0, 1]. Then |rθ × rz| = 1.

Ans: 3π + 1
2
π + 3

2
π = 5π
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Example C.78. Find the flux of F = ⟨x, y, 1⟩ across a upward helicoid:
r(u, v) = ⟨u cos v, u sin v, v⟩, 0 ≤ u ≤ 2, 0 ≤ v ≤ π.
Solution. Hint : Use (C.16.11). Clue: ru × rv = ⟨sin v,− cos v, u⟩.

Figure C.11

Ans: 2π
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Example C.79. Evaluate
x

S

F ·dS, where F = ⟨x, y, z⟩ and S is the bound-

ary of the solid region E enclosed by the paraboloid z = 1 − x2 − y2 and the
plane z = 0.
Solution. Clue: For S1 (the upper part), use the formula in (C.16.13). For S2 (the
bottom: z = 0), you may try to get F · n, where n = −k.

Ans: 3π
2
+ 0 = 3π

2
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§16.8. Stokes’s Theorem
Stokes’s Theorem is a high-dimensional version of Green’s Theorem studied
in § 16.4.

Recall: (Green’s Theorem, p. 685). Let C be a positively oriented,
piecewise-smooth, simple closed curve in the plane and D be the region
bounded by C. If F = ⟨P,Q⟩ have continuous partial derivatives on
an open region including D, then
‰
C

F · dr def
==

‰
C

P dx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA =

x

D

(curlF ) · k dA.

(C.16.14)

Theorem C.80. (Stokes’s Theorem) Let S be an oriented piecewise-
smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C with positive orientation. Let F = ⟨P, Q, R⟩ be a vector field
whose components have continuous partial derivatives on an open
region in R3 that contains S. Then‰

C

F · dr =
x

S

(curlF ) · dS (C.16.15)

Remark C.81.

• See Figure 16.29(left) on p. 594, for an oriented surface of which the
boundary has positive orientation.

• Computation of the surface integral: for r : D → S,
x

S

(curlF ) · dS def
==

x

S

(curlF ) · n dS =
x

D

(curlF ) · (ru × rv) dA.

(C.16.16)
• Green’s Theorem is a special case in which S is flat and lies on the

xy-plane (n = k). Compare the last terms in (C.16.14) and (C.16.16).

Try to solve problems in Section 16.8, once more.
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§16.9. The Divergence Theorem

Theorem C.82. (Divergence Theorem) Let E be a simple solid re-
gion and S be the boundary surface of E, given with positive (outward)
orientation. Let F = ⟨P, Q, R⟩ have continuous partial derivatives
on an open region that contains E. Then"

S

F · dS =
y

E

∇ · F dV. (C.16.17)

Example C.83. Use the Divergence Theorem to evaluate the (total) fluxx

S

F · dS, where

F (x, y, z) = (x+ y2 + cos z) i+ [sin(πz) + xe−z] j+ z k

and S is a part of the cylinder x2 + y2 = 4 that lies between z = 0 and z = 1.
Solution.

Ans: 8π
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Example C.84. Use the Divergence Theorem to evaluate

x

S

(
x2 + y sinx+

z2

2

)
dS,

where S is the unit sphere x2 + y2 + z2 = 4.
Solution. Clue: What is n?

Ans: 32π
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P.1. Newton’s Method for Finding Zeros and Ex-
trema

In this project, you will implement Newton’s method to find zeros and ex-
trema of functions. Consider two functions defined on closed intervals.

f(x) = 3x4 − 4x3 − 36x2 − x+ 20, [−3, 4]

g(x) =
sin(x2 − π

15)

1 + x
, [0, π]

(P.1.1)

ID Function : Now, we will define the ID function so that each of you have
your own function to work with.

Definition P.1. Let your ID be 123456789. Then the ID function for
you is defined as

I(x) = 1∗x4−2∗x3+3∗x2−4∗x+5∗sin(x)−6∗cos
(7+ 8

2
∗x
)
−9. (P.1.2)

For Matlab/Octave implementation, see Example P.4 below.

What You Will Do
Problem P.2. Implement Newton’s method

1. To find all zeros, for f , g, and I.
2. To find local/global extrema, for f and g.

Remark P.3. The Newton’s method is introduced to find ze-
ros of functions. Thus the method can be used for finding ex-
trema: Apply the Newton’s method for f ′(x) = 0, which would result in
critical points.
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Details To Do

1. Implement Newton’s method, Algorithm 4.48, p. 203.
(See newton_diff_iteration.m below.)

2. Zeros. For each of f , g, and I:

(a) Plot the graph.
(b) Guess an initial approximation for each zero.
(c) Apply Newton’s method to approximate the zero, in 10 decimal

accuracy.
(d) Add points to the plot, to see if the computation is correct.

3. Local/Global Extrema. For each of f and g:

(a) Plot and recognize where local extrema are located.
(b) Find the derivative of the function.
(c) With an initial approximation, apply Newton’s method to approx-

imate the zero of the derivative, in 10 decimal accuracy.
(d) Evaluate the function at the resulting point (a critical point).
(e) Add points to the plot, to see if the computation is correct.

4. Report your work and results, including code and plots.

Example P.4. As an example, here we will consider zero finding for the
ID function I. Let your ID be 674029185.

Figure P.1: Graph of the ID function y = I(x), when ID = 674029185.
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You may have to implement a function for the Newton’s method. The
function newton_diff_iteration.m can be used for all other tasks.

project_ID_newton.m
1 ID = [6 7 4 0 2 9 1 8 5]; %if your ID = 674029185
2 I = @(x) (ID(1)*x.^4 -ID(2)*x.^3 +ID(3)*x.^2 -ID(4)*x ...
3 +ID(5)*sin(x) -ID(6)*cos((ID(7)+ID(8))*x/2) - ID(9));
4

5 %% Here, you should plot to see where the zeros are
6

7 tol=1.e-10; itmax=100;
8 for x0 = [ -0.5 0.5 1 1.4]
9 [x,it] = newton_diff_iteration(I,x0,tol,itmax);

10 fprintf('x=%12.10f; it=%2d; I(x)=%g\n',x,it,I(x))
11 end

newton_diff_iteration.m
1 function [x,it] = newton_diff_iteration(f,x0,tol,itmax)
2

3 h = sqrt(tol);
4 x = x0;
5 for it = 1:itmax
6 df = (f(x+h)-f(x-h))/(2*h);
7 cor = f(x)/df;
8 x = x - cor;
9 if abs(cor)< tol, return; end

10 end

For the implementation:
Output

1 x=-0.4551039348; it= 4; I(x)=0
2 x= 0.4440727359; it= 5; I(x)=0
3 x= 1.0584112674; it= 4; I(x)= 2.66454e-15
4 x= 1.4090762364; it= 4; I(x)=-3.55271e-15
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P.2. Numerical Integration

Note: Definite Integrals and Numerical Integration

• Often, it is difficult (or, impossible) to find antiderivatives.

– When it is the case, we may approximate the definite integral
using a computational method called numerical integration.

– Numerical integration is a generalization of Riemann sum.

• Numerical integration can be performed as follows:

(1) Approximate the function f by a polynomial pn ∈ Pn, and
(2) Integrate the polynomial over the prescribed interval.

• That is, numerical integration is carried out as
ˆ b

a

f(x) dx ≈
ˆ b

a

pn(x) dx. (P.2.1)

– The “polynomial approximation and integration” can be ap-
plied for each subinterval or each several subintervals.

Theorem P.5. (Polynomial Interpolation Theorem):
If x0, x1, x2, · · · , xn are (n + 1) distinct real numbers, then for arbitrary
values y0, y1, y2, · · · , yn, there is a unique polynomial pn of degree at
most n such that

pn(xi) = yi (0 ≤ i ≤ n). (P.2.2)
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P.2.1. Lagrange interpolating polynomials

Definition P.6. Let data points (xi, yi), 0 ≤ i ≤ n be given, where xi are
distinct. The nth-degree Lagrange interpolating polynomial pn is a
polynomial of the form

pn(x) = y0Ln,0(x) + y1Ln,1(x) + · · ·+ ynLn,n(x) =
n∑

i=0

ykLn,i(x), (P.2.3)

where Ln,i(x) are nth-degree polynomials such that

Ln,i(xj) = δij =

{
1 if i = j,

0 if i ̸= j.
(P.2.4)

Polynomials Ln,i(x) of such a property are called the cardinal functions
and δij is the Kronecker delta.

How to Construct the Basis Functions Ln,i

Example P.7. Find the Lagrange form of interpolating polynomial for the
three-point table (n = 2)

x x0 x1 x2

y y0 y1 y2

Solution. We should find L2,0(x), L2,1(x), and L2,2(x) in P2.

1 Let’s focus on L2,0(x) ∈ P2:

• It should satisfy L2,0(x0) = 1 and L2,0(x1) = L2,0(x2) = 0.

– From L2,0(x1) = L2,0(x2) = 0, the function L2,0 must be of the form

L2,0(x) = a (x− x1)(x− x2), for some a. (P.2.5)

– From L2,0(x0) = 1,

L2,0(x0) = a (x0 − x1)(x0 − x2) = 1 ⇒ a =
1

(x0 − x1)(x0 − x2)
. (P.2.6)
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• It follows from (P.2.5) and (P.2.6) that

L2,0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
. (P.2.7)

2 Similarly, we can formulate

L2,1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
, L2,2(x) =

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (P.2.8)

Thus the Lagrange interpolating polynomial p2 reads

p2(x) = y0L2,0(x) + y1L2,1(x) + y2L2,2(x)

= y0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

+y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

(P.2.9)

Note: In the following, we assume that the interval [a, b] is partitioned
into n uniform subintervals, for simplicity.

xi = a+ i · h, i = 0, 1, 2, · · · , n, h =
b− a

n
. (P.2.10)
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P.2.2. Trapezoid Rule

The Trapezoid Rule approximates the function f with a linear poly-
nomial on each subinterval.

Example P.8. Find P0,1 ∈ P1 which approximates f over [x0, x1] and inte-
grate it over the subinterval.
Solution. Let fi = f(xi). The linear polynomial P0,1 ∈ P1 must read

P0,1(x) = f0L1,0(x) + f1L1,1(x), (P.2.11)

where
L1,0(x) =

x− x1
x0 − x1

, L1,1(x) =
x− x0
x1 − x0

.

Integrating P0,1(x) over [x0, x1] givesˆ x1

x0

P0,1(x) dx = f0

ˆ x1

x0

L1,0(x) dx+ f1

ˆ x1

x0

L1,1(x) dx

= f0
x1 − x0

2
+ f1

x1 − x0
2

= (x1 − x0)
f0 + f1

2
= h

f0 + f1
2

.

(P.2.12)

Algorithm P.9. The Trapezoid Rule
ˆ b

a

f(x) dx =
n∑

i=1

ˆ xi

xi−1

f(x) dx

≈
n∑

i=1

ˆ xi

xi−1

Pi−1,i(x) dx =
n∑

i=1

h · fi−1 + fi
2

= h ·
(f0
2
+ f1 + f2 + · · ·+ fn−1 +

fn
2

)
,

(P.2.13)

of which the error is known to be O(h2).
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P.2.3. Simpson’s Rule

The Simpson’s Rule approximates the function f with a quadratic
polynomial on each two subintervals.

Example P.10. Find P0,1,2 ∈ P2 which approximates f over [x0, x1] ∪ [x1, x2]
and integrate it over the subintervals.
Solution. It follows from (P.2.9) that

P0,1,2(x) = f0L2,0(x) + f1L2,1(x) + f2L2,2(x)

= f0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+f2
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

= f0
(x− x1)(x− x2)

2h2
+ f1

(x− x0)(x− x2)

−h2

+f2
(x− x0)(x− x1)

2h2
.

(P.2.14)

Integrating P0,1,2(x) over [x0, x2] gives

ˆ x2

x0

P0,1,2(x) dx =

ˆ x0+2h

x0

2∑
i=0

fiL2,i(x) dx =
2h

6
(f0 + 4f1 + f2). (P.2.15)
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Algorithm P.11. The Simpson’s Rule. Let n be even.

ˆ b

a

f(x) dx =

n/2∑
i=1

ˆ x2i

x2i−2

f(x) dx ≈
n/2∑
i=1

ˆ x2i

x2i−2

P2i−2,2i−1,2i(x) dx

=
2h

6
·
[
(f0 + 4f1 + f2) + (f2 + 4f3 + f4) + · · ·

+(fn−2 + 4fn−1 + fn)
]
,

(P.2.16)

of which the error is known to be O(h4).

Matlab-code P.12. One of major techniques in computer programming
is looping, which allows a set of selected operations to perform repeat-
edly.

• For example, let’s use Simpson’s Rule to approximate
ˆ π

0

sinx dx,

with 10 and 20 subintervals (n = 10, 20). (The exact integral is 2.)
• Below an example code is given.

simpson_rule.m
1 function simp = simpson_rule(f,a,b,n)
2 % function simp = simpson_rule(f,a,b,n)
3

4 %--------------------------
5 if mod(n,2)==1, error('n is odd'); end
6

7 h = (b-a)/n;
8 partition = linspace(a,b,n+1);
9 y = f(partition);

10

11 %--------------------------
12 simp = 0;
13 for i=2:2:n
14 simp = simp + ( y(i-1)+4*y(i)+y(i+1) );
15 end
16 simp = simp * (2*h)/6;
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sin_simpson.m
1 f = @(x) sin(x);
2 a = 0; b=pi; n = 10;
3

4 %--------------------------
5 simp = simpson_rule(f,a,b,n);
6

7 fprintf('f= '); disp(f)
8 fprintf(' [a, b]=[%g, %g]; n=%d; simpson=%.8g\n',a,b,n,simp)

Output
1 f= @(x) sin (x)
2 [a, b]=[0, 3.14159]; n=10; simpson=2.0001095
3 [a, b]=[0, 3.14159]; n=20; simpson=2.0000068
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What You Will Do

1. Implement the two methods for numerical integration, saved to:

• trapezoid_rule.m
• simpson_rule.m (It is already given.)

2. Select functions and intervals:

(1) f1(x) =
4

1 + x2
, [a, b] = [0, 1] ⇒ Exact integral: I1 = π

(2) f2(x) = 1/x, [a, b] = [1, e] ⇒ Exact integral: I2 = 1

(3) Select another function f3 and interval on your own for which the
exact integral (I3) is known.

3. For each function fi and interval, perform numerical integration with

(a) Trapezoid Rule, with n = 4 and 8 (The result are Ti,4 and Ti,8)
(b) Simpson’s Rule, with n = 4 and 8 (The result are Si,4 and Si,8)

4. Check the error and compare. That is,

• |(Ti,4 − Ii)/(Ti,8 − Ii)|, for i = 1, 2, 3

• |(Si,4 − Ii)/(Si,8 − Ii)|, for i = 1, 2, 3

Are the error ratios around 4 or 16?

5. Now, compute RTi =
1

3
(4 ∗ Ti,8 − Ti,4), for i = 1, 2, 3. Compare accuracy

between Ri and Si,8. Which one is more accurate?

6. Finally, compute RSi =
1

15
(16 ∗ Si,8 − Si,4), for i = 1, 2, 3. Are they more

accurate? What are the errors?
Report your experiences, including your code and results.

Note: The technique used in 5 and 6 is called Richardson extrapola-
tion which has been employed for higher-order accurate estimations in
various applications.
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P.3. The Euler’s Number e

Recall: The Euler’s number e is introduced in Section 1.5, p. 42, and
mathematically formulated in Remark 3.67, p. 154, in Section 3.8.3.

Problem P.13. In this project, we will verify and apply the following
equations

e = lim
n→∞

(1 +
1

n
)n =

∞∑
n=0

1

n!
(P.3.1a)

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · (P.3.1b)

You will later learn (P.3.1b) as the Taylor series of ex. Here you will
verify it using integration techniques.

Recall: You most likely learned how to formulate compound interest
from your high school. Compound interest is interest on interest.

• Let P be the principal balance and r the annual interest.
• When interest is allowed to compound annually, after x years the

investment will be worth

A = P (1 + r)x. (P.3.2)

• In the real world, interest on an investment is more often com-
pounded than one per year.

• When interest is compound n times per year, after x years the in-
vestment will be worth

A = P
(
1 +

r

n

)nx
. (P.3.3)
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Example P.14. For the computation of compound interest, we consider a
special case:

P = 1 and r = 1 (= 100%). (P.3.4)

• When interest is compound n times per year, after a year (x = 1) the
investment will be worth

Sn =
(
1 +

1

n

)n
. (P.3.5)

• When interest is compound continuously, after a year (x = 1) the in-
vestment will be worth

S = lim
n→∞

Sn = lim
n→∞

(
1 +

1

n

)n
= e. (P.3.6)

Example P.15. As aforementioned, compound interest is interest on in-
terest. So, when interest is compound continuously, the net value of the
investment in a year (x = 1) can be computed as

1 +

ˆ 1

0

1 dt︸ ︷︷ ︸
interest on 1

+

ˆ 1

0

( ˆ u

0

1 dt
)
du︸ ︷︷ ︸

interest on
´ u

0
1 dt

+

ˆ 1

0

( ˆ v

0

( ˆ u

0

1 dt
)
du
)
dv︸ ︷︷ ︸

interest on
´ v

0

( ´ u

0
1 dt

)
du

+ · · · , (P.3.7)

where 0 ≤ v ≤ u ≤ 1.
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What You Will Do

1. Verify the second equality in (P.3.1a) by evaluating integrals in (P.3.7).
2. The term ex can be considered as the net value of the investment in

x years. Verify (P.3.1b) by appropriately replacing 1 with x in (P.3.7)
and evaluating the resulting integrals.

3. Use a computer program to find n such that (1+ 1/n)n approximates e
to eight decimal places.

4. Let pn(x) be the nth-order Taylor polynomial of ex:

pn(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
. (P.3.8)

Plot pn(x), for n = 2, 4, 6, together with ex over the interval [−3, 3].
5. Let f(x) = ex.

(a) Find f(0), f ′(0), and
ˆ 0

−∞
f(x) dx

def
== lim

a→−∞

ˆ 0

a

f(x) dx

(b) Find f(1), f ′(1), and
ˆ 1

−∞
f(x) dx

def
== lim

a→−∞

ˆ 1

a

f(x) dx

(c) What can you say about f(b), f ′(b), and
ˆ b

−∞
f(x) dx, for arbitrary

b ∈ R? Interpret it geometrically.

6. Recall the Taylor series of ex in (P.3.1b). Let x = iθ, where i =
√
−1.

Then

eiθ = 1 + iθ +
i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+

i5θ5

5!
+

i6θ6

6!
+ · · · (P.3.9)

It is known that
eiθ = cos θ + i sin θ, (P.3.10)

which is called the Euler’s identity. Particularly when θ = π, the
above equation reads

eiπ + 1 = 0, (P.3.11)

which is also called the Euler’s identity.
Find the Taylor series of sin θ and cos θ.

Report your work and results, including code and plots.
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P.4. Area Estimation of A Region: An Applica-
tion of Green’s Theorem

Region, saved via a Simple Closed Curve

Figure P.2: A brain tumor example in an MRI scan (Bangert et al., 2021)[1].

Green’s Theorem
Let C be a positively oriented, piecewise-smooth, simple closed curve in
the plane and D be the region bounded by C. If F = ⟨P,Q⟩ has continu-
ous partial derivatives on an open region including D, then

‰
C

Pdx+Qdy =
x

D

(∂Q
∂x
− ∂P

∂y

)
dA. (P.4.1)

A choice:{
P (x, y) = 0

Q(x, y) = x
=⇒ ∂Q

∂x
− ∂P

∂y
= 1 =⇒ A(D) =

x

D

1 dA =

‰
C

x dy

Project Objectives

• Derive a numerical method for the line integral
‰
C

x dy.

• Implement a code for the computation of areas.
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Problem P.16. It is common in reality that a region of interest is
saved by a sequence of points: For some n > 0,

(x0, y0), (x1, y1), · · · , (xn, yn), (xn, yn) = (x0, y0). (P.4.2)

Figure P.3: A region and its approximation.

Here the question is:

If a sequence of points (P.4.2) represents a region, how can we
compute its area accurately?

Derivation of Computational Formulas
Example P.17. Let’s begin with a very simple example.

(a) Find the area of the rectangle [a, b] × [c, d].

Solution. We know the area = (b− a) · (d− c).
It can be rewritten as

b · (d− c)− a · (d− c) = b · (d− c) + a · (c− d)

from which we may guess that

Area =
∑
i

x∗i ·∆yi, (P.4.3)

where the sum is carried out over line segments Li and x∗i denotes the
mid value of x on Li.
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(b) Find the area of the triangle.
Solution. We know the area = 1

2(b− a) · (d− c).
Now, let’s try to find the area using the formula
(P.4.3):

Area =
∑
i

x∗i ·∆yi.

Let L1, L2, L3 be the bottom side, vertical side,
and the hypotenuse, respectively.
Then

Area =
a+ b

2
· (c− c) +

b+ b

2
· (d− c) +

b+ a

2
· (c− d)

= 0 + b · (d− c) +
b+ a

2
· (c− d)

=
(
b− b+ a

2

)
· (d− c) =

1

2
(b− a) · (d− c).

Okay. The formula is correct!

Note: Horizontal line segments makes no contribution to the area.

(c) Let’s verify the formula once more.

The area of the M-shaped is 30.
Let’s collect only nonzero values:

2 · 3− 2.5 · 2 + 3.5 · 2− 4 · 3
+6 · 6
−3.5 · 2 + 2.5 · 2

= 6− 5 + 7− 12

+36

−7 + 5

= 30

Again, the formula is correct!!
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Summary P.18. The above work can be summarized as follows.

• Let a region D be represented as a sequence of points

(x0, y0), (x1, y1), · · · , (xn, yn), (xn, yn) = (x0, y0). (P.4.4)

• Let Li be the i-th line segment connecting (xi−1, yi−1) and (xi, yi), n =
1, 2, · · · , n. Then the area of D can be computed using the formula

Area(D) =
n∑

i=1

x∗i ·∆yi, (P.4.5)

where
x∗i =

xi−1 + xi
2

, ∆yi = yi − yi−1.

Accuracy Analysis for the Numerical Method

Claim P.19. The numerical formula (P.4.5) is exact, when the closed
curve C consists of line segments.

Proof. Lect C1 be the first line segment, connecting from P0(x0, y0) to P1(x1, y1).

• Numerical Formula. Along C1, the formula (P.4.5) results in

x0 + x1
2

· (y1 − y0). (P.4.6)

• Exact Evaluation. The line segment C1 can be parametrized as

r1(t) = (1− t)P0 + tP1 = P0 + t(P1 − P0)

= ⟨x0 + t(x1 − x0), y0 + t(y1 − y0)⟩, 0 ≤ t ≤ 1.
(P.4.7)

Thusˆ
C1

x dy =

ˆ 1

0

x(t)y′(t) dt =

ˆ 1

0

[x0 + t(x1 − x0)](y1 − y0) dt

= (y1 − y0)
[
x0t+

t2

2
(x1 − x0)

]1
0
= (y1 − y0) ·

x0 + x1
2

,

(P.4.8)

which is the same as (P.4.6).

The above argument can be applied for each of line segments.
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Example P.20. We will generate a dataset, plot it, and measure its area.

(a) Generate a dataset that represents an ellipse, e.g.,
x2

4
+ y2 = 1.

For i = 0, 1, 2, · · · , n,

(xi, yi) = (2 cos θi, sin θi), θi = i · 2π
n
. (P.4.9)

Note that (xn, yn) = (x0, y0).
(b) Analyze accuracy improvement of the area as n grows. The larger n you

choose, the more accurately the data would represent the region.

Solution. You should implement the function area_closed_curve.
Ellipse_Approximate_Area.m

1 close all
2

3 a=2; b=1; true_area = a*b*pi;
4 Partition = [10,20,40,80];
5 for n = Partition
6 %%---- Data generation -----------------
7 theta = linspace(0,2*pi,n+1)'; % a column vector
8 data = [a*cos(theta),b*sin(theta)];
9

10 %%---- Area computation ----------------
11 area = area_closed_curve(data);
12 fprintf('n = %3d; estimation = %.10f, rel-error = %.10f\n', ...
13 size(data,1)-1,area, abs(true_area-area)/true_area);
14

15 %%---- Plot & Save ---------------------
16 figure, plot(data(:,1),data(:,2),'r-','linewidth',2);
17 daspect([1 1 1]); axis tight;
18 xlim([-a a]), ylim([-b b]);
19 title(['Approximate Ellipse: n=' int2str(n)])
20 image_name = strcat('ellipse-n=',int2str(n),'.png');
21 exportgraphics(gca,image_name,'Resolution',100);
22 end

Output
1 n = 10; estimation = 5.8778525229, rel-error = 0.0645107162
2 n = 20; estimation = 6.1803398875, rel-error = 0.0163683569
3 n = 40; estimation = 6.2573786016, rel-error = 0.0041072648
4 n = 80; estimation = 6.2767276582, rel-error = 0.0010277668
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Figure P.4: Approximate Ellipse: n = 10, 40.

What You Will Do

1. A given dataset: First, download a dataset saved in heart-data.txt:
https://skim.math.msstate.edu/LectureNotes/heart-data.txt

• Draw a figure for it.
• Use the formula (P.4.5) to find the area.

2. Repeat Part 1 for another dataset: For a dataset, you may choose
one of the following.

• Search the internet
• Generate a dataset for, e.g. a cardioid:{

x = 2a cos θ · (1− cos θ)

y = 2a sin θ · (1− cos θ)
0 ≤ θ ≤ 2π, (P.4.10)

of which the area is 6πa2.
– The last point must be the same as the first one: (xn, yn) =
(x0, y0)

– The larger n you choose, the more accurately the data would
represent the region.

– Analyze accuracy improvement of the area as n grows.

Your report should include your code, outputs, and a concluding remark.

https://skim.math.msstate.edu/LectureNotes/heart-data.txt
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P.5. Linear and Quadratic Approximations
This project is designed for students to experience computer algebra, while solving some
calculus problems with computer coding. Although it includes examples written in Maple
only, students can finish the project using Maple, Mathematica, or MathCad.

Getting familiar with Computer Algebra CAS

For a smooth function of one variable, f , its Taylor series about a is given
as

f(x) ∼
∞∑
k=0

f (k)(a)

k!
(x− a)k = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · . (P.5.1)

As with any convergent series, f(x) is the limit of the sequence of partial
sums. That is,

f(x) = lim
n→∞

Tn(x), (P.5.2)

where Tn(x) is called the Taylor polynomial of degree n:

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k.

Example P.21. Let
f(x) = arctan(x)− 1

3
. (P.5.3)

Then, when it is expanded about a = 1/2, Tn(x) can be obtained using Maple:

a := 1/2:
Tn := x-> convert(taylor(f(x),x=a,n+1),polynom):

See Figure P.51 (p. 717). For the function in (P.5.3),

T1(x) = arctan
(1
2

)
− 1

3
+

4

5

(
x− 1

2

)
,

T2(x) = arctan
(1
2

)
− 1

3
+

4

5

(
x− 1

2

)
− 8

25

(
x− 1

2

)2
.

(P.5.4)

1In Maple, taylor(f(x),x=a,n+1) returns a polynomial of (n + 1) terms plus the remain-
der, Tn(x) + O((x − a)n+1); while the command convert(g,polynom) converts g into a polyno-
mial form, which is Tn(x). In Mathematica, Series[f[x],x,a,n] produces the same result as for
taylor(f(x),x=a,n+1) in Maple. Now, the Mathematica-command Normal can be used to convert
the result into normal expressions of polynomials.
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Figure P.5: Screen-shot of Maple window, which plots linear and quadratic approximations
of f(x) = arctan(x)− 1

3
about a = 1/2.



718 Appendix P. Projects

Maple: 3D Plots
First load the plots package, along with other frequently used packages, using the entry:

with(plots): with(plottools):
with(VectorCalculus): with(Student[MultivariateCalculus]):

1. Plot z = f(x, y) in Cartesian coordinates, using

plot3d( f(x, y), x = a..b, y = c..d, options)

Consider the options
(a) style = patchcontour Puts contour curves on the surface.
(b) axes = boxed Puts the axes on the edges of a box enclosing the surface.
(c) scaling = constrained Makes the scale on the three axes the same.
(d) orientation =[40, 70] Orients the viewpoint so it is closer to what you see in your

text.

2. Plot F (x, y, z) = 0 in Cartesian coordinates, using

implicitplot3d(F (x, y, z) = 0, x = a..b, y = c..d, z = s..t, options)

Consider the options listed above along with the following.
(a) grid = [m,n, k] Where m,n, k are positive integers, try [30, 30, 30] for example.

This plots 30 points in each direction for a smoother surface.
(b) axes = framed Puts axes along the edges of a frame around the plot.
(c) orientation = [−50, 60] Another nice viewing angle.

3. Plot r = f(θ, z) in cylindrical coordinates, using

plot3d( f(θ, z), θ = a..b, z = s..t, coords = cylindrical, options)

To plot z = g(r, θ), use

plot3d( [r, θ, g(r, θ)], r = a..b, θ = α..β, coords = cylindrical, options)

Options are more or less the same as the above.
4. Plot ρ = f(θ, ϕ) in spherical coordinates, using

plot3d( f(θ, ϕ), θ = α..β, ϕ = γ..δ, coords = spherical, options)

5. Implicit plots can also be made in cylindrical or spherical coordinates. For ex-
ample, to plot the equation r2 + 2z2 = r cos θ in cylindrical coordinates, use

implicitplot3d( r2+2 z2 = r cos(θ), r = a..b, θ = α..β, z = s..t, coords = cylindrical, options)

6. (Contour plots in 2D). For z = f(x, y), use

contourplot(f(x, y), x = a..b, y = c..d, options)
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P.5.1. Newton’s method
As one can see from Figure P.5, the first-degree Taylor series T1(x) is the tangent line to
the curve y = f(x) at the point (a, f(a)). One of popular applications exploiting the tangent
line is Newton’s method for the problem of root-finding.

Given a differentiable function f(x), find r such that f(r) = 0, (P.5.5)

where r is an x-intercept of the curve y = f(x).

The idea behind Newton’s method:
• The tangent line is close to the curve and so its x-intercept must be

close to the x-intercept of the curve.
• Let x0 be the initial approximation close to r. Then, the tangent line at

(x0, f(x0)) reads
L(x) = f ′(x0)(x− x0) + f(x0). (P.5.6)

Let x1 be the x-intercept of y = L(x). Then,

0 = f ′(x0)(x1 − x0) + f(x0).

Solving the above equation for x1 becomes

x1 = x0 −
f(x0)

f ′(x0)
, (P.5.7)

which hopefully is a better approximation for the root r.
• Repeat the above till the convergence.

Algorithm P.22. (Newton’s method for solving f(x) = 0). For x0 chosen
close to a root r, compute {xn} repeatedly satisfying

xn = xn−1 −
f(xn−1)

f ′(xn−1)
, n ≥ 1. (P.5.8)

Problem P.23. Consider the function f(x) = arctan(x) − 1
3

in (P.5.3).

1. Implement a code for Newton’s method to approximate a root of f(x) =
0.
(You can use Maple, Mathematica, or MathCad.)

2. Run a few iterations, starting from x0 = 0.5, and measure how the
error decreases as the iteration count grows.
(Note that the exact root r = tan(1/3) ≈ 0.34625354951057549103.)
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P.5.2. Estimation of critical points

The second part of the project involves a min-max analysis of a function in
(x, y) that is based on each student’s ID number, so that each student has
his/her own function to work with. If a student’s ID number is 123-45-6789,
then he/she will study the behavior of the function
f(x, y) = 1∗sin(x−2)+3∗cos(y−4)+5∗x2−6∗xy+7∗y2−8∗x+9∗y, (P.5.9)

where the alternating signs are used to create a little more “action". We will
call such a function the ID function.

Figure P.6: Contour plot of f(x, y) in (P.5.9).

Problem P.24. Create your ID function. Then,
1. Include a variety of surface plots with different views and contour plots

with different windows to provide a good picture of the behavior of your
ID function.2

2. Label the figures and refer to them in your write-up, as you discuss
the kinds of critical points you observe. (If you have no or one critical
point, change the signs and/or shuffle the digits in your ID function to
get more action.)

3. Zoom in sufficiently so that you can estimate the coordinates of each of
the critical points.

2In Maple, you can use the commands plot3d and countourplot. In Mathematica, Plot3D and
CountourPlot are available.



P.5. Linear and Quadratic Approximations 721

P.5.3. Quadratic approximations

We have discussed the linear approximation (or, linearization) of a
function f of two variables at a point (a, b):

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b), (P.5.10)

which is also called the first-degree Taylor polynomial of f at (a, b). If f
has continuous second-order partial derivatives at (a, b), then the second-
degree Taylor polynomial of f at (a, b) is

Q(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) +

1

2
fyy(a, b)(y − b)2,

(P.5.11)
and the approximation f(x, y) ≈ Q(x, y) is called the quadratic approxi-
mation of f at (a, b).

Problem P.25. Answer the following.
1. Verify that the quadratic approximation Q has the same first- and

second-order partial derivatives as f at (a, b). (This is the only portion
of the project that you can finish without using computer implementa-
tion.) Hint : The partial derivatives evaluated at (a, b), appeared in Q, are all constant.

2. Use computer algebra to find the first- and second-degree Taylor poly-
nomials L and Q for your ID function f at a critical point C(x0, y0)
that you estimated from Problem P.24.

3. Compare the values of f , L, and Q at (x0 + 0.1, y0 − 0.1).
4. Graph f , L, and Q; comment on how well L and Q approximate f .

Report. Submit hard copies of your experiences.
• Solve Problems P.23, P.24, and P.25, using computer programming.
• Make hard copies of your work, and collect them in order.
• Attach a “summary" or “conclusion" page at the beginning of report.

You may work in a small group; however, you must report individually.
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P.6. The Volume of the Unit Ball in n-Dimensions
In this project, we will find formulas for the volume of the unit ball in n-
dimensions (nD). From your high school, you learned volumes of unit balls
for n = 1, 2, 3.

n Bn Vn

1 {x | x2 ≤ 1} = [−1, 1] 2

2 {(x, y) | x2 + y2 ≤ 1} π

3 {(x, y, z) | x2 + y2 + z2 ≤ 1} 4π/3

(P.6.1)

Define the 4D unit ball (hypersphere) as

B4 = {(x, y, z, w) | x2 + y2 + z2 + w2 ≤ 1}. (P.6.2)

Before finding its volume, V4, let’s try to verify V3 =
4π

3
by using a specific

integration technique.

Figure P.7: B3 and its projection to R2 × R: the volume V3 approximates the sum of the
volume of circular slices having radius cos θi and thickness ∆sin θi := sin θi+1 − sin θi =
sin θi+1 − sin θi

∆θ
∆θ ≈ cos θi∆θ.
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The computation of V3: We first partition B3 into horizontal circular
slices. Let, for k > 0,

∆θ =
π

2
· 1
k

and θi = i∆θ, i = 0, 1, · · · , k. (P.6.3)

One can see from Figure P.7 that the volume V3 approximates the sum of
the volume of circular slices. The i-th circular slice Si has radius cos θi;
its area is

A(Si) = V2 · cos2 θi = π cos2 θi. (P.6.4)

Since Si has thickness ∆sin θi = sin θi+1 − sin θi, we have

V3 ≈ 2
k−1∑
i=0

(π cos2 θi)∆ sin θi. (P.6.5)

Therefore,

V3 = lim
k→∞

2
k−1∑
i=0

(π cos2 θi)∆ sin θi

= 2π

ˆ π/2

0

cos2 θ d(sinθ) = 2π

ˆ π/2

0

cos3 θ dθ = 2π · 2
3
.

(P.6.6)

Note: Equation (P.6.6) can be rewritten as

V3 = 2V2

ˆ π/2

0

cos3 θ dθ. (P.6.7)

The computation of V4: We are now ready for it! First image B4 and
its projection to R3 × R. With the same partitioning of the last dimension,
the i-th horizontal piece Si now becomes a spherical slice, rather than a
circular slice, but having the same radius cos θi and thickness ∆sin θi. Thus,
the volume of the i-th spherical slice reads

V (Si) = V3 cos3 θi ·∆sin θi ≈ V3 cos4 θi∆θ. (P.6.8)

Recall that ∆sin θi = sin θi+1 − sin θi ≈ cos θi∆θ. By summing up for i =
0, 1, · · · , k − 1, and multiplying the result by 2 (due to symmetry), we have

V4 ≈ 2V3

k−1∑
i=0

cos4 θi∆θ. (P.6.9)



724 Appendix P. Projects

Problem P.26.

1. Complete a formula for V4, by applying k →∞ to (P.6.9).
Hint : Your result must be similar to (P.6.7).

2. Apply the above arguments recursively to find formulas for Vn, n ≥ 2.
3. Use a computer algebra system (e.g., Maple) to evaluate exact values

of Vn, for n = 1, 2, · · · , 20.
4. Plot {(n, Vn) | n = 1, 2, · · · , 20}.

Hint : You may use Maple-code P.27 and your plot must look like Figure P.8.

Figure P.8: A plot for Vn, where max(V ) = V5 =
8π2

15
≈ 5.263789.

Maple-code P.27. Assume you have a formula for Vn of the form

Vn = Vn−1 g(n). (P.6.10)

Then you may implement a Maple code:

Maple Script for the Computation of Vn and Plotting
1 with(plots): with(plottools):
2 with(VectorCalculus): with(Student[MultivariateCalculus]):
3

4 m := 20:
5 V := Vector(m):
6 V[1] := 2:
7 for n from 2 to m do V[n] := V[n-1]*g(n); end do:
8 max[index](V); max(V); evalf(%);
9

10 X := [seq(n, n = 1..m)]:
11 pp := pointplot(Vector(X), Vector(V), color = blue, symbol = solidcircle, symbolsize = 12):
12 pl := plot(Vector(X), Vector(V), color = blue, thickness = 3):
13 display(pp, pl, scaling = constrained, labels = ["n", V__n], labelfont = ["times", "bold", 13])
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Figure P.8 is constructed using the above code, with m := 10: and g(n)
defined appropriately.

Report. Submit hard copies of your experiences.
• Derive a formula for Vn of the form in (P.6.10).
• Implement a code to evaluate Vn, n = 1, 2, · · · , 20, exactly.
• Plot the results.
• Collect all your work, in order.
• Attach a “summary" or “conclusion" page at the beginning of report.

You may work in a small group; however, you must report individually.
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Evaluation Theorem, 241
even, 10, 255, 256
existence of absolute extrema, 455
expected value, 369
expected values, 494
exponential change, 299, 651
exponential function, 39
exponential regression, 40
exponentially decreasing distributions,

369
exponentially decreasing probability den-

sity function, 369
exponents, laws of, 42
Extreme Value Theorem, 173
ezsurf, in Matlab, 422

fastest increasing direction, 415
fieldplot, Maple, 532, 533
finding a viewing window, 38
Finite Sum Rules, 226
First Derivative Test, 451
First Derivative Test for Local Extrema,

183
first moment, 491
first-order differential equations, 377
flux, 595
foot-pounds, 289
force constant, 289

four-leaved rose, 485
free fall, 60
frozen human mummy, 304
frustum of a cone, 281
frustum surface area, 281, 648
FTC1, 240, 639
FTC2, 241, 639
Fubini’s Theorem, 468, 500
function, 4
function of three variables, 415
function of two variables, 410
Fundamental Theorem for Line Integrals,

548
Fundamental Theorem of Calculus, 215,

240, 241, 248, 279, 294, 464, 548

Galileo, 60
Galileo’s law of free-fall, 60
Gauss quadrature, 354
gauss_quadrature.m, 355
Gaussian curvature, 452
general sine function, 32
generalized Green’s Theorem, 566
GeoGebra, 35
geometric manipulation, 57, 616
golf, 291
Golf Ball Carry, 133
gradient, 446
gradient vector field, 529
graph, 5, 411
graphing the derivative, 111
greatest integer function, 8, 97
Green’s Theorem, 560, 608, 685
grow at the same rate, 313, 654
grow faster than, 313, 654
grow slower than, 313, 654

half-angle formulas, 33, 332
half-life, 302, 653
helicoid, 596, 599
helicopter, 222
helix, 543
Hessian matrix, 452
Hooke’s law, 289
horizontal asymptote, 43, 93, 621
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horizontal line test, 46
horizontal shift, 32
hyperbolic functions, 305, 306
hyperbolic identities, 306
hypervolume, 488
hypotenuse, 25

ID function, 696, 720
identities for inverse hyperbolic functions,

308
identity function, 11
image, 516, 679
implicit differentiation, 144, 427, 440
implicitly defined functions, 144
implicitplot3d, 427
improper integral, 357, 663
improper integrals of Type I, 358, 663
improper integrals of Type II, 362, 665
incompressible, 574
increasing, 9, 182
indefinite integral, 211, 248
independence of path, 550
independent variable, 4, 410
indeterminate form of type 0/0, 192
indeterminate form of type∞/∞, 192
infinite discontinuity, 82
infinite limit, 98
inflection point, 186, 628
initial value, 210
initial value problem, 210, 253, 298, 299,

651
instantaneous speed, 61
instantaneous velocity, 128
integer ceiling function, 8
integer floor function, 8
integrable, 232, 636
integral sign, 211
integral tables, 347
integrals of hyperbolic functions, 310
integrals of inverse hyperbolic functions,

310
integrals of powers of sinx and cosx, 332
integrals of powers of tanx and secx, 334
integrals of some trigonometric functions,

252

integrand, 211
integrating inverses of functions, 329, 658
integration, 215
integration by parts, 324, 656
integration by parts for definite integrals,

328
integration variable, 211
interest on interest, 707
Intermediate Value Theorem, 88, 242,

619, 634
Introduction to Linear Algebra, 679
inverse function, 45, 47, 614
inverse hyperbolic functions, 308
inverse hyperbolic functions in loga-

rithms, 311
inversely proportional, 11
iterated integral, 468, 473, 483, 675
IVT, 88, 619

Jacobian, 517, 518, 587, 679
Jacobian, higher order, 522
joint density function, 493
joules, 289
jump discontinuity, 82

kg, 290
kinetic energy, 291
Kronecker delta, 700

L’Hôpital’s Rule, 192, 314, 630
Lagrange form of interpolating polyno-

mial, 700
Lagrange interpolating polynomial, 700
Lagrange multiplier, 457, 673
Lagrange polynomial, 351
Lagrange, Joseph-Louis, 177
land-grant research university, 431
Laplace operator, 574
law of cosines, 33
laws of exponents, 42
least integer function, 8
left-continuous, 83, 618
left-endpoint, 216
left-hand derivative, 114
left-hand limit, 76, 77
Leibniz’s notation, 140, 623
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length, 277, 396
level curve, 412
level curves, 448
level surface, 415
level surfaces, 457
limit, 63, 417
limit L as x approaches infinity, 92
limit comparison test, 365, 667
limit from the left, 76
limit from the right, 76
limit laws, 67
limits involving sin θ/θ, 78
limits of continuous functions, 87
line integral, 535, 681
line integral in 3D, 542
line integral of vector fields, 545, 681
line segment, parametrization of, 402
line, parametrization of, 402
linear algebra, 679
linear approximation, 165, 433, 627, 669,

721
linear function, 11
linearization, 165, 433, 627, 721
little-oh, 315, 316, 654, 655
local extrema, 451
local maximum, 172, 451
local minimum, 172, 451
locally linearly, 221
logarithm as an integral, 294
logarithmic differentiation, 152, 625
logarithmic function, 50, 614
looping, 704
lower sum, 219
lower sum approximation, 232
Lunar projectile motion, 133

magnitude, 396
Maple, 36
Maple 3D plots, 718
Maple script for Vn, 725
maple-estimate-e.mw, 70
maple-plot-derivative.mw, 36
maple-tangent-secant.mw, 110
marginal cost, 243
marginal cost of production, 131

mass, 490, 538, 547
Mathematica, 35
Matlab, 6, 35
mean, 237, 242, 369, 494, 638
Mean Value Theorem, 177, 182, 276, 282
Mean Value Theorem for Definite Inte-

grals, 242, 640
median, 370
mesh size, 349
method of cylindrical shells, 270
method of Lagrange multipliers, 457
method of partial fractions, 342, 344, 661
method of slicing, 262, 643, 644
method of undetermined coefficients, 249,

343
midpoint, 218
midpoint rule, 224, 348, 354, 466
Mississippi State University, 431
moment, 491
monotonic, 182
MRI scan, 710
multiple integral, 463
multivariable calculus, 393
MVT, 177

n-Ball, 488
n-dimensional ball, 488
n-th derivative, 124
natural domain, 4
natural domains, 84
natural exponential function, 43
natural logarithm, 51, 294
negative orientation of curves, 560
Net Change Theorem, 243, 640
Newton’s Law of Cooling, 303
Newton’s method, 202, 719
Newton’s second law of motion, 291
Newton’s serpentine, 127
Newton, Isaac, 481
newton-meters, 289
Newton-Raphson method, 202
newton_diff_iteration.m, 698
newton_method.m, 203
newton_method2.m, 203
newton_method3.m, 204
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newton_method_convergence.m, 206
newtons, 289
newtons_serpentine.m, 127
nonconservative, 530
norm, 396
normal distribution, 374
normal line, 126, 146, 449, 671
normal vector, outward unit, 575
normalized sinc function, 79
normals to a parabola, 147
numerical integration, 348, 699
numerical integration – project, 699
numerical methods, 364, 667
numerical_integration.m, 280

O’Hare International Airport, 375
object_fallen.m, 222
oblique asymptote, 98, 621
odd, 10, 255, 256
one-sided continuity, 83, 618
one-sided limit, 76
one-to-one, 516, 518, 679
one-to-one function, 45
open connected region, 552
open set, 552
opposite side, 25
orientable, 594
orientation of curves, 541
oriented surface, 594
oscillating discontinuity, 82
Otzi, 304
outer normal, 415
output value of, 4

parametric equation, 402
parametric equations, 534
parametric surface, 577
partial derivative, 425
partial fractions, 342
partial integral w.r.t x, 467
partial integral w.r.t y, 467
partition, 227
PDF, 368
period, 30, 32, 613
periodic, 30

piecewise smooth curve, 537
piecewise-defined functions, 8
plane, 404, 583
plane curve, 534
plot3d, 456
Plutonium-239, 302, 653
point of inflection, 186, 628
point-slope equation, 165
polar point, 481
polar rectangle, 483
polar region, 486
polynomial, 13
Polynomial Interpolation Theorem, 699
population growth, 301, 652
population.m, 40
position, 128, 244, 640
position vector, 396
positive orientation, 594
positive orientation of curves, 560
potential, 529, 548
potential function, 529, 548
power function, 12
Power Rule, 119
predomain, 519
probability, 368, 493
probability density function, 368, 493
Product Rule, 122, 324
project_ID_newton.m, 698
Projects, 722
proper, 342, 661
properties of continuous functions, 84
proportional, 11
Pythagorean theorem, 15
Python, 35

quadratic approximation, 169, 721
quadratic convergence, 205
quadratic formula, 312
quadratic polynomial, 13
quadric surface, 407
Quotient Rule, 123, 134

radicand, 338
radioactive decay, 302, 653
radioactivity, 302, 653
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radius, 283
random variable, 368
range, 4, 410
rate of convergence, 317
rational function, 14
rationalization, 68
reflecting formula, 21
reflection, 10
region of interest, 711
related rates problem, 160
Related Rates Problem Strategy, 160
removable discontinuity, 82
reverse, 45
Richardson extrapolation, 706
Riemann Sum, 464, 499
Riemann sum, 227, 230, 263, 271, 277,

282, 288, 643, 646, 648, 699
right-continuous, 83, 618
right-endpoint, 218
right-hand derivative, 114
right-hand limit, 76, 77
right-hand rule, 400
Rolle’s Theorem, 177
root, 88, 202, 619
root finding, 88, 619
root of the equation, 88, 202, 619
root-finding, 719
rotation, 10

sample point, 465
sampling function, 79
Sandwich Theorem, 69
scalar multiplication, 397
scaling factor, 255, 519, 587
scaling formula, 21
scatterplot, 6
Schnalstal glacier, 304
sec, 25, 28
secant line, 62
second derivative, 124
Second Derivative Test, 451, 452
Second Derivative Test for Concavity, 186,

628
Second Derivative Test for Local Extrema,

187, 628

second partial derivative, 429
sector, 27
sector, arc length, 27
sector, area, 27
sectors, 482
separable, 300, 652
separable differential equations, 300, 652
separable function, 470
shell formula, 271, 647
shell method, 270, 646
shift formula, 19
SI unit of mass, 290
simple curve, 550
simply-connected region, 553
Simpson’s Rule, 348, 351, 703, 704
simpson_rule.m, 704
simpsons.m, 352
sin, 25, 28
sin_simpson.m, 705
sinc function, 79
sinusoid, 32
slant line asymptote, 98
slope of the curve, 104
slopes on a tangent curve, 143
smaller order, 315, 654
smooth surface, 583
SOH–CAH–TOA, 25
solid of revolution, 266
speed, 128, 244, 640
sphere, 395
spherical coordinates, 510
spherical Fubini’s Theorem, 513
spherical slice, 723
spherical wedge, 511
spring constant, 289
square root, 12
squeeze theorem, 420
standard deviation, 373
standard unit vectors, 397
Starkville, 44, 304
step size, 349
Stokes’ Theorem, 609
Stokes’s Theorem, 600, 691
stopping distance, 133
strictly decreasing, 9
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strictly increasing, 9
substitution method, 249, 296
substitution rule, 249, 310, 641
Sum and Difference Rules, 119
summation formulas, 226
surface area, 496, 585, 586
surface area for revolution, 282, 648
surface integral, 595
surface of revolution, 582
symbolic computation, 422
symmetric about the y-axis, 10
symmetric about the origin, 10
symmetric equation, 402
symmetry, 10, 471
sympy_diff.py, 138

tabular integration by parts, 327, 656
tabular method, 327, 656
tan, 25, 28
tangent line, 63, 104, 125, 146, 165, 432
tangent line approximation, 165, 627
tangent plane, 432, 433, 449, 583, 669,

671
tangent plane approximation, 669
tangent vector, 517
tangent_secant.m, 109
tangential component, 545, 681
Taylor polynomial, 709
Taylor polynomial of degree n, 716
Taylor polynomial, first-degree, 721
Taylor polynomial, second-degree, 721
Taylor series, 707, 716
taylor, in Maple, 716
the limit of the Riemann sums, 231, 635
third derivative, 124
tic-tac-toe method, 327, 656
tornado, 570
torus, 269
total area, 245
total differential, 435
trace, 407
train engine, 221
transformation, 515, 516, 679
transformation, C1, 518
Trapezoid Rule, 348, 702

trapezoid.m, 350
trigonometric formulas, 30, 33, 482, 612
trigonometric functions, 25, 29
trigonometric identities, 33
trigonometric integrals, 332
triple integral, 499
triple integral on spherical wedges, 512

uniform distribution, 374
uniform partition, 228
unit ball, 722
unit circle, 26, 29, 488, 612
unit interval, 488
unit sphere, 488
unit step function, 66
unit tangential vector, 544
unit vector, 397
unnormalized sinc function, 79
upper sum, 219
upper sum approximation, 232

variable of integration, 211
variance, 373
vector, 396
vector addition, 396
vector calculus, 393
vector differential operator del, 570
vector equation, 534
vector field, 526
vehicular stopping distance, 133
velocity, 244, 640
vertex of the angle, 26, 612
vertical asymptote, 100, 621
vertical line test, 7
vertical shift, 32
volume, 264, 503, 644
volume by cylindrical shells, 270
volume by disks, 266, 645
volume by washers, 268, 645
volume of n-Ball, 488
volume scaling factor, 679

washer method, 272, 645
work, 288, 535, 544

X-mean, 494
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Y-mean, 494
y_sin_x.m, 37
y_sin_x.py, 37

zero, 88, 202, 619
zero finding, 697
zero of the function f , 88, 202, 619
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