
Numerical Analysis using Maple and Matlab

Dr. Seongjai Kim

Professor of Mathematics

Department of Mathematics and Statistics
Mississippi State University
Mississippi State, MS 39762

skim@math.msstate.edu

1



Contents

MA-4313/6313: Numerical Analysis I

Ch.1: Mathematical Preliminaries 
Ch.2: Solutions of Equations in One Variable 
Ch.3: Interpolation and Polynomial Approximation 
Ch.4: Numerical Differential and Integration 
Ch.5: Initial-Value Problems for Ordinary Differential Equations 
Ch.6: Direct Methods for Solving Linear Systems 

MA-4323/6323: Numerical Analysis II

Ch.7: Iterative Alebraic Solvers 
Ch.8: Approximation Theory 
Ch.9: Approximating Eigenvalues 
Ch.10: Numerical Solution of Nonlinear System of Equations 
Ch.11: Boundary-Value Problems of One Variable
Ch.12: Numerical Solutions to Partial Differential Equations 

2



(1)(1)

(2)(2)

7. Iterative Algebraic Solvers

In This Chapter:

Topics Applications/Properties

Norms of Vectors and Matrices Estimation of error bounds

Eigenvalues and Eigenvectors

    Spectral radius Convergence 

Iterative Algebraic Methods Regular splitting

    Jacobi method

    Gauss-Seidel method

    SOR methods

    Convergence analysis Graph theory

Conjugate Gradient Method Symmetric positive definite systems

For , we will consider iterative methods for an 
approximate solution of

Iterative methods we will consider can be formulated as

where  is the th residual and  is an operator which
can be either a scalar or a matrix.

Maple built-in command:
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7.1. Norms of Vectors and Matrices

Vectors

A real -dimensional vector   is an ordered set of  real numbers and is 
usually written in the coordinate form

Definitions:  Let x and y be -dimensional vectors.

Liner combination: 

Norm (length): , which is often referred 

to as the Euclidean norm, or Euclidean  norm.

Distance: 

Dot product: . Thus .

Let  be the angle between the vectors  x and y. Then,

.
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Definition: On a vector space , a norm is a function  from  to the set of
nonnegative real numbers that obeys the following three postulates:

, if 

, if 

 , if   (triangle inequality)

Examples of norms:

Example: Let .

Euclidean -norm: 

The -norm: 

The -norm: 

Theorem (Cauchy-Schwarz Inequality):

Theorem: The sequence of vectors  converges to  in  with respect to

 norm if and only if   for each .

Example:   with respect to 

 norm.
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4. 4. 

1. 1. 
2. 2. 
3. 3. 

5. 5. 

Theorem: For each ,

Proof.

The first inequality comes from 

  for some .

On the other hand,

and therefore the second inequality follows.

Matrix Norms:

Definition: If a vector norm  has been specified, the matrix norm

subordinate to (associated with) it is defined by

It is equivalent to

Such a norm is called the natural (induced) matrix norm.

Matrix norms:

 

, where   denotes the spectral radius of  .
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1. 1. 

6. 6. 

2. 2. 

Definition: A condition number of a matrix  is the number

Example: Let 

where   =  and  = 

Find ,  , and .

Find the -condition number.
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Theorem on Neumann Series: If   is an  matrix such that  for 
any subordinate matrix norm, then  is invertible and

 .
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7.2. Eigenvalues and Eigenvectors

Definition: An eigenvector of an  matrix  is a nonzero vector x such 
that

,

eigenvalue of  corresponding to x.

Hence, the eigenvector is a nontrivial solution of , which 

implies that  is singular. The eigenvalues of  are solutions of

.

Claim:  is an eigenvalue of  if and only if  .

Example: Find eigenvalues and eigenvectors of 
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Example: Determine the eigenvalues and eigenvectors for the matrix

Solution:

  = 

Now, let us find them by using pencils.
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Spectral Radius

Definition: The spectral radius  of a matrix  is defined by

,  where  is an eigenvalue of .

Theorem: If , then

a.  

b.  , for any natural matrix norm .

Proof.

The proof of part (a) requires more advanced matrix algebra.

For part (b), let  be an eigenvalue of  with its corresponding eigenvector 

 with . Then

Thus, the assertion follows.
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Convergent Matrices:

Definition: A matrix  is convergent if

  for each .

Example: Is    convergent?

Solution:

 =     =      = 

In general,

Thus the matrix  is convergent.

Theorem: The following statements are equivalent.
(i)      is convergent.

(ii)     for some natural matrix norm.

(iii)    for all natural matrix norms.

(iv)   .

(v)     for all 
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Invertible (nonsingular) Matrices:

Let . 

Definition: The matrix  is invertible if there is an  matrix  such that 

. The matrix  is called an inverse of , and is denoted as .

Definition: The transpose of  is . The matrix is symmetric if 

.

Theorem: A square matrix can possess at most one right inverse.

Theorem: Let  and  be invertible square matrices. Then,

Theorem: If  and  are square matrices such that , then .

Proof:

Let . Then
.

By the uniqueness of the right inverse, we can conclude , which 
implies .
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10. 10. 

1. 1. 

11. 11. 

9. 9. 

3. 3. 
4. 4. 

12. 12. 

7. 7. 

8. 8. 

2. 2. 

6. 6. 

5. 5. 

Invertible (Nonsingular) Matrix Theorem: 

For , the following properties are equivalent:
The inverse of  exists, i.e.,  is invertible.
There is a  matrix  such that 
There is a  matrix  such that 
The determinant of  is nonzero.

The rows of  form a basis for .

The columns of  form a basis for .

As a map from  to ,  is injective (one-to-one).

As a map from  to ,  is surjective (onto).
The equation  implies .

For each , there is exactly one  such that .
 is a product of elementary matrices.

0 is not an eigenvalue of .

Example: (a) Show that if , then

where  are eigenvalues of . (Hint: Consider .)

(b)  Show that  is singular if and only if  is an eigenvalue of .
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2. 2. 

(1.2)(1.2)

1. 1. 

(1.3)(1.3)

7.3. Iterative Algebraic Solvers

Basic Concepts:

We consider iterative methods in a more general mathematical setting. A 
general type of iterative process for solving the algebraic system

can be described as follows. 

Iteration via Matrix Splitting:

Split the matrix  as

where  is a prescribed invertible matrix. Then, the system (1) can be 
expressed equivalently as

Associated with the splitting is an iterative method

Since Equation (1.3) can be rewritten as

or

where  is arbitrary. 

We shall say that the iterative method in (1.3) is convergent if it converges for

any initial vector . A sequence of vectors  will be computed from 
Equation (1.3), and our objective is to choose  so that these two conditions are
met:

The sequence  is easily computed. (Of course,  must be invertible.)

The sequence  converges rapidly to the solution.

We will see that both of these conditions follow if  is easy to invert and  

approximates .
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Convergence: If the sequence  converges, say to a vector then

Thus, by letting , we have

,
which implies

Thus,  it can be concluded as in the following theorem.

Theorem: Convergence of Iterative Methods:

If  for some induced matrix norm, then the sequence 
produced by Equation (1.3) converges to the solution of  for any initial

vector .

Notes:  Let 

If 

, or equivalently ,

  then  will become smaller and therefore the iteration converges faster.

If  , then it is safe to halt the iterative process when 

 is small. Indeed, since

,

  we obtain  

  which implies that

The iteration (1.3) converges if and only if
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Richardson Method: 

The iterative method is called the Richardson method if  is simply chosen to 
be the identity matrix. Equation (1.3) in this case reads

which can rewritten as

where  .

Maple code

 = 
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 = 
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(4.3)(4.3)

(4.1)(4.1)

On the other hand:

Thus, the Richardson method does not converge for .
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Relaxation Methods: 

We first express  as the matrix sum

Then, a relaxation method can be formulated by selecting  and  for the 
matrix splitting

Examples are

Relaxation Methods

Jacobi method

Gauss-Seidel method

SOR method

* SOR stands for "Successive Over Relaxation."
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(6)(6)

Jacobi Method:

The Jacobi method is formulated as

which is the same as choosing

in the matrix splitting (5). The -th component of  (6) reads

or, equivalently,

(9)

Example: Let

   

Find beginning from  = 

Solution:
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(5.2)(5.2)

(5.1)(5.1)

The true solution is 
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Maple code: Jacobi Method
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(11)(11)

(12)(12)

Gauss-Seidel Method:

The Gauss-Seidel method is formulated as

which is the same as choosing

in the matrix splitting (5). The -th component of  (10) reads

or, equivalently,

(13)

The difference is that the GS method utilizes updated values.

Maple code: Gauss-Seidel Method
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 = 
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By comparison with the result in (6.1),  we may conclude that Gauss-Seidel 
method is faster than the Jacobi method.
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(17)(17)

Successive Over Relaxation (SOR) method:

The SOR method is formulated as

which is the same as choosing

Note that  (14) can be equivalently written as

Thus the -th component of  (16) reads

or, equivalently,

(18)

Note that if , SOR turns out to be the Gauss-Seidel method.
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Maple code: SOR method

 = 
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SOR with  is much faster than Jacobi and Gauss-Seidel methods.
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Convergence Theory:

Theorem: For any , the sequence  defined by

converges to the unique solution of  if and only if  . In this

case, the iterates satisfy

For example,

Relaxation Methods   (Iteration matrix)

Jacobi method

Gauss-Seidel method

SOR method

Theorem ([Stein and Rosenberg, 1948]). One and only one of the following 
mutually exclusive relations is valid:

1.  

2.  

3.  

4.  
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Theorem:  Let  be symmetric. Then,

Optimal  for SOR: For algebraic systems of good properties, it is 

theoretically known that the convergence of SOR can be optimized when

However, in most cases you can find a better  for a given algebraic system.
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Graph theory for the estimation of the spectral radius

Definition: For , a matrix  is reducible if there is an  
permutation matrix  such that

where   and , submatrices, for which 

. If no such permutation matrix exists, then  is irreducible.

The geometrical interpretation of the concept of the irreducibility by means of 

graph theory is useful. Let , and consider any distinct points

in the plane, which we will call nodes. For any nonzero  of , we connect  

to  by a path  , directed from the node  to the node  ; for a nonzero ,

the node  is joined to itself  by a directed loop. In this way, every  

can be associated with a directed graph .

Example: Find the directed graph of .

Solution:
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Definition: A directed graph is strongly connected, if , for any ordered  pair 
of nodes , there is a directed path of a finite length

connecting from  to  .

Example: The directed graph of the above  is strongly connected.  How 
about for the following matrix?

Solution:

Theorem: A matrix  is irreducible if and only if its directed graph 
 is strongly connected.
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Definitions:

A matrix  is diagonally dominant if

A matrix  is irreducibly diagonally dominant if  is 
irreducible and diagonally dominant, with strict inequality holding in the 
above for at least one .

Theorem: Let  be strictly or irreducibly diagonally dominant. Then,
 is nonsingular. If all the diagonal entries of  are in addition positive real, 

then real parts of all eigenvalues of  are all positive.

Theorem: Let  be irreducible. Then,
(a) ([Gerschgorin, 1931]) All eigenvalues of  lies in the union of the disks in 
the complex plane

(b) ([Taussky, 1948]) In addition, assume that , an eigenvalue of , is a 

boundary point of the union of the disks . Then, all the  circles 

 must pass through the point , i.e.,
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Example: Let 

Spectral radius of iteration matrices:

Jacobi method:

Thus,  and therefore  .

 = 

  = 0.7071067810
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Gauss-Seidel method

Thus,  and therefore  .

 = 
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SOR method

 = 

 = 

  = 
1

5
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3. 3. 

4. 4. 

2. 2. 

(1)(1)

1. 1. 

7.4. Krylov Subspace Methods

We consider Krylov subspace methods for solving

where  is symmetric positive definite (SPD), i.e.,

 for 

Theorem: Let . The following are equivalent.
 is symmetric positive definite.

 and its eigenvalues are all positive.
Each of its leading principal submatrices has a positive determinant.

 can be factored into , where  is a lower triangular matrix with 
positive diagonal entries.

Example: Show that is SPD.

Solution:  Clearly . For ,

which is zero only if .
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Given an initial guess , Krylov subspace methods find successive 
approximations of the form

where  is the search direction and  is the step length. Different 

methods differ in the choice of the search direction and the step length. In this 
section, we will consider the steepest descent method (also known as the 
gradient method, or Richardson's method) and the conjugate gradient method.

Throughout we use the inner-product or dot product notation for real 
vectors  and :

Some immediate properties are:
1.  

2.  , for any constant 

3.  

4.  
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Theorem: Let  be symmetric positive definite. Then,  is  a 
solution of

 
if and only if  is a minimizer of

Proof (sketch). For  and ,

Then, the quadratic function  has a minimum value when , 
because  is positive. It follows from

that

Thus,

If , then  for all choices of  and therefore  cannot 

be smaller than . Thus, is a minimizer of . On the other hand, 
suppose that  is a minimizer of . Then, for any vector , we have 

, which is possible only if  in the last 

displaced equation. This implies that , because  is arbitrary.
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The Gradient (Steepest Descent) method

We denote the gradient and Hessian of  by g' and respectively:

(Search direction): Given  as in (2), the Taylor's formula says

                        

as . The goal is to find p  and  such that

which can be achieved if 

In particular, (3) holds if we choose

when  (Due to the above choice of , the method is called the 
steepest descent method.)

(Step length):  We may determine  such that

in which case  is said to be optimal.  If   is optimal, then
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So, we obtain

Convergence of the steepest descent method: For the method, the following 
is known

The number of iterations required to reduce the error by a factor of  is in the 

order of the condition number of , that is,
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The Conjugate Gradient (CG) method

In this method, the search directions  are conjugate, i.e.,

and the step length  is chosen to be optimal. The following is the original 

version of the CG method:

(CG.Ver.1)

Select 

      (CG1)

      (CG2)

      (CG3)

      if  , stop;

      (CG4)

      (CG5)

46



Remarks, for CG method:

 , by definition. So,

   which is (CG3).

  in (CG1) is computed in order to impose

,
   which can be verified using (CG3).

  in (CG4) is determined so as to satisfy

,
  which can be verified using (CG5).
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Properties of CG method

 For ,

 The search directions and residuals satisfy

 The CG method converges in maximum  iterations. That is,  for 
some . (Originally, the CG method was developed as a direct method.
)
 
 For CG method, the following is known

 The number of iterations required to reduce the error by a factor of  is 

reduced to
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(CG.Ver.2)

Select 

      

      

      

      if  , stop;

      

      

      

Note that

49



Example:  Use the CG method to solve , where

starting from  

Solution:
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Preconditioned CG (PCG) method

As shown in Equations (4) and (5), the condition number of  is the critical 
point for the convergence of Krylov subspace methods such as Gradient and 
CG methods. If we can find a matrix  such that

  and easy to invert,
we may try to apply the CG method to

Then, since

the CG iteration will converge much faster.

Common choices of :

 
       PCG-ILU0

52



In practice, we do not have to multiply  to the original algebraic system. 
The idea can be implemented equivalently as follows:

(PCG)

Select 

      

      

      

      if  , stop;
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Homework:

7. Iterative Algebraic Solvers

#1.  a.  Verify that the function , defined on  by

is a norm on .

b. Prove that  for all .

#2.  Let   Find ,  , and .

#3. Let 

a.  Use Gerschgorin-Taussky theorem to find a range of eigenvalues of .
b.  Is  nonsingular?
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#4. When the boundary-value problem

is discretized by the second-order finite difference method with , the 
algebraic system reads

where

a.  Is  irreducibly diagonally dominant?
b.  Perform 10 iterations of Jacobi and Gauss-Seidel methods, starting from 

.

c.  The exact solution .  Try to find the best  with which the 

SOR method converges fastest during the first 10 iterations.
d. Find the spectral radii of the iteration matrices.
e. Which method is the best?

#5. Symmetrize the algebraic system considered in the preceding problem and 
apply CG algorithm to solve it.

56



8. Approximation Theory

In This Chapter:

Topics Applications/Properties

Least Squares (LS) Approximation Over-determined systems

    Linear models

    Weighted LS

    Polynomial models

    Nonlinear models Linearization

Orthogonal Polynomials and

LS Approximation

    Gram-Schmidt process

    Legendre polynomials

    Chebyshev polynomials

Rational Function Approximation Pad  rational approximation

Data representation: 

Interpolation  passes (interpolates) all data points
  (Numerical Analysis I)

Approximation  approximates the data points
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8.1. Least Squares Approximation

Example:

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
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plotting

Interpolation LS-Approximation

x

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10
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(1)(1)
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Linear Least Squares

The least squares approach to this problem involves determining the best 
approximating line, for which the error is measured in -norm.  Let

,

be the data and the best approximating line be expressed as

Since the data points may not be on the line, each of the data points may 
introduce a misfit (error) as follows:

 

           

Then, the objective of the least squares (LS) method is to determine  

with which the sum of the squares of errors

is minimized.

For a minimum to occur, we need

that is,
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(5)(5)

These equations are reduced to

and finally to the normal equations

Equations (4) and (5) equivalently read
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Example:  For the preceding example, we have

Thus the corresponding system to solve is 

where

 

So, 

  = . 

The LS error  is a minimum.
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The Normal Equation

The normal equation can be derived in a different way.  The linear model (1) is 
evaluated at data points , the resulting equations read

which can be expressed as an over-determined linear system

where

Then the normal equation can be obtained by applying  on the linear 
system:

It is easy to check that
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  and  
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The computation of the matrix and the right-hand side:

Note that

where  is the -th row of the matrix . Thus, the matrix  can be 

constructed in a point-by-point manner. The column-row multiplication, 

, is called the outer product.

Similarly, the right-hand side can be constructed pointwisely as follows.

Notes:
The pointwise construction of the normal equation is convenient when 
either points are first to be searched or weights are applied depending on 
the point location.
The idea is applicable for other LS models as well.
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(3.1)(3.1)

Example:  Let , for some , and . Find a numerical 

differentiation formula approximating .

Solution.

Let us first try to find the least-squares numerical differentiation involving 
the nearest two function values. Then, since

  

the linear system reads

where  denotes an approximation of .  Application of  

leads to

and therefore

which is a second-order approximation of .

Now, we will find the least-squares numerical differentiation involving the
nearest four function values. Then, since
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the linear system reads

Now, we apply a weight 

Then, the algebraic system becomes

Application of  leads to

which implies that

which is a second-order approximation of , worse than (3.2) though.
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(6)(6)

Weighted Least Squares

Given data , the best-fitting curve can be found by 

solving an over-determined algebraic system

where  and  is the coefficient vector to be calculated. The

associated LS problem is formulated as

When certain data points are more important or more reliable than the others, 
one may try to compute the coefficient vector with larger weights on more 
reliable data points. The weighted least squares method is an LS method 
which involves a weight. The weight is often given as a diagonal matrix

When the weight is applied, the system (6) can be written as

and therefore its normal equation turns out to be

Example:  Given data, find the LS line with and without a weight. When a 
weight is applied, weigh the first and the last data point by 1/4.

Solution:
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1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

plotting

LS Weighted LS
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Polynomial Least Squares

The general problem of approximating a set of data ,

with an algebraic polynomial

,

of degree , using the least squares procedure, is handled similarly.  
We choose the constants  to minimize the LS error 

, where

Some algebra leads us to

As in the linear case, for  to be minimized it is necessary that

,  for each 

Indeed,

which implies that, for ,
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It is helpful to write the equations as follows:

Example: Find the best approximating quadratic curve for the data

Solution:
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 = 

 = 
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plotting

LS-quadratic

x

0 2 4 6 8 10
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Note that the algebraic system in (10) can be expressed as

where +1,

Self study: Check

and
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(8.1)(8.1)

LS for Nonlinear Models

Example: Find the best fitting curve of the form  for the data

    

2

3

4

5

6

7

8

9

10

11

Solution:

Applying the natural log (ln) function to  gives

Using the change of variables 

the above equation reads

for which one can apply the linear LS procedure. The data to be used is
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(8.3)(8.3)

> > 

(8.5)(8.5)

> > 

(8.6)(8.6)

Thus,

plotting

LS-model: y=c*exp(dx)

x

0 1
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10

11

76



Linearization

Model Change of Variables  Linear Model

The above table contains just a few examples of linearization; for other 
nonlinear models, use your imagination and creativity.
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8.2. Rational Function Approximations

The class of algebraic polynomials:

Advantages

There are a sufficient number of polynomials to approximate any 
continuous function on a closed interval to within an arbitrary tolerance.
Polynomials are easy to evaluate.
Their derivatives and integrals exist and are easily determined.

Disadvantage

Tendency for oscillation, which often causes the error bound to 
significantly exceed the average approximation error.

Definition: A rational function  of degree  has the form

where  and  are polynomials whose degrees sum to .

Pade Approximation:

Pade rational function of degree , approximating , has the form

Determination of : To satisfy

for 
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(3)(3)
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Let   has the Maclaurin series expansion

Then,

Our object is to choose the constants  so that (2) is 

satisfied, which is equivalent to  having a zero of multiplicity 

 at . As a consequence, we choose the constants so that the 
numerator on the right side of (4),

has no terms of degree .

In order to simplify the notation, we define

Then the coefficient of  in (5) can be expresses as

Thus the rational function for Pad  approximation results from the solution of 
 linear equations

for .
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(2.2)(2.2)
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Example: Find the Pade approximation to  of degree 5 with  and 
.

Solution

 = 

 = 

 = 

 = 

 = 

 = 

So the Pade approximation of  is
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Use of built-in command:

plotting

e^{-x}

R_{3,2}

x

0 1 2 3 4 5 6 7 8

1

2
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> > 

(8)(8)

# Maple code:

# Pade Rational Approximation
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Homework:

8. Approximation Theory

#1. Given data

a.  Plot the data (scattered point plot)
b.  Decide which curve fits the data best.
c.  Implement an LS code to find the curve.
d.  Plot the curve superposed over the point plot.

#2. Determine Pade approximation of degree 6 for , and compare 
the results at , with  and with its sixth Maclaurin 

polynomial

 = 

a.  with 
b.  with 
c.  with 

(You may use Maple functions; however, you should not use any built-in 
functions which produce the results immediately.)
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9. Approximating Eigenvalues

In This Chapter:

Topics Applications/Properties

Linear Algebra and Eigenvalues

Orthogonal Matrices and Similarity 

Transformations

The Power Method

    Symmetric power method Symmetric matrices

    The inverse power method

Householder's Method

QR Factorization

Singular Value Decomposition
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9.1. The Power Method

To apply the Power method, we assume that  has

 eigenvalues  and

 associated eigenvectors  which are linearly independent.

Moreover, we assume that  has precisely one eigenvalue, , that is largest in 

magnitude, so that

The Power method approximate the largest eigenvalue  and its associated 

eigenvector .

For any vector , the fact that  is linearly independent 

implies that constants  exist with

Multiplying both sides of Equation (1) by  gives
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(3)(3)

(4)(4)

In general,

which gives

Since  we have limit , and

Note that the sequence in (4) converges to 0 if  and diverges if  

provided that . Thus the entries of  will grow with   if   and 

will go to 0 if  ; in either case, it is hard to decide the largest 

eigenvalue  and its associated eigenvector .  To take care of that 

possibility, we scale  in an appropriate manner to ensure that the limit in 
Equation (4) is finite and nonzero.
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The Power Method:

Given ,  let 
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Properties:

First of all,

,  for all 

Then, it follows from Equation (4) that for  sufficiently large,

and

Note that    Comparison of the above two 

equations reads
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> > 

Claim:  Let  be sequences produced by the Power method. Then,

,   as  ,

with the rate of convergence given by

,  as  

Example: The matrix

has eigenvalues and eigenvectors as follows

 = 

Verify that the sequences produced by the power method converge to the 
largest eigenvalue and its associated eigenvector.

Solution:
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Notice that ,  where .
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> > 

Symmetric Power Method

When  is symmetric, the scaling step in the Power method can be 
carried out by the  norm instead of  the  norm, which makes the method 

converge more rapidly, more precisely,

,  as  

In this case, since   with   for large ,

That is,  is an approximation converging to .

Example: Symmetric Power Method
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Now,  ,  where 
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Accuracy Analysis

Let  be be a real number that approximates an eigenvalue of a symmetric 

matrix  and  an associated eigenvector. then  is approximately the 

zero vector. The following theorem shows a relation between the norm of the 

vector and the accuracy of  to the eigenvalue.

Theorem: Suppose  is symmetric, having eigenvalues . 

Then, for  and ,

Proof. Let  form an orthonormal set of eigenvectors of  

associated with the eigenvalues .  Then there is a unique set of 

constants  such that

Thus,

But, , which completes the proof.

Note: The above theorem implies that the approximated eigenvalue represents 
one of the eigenvalues of , with accuracy that is in the same order as the 
stopping tolerance.
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Inverse Power Method:

Some applications require to find an eigenvalue of  near a prescribed value .
Inverse Power method is a variant of the Power method to solve such a 
problem.

We begin with the eigenvalues and eigenvectors of . When

it is easy to see that

Thus, we obtain

That is, the eigenvalues of , are

with these same eigenvectors .

Applying the Power method to  gives

(6)
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(5.1)(5.1)

> > 

> > 

Example: Inverse Power Method
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Symmetric Inverse Power method
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9.2. QR Factorization

Power methods are not in general suitable for calculating all the eigenvalues 
of a matrix because of the growth of round-off error. In this section, we will 
consider the so-called QR factorization. The method can be utilized to find all 
the eigenvalues simultaneously. However, it is useful for a wide range of 
applications. Thus here we will derive the QR algorithm for general purpose.

Square matrix:

Let , a square matrix. Then, it may be decomposed as

where  is an orthogonal matrix (its columns are orthogonal unit vectors 

meaning ) and R is an upper triangular matrix (also called right 
triangular matrix)

Rectangular matrix:

More generally, for , we can factor it as

where , an orthogonal matrix, , an upper triangular 
matrix, and

The decomposition  is called the reduced/thin QR factorization.

Note: If A is of full rank  and we require that the diagonal elements of  are 

positive, then  and  are unique, but in general  is not.
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Definitions

Projection (of  onto ):

In the figure,  and , and  is called an 

orthogonal decomposition of .

Householder reflection (or, Householder transformation, Elementary 
reflector)
is a transformation that takes a vector and reflects it about some plane or 
hyperplane.
Let  be a unit vector which is orthogonal to the hyperplane. Then, the 

reflection of a point  about this hyperplane is:

Figure:

Note:  , and

is called a Householder matrix (or, Householder reflector)
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Computation of the QR Factorization

There have been several methods for the computation of the QR factorization, 
such as by means of

rank matrix 
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Since  becomes an orthonormal basis, we can rearrange the 

above equations as

where  and the above can be rewritten in the form

where
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Example
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(2.5)(2.5)

(2.4)(2.4)

(2.2)(2.2)
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## Using a Maple built-in function:
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(3.3)(3.3)

(3.4)(3.4)

(3.1)(3.1)

Example

 = 

4

 = 

4

In general,
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Theory on QR Decomposition

Theorem: Let . Then there exist an orthogonal matrix  and an 
upper triangular matrix  such that .

Theorem: Let  be nonsingular. Then there exist unique 

 such that  is orthogonal,  is upper triangular with positive 
main diagonal entries, and .
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Householder Reflectors

Theorems on Reflectors

1. Let  with , and define  by . Then

(a)  

(b)    if 

(c)  

(d)  

2. Let  with , and define  by . 

Then

(a)  

(b)    if 

(c)     (  is symmetric)

(d)    (  is orthogonal)

(e)     (  is an involution)

3. Let   with  but .  Then there is a unique 

reflector  such that . (The reflector  can be constructed, following 
the same arguments presented in two pages down.)
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Corollary 1: Let  be a nonzero vector and . Define 

 by . Then

(a)  

(b)    if 

Corollary 2: Let  be any nonzero vector. Then there is a reflector  
such that

Proof: Let  with . By choosing the sign 

appropriately, we can guarantee that . Clearly . Thus, the 

corollary follows from Theorem 3.
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Construction of   ,  where  

Let

(5.1)

where 

and the sign of  is such that  , e.g.,  for 

.

Let's check if 

Rewrite  as

Note that by Corollary 1(a), 

Since , it follows from Corollary 1(b)

that
.

Thus

Note: Any nonzero multiple of the above  will generate the same reflector.
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(6.2)(6.2)

Example: ,  where   and  

 = 

 = 

 = 

 =    Note:  is symmetric, orthogonal, and involution 

matrix.
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QR Decomposition by Reflectors

Theorem (revisited): Let . Then there exist an orthogonal matrix  
and an upper triangular matrix  such that .

Proof

The proof is by induction on .
When , let  and  to get .

For , assume that QR decomposition exists for  
matrices. Let  be a reflector that creates zeros in the first column of :

, where 

Thus,

By the induction hypothesis,  has a QR 

decomposition: 

Define  by
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Then  is obviously orthogonal and

The matrix is upper triangular; let us call it . Let . Then 

, clearly.
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Remarks:

1. For , since any multiple of 

 will generate the same reflector, you may scale  so that its first 
entry is 1. That is,

In this case, the first entry of  does not need to be saved. Furthermore

Since ,

Thus,
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2. The the proof suggests an algorithm for constructing  and .

,  where 

and

where  is determined from . In general,

Then, if  , then  is a upper triangular matrix.
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3. We do not need form  explicitly. For example, for

we store only .  (The construction of  costs  flops.)

Then, for each  (or columns of ), ,

the last of which requires about  flops.

4. The flop count for  :
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Algorithm: The QR Decomposition by Reflectors

For 

    i.   Determine    such that  

    ii.  Store  over 

    iii. Save 

    iv. 

    v.  Save 

End

Notes

1. The output (  and ) is saved over .

2. Recall that the flop count for  is about . For , it is about 

; for , it is about ; and so on. Thus the total flop 
count for QR Decomposition by Reflectors is about

which is twice that of an LU-factorization.
3. Although each of  is symmetric and an involution,   

may not be symmetric nor an involution. However, it is still orthogonal.
4. The matrix  is singular if at least one entry of  (particularly, ) is 
zero.
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Example: QR by Reflectors

 = 

############# k=1 #######################################

##

 = 
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(10.2)(10.2)

(10.1)(10.1)

############# k=2 #########################################

##

 = 
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(10.7)(10.7)

(10.3)(10.3)

(10.5)(10.5)

(10.4)(10.4)

############# Q & R ##############################
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(10.8)(10.8)

(10.10)(10.10)

##### On the other hand ##############################
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9.3. Singular Value Decomposition (SVD)

Let  for arbitrary integers . In this section, we consider the 
factorization of  into what is called the Singular Value Decomposition. The 
decomposition takes the form

where 

an  orthogonal matrix

an  diagonal matrix of singular values

an  orthogonal matrix

Note: In most applications, . So, we assume that  for simplicity, 
although the algorithms to be presented would work for general cases.

Definitions

The singular values of  are the nonnegative square roots of 

eigenvalues of .
The rank of , denoted by , is the number of linearly independent 
rows in .
The nullity of , denoted by , is .

Basic properties, for 

1.  

2.  The matrices  and  are symmetric.

3.   and therefore 

4. Eigenvalues of   and  are real and nonnegative.

5. The nonzero eigenvalues of  and  are the same.
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Diagonalizable Matrices

Theorem 1: A square matrix  is similar to a diagonal matrix  if 
and only if  has  linearly independent eigenvectors. In this case,

where the columns of  consist of the eigenvectors, and the -th diagonal entry 
of  is the eigenvalue of  that corresponds to the -th column of .

Theorem 2:  Let  and  be eigenvectors of  a symmetric  matrix 

corresponding to two distinct eigenvalues  Then .

Proof:

.

Since , we conclude .

Theorem 3: An  matrix  is symmetric if and only if there is a diagonal 
matrix  and an orthogonal matrix  such that

where  consists of orthonormal eigenvectors of .

Corollary: The matrices  and  are diagonalizable. That is, there are 

orthogonal matrices  and  such that

where  and  are diagonal matrices having identical nonzero diagonal 

entries.
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Singular Value Decomposition (SVD)

where 

left-singular vectors

orthonormal eigenvectors of 

diagonal matrix of singular values

right-singular vectors

orthonormal eigenvectors of 

Construction of SVD

1. Construct eigenvalues of 

2. Construct  orthonormal eigenvectors of 

3. Construct orthonormal eigenvectors of 

Let's see the details.
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1. Construction of 

Let , be the nonnegative eigenvalues of . Without loss of 

generality, we may assume

( .)

Define the singular values as

Then,

where 
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(4.1)(4.1)

(4.4)(4.4)

(4.3)(4.3)

Example
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(5.1)(5.1)

2. Construction of 

Since  is symmetric, it is diagonalizable as

where  is a diagonal matrix of eigenvalues of  and  is an orthogonal 
matrix of eigenvectors. Note that  is unique, but  may not be.

Example

Note that  is not orthogonal; it can be transformed to be orthogonal by 
applying the Gram-Schmidt process.
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(5.4)(5.4)

(5.3)(5.3)

Check:

##========

which is the same as .
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(6.2)(6.2)

3. Construction of 

Example

Again, here,  is not orthogonal; let's use the Gram-Schmidt process:
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(6.3)(6.3)

(6.5)(6.5)

#### Using the built-in command:
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(6.8)(6.8)

(6.6)(6.6)
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3'. An Alternative for finding 

First, consider the nonzero singular values  and the 

corresponding columns in  given by . Define

Then we can prove that , , are eigenvectors of  and

See a homework problem for (3). Here we will prove that , , are 

eigenvectors of .

To determine the remaining columns of , we first need to choose  
vectors  such that

is linear independent. Then we apply the Gram-Schmidt process to obtain 
 so that

is orthonormal.
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Example

 =  ,   =  , and   = 

The two remaining vector may simply be selected:
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(7.2)(7.2)

(7.3)(7.3)
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### Check:

Note:  and  may not be unique.  must be constructed, with care, 
corresponding to 
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Verification of the decomposition: 

It can be verified by showing

Since

we can obtain

Note: No matter how the orthonormal vectors  are chosen,  

remains the same and therefore it holds . This implies that all 

columns of  do not have to be eigenvectors of 
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A Remark on the Construction of 

Let the nonzero singular values be   and the 

corresponding columns in  given by .  Then, we may define

To determine the remaining columns of , we first need to choose  
vectors  such that

is linear independent.

These remaining vectors can be chosen to be eigenvectors of , which 
correspond to the eigenvalue zero. That is,  can be found as 

solutions of

A way of solving the problem is to transform  into the reduced echelon 

form.

Example
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(8.3)(8.3)

(8.2)(8.2)

Note:  is equivalent to . 
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Equation (8.4) can be rewritten as

Define

These two vectors are eigenvectors of , corresponding to the zero 
eigenvalue.
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(8.7)(8.7)

Now, apply Gram-Schmidt process:

Now,  is a collection of all linearly independent eigenvectors of .
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Application of SVD for LS Approximation

Let ,  , and . Then, the least squares objective is to 

find a vector  that minimizes

Suppose that the SVD of  is given, that is,

where  is assumed to have  nonzero singular values.

Since  and  are -norm preserving, we have

Define  and . Then

Thus the norm is minimized when  is chosen with

After determining , one can find the solution as

Then the least-squares error reads

Example
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(9.2)(9.2)
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(9.4)(9.4)

The least-squares error becomes

2.43532000000000

See Page 6 of Section 8.1

plotting

LS-Line

x

1 2 3 4 5 6 7 8 9 10
1

3

5

7

10
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Homework:

9. Approximating Eigenvalues

#1. Let 

Use indicated methods to approximate eigenvalues and their associated 

eigenvectors of  within to  accuracy.
a.  Power method, the largest eigenvalue.
b.  Inverse Power method, the smallest eigenvalue.
c.  Inverse Power method, an eigenvalue near 3.
d.  Repeat the above with their symmetric versions.

# 2. Find a reflector  that maps the vector  to a vector of 

the form . Write  in two ways: (a) in the form of  

and (b) as a completely assembled matrix.

#3. Let

Find QR decompositions for  by using (a) the Gram-Schmidt process and (b) 
reflectors. (You have to show your solutions step-by-step in detail.)
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#4. This problem revisits the first homework problem of Chapter 8. Consider 
the same data

a.  Plot the data (scattered point plot) and decide which curve fits the data best.

b.  Construct an algebraic system of the form , where , 

c.  Use the LS code (you have implemented for HW for Chapter 8) to find the 
curve.

d.  Implement a code for QR Decomposition to find  and then find the curve.

e.  Plot the curves superposed over the point plot, and compre them. Are they 
the same?

#5. For the overdetermined system in the previous problem, use the SVD to 
find the least-squares solution. Your solution must be the same as the one 
found in the previous problem.
For the SVD, you may use  (in Maple) or  (in Matlab).

#6.  Prove equation (3) on page 9.3.11 (page 11 of Section 9.3).
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10. Numerical Solutions

of Nonlinear Systems of Equations

In This Chapter:

Topics Applications/Properties

Fixed Points for Functions of Several 

Variables

    Fixed-point iteration NA I; we will do it again

Newton's Method for Systems   (a little more generally)

Quasi-Newton Methods

    Sherman-Morrison formula

    Broyden's method

Steepest Descent Methods

An application: Mesh Optimization Convex mesh optimization
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The Problem

Consider a system of nonlinear equations of the form

which can be written as

where

 and 

Objective:  For such systems of nonlinear equations, the objective is to find 

solutions, that are real-valued vectors   such that .

Applications

Zero-finding problems:

Find  such that 

Optimization:

where the objective function  can be minimized by solving
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10.1. Fixed Points for Functions of Several Variables

Definition: A function  from  to  has a fixed point at  if 

Fixed-Point Theorem:

Let .

(i)  Suppose  is a continuous function from  to  with the 
property that  whenever . Then,  has a fixed point in .
(ii) Moreover, suppose that all the component functions of  have 
continuous partial derivatives and a constant  exists with

, for all 

Then the sequence  defined by an arbitrarily selected  and 
generated by

converges to the unique fixed point  and 
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3. 3. 

1. 1. 

(3.1)(3.1)

2. 2. 

Example: Consider the nonlinear system of equations

Place the system in a fixed-point form  by solving the -th 
equation for .

Show that there is a unique solution on .

Find the fixed point by iterating, starting from  until 

accuracy within  in  norm is obtained.

Solution:

(1)  Formulation of 
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Thus
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(2) Checking  for 

For ,

which proves  for .

Finding bounds for partial derivatives on :

Partial derivatives Bounds

 = = 

 =  = 0.2804903282

 =  = 0.2804903282

 = 
 = 

0.2376856356

 = 
 = 

0.1188428178

 =  = 0.1359140914
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 =  = 0.1359140914

Thus

, for all 

and therefore the condition in the second part of the Fixed-Point Theorem 
holds with
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(3) Finding the fixed point:
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  k               x_1                         x_2                      x_3

----------------------------------------------------------------------

  0      0.1000000000      0.1000000000      -0.1000000000

  1      0.4999833335      0.0094411496      -0.5231012673

  2      0.4999959349      0.0000255677      -0.5233633109

  3      0.5000000000      0.0000123367      -0.5235981364

  4      0.5000000000      0.0000000342      -0.5235984672

  5      0.5000000000      0.0000000165      -0.5235987747

159



Empty Page

160



(1)(1)

10.2. Newton's Method for Nonlinear Systems

We continue considering a system of nonlinear equations of the form

which can be written as

where

 and 

Objective :  For such systems of nonlinear equations, the objective is to find 
solutions, that are real-valued vectors   such that .
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Review: Solutions of Nonlinear Equations in One Variable

For equations of the form

the objective is to find solutions, that are real numbers  such that 
.

Let  be a zero of  and  an approximation of  and

Our momentary concern is how to find the correction .

If  exists and is continues, then by Taylor's Theorem

,

where  lies between  and . If  is small, it is reasonable to ignore 

the last term and solve for :

.

Then,

may be a better approximation of  than .

This has motivated the Newton's Method :
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Graphical Interpretation:
Consider the tangent line passing :

.

Let . Then,

which is , the -intercept of the tangent line .
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Example of Nonconvergence:

Notes:

.

 for some . As a matter of fact, 

Newton's method is most effective when  is bounded away from zero near 
.
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Convergence Analysis:
Let . Then,

.

By Taylor's Theorem, we have

.
Thus,

Theorem: Convergence of Newton's Method

Let  and  is such that  and . Then, 
there is a neighborhood of  such that if Newton's method is started  in 

that neighborhood, it generates a convergence sequence  satisfying

,

for a positive constant 
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Example : Use a Maple built-in function to find the solution of  , 
beginning from .

Solution:

Example : Use Newton's method to find the square root of a positive number 
.

Solution:

Let . Then  is a root of .

Set  and .
The Newton's method reads
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(5.1)(5.1)
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Systems of Nonlinear Equations:

Newton's method for systems of nonlinear equations follows the same strategy
that was used for single equation. That is, we (1) linearize , (2) solve for 
corrections , and (3) update the solution , repeating the steps as often as 
necessary. For an illustration, we begin with a pair of equations:

Supposing that  is an approximate solution of the system, let us 

computer corrections  so that  will be a better 

approximate solution.

The above can be rewritten as

This implies that the correction vector   can be found by

where  is the Jacobian  of  at :

.

Hence, Newton's method for two nonlinear equations in two variables  is
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where

In general , the system of  nonlinear equations,
,

can be expressed as in Equation (1):

where  and . 

Then
,

where  and  is the Jacobian of  at :

.

The correction vector  is obtained as

.
Hence,

Newton's method for  nonlinear equations in  variables  is given by

(5)

where  is the solution of the linear system:

.

Example : Starting with , carry out 6 iterations of Newton's method 
to find a root of the nonlinear system
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Solution:

   1    2.18932610   1.59847516   1.39390063   1.19   0.598   0.394 
   2    1.85058965   1.44425142   1.27822400   -0.339   -0.154   -0.116 170



   3    1.78016120   1.42443598   1.23929244   -0.0704   -0.0198   -0.0389 
   4    1.77767471   1.42396093   1.23747382   -0.00249   -0.000475   -0.00182 
   5    1.77767192   1.42396060   1.23747112   -2.79e-006   -3.28e-007   -2.7e-006 
   6    1.77767192   1.42396060   1.23747112   -3.14e-012   -4.22e-014   -4.41e-012 

Note: The convergence rate is

for  near to . 
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Using Maple for Initial Approximation
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Applications to Optimization

Consider the optimization problem of the form

When we assume that the objective function  is differentiable, the minimizer 

 would satisfy

which may be viewed as a zero-finding problem for a system of two nonlinear 
equations.

Thus, the corresponding Newton's method is formulated as

where the correction vector is the solution of the linear system:

Here  is call the Hessian matrix of  evaluated at  defined by
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The objective function 

In many applications, the objective function  is quite complicated; an 
example can be found in mesh optimization. In this case, it would be 
cumbersome and time-consuming to explicitly compute the derivatives of . 
The derivatives can be approximated by using finite difference method:

For example,

We will deal with details in Section 11.2 below.
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10.3. Quasi-Newton Methods

Nonlinear equation of single variable:
(1)

Newton's Method:  Given an initial estimate 

Convergence: 

Evaluation of  may not be convenient.

Secant method:  For initial estimates  and ,

It requires only one new evaluation of   per step.
Convergence:
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Nonlinear equation of muitiple variables: 
(2)

Newton's Method:  Given an initial estimate 

Convergence: 

Evaluation of the Jacobian  may not be convenient.
Roundoff error: self-correcting

The inversion of Jacobian requires  operations.

Quasi-Newton (Broyden's) method:  For initial estimates  and ,

It does not need to compute partial derivatives, and Jacobian

Each iteration requires  operations

Convergence: superlinear, i.e., 

   as 

Roundoff error: not self-correcting
For many applications, Quasi-Newton method is more convenient and 
faster.
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Details of Quasi-Newton Method:

Given an initial estimate ,

Computation of :

Use the Newton's method:

If it is inconvenient to determine exactly, use finite difference 
approximations to the partial derivatives

for .

Computation of  :

where  satisfies

  whenever 

A matrix  satisfying the above two conditions can be uniquely determined

as

Note that  is an update of  which satisfies the two weird conditions. 

However, they are not weird as a matter of fact. The first condition reminds 
us of the secant method for equations of one variable:
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 The second condition enforces the new matrix  to be updated with no 

change in a direction orthogonal to .

Computation of  

where   reads

where

Note the inversion of  requires  operations. However a considerable 

improvement can be incorporated by employing a matrix inversion formula of 
Sherman and Morrison.

Sherman-Morrison Formula:

Suppose  is nonsingular matrix and  and  are vectors with . 

Then  is nonsingular and
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Letting   and ,

Thus we have

which requires  operations.

Example: Starting with , carry out five iterations of Quasi-Newton 
method to approximate a root of the nonlinear system

Solution

Homework
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10.4. Mesh Optimization

What is meshing?

Given an input domain, partition it into simple cells:
triangles, quadrilaterals, tetrahedra, cuboids, ...

Not fully settled, varies by meshing applications

Avoid sharp angles? Allow sharp angles but avoid obtuse angles?

Use non-directional quality measures?
Align mesh elements with domain boundaries?
Concentrate quality near boundary, allow worse elements in interior?
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Typical mesh generation stages

Generate initial point placement
    Well spaced, other quality considerations

Determine mesh connectivity
    Usually, Delaunay triangulation

Iterate mesh improvement stages
    Laplacian or optimization-based smoothing
    Flips and other connectivity changes
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Delaunay Triangulation:

1. Given planar point set, connect two points by edge if some 
circle exists with them on boundary, empty interior

2. Collection of all such edges for points in general position

         

Flipping (beginning of mesh optimization)
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Mesh Optimization

Mesh optimization can be carried out by (1) defining a quality measure for 
triangles, (2) forming an objective function, and (3) maximizing/minimizing 
the objective function.  Here the goal is to move vertices so that the resulting 
mesh includes as uniform triangles as possible.

Quality Measure for Triangles

Let   a triangle in the physical space whose vertices are given by

Let  be the reference triangle with vertices

Then, if we choose  as the translation vector, the affine map that takes T  to 

 is

where  is the Jacobian matrix of the affine map, referenced to node , and 

expressed as
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Let now  be an equilateral triangle with all its edges of length one and 

vertices located at

Let  be the linear map that takes  to  ; its Jacobian matrix

Then the affine map that takes  to  is given by

(1)

where the Jacobian matrix is

Remark: The matrix  is independent of the node chosen as reference; it is 
said to be node invariant.
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(1.2)(1.2)

(2)(2)

(1.1)(1.1)

Definition: A quality measure of the triangle  can be defined as 

where  is the Frobenius norm of  and  denotes the determinant of :

  

Example

Consider a triangle of vertices

 =      =     = 

Then,  = . 

Since 

 = 

 = 

Thus, the triangle quality is

0.5329387102
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(2.2)(2.2)

> > 

(2.1)(2.1)

Another Example

Consider the ideal triangle with vertices being oriented in the opposite way

 =      =     = 

Then,  = . 

Since 

 = 

 = 

Thus, the triangle quality is

Remarks:

1. The quality measure ranges in , i.e., .

2. For triangles with vertices positively oriented, .
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Objective Functions

For simplicity, we will deal with a simple example, illustrated in the figure 
below. 

P(x,y)

T1

T2

T4

T3

Our objective is to relocate the vertex  so that the quality measure of 
every triangle is maximized (equivalently, the reciprocal of the quality 
measure is minimized).

Let  be the objective function (distortion measure) associated to -th 

triangle. Then the objective function for the local mesh (submesh) is defined
as

where  is an integer, typically  or .
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(3.1.1)(3.1.1)

(3.1.2)(3.1.2)

Example

Let the outer rectangle be the unit square of side length 1.

P(x,y)

T1

T2

T4

T3

Triangle 1: 

 =      =     = 

Then,  = . 

Since 
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(3.1)(3.1)

(3.1.4)(3.1.4)

> > 

(3.1.3)(3.1.3)

Thus, the triangle quality is

Triangle 2: 

 =      =     = 

Then,  = . 

Since 
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(3.2.3)(3.2.3)

(3.2.4)(3.2.4)

(3.2)(3.2)

(3.2.1)(3.2.1)

(3.2.2)(3.2.2)

Thus, the triangle quality is

Triangle 3: 

 =      =     = 

Then,  = . 
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(3.3)(3.3)

(3.3.4)(3.3.4)

(3.3.3)(3.3.3)

> > 

(3.3.2)(3.3.2)

(3.3.1)(3.3.1)

Since 

Thus, the triangle quality is

Triangle 4: 
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(3.4.1)(3.4.1)

> > 

(3.4.4)(3.4.4)

> > 

(3.4.2)(3.4.2)

(3.4.3)(3.4.3)

 =      =     = 

Then,  = . 

Since 

Thus, the triangle quality is
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(3.5)(3.5)

(3.6)(3.6)

(3.4)(3.4)

## Now, the objective function 
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(3.11)(3.11)

(3.10)(3.10)

(3.7)(3.7)

(3.8)(3.8)

(3.12)(3.12)

(3.9)(3.9)

Now, let us minimize K

Note: One can also solve  using the Newton method

195



(3)(3)

Tangled (inverted) Mesh

When , the triangle is said to be tangled (or inverted).

The objective function  presents a barrier in the boundary of the feasible 
region. This barrier avoids the optimization
method to create a tangled mesh when it starts with a valid one; however, on 
the other hand, it prevents the algorithm to untangle it when there are inverted 
elements. Therefore, the objective function is only appropriate to improve the 
quality of a valid mesh, not to untangle it.

To construct an objective function applicable to deal with tangled meshes, the 
objective function can be modified appropriately. In the literature, the 

modification lies in substituting  by the positive and increasing function

where  is a parameter, .
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Thus, the modified objective function gives

where  is an integer, typically  or .

Remarks:

1. Performance of  depends somewhat strongly on the choice of 

, in practice.

2. Modification of a part of distortion measure is not completely 
meaningful. 

 is not a quality measure. A small  does not 

necessary mean a low-quality triangle; it is small if the triangle 
is small.

The transformation from the quality measure to the distortion 
measure is the function , which is a decreasing function 
for ; however, the transformation is hardly applicable for 
both positive and negative sides of 
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(4.4)(4.4)

> > 

(4.1)(4.1)

(4.2)(4.2)

(4.3)(4.3)

> > 

A decreasing function

Define

 = 
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(4.5)(4.5)

d=1
d=1/5
d=1/10

x

0 1 2 3

1

2

3

4

5

6

7

8

9

10

g(x) = d/h(x)
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New objective function

where   is a positive, strictly decreasing function.

Remarks:

1.  is defined only on 

2. The graph of   must be convex up and ; in this 
case, tangled triangles can be more effectively untangled, and 
(near) ideal triangles are stabilized not to be altered.

For example, 

Your project will be related to refining the objective function  by (1) 

introducing the most effective decreasing function  and (2) applying Newton 
method with which the iterates would converge to the optimal point beginning
from a given initial point.
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## Convex-Objective Mesh Optimization

  ## For Newton's method

 point array  P := Array(0..nx,0..ny,1..2)

Proc: A:=mesh2matrix(P)
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Proc: meshplot(A)

Proc:  iT:=IsTangled(Pc,V)

Proc:  nTT:=HowManyTangled(P)
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Proc: V:=getVertices(P,i,j)

Proc: K:=ObjectiveSD(V,X,WI,g,p)
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Proc: K:=ObjectiveUT(V,X,WI,g,p)

Proc: K:=ObjectiveConvex(V,X,WI)
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Proc: Pc:=NewtonMeshOpt(Pc,K,itmax,tol)

205



Proc: P2:=MeshCopy(P1)

Proc: norm2:=MeshDistance(P1,P2)
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Proc: norm8:=MeshDistance8(P1,P2)
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## Begin: Mesh Optimization and Plotting
##===================================

0 1
0

1

 perturb P randomly

    Mesh L2-distance from P0 = 0.267679
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0

Untangling Iterations

     The number of tangled triangles = 97

209



    iter=1,  nTT=31

    iter=2,  nTT=0

    Mesh L2-distance from P0 = 0.0382116

0 1
0

1

Xtra one Untangling Iteration: The algorithm may be adjusted so as to perform 

only if the minimum of quality measure is less than a prescribed level.

210



    Mesh L2-distance from P0 = 0.0241698

0 1
0

1

Finally, minization with Quality Measure
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    iter=1, norm2=0.00913573

    iter=2, norm2=0.00531045

    iter=3, norm2=0.00344744

    iter=4, norm2=0.0023531

    Mesh L2-distance from P0 = 0.00773019

0 1
0

1
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Homework:

10. Numerical Solutions of Nonlinear Systems of Equations

#1. The nonlinear system

can be transformed into the fixed-point problem

a.  Prove that  mapping from  to  has a unique fixed 

point in

b.  Apply Fixed-Point iteration to approximate the fixed point to within  

in  norm, beginning from .

#2. The nonlinear system

has a solution near .

a.  Find a function  and a set  such that  and  has a 
unique fixed point in .

b.  Apply Fixed-Point iteration to approximate the fixed point to within  
in  norm.
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#3. This problem deals with how to make an accurate approximation in order 
for the Newton's method to converge to a solution in a specific region. 
Consider the system of equations

a.  Use a plotting software to plot the equations, e.g., implicitplot in Maple.
b.  From the plot, find initial approximations of all (maximum four) solutions.

c.  Use Newton's method to update the approximations within to  
accuracy.

#4. Starting with , carry out four iterations of Quasi-Newton method 
to approximate a root of the nonlinear system

(For the first iteration, use the Newton's method.)
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11. Boundary-Value Problems of One Variable

In This Chapter:

Topics Applications/Properties

Shooting Method

    Existence and uniqueness of 
         the solution of BVPs

    Linear shooting method

Finite Difference Methods (FDM)

    Central schemes

    Algebraic systems

Finite Element Methods (FEM) Flexibility not only on geometry
    but on approximation

    Variational formulation Weak form

    Rayleigh-Ritz method Classic, minimization principle

    Galerkin method Weighted residual approaches

    Petrov-Galerkin method

    Least-squares method

    Collocation method

FDM for Non-constant Diffusion

The two-point BVPs in this chapter involve a second-order differential 
equation of the form
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11.1. Linear Shooting Method

Existence and Uniqueness Theorem

Let 
.

For the BVP of the form in (1), If the functions  are continuous on 

 and satisfy
     (i)   , for all 

     (ii)  there is a constant  such that
, or all 

then the BVP has a unique solution.

Example: Show that the following BVP has a unique solution.

.

Solution

We have

which is clearly continuous. For ,

So the problem has a unique solution.
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(3.1)(3.1)

Linear Boundary-Value Problems

The differential equation  is linear if   can be expressed as a 
linear combination of  and , that is,

for some functions .

Corollary

Suppose the linear BVP

satisfies
    (i)   , and  are continuous on 
    (ii)   on 
Then the linear BVP has a unique solution.
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(2)(2)

(4)(4)

(3)(3)

The Linear Shooting Method:

To approximate the unique solution to the linear BVP

we first solve the problem twice, with two different initial conditions, 
obtaining solutions  and , say,

Then we form a linear combination of   and :

where  is a parameter. We can easily verify that .

Thus the remained requirement is to select  for  to satisfy . That 

is,

and therefore

provided that .

Note that  and  can be chosen arbitrarily except ; however, the most

common choice is  and .

Claim: If the linear BVP (2) has a solution , then either  or  

. For the later case, the solution  is a linear combination as in 

(3) with (4).

218



Summary of the linear shooting method

1.  Solve the two BVPs for  and :

      

     where  .
2.  Compute

3.  Get the solution of the linear BVP (2) as a linear combination of   and 

:

Each of the problems in the first step can be solved by applying an ODE 
solver for systems. For example, the second problem equivalently reads as a 
system of differential equations:

which can be solved efficiently by a fourth-order Runge-Kutta (RK4) method.

Let's see a brief review for ODE solvers.
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Numerical Solutions of Ordinary Differential Equations (Review)

(See Sections 5.2 and 5.3 for details.)

Consider the initial-value problem (IVP):

          (IVP)

For the problem, approximations to  will be generated at various points, 
called mesh points, in the interval . Let the mesh points be equally 

spaced:

We denote an approximate value of  by , that is,

Then, common numerical methods for the numerical solution of (IVP) 
compute the approximate solution at a mesh point at a time, moving forward, 
estimating an accurate average of  and/or utilizing a few of  solution 
values at previous mesh points. Thus such procedures are step-by-step 
methods.

Euler's Method

Let us try to find an approximation of , marching through the first 

subinterval . Consider the Taylor series expansion,

Then, utilizing   and   the value  can be 

approximated by
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(4.3)(4.3)

(4.2)(4.2)

Such an idea can be applied recursively for the computation of solution on 
later subintervals. Indeed, since

by replacing  and respectively with  and  , we obtain

which is an approximation of .

Summarizing the above, the Euler's method solving the first-order IVP is 
formulated as

Higher-Order Taylor Methods

If we expand the solution , in terms of its th-order Taylor polynomial 
about  and evaluated at , we obtain

Successive differentiation of the solution, , gives
 and generally, 

.

Thus we have
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(5.1)(5.1)

The Taylor method of order  corresponding the above equation is 

obtained by deleting the remainder term involving .

where

Runge-Kutta Methods

Runge-Kutta methods have high-order local truncation error of the Taylor 
methods but eliminate the need to compute and evaluate the derivatives of  

. That is, the Runge-Kutta Methods are formulated, incorporating a 
weighted average of slopes, as follows:

    ,

where

 

  are (recursive) evaluations of the slope 

 Nee to determine  and other parameters to satisfy
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(6.3.1)(6.3.1)

(6.2.1)(6.2.1)

(6.1.1)(6.1.1)

Second-order Runge-Kutta method (RK2; Heun's method)

where

Modified Euler method:

Fourth-order Runge-Kutta method (RK4)

The most commonly used set of parameter values yields

where

223



> > 

## RK4SYSTEM
##------------------------------

## Ex)   

RK4SYSTEM := proc(a,b,nt,X,F,x0,xn)
        local h,hh,t,m,n,j,w,K1,K2,K3,K4;
        #### initial setting
        with(LinearAlgebra):
        m := Dimension(Vector(F));
        w  :=Vector(m);
        K1:=Vector(m);
        K2:=Vector(m);
        K3:=Vector(m);
        K4:=Vector(m);
        h:=(b-a)/nt;  hh:=h/2;
        t :=a;
        w:=x0;
        for j from 1 by 1 to m do
               xn[0,j]:=x0[j];
        end do;
        #### RK4 marching
        for n from 1 by 1 to nt do
             K1:=Vector(eval(F, [x=t,seq(X[i+1] = xn[n-1,i], i = 1 .. m)]));
             K2:=Vector(eval(F, [x=t+hh,seq(X[i+1] = xn[n-1,i]+hh*K1[i], i = 1 .. m)]));
             K3:=Vector(eval(F, [x=t+hh,seq(X[i+1] = xn[n-1,i]+hh*K2[i], i = 1 .. m)]));
             t:=t+h;
             K4:=Vector(eval(F, [x=t,seq(X[i+1] = xn[n-1,i]+h*K3[i], i = 1 .. m)]));
             w:=w+(h/6.)*(K1+2*K2+2*K3+K4);
             for j from 1 by 1 to m do
                    xn[n,j]:=evalf(w[j]);
             end do
        end do
end proc:
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 = 

 = 

   n          y_n              y(x_n)                y'_n               y'(x_n)           err(y)          err(y')

   0    -0.40000000    -0.40000000    -0.60000000    -0.60000000    0    0
   1    -0.46173334    -0.46173297    -0.63163124    -0.63163105    3.72e-07    1.92e-07
   2    -0.52555988    -0.52555905    -0.64014895    -0.64014866    8.36e-07    2.83e-07
   3    -0.58860144    -0.58860005    -0.61366381    -0.61366361    1.39e-06    1.99e-07
   4    -0.64661231    -0.64661028    -0.53658203    -0.53658220    2.02e-06    1.68e-07
   5    -0.69356666    -0.69356395    -0.38873810    -0.38873905    2.71e-06    9.57e-07
   6    -0.72115190    -0.72114849    -0.14438087    -0.14438322    3.41e-06    2.35e-06
   7    -0.71815295    -0.71814890     0.22899702     0.22899243    4.06e-06    4.59e-06
   8    -0.66971133    -0.66970677     0.77199180     0.77198383    4.55e-06    7.97e-06
   9    -0.55644290    -0.55643814     1.53478148     1.53476862    4.76e-06    1.29e-05
   10    -0.35339886    -0.35339436     2.57876634     2.57874662    4.50e-06    1.97e-05
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Example: Use the shooting method to approximate the solution of

.

Solution

## The exact solution & Error analysis

 = 
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                          h=1/5                 error                  h=1/10           error

x=1.00          0.0000000000            0        0.0000000000            0

x=1.20          1.1056335076     0.000618        1.1062189010     3.3e-005

x=1.40          1.7958326514     0.000538        1.7963419934    2.89e-005

x=1.60          2.1686944799     0.000348        2.1690241106    1.87e-005

x=1.80          2.2431240407     0.000162        2.2432777718    8.77e-006

x=2.00          2.0000000000            0        2.0000000000            0

At ,  the error ratio=  = 18.72727273
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11.2. Finite Difference Methods

A linear BVP has the form

In order to develop finite difference methods (FDM) for the solution of the 
problem in more general environments, we in this section consider differential
equations of the following form

(1)

Let, for some ,

For a simple presentation, define  for  ; for example,

The objective with finite difference methods is to approximate , the 

solution at discrete nodal points.
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We begin with the Taylor's Theorem as follows.

Taylor's Theorem:

Suppose   and   exists on  Then, for every 
, 

,

where, for some  between  and ,

.

In detail,

Expanding  in a fourth Taylor polynomial about  evaluated at 

  and  , we have
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Central FD Schemes:

(2)(a)+(2)(b):

Solving the above for  reads

(2)(a) (2)(b):

Thus the central FD formula for is obtained as
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(5)(5)

(3)(3)

(4)(4)

Use of these central FD schemes in the first equation of Equation (1) at  

results in the equation

where

Due to the second equation in Equation (1), which is a boundary condition at 
, we may assign  as

The last equation in Equation (1) can utilize the above central FD formula for 
:
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(6)(6)

Second-Order FDM:

An FDM for the model (1) with truncation error of order  follows from 

Equations (3), (4), and (5), ignoring the terms involving  and higher-orders 
of .  Let  denote the second-order approximation of . Then, the second-

order FDM for (1) reads

Note that when , the second equation of (6) reads

where the quantity  is a ghost value which can be eliminated utilizing the 

last equation. Such a treatment of the Neumann boundary condition is called 
the method of ghost grids.

That is, Equation (6) is rewritten as
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(8)(8)

Then, the resulting system of equations is expressed in the following  
tridiagonal matrix form

where

and

Note that when Dirichlet data are assigned at both end points, the algebraic 
system can be organized in the -dimensional space. However, it can 
also be formulated with an -dimensional system.
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(3.2)(3.2)

(3.1)(3.1)

Solvability:

Theorem: Suppose that , and   are continuous on . If

on , then the linear system (8) has unique solution provided that

where  .

Proof:

When (3.2) is satisfied, the quantities in the parentheses in the matrix  is 
all positive, which implies that  is diagonally dominant, i.e.,

    for all .

Indeed,

Since  is clearly irreducible, it is irreducibly diagonally dominant. Thus,  
is nonsingular and therefore the linear system has a unique solution. 
Because all the diagonal entries of  are in addition positive real, real parts 
of eigenvalues of  are all positive.
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Example: Use the second-order FDM to approximate the solution of

with  and . (Note that  and 
 and therefore .)

Solution:

The differential equation can be written as
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(6.1)(6.1)

(5.1)(5.1)

(5.2)(5.2)

The exact solution & Error analysis:
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              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75688   0.01088  |  0.74871   0.00271  |  0.74598   1.423e-05
 x=1.40   1.44159  |  1.46883   0.02723  |  1.44840   0.00680  |  1.44159   6.646e-06

 x=1.60   2.00078  |  2.04943   0.04865  |  2.01295   0.01217  |  2.00078   7.089e-06
 x=1.80   2.29774  |  2.37302   0.07527  |  2.31658   0.01884  |  2.29777   2.315e-05
 x=2.00   2.17143  |  2.27883   0.10740  |  2.19831   0.02688  |  2.17147   4.068e-05
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(9)(9)

Richardson's Extrapolation

Let  be a second-order approximation of . Then, it follows from Equation 

(3) that

for some  and . Similarly, when  is the numerical solution of  with 

the mesh size , we have

and therefore

Subtracting Equation (10) from four times Equation (9) reads

which implies that

Implication:

A simple combination of two solutions of different mesh size results in an 
approximation of  that shows a fourth-order truncation error. Such an idea, 
called the Richardson's extrapolation, can be applied for a sixth-order 
approximate solution when the second-order numerical solutions are 
computed with three different mesh sizes, 
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11.3. Finite Element Methods

To describe finite element methods (FEM), we consider approximating the 
solution to a linear two-point boundary-value problem of the form

(D)                                  

            
The differential equation describes the displacement  of a uniaxial rod of 
length 1, due to distributed force/length  .

A little bit of physics:

Distributed force/length   

Axial (normal) stress   

Internal axial force   ,    = cross-sectional area

Uniaxial Hooke's law   

Force equilibrium
 

Thus, in the above model,   .

We assume that  and there exists a constant  such that
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(5)(5)

(3)(3)

(4)(4)

Variational Formulation:

Define a linear space

 is piecewise continuous on 
and 

Since, by the integration by parts,

the differential problem (D) can be written as the weak form

Define a bilinear functional and a linear product as

Then, Equation (2)  reads, for ,

Now, we define the variational problem corresponding to the differential 
problem (D):

(V)              Find    such that                   

Theorem: The differential problem (D) is equivalent to the variational 
problem (V), when the solutions are sufficiently smooth.
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Minimization Problem:

Let  be a functional defined as

Consider the following minimization problem

(M)              Find    such that                     

Theorem: The minimization problem (M) is equivalent to the variational 
problem (V).

Theorem: Problem (V) admits a unique solution, provided the condition (1) is 
satisfied.

In summary:

                      [ , when  exists]
They admit a unique solution.
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Formulation of FEMs

Partitioning:  The domain is partitioned into a collection of elements of 
the maximum mesh size .

Subspace   and basis functions : A finite-dimensional 

subspace is set to represent the numerical solution as a linear combination
of basis functions

(6)

Examples are piecewise polynomials (splines)

linear, quadratic, cubic, etc.

Application of variational principles: Different FEMs are formulated 
with various variational principles.

Examples are

the minimization principle (Rayleigh-Ritz),
weighted residual approaches with the weights being either the basis 
functions (Galerkin) or different functions (Petrov-Galerkin),
least-square approaches, and
collocation evaluation.

Assembly for a linear system: The linear system can be assembled for 

the unknown   with the integrals approximated by 

numerical quadratures.
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1. Partitioning

Let

be a partition of the unit interval .

Define

and
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2. Subspace & Basis functions

Define a finite-dimensional subspace of   as

  is a polynomial of degree  on each 

Corresponding basis functions are determined depending on the choice of 
polynomial degree  and therefore on the nodal points.

Each of basis functions is related to a nodal point.

Linear FEM :

For the linear FEM, the nodal points coincide with the grid points . The 

basis function associated with   is defined as

0=x
0
   x

1
        x

2
         x

3
       ,,,       x

jK1
     x

j
        x

jC1
      ,,,      x

m

1
 f

1
        f

2
                ,,,                       f

j

246



Quadratic FEM :

On each subinterval , the basis function is a quadratic 

polynomial, which requires to determine three coefficients; three nodal 
points must be set on each subinterval. The two endpoints can naturally 
become nodal points. We may select the center of the subinterval for the 

extra nodal point.
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Higher-order FEMs (

For each interval ,  the degree of freedom of  -th order 

polynomials is  and therefore it requires to choose  nodal points. 
As for the quadratic FEM, the two endpoints can naturally become nodal 
points. We should select  extra nodal points inside the -th interval . 

In the literature, a common practice is to select those nodal points in such a 
way that the numerical quadrature of the integrals is as accurate as possible 
when the nodal points are used as quadrature points. Such selection is 
related to the family of orthogonal polynomials such as Legendre 
polynomials and Chebyshev polynomials.

Theorem (Gauss-Lobatto Integration):

Let  and  and  are the roots of the first-

derivative of the -th Legendre polynomial, . Let   

be obtained by

Then, 
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(6.1.1)(6.1.1)

(6.1)(6.1)

Legendre Polynomials:

1

t

Gauss-Lobatto nodal points:

0
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k=2:  -1  0.0000000000   1

k=3:  -1  -0.4472135954  0.4472135954   1

k=4:  -1  -0.6546536709  0.0000000000  0.6546536709   1

k=5:  -1  -0.7650553238  -0.2852315163  0.2852315163  0.7650553238   1

Gauss-Lobatto weights:

k=2:  1/3  4/3  1/3

k=3:  1/6  5/6  5/6  1/6

k=4:  1/10  49/90  32/45  49/90  1/10

k=5:  1/15  -1/30*7^(1/2)+7/15  1/30*7^(1/2)+7/15  1/30*7^(1/2)+7/15  

-1/30*7^(1/2)+7/15  1/15
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(6.2)(6.2)

The maps  and  defined by

transform the nodal points   and weights  

respectively to  and corresponding weights. Note that

which is the length of the -th subinterval.
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(7)(7)

3. Application of variational principles

Once basis functions are determined, the approximate solution  can be 

formulated as in (6), that is,

Rayleigh-Ritz Method:

The method seeks an approximate solution of the form (7) which satisfies

where

(8)

It follows from (7) and (8) that

(9)

In order for a minimum to occur, it is necessary, when considering  as 

a function of , to have the normal equations
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(12)(12)

(11)(11)

(13)(13)

(10)(10)

Rayleigh-Ritz Method (2)

Differentiating (9) gives

which equivalently reads, for ,

and yields

Note that .

Letting

the normal equations in (11) produce an  linear system
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(14)(14)

4. Assembly for a linear system

As shown in the previous page, the algebraic system can be obtained by 
integrating the quantities in Equation (12). Such a process of constructing a 
matrix system is called assembly.
Here we consider the simplest case, the linear FEM.

Recall the basis functions for the linear FEM are defined as

Thus its derivative reads

Since  and  are nonzero only on ,

except for  , or .

As a consequence, the linear system given by Equation (13) reduces to an 
 tridiagonal linear system.
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(7.1)(7.1)

Assembly for a linear system (2)

The nonzero entries in the -th row of  are , and .

Computation of :

Thus we have

where the trapezoidal quadrature rule has been applied.

Computation of 

and therefore
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(7.4)(7.4)

(7.3)(7.3)

(7.2)(7.2)

Computation of  Similarly,

Thus,

Computation of :

Hence , we have
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(8.1)(8.1)

(16)(16)

(15)(15)

(8.2)(8.2)

Summary for the Linear FEM:

The -th row of the algebraic system

can be written as

where

Note

When   for all   and ,  equation (16) becomes

Dividing both sides by , we have

which is the same equation obtained from the second-order finite 

difference method.
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(10.1)(10.1)

Example: Use the linear Rayleigh-Ritz FEM to approximate the solution to 
the boundary-value problem

using  and .  Compare your result with the 

actual solution .  (Note that this problem involves
a reaction term.)

Solution:

# Partitioning:

# Basis functions and :

Since , we only need to define

where
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phi1 phi2

x

0 1
0

1

# Variational principle and Assembly:

# Element-wise Assembly with Lagrange form of linear basis functions: 
with exact evaluation of integrals.
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# Print A and b:

 = 

 = 

# Incorporation of the Dirichlet Boundary Condition:

 = 

 = 
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(10.2)(10.2)

plotting

u uh-Rayleigh-Ritz 

x
0 1

0
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(17)(17)

(3)'.  Other Variational Principles: Weighted Residual Approaches

We will go back to the 3rd step of FEM formulation for other variational 
principles; so far, we have considered Rayleigh-Ritz Method which employs 
the minimization principle.

A WRA begins with defining the residual. Let

The residual  is defined as

Then, ; however, for  ,

,  in general.

Weighed residual approaches are seeking an approximate solution

(18)

which satisfies

(19)

for a sequence of weight functions , which is also called a trial function. 
When the integration by parts is utilized, Equation (19) can be written as

(20)
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Choices of Weight (Trial/Test) Functions

Methods Weight functions

Galerkin method , the basis functions

Petrov-Galerkin method

Least-Squares method

Collocation method
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(22)(22)

Galerkin method

The weight function are the basis functions: for 

(21)

Utilizing the integration by parts, it is easy to derive

which in turn implies, for ,

Equivalence between Rayleigh-Ritz and Galerkin methods:

Equation (22) for Galerkin FEM is the same as Equation (10) for Rayleigh-
Ritz FEM. In general, the two methods are equivalent for linear partial 
differential equations.
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Petrov-Galerkin method

The weight function are the basis functions: for 

(23)

Various Petrov-Galerkin methods have been developed with various choices 
of weight functions, particularly for convection-dominated fluid problems. We
will not deal with those problems here. If you are interested in those, try 
"Numerical Solutions of PDEs II".
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(25)(25)

Least-Squares method

which is equivalent to

Differentiating the integral reads

where

Thus the Least-Squares FEM can be formulated as

(24)

Although rarely happening, utilizing the integration by parts gives

Note:

Due to the derivatives applied on the basis functions, the basis functions for 
least-squares methods must be high-order splines.
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Collocation method

The weight function are, for 

(26)

The algebraic system:

Since

and

when  nodal points are selected, the collocation method produces the 
 algebraic system:

Much attention in the literature has been given to the choice of the basis 

functions  and the collocation points .  One popular choice is to let

 be cubic B-Spline functions and  be Gaussian points.

268



(14.1)(14.1)

Example:  Use collocation method to approximate the solution to the 
boundary-value problem considered in the preceding example:

using three nodal points   and basis functions

Compare your result with the actual solution .

Solution:
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(14.3)(14.3)

(14.4)(14.4)

(14.5)(14.5)

(14.2)(14.2)

 = 

 = 

 = 

plotting

u uh-Coll3

x
0 1

0
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(15.1.1)(15.1.1)

(15.1.2)(15.1.2)

(15.1)(15.1)

The Same Example: with two basis functions

Solution:

computation

 = 

 = 
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plotting

u uh-Coll2

x
0 1

0
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(16.1)(16.1)

Example: Use the least-squares FEM to approximate the solution to the 
boundary-value problem considered in the preceding example:

using a single element and two basis functions

Compare your result with the actual solution .

Solution:

# Partitioning

# Variational principle and Assembly: Equation (24)
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(16.2)(16.2)

  =         = 
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plotting

u uh-LS2

x
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(1)(1)

11.4. Finite Element Methods:

More General Boundary-Value Problems

For a deeper understanding of FEMs, we consider approximating the solution 
to a more general boundary-value problem of the form

(D)   

The Dirichlet BC is called an essential BC, while the Neumann BC is called a
natural BC.            

Variational Formulation:

Define a linear space

 is piecewise continuous on and 

Since, by the integration by parts,

the differential problem (D) can be written as the weak form
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(2)(2)

(3)(3)

(4)(4)

Define a bilinear functional and a linear term as

Then, Equation (1)  reads, for ,

Now, we define the variational problem corresponding to the differential 
problem (D):

(V)              Find    such that                   

Theorem: The differential problem (D) is equivalent to the variational 
problem (V), when  exists.

278



(1.2)(1.2)

(1.5)(1.5)

(1.4)(1.4)

(1.3)(1.3)

(1.1)(1.1)

The Galerkin FEM

Partitioning:

   with

Subspace:
 is linear on each 

  When the basis functions are chosen as 

,

  the approximate solution is

Application of variational principles: The linear Galerkin FEM is 
formulated as

  which can be written as

  where

Assembly: Algebraic system for (1.3) using (1.4) and (1.5).
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Example: (Revisit to the example in Section 11.2) Use the Linear Galerkin 
FEM to approximate the solution of

with  and . 

Solution:

# The Linear Galerkin FEM

# with Lagrange form of linear basis functions,
# and exact evaluation of integrals.
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Error Analysis: the linear Galerkin FEM

The exact solution:

              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error

 x=1.20   0.74600  |  0.74927   0.00328  |  0.74681   0.00081  |  0.74598   1.155e-005
 x=1.40   1.44159  |  1.44769   0.00610  |  1.44311   0.00151  |  1.44158   1.498e-005
 x=1.60   2.00078  |  2.00842   0.00764  |  2.00268   0.00190  |  2.00076   1.256e-005
 x=1.80   2.29774  |  2.30483   0.00709  |  2.29951   0.00177  |  2.29774   4.459e-006
 x=2.00   2.17143  |  2.17505   0.00362  |  2.17234   0.00091  |  2.17144   9.758e-006

Second-order FDM Results (Section 11.2)
              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75688   0.01088  |  0.74871   0.00271  |  0.74598   1.423e-05
 x=1.40   1.44159  |  1.46883   0.02723  |  1.44840   0.00680  |  1.44159   6.646e-06
 x=1.60   2.00078  |  2.04943   0.04865  |  2.01295   0.01217  |  2.00078   7.089e-06
 x=1.80   2.29774  |  2.37302   0.07527  |  2.31658   0.01884  |  2.29777   2.315e-05
 x=2.00   2.17143  |  2.27883   0.10740  |  2.19831   0.02688  |  2.17147   4.068e-05
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FEM with Numerical Quadrature

Solution: The Preceding BVP

# The Linear Galerkin FEM
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Error Analysis: the linear Galerkin FEM,with Trapezoid Rule

              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75132   0.00532  |  0.74731   0.00131  |  0.74597   2.78e-005
 x=1.40   1.44159  |  1.45619   0.01460  |  1.44522   0.00363  |  1.44156   3.185e-005
 x=1.60   2.00078  |  2.02780   0.02703  |  2.00751   0.00673  |  2.00075   2.977e-005

 x=1.80   2.29774  |  2.34011   0.04237  |  2.30831   0.01057  |  2.29772   2.632e-005
 x=2.00   2.17143  |  2.23203   0.06060  |  2.18656   0.01513  |  2.17141   2.291e-005

FEM Results with Exact Integrals

              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.74927   0.00328  |  0.74681   0.00081  |  0.74598   1.155e-005
 x=1.40   1.44159  |  1.44769   0.00610  |  1.44311   0.00151  |  1.44158   1.498e-005
 x=1.60   2.00078  |  2.00842   0.00764  |  2.00268   0.00190  |  2.00076   1.256e-005
 x=1.80   2.29774  |  2.30483   0.00709  |  2.29951   0.00177  |  2.29774   4.459e-006
 x=2.00   2.17143  |  2.17505   0.00362  |  2.17234   0.00091  |  2.17144   9.758e-006

Second-order FDM Results (Section 11.2)
              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75688   0.01088  |  0.74871   0.00271  |  0.74598   1.423e-05
 x=1.40   1.44159  |  1.46883   0.02723  |  1.44840   0.00680  |  1.44159   6.646e-06
 x=1.60   2.00078  |  2.04943   0.04865  |  2.01295   0.01217  |  2.00078   7.089e-06
 x=1.80   2.29774  |  2.37302   0.07527  |  2.31658   0.01884  |  2.29777   2.315e-05
 x=2.00   2.17143  |  2.27883   0.10740  |  2.19831   0.02688  |  2.17147   4.068e-05
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11.5. Finite Difference Methods for Non-constant Diffusion

We in this section consider differential equations of the following form

(1)

where .

As in Section 11.2, let, for some ,

and define  for  .

Review of FDMs:
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FDM for  

Claim: 

(2)

where 

Proof:

Let . Then

Now, we should approximate  and .   For example,

Let

.

Then, we have

Similarly,
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Therefore, combining above equations reads

Since 

we conclude that the given difference formula is in the second-order 
accuracy.
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(3)(3)

(4)(4)

(5)(5)

(6)(6)

Assembly

Use of these central FD schemes in the first equation of Equation (1) at  

results in the equation

From the boundary conditions of (1), we have

and

Equation (5) can be written as

Combining Equations (3), (4), and (6), the differential equation (1) is discretized 
as
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(7)(7)

Then, the resulting system of equations is expressed in the following  
tridiagonal matrix form

where, defining  ,

and
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(3.1)(3.1)

(8)(8)

Example: (Revisit) Use the second-order FDM to approximate the solution of

Solution:

By dividing both sides of the differential equation by , we have

Thus, DE (8) equivalently reads

          

Thus,
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(3.2)(3.2)

(3.3)(3.3)

Error analysis:
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(10)(10)

(9)(9)

              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75386   0.00787  |  0.74795   0.00195  |  0.74597   2.317e-05

 x=1.40   1.44159  |  1.46325   0.02166  |  1.44700   0.00540  |  1.44158   1.456e-05
 x=1.60   2.00078  |  2.04176   0.04098  |  2.01103   0.01025  |  2.00078   4.150e-06
 x=1.80   2.29774  |  2.36390   0.06615  |  2.31430   0.01656  |  2.29777   2.774e-05
 x=2.00   2.17143  |  2.26914   0.09772  |  2.19590   0.02447  |  2.17148   5.516e-05

FDM Solutions for (8), computed in Section 11.2

              exact_y(x)     u(h=1/5)  error         u(h=1/10)  error      Richardson  error
 x=1.20   0.74600  |  0.75688   0.01088  |  0.74871   0.00271  |  0.74598   1.423e-05
 x=1.40   1.44159  |  1.46883   0.02723  |  1.44840   0.00680  |  1.44159   6.646e-06
 x=1.60   2.00078  |  2.04943   0.04865  |  2.01295   0.01217  |  2.00078   7.089e-06
 x=1.80   2.29774  |  2.37302   0.07527  |  2.31658   0.01884  |  2.29777   2.315e-05
 x=2.00   2.17143  |  2.27883   0.10740  |  2.19831   0.02688  |  2.17147   4.068e-05

Note:  The differential equation

reads equivalently

However, it is often the case that the numerical solution of (9) is much more 
accurate than that of (10), particularly when the diffusion function  is 
oscillatory or non-smooth. When an FEM is applied, you should not use DE of
the form (10) when (9) is available.
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FDM vs. FEM, for Non-constant Diffusion

Recall:

The FDM is expressed as

with 

From the linear Galerkin FEM, the coefficients and the right-hand side are

Thus, when  for all  (uniform grid), the algebraic equation becomes

Conclusions:

The FDM is equivalent to the linear Galerkin FEM when

With the approximation (as in realistic simulations), the FDM solution is 
still in a second-order accuracy.
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Homework:
11. Boundary-Value Problems of One Variable

#1. Given a BVP:

a.  Show that the BVP has a unique solution.
b.  Use the shooting method (and RK4SYSTEM)  to approximate the 
solution,

with  and .

c.  The exact solution .  Measure the errors for

the approximate solutions computed in (b) and compare them.

#2. The second-order differential equation

has the exact solution .

a.  Use the second-order FDM  to approximate the solution of  with 
, that is, with

b.  Apply the Richardson's extrapolation method to get two sets of fourth-
order approximations of the solution, one from  and  (say, ) and

the other from  and  (say,  ).

c.  Verify if the Richardson's extrapolation really produces the desired 
theoretical accuracy. This requires you to measure the errors for R  and R  

and check if the error for R  is sixteen times smaller than the error for R .
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#3. Use the linear Rayleigh-Ritz- Galerkin FEM  to approximate the solution 
to the boundary-value problem

using equally distributed nodal points with .
a. Carry out the integrations exactly and using Trapezoidal rule.
b. Compare both of your results with the actual solution 

.

#4.(Optional (and extra credit) for undergraduates). For the boundary-value 
problem considered in the preceding problem, use the method of collocation  
to approximate the solution.
a.  Choose a set of three basis functions in your own. (The basis functions 
should be linearly independent each other and satisfy the boundary condition.)
b.  Select the nodal points inside  conveniently, again in your own.
c.  Compare your result with the actual solution.
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12. Numerical Solutions

to Partial Differential Equations

In This Chapter:

Topics Concerns

FDM: Parabolic PDEs (1D) Heat equation

    Forward/Backward Euler method

    Crank-Nicolson method
Error=

    -method Stability analysis

FDM: Parabolic PDEs (2D/3D) Rectangular domain

    Grid selection

    Point ordering

    Alternating direction implicit (ADI) method

FEM: Elliptic PDEs (2D)

    Variational formulation Weak form

    Rayleigh-Ritz-Galerkin method

    Galerkin method

    Algebraic solvers

Hyperbolic PDEs (1D) Wave equation
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12.1. Partial Differential Equations (PDEs)

General form of PDEs: For ,

Elliptic PDEs: Equilibrium (time-independent)

Examples:

Poisson equation: 

Laplace equation: 

Parabolic PDEs: Diffusion-reaction

Example:

Heat equation: 

Hyperbolic PDEs: Convection/vibration

Example:

Wave equation: 
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(2)(2)

(3)(3)

Parabolic Partial Differential Equations (1D)

The parabolic PDE in one spatial variable we will consider is the heat 
equation of the form

(1)

Partitioning:

Let , for some , and

Similarly, , for some , and
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(6)(6)

Spatial Discretization:

Define .

Recall the 2nd-order central FD Schemes:

(4)

(5)

Then, the differential equation in (1) is approximated as

Incorporated with the boundary conditions in (1),  Equation (6) is written in a 
vector form

(7)

Notes:

Equation (7) is called a semi-discrete problem.

It is a system of ordinary differential equations. Depending on how the 
time-derivative is approximated, various methods can be formulated.
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(11)(11)

(9)(9)

(13)(13)

(10)(10)

(8)(8)

Forward Euler Method (Explicit)

Expanding  in a Taylor polynomial about  evaluated at , we
have

which in turn implies that

Then, the Forward Euler method is formulated from (7) and (9) as

When the error terms are ignored, then the above equation reads

where  is an approximation of .

Forward Euler method: It follows from (11) that

(12)

for which
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(14)(14)

Stability Analysis

Let . Then each component of the Forward Euler method (12) reads

Letting  we have

Theorem: Suppose that  and  be chosen such that

(15)

Then

.

Proof:

Let the condition (15) be satisfied. Then each of the coefficients in the right

side of (14) is nonnegative and their sum become 1. Thus,

from which the conclusion follows.
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(6.1)(6.1)

(6.2)(6.2)

Stability condition:

The condition in (15) is called a stability condition, which equivalently 
reads

Thus, the forward Euler method guarantees a bounded (stable) solution 
when the temporal step-size is selected sufficiently small to become

When the stability condition (6.1) is violated, the numerical solution can 
be easily oscillatory and is not convergent.

Due to the requirement of choosing a huge number of time steps, the 
computation may be expensive.
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(16)(16)

Example: Use the forward Euler method with (a)  and 
(b)  to approximate the solution to

for which the actual solution is .

Solution:
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(7.2)(7.2)

(7.1)(7.1)

 = 

### (a):

0.00000794425945
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(7.3)(7.3)

(7.4)(7.4)

### (b) When the stability condition is slightly violated:
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(22)(22)

(18)(18)

(17)(17)

(19)(19)

(20)(20)

Backward Euler Method (Implicit)

Expanding  in a Taylor polynomial about  evaluated at , we 
have

which in turn implies that

Then, the Backward Euler method is formulated from (7) and (18) as

When the error terms are ignored, then the above equation reads

where  is an approximation of .

Backward Euler method: It follows from (20) that

(21)

for which
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(23)(23)

Stability Analysis

Let . Then each component of the backward Euler method (21) reads

Letting  we have

Theorem: For any choice of   and , the approximate solutions produced by
the backward Euler method satisfy

.

Hence, the backward Euler method is unconditionally stable.

Proof:

Equation (23) gives 

which implies that

from which the conclusion follows.
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Example: Use the backward Euler method with  and with (a) 
, (b) , and (c)  to approximate the solution to

for which the actual solution is .

Solution:
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(9.2)(9.2)

(9.1)(9.1)

 = 

### (a)

0.00001900330762
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(9.4)(9.4)

(9.3)(9.3)

(9.6)(9.6)

(9.5)(9.5)

### (b)

0.00003622705276

### (c)

0.00007935966322

Note: The error is mainly from temporal truncation error .
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System of Tridiagonal Matrices

Such a matrix can be saved in an  array:

and row operations can be applied correspondingly.

Example: Use Gauss Elimination to solve the tridiagonal system of 5 
equations, , of which the coefficient matrix is given in a  array for 
nonzero entries.
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Solution: (The underlined numbers are pivots.)

    # The last column reads the unknown u.
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(26)(26)

(27)(27)

(25)(25)

Crank-Nicolson Method (Semi-Implicit)

It follows from Equation (7) that

The Crank-Nicolson method utilizes a second-order central difference scheme 
for the temporal derivative in the above equation.

Expanding  in a Taylor polynomial about  evaluated at 

, we have

Similarly, expanding  in a Taylor polynomial about  evaluated at ,
we have

Subtracting the above two equations gives

which introduces

Utilizing (25) and (26), we have
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(28)(28)

(30)(30)

When the error terms are ignored, then the above equation reads

where  is an approximation of .

Crank-Nicolson method: It follows from (28) that

(29)

for which

The Crank-Nicolson method is called a semi-implicit method.

Theorem: For any choice of   and , the approximate solutions produced by
the Crank-Nicolson method satisfy

.

Hence, the Crank-Nicolson method is unconditionally stable.
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What/Why Stability?

Definition: A numerical algorithm is said to be consistent if the truncation 
error approaches to 0 as , that is,

  as .

Definition: A numerical method is stable if there is a constant , 
independent of  and , such that

(Here  may depend on the terminal time .)

Definition: A numerical algorithm is convergent if

   as .

Rax-Richtmyer Equivalence Theorem: For consistent numerical algorithms,
stability is a necessary and sufficient condition for convergence.

319



Claim: If there is a constant  such that

Then the method is stable.

Proof.  Once the condition is satisfied, we have

Since , 

and therefore

which completes the proof.
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(31)(31)

Example: Use the Crank-Nicolson method with   
and   to approximate the solution to

for which the actual solution is .

Solution
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(11.4)(11.4)

(11.3)(11.3)

(11.2)(11.2)

(11.1)(11.1)

(11.5)(11.5)

### (a)

0.0000200662405

### (b)

0.000005932829
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(11.9)(11.9)

(11.6)(11.6)

(11.7)(11.7)

### (c)

0.000001525890

### (d)
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(33)(33)

The -Method

The semi-discrete problem for (1) is presented in (7) and rewritten here:

(32)

Consider the following fully discretized problem:

Similarly, multiplying the both sides of Equation (33) by  and rearranging 

terms, we obtain the -method

(34)

which sometimes called the weighted average method.

Three common choices:
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Notes:

The -method becomes

  Forward Euler method

  Backward Euler method

  Crank-Nicolson method

Stability and Accuracy:

Stability condition Accuracy

unconditionally stable
, when 
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(3)(3)

(2)(2)

12.2. Parabolic PDEs in Two or Three Variables

A natural generalization of the one-dimensional model problem in two 
dimensions is the problem

(1)

B.C.
where  is a positive constant.

Let the region  be covered with a uniform rectangular grid 
of points, with a spacing  in the -direction and  in the -direction, where

When the temporal grid size is set to be
 ,

the approximate solution is then denoted by

where
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(7)(7)

(8)(8)

(5)(5)

(4)(4)

Semi-discrete Problem

As for the model in one variable, we first discretize the problem for spatial 
derivatives. For a fixed ,

Then Equation (1) can be written in a vector form

(6)

where
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(13)(13)

(12)(12)

(9)(9)

(10)(10)

Forward Euler Method (Explicit Scheme)

The simplest explicit difference scheme is the natural extension of the forward
Euler method in one variable, and is given by

where  and

Equation (9) can be rearranged as

(11)

On the other hand, Equation (9) reads in its grid-point form

Letting

we have
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Forward Euler Method: Stability

One can show the following theorem (stability analysis) using the same 
arguments introduced for the problem in one variable.

Theorem : Let . Suppose that

(14)

Then the forward Euler method is stable and it produces a sequence of 
solutions satisfying

 and  = .

Notes
The forward Euler method requires to choose a sufficiently small  to 
become stable, which may make the method expensive after all.
The -method can be formulated similarly as for problems in one 
variable. However, the most interesting case is the Crank-Nicolson 

method for which , due to its unconditional stability and second-

order accuracy in both time and space.
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(2.1)(2.1)

(15)(15)

(17)(17)

The Crank-Nicolson (CN) Procedure

Ignoring the error term from the semi-discrete problem in (6), the CN time-
stepping procedure can be formulated as

where  and   is an approximation of 

.

Crank-Nicolson Procedure:  It follows from (15) that

(16)

where  and

Notes:
The Crank-Nicolson method is called a semi-implicit method.
The matrix in the left-hand side of Equation (16) is strictly diagonally 
dominant; the linear system can be solved iteratively with a great 
efficiency , particularly when the number of grid points is relatively small
and the initial value is set as, e.g., for ,

In general, a fast solver must be developed.
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(18)(18)

Point-Ordering for the Algebraic System

Row-wise order: 

p, q
   = i

0, 0
  = 1

1, 0
  = 2

n
x
, 0

 = n
x
C 1

   0, 1
 = n

x
C 2

0, n
y

n
x
, n

y

Operations at the node  occupy the -th row  of .

Examples :

Column-wise order can be considered similarly.
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(19)(19)

Alternating Direction Implicit (ADI) Method

The ADI method was developed in 1955 by Douglas, Peaceman, and 
Rachford, as a perturbation of the Crank-Nicolson time-stepping procedure. It 

introduces an extra error called the splitting error  in  which is the same 
order as the truncation error. However, it does not require to solve a huge 
linear system, but it marches a time step by solving a series of tridiagonal 
matrix systems, once in the -direction followed by one -directional sweep.

We first rewrite the Crank-Nicolson procedure in Equation (15) as

Then, the ADI method is formulated as a method of two steps

(20)

(21)

where  denotes an intermediate solution.

Notes

Equation (20) is to solve for the -direction, with  replaced by the 

last available quantity .

Equation (21) is to solve for the -direction, with  replaced by the 

last available quantity .

(21) - (20):  
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Implementation of ADI method

Equations (20) and (21) read equivalently

(22)

(23)

Notes
Equation (22) is a simple rearrangement of Equation (20).
Equation (23) is obtained from Equation (21) subtracted by Equation (20).
Both (22) and (23) require only to solve a series of tridiagonal algebraic 
systems.
The matrix  is an -directional operator, while  becomes an -

directional operator. Thus the other directional copy of the solution 
vector  is needed to carry out the computation conveniently.
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Splitting Error of ADI

It follows from (23) that

Plugging it into (22)

Since the left-hand side of the above equation gives

,

by rearranging the terms, we obtain

(24)

Notes

The term in boldface is the splitting error, which is in , more 
precisely,

The splitting error can be much larger than the truncation error

A remedy has been proposed by (Douglas-Kim, 2001): adding to the 
right side of  (24)

   which makes the splitting error in 
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Applications of ADI
Various operator splitting methods

Examples
System of nonlinear equations
Projection methods for Navier-Stokes's Equations
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Example : Let 

Use the ADI method to approximate the solution to

with and 40. Then analyze the error; the actual solution

Solution:
Recall that the ADI can be implemented with Equations (22) and (23):

where each of , is a collection of tridiagonal matrices. For 
example,  contains  tridiagonal matrices, each of which is 

representing the FD approximation of  on a horizontal grid line and has 

dimension of . The differential operator  is identical for all 

horizontal grid lines, so is the tridiagonal matrices. Thus you may save only
one tridiagonal matrix for . The same is applied for .
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## CN-ADI for Parabolic PDE in 2D (  on  only)

# Let 

#        
# Use the ADI method to approximate the solution to
#       

#       
#         
# with and 40.

# Then analyze the error. The actual solution  

#       
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##======================================

## The Main Code

##======================================
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342
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(4)(4)

(2)(2)

(5)(5)

(3)(3)

> > 

> > 

(7)(7)

(6)(6)

> > 

(1)(1)

##======================================
## Problem Setting & Solve

##======================================

### Checking error
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(8)(8)

## nx=10: err=, 0.1395588783
## nx=20: err=, 0.03913158771
## nx=40: err=, 0.009780608328
## nx=80: err=, 0.002444378205

### Richardson Extrapolation

 nx=ny=nt= 20:  Richardson_Error = 3.05212e-06

 nx=ny=nt= 40:  Richardson_Error = 1.03255e-06
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## CN-SOR for Parabolic PDE in 2D (  on  only)

# Let 

#        
# Use the ADI method to approximate the solution to
#       

#       
#         
# with and 40.

# Then analyze the error. The actual solution  

#       
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##======================================

## The Main Code

##======================================

348
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> > 

> > 

(6)(6)

> > 

(4)(4)

(2)(2)

(1)(1)

(7)(7)

> > 

(3)(3)

(5)(5)

##======================================
## Problem Setting & Solve

##======================================

### Checking error
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 nx= 80: error=2.58319e-05

##  nx= 10: error=0.00159191
##  nx= 20: error=0.000415578
##  nx= 40: error=0.000102565
## nx= 80: error=2.58319e-05

## Result from ADI:
## nx=10: err=, 0.1395588783
## nx=20: err=, 0.03913158771
## nx=40: err=, 0.009780608328
## nx=80: err=, 0.002444378205

### Richardson Extrapolation
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 nx=ny=nt= 20:  Richardson_Error = 1.80033e-06

 nx=ny=nt= 40:  Richardson_Error = 5.47026e-07

## Result from ADI
 nx=ny=nt= 20:  Richardson_Error = 3.05321e-06
 nx=ny=nt= 40:  Richardson_Error = 1.03328e-06

Note:

For 4th-order scheme, the CN-ADI produces a relatively small splitting 
error.
When , CN-ADI takes about 2 minutes, while CN-SOR 
takes more than 30 minutes.
There is a simple remedy for the elimination of the splitting error (with 3
-5% more computation time); see J. Douglas, Jr. and S. Kim (2001). 
"Improved accuracy for locally one-dimensional methods for parabolic 
equations". Math. Models and Methods in Appl. Sci. 11, pp. 1563-1579.
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## CN-ADI-II for Parabolic PDE in 2D (  on  only)

# Let 

#        
# Use the ADI method to approximate the solution to
#       

#       
#         
# with and 40.

# Then analyze the error. The actual solution  

#       
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##======================================

## The Main Code

##======================================

355
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357



358
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(3)(3)

> > 

(4)(4)

> > 

(7)(7)

(6)(6)

(1)(1)

(2)(2)

> > 

(5)(5)

##======================================
## Problem Setting & Solve

##======================================

### Checking error
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 nx= 40: error=0.000162894

## Result from CN-ADI-II:

## nx= 10: error=0.01163946
## nx= 20: error=0.001150287
## nx= 40: error=0.000162894
## nx= 80: error=3.12040e-05

## Result from CN-SOR:

## nx= 10: error=0.00159191
## nx= 20: error=0.000415578
## nx= 40: error=0.000102565
## nx= 80: error=2.58319e-05

## Result from CN-ADI:

## nx=10: err=, 0.1395588783
## nx=20: err=, 0.03913158771
## nx=40: err=, 0.009780608328
## nx=80: err=, 0.002444378205
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12.3. Finite Element Methods

for Elliptic Problems in 2D

The model problem we will consider is the elliptic problem in two dimensions
of the form

(1)

where  and  are positive functions,  is the outward unit vector, and 

. 

The PDE in detail reads

Variational Formulation: begins with defining a linear space

 is piecewise continuous on and 

 on 

The essential BC can be incorporated algebraically, as the last part of the 
assembly. So we may assume  momentarily.
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The integration by parts (Green's theorem):

Thus, the weak form is formulated as

(2)

where

and

Formulation of FEM:

Partitioning/Triangulation:

Subspace   and basis functions : the numerical solution is 

represented as a linear combination of basis functions

(3)

Application of variational principles: Here we will consider the 
Galerkin method.

Assembly for a linear system: the unknown 
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(4)(4)

The Linear Galerkin FEM

Let the domain be partitioned into a collection of triangular elements . We denote 

the FEM solution as

where the -th basis function  is linear on each of the elements and satisfies 

  for all nodal points .

Then, the linear Galerkin FEM is formulated as

(5)

Note that

and
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Thus

You may incorporate the Dirichlet boundary condition at the end.
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(6)(6)

(7)(7)

(8)(8)

Construction of Basis Functions:

Let the triangle (an element) have three vertices  Then the 

linear basis function defined on the triangle can be expressed as

with a property that

For example, for ,

which can be written as the following algebraic system

In general, for , the corresponding linear system reads

where 

Thus,  ,  the coefficients of , is the -th column of .
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(1.2)(1.2)

(1.1)(1.1)

Basis Functions for the Element: 

## , where .

The -th column of  is . However,  itself is quite 

complicated to be used as a formula. Let's manipulate it a bit.

##===========================

of which the absolute value is known to be twice the area of the triangle.
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> > 

(1.3)(1.3)

where  .
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(2.2)(2.2)

(2.1)(2.1)

Basis Functions for the Element: 

## , where

The -column of  is . Let's manipulate it a bit.

##===========================
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(2.1.1)(2.1.1)

(2.1.2)(2.1.2)

Too complicated! Okay. Let's give up finding a compact formula for the 
basis functions. However, you can construct them directly as follows.

Example:
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> > 

d. d. 

(2.1.3)(2.1.3)

(2.1.4)(2.1.4)

a. a. 

c. c. 

b. b. 

Construction of Basis Functions: for -gonal elements

Select  monomial components for the basis functions
Express basis functions as linear combinations of those monomial 
components

Build linear systems , which represent 

The -th column of  is the coefficients for 

See the attached for an example code for the linear Galerkin FEM.
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(9)(9)

The Stiffness Matrix: Construction and Access

The stiffness matrix can be saved with two arrays:

For each element , local nodes must be related with global node ordering as 
follows

Local Node Number

Global Node Number

Let  be the local stiffness matrix obtained from the element :
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##===============
Construction of 

##===============

##===============
Access of 

##===============

;

Note: the indices  found in the procedure "AA" can be saved, as inverse 
indices for the entry , during the first access; with the inverse indices, you 

can obtain entries of  easily without searching.
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Maple Code:

Linear Galerkin FEM for 2D Elliptic Problems
(Second-order Quadrature)

Example: For , consider the problem

with boundary conditions given as in the figure:

1

2

0, 0

 = N
1

1
1, 0

 = N
2

1

2

2

3
3

 0, 1

 = N
3

1, 1

 = N
4

g1 x, 0 = xK1
2

    g2 0, y

= 2 K2 y

 g2 x, 1 = 4 x

g2 1, y

= 4 y

Use the linear Galerkin method using the two elements as given in the figure. 

Compare the accuracy; the actual solution is .

Note: 
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## Elementary Stiffness Matrix (ESM) for Linear FEM
##======================================
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(1)(1)

 = 

378



(2)(2)
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(4)(4)

(3)(3)
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Check If the Code is Correct:
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(5)(5)

(7)(7)

(6)(6)
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Maple Code:

Linear Galerkin FEM for 2D Elliptic Problems
(Higher-order Quadrature)

)

Example: For , consider the problem

with boundary conditions given as in the figure:

1

2

0, 0

 = N
1

1
1, 0

 = N
2

1

2

2

3
3

 0, 1

 = N
3

1, 1

 = N
4

g1 x, 0 = xK1
2

    g2 0, y

= 2 K2 y

 g2 x, 1 = 4 x

g2 1, y

= 4 y

Use the linear Galerkin method using the two elements as given in the figure. 

Compare the accuracy; the actual solution is .
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## Elementary Stiffness Matrix (ESM) for Linear FEM
##======================================

384



385



(1)(1)
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(2)(2)
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(4)(4)

(3)(3)
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Check If the Code is Correct:

389



(7)(7)

(5)(5)

(6)(6)
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Homework:

12. Numerical Solutions to Partial Differential Equations

You may consider this last homework as another project.

Problem #2 is optional, and you may get a headache when you decide to try it.

However, if you can get through the maze, you clearly deserve an A for the 

class and you do not have to take the final.

#1. Use the Crank-Nicolson method to approximate the solution to

a.  Modify the code for the Neumann boundary condition.
b.  Carry out the computation with   and  

c.  Compute the Richardson extrapolation for the solutions at  and 
verify accuracy improvement; the actual solution is

.
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(2.1)(2.1)

(2.2)(2.2)

(2.3)(2.3)

(2.4)(2.4)

#2 (optional). Let .
Modify the CN-ADI code to approximate the solution to

with , and 40. Note that the problem involves the no-flux BC; 

you have to modify the code appropriately.

a.  Verify that your modifications are correct, by setting an example of smooth
solution which satisfies the no-flux boundary condition.

For example:

Clearly, (2.1) and (2.2) satisfy the no-flux BC on the boundary. For the 
verification, you have to use (2.3) and (2.4) for   and , respectively.

b.  For each case of spatial grid sizes, find  such that the solution to the 

point-source problem is not oscillatory.
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